1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 *
10 */
11
12 // Everything declared/defined in this header is only required when WebRTC is
13 // build with H264 support, please do not move anything out of the
14 // #ifdef unless needed and tested.
15 #ifdef WEBRTC_USE_H264
16
17 #include "modules/video_coding/codecs/h264/h264_encoder_impl.h"
18
19 #include <limits>
20 #include <string>
21
22 #include "absl/strings/match.h"
23 #include "common_video/libyuv/include/webrtc_libyuv.h"
24 #include "modules/video_coding/utility/simulcast_rate_allocator.h"
25 #include "modules/video_coding/utility/simulcast_utility.h"
26 #include "rtc_base/checks.h"
27 #include "rtc_base/logging.h"
28 #include "rtc_base/time_utils.h"
29 #include "system_wrappers/include/metrics.h"
30 #include "third_party/libyuv/include/libyuv/convert.h"
31 #include "third_party/libyuv/include/libyuv/scale.h"
32 #include "third_party/openh264/src/codec/api/svc/codec_api.h"
33 #include "third_party/openh264/src/codec/api/svc/codec_app_def.h"
34 #include "third_party/openh264/src/codec/api/svc/codec_def.h"
35 #include "third_party/openh264/src/codec/api/svc/codec_ver.h"
36
37 namespace webrtc {
38
39 namespace {
40
41 const bool kOpenH264EncoderDetailedLogging = false;
42
43 // QP scaling thresholds.
44 static const int kLowH264QpThreshold = 24;
45 static const int kHighH264QpThreshold = 37;
46
47 // Used by histograms. Values of entries should not be changed.
48 enum H264EncoderImplEvent {
49 kH264EncoderEventInit = 0,
50 kH264EncoderEventError = 1,
51 kH264EncoderEventMax = 16,
52 };
53
NumberOfThreads(int width,int height,int number_of_cores)54 int NumberOfThreads(int width, int height, int number_of_cores) {
55 // TODO(hbos): In Chromium, multiple threads do not work with sandbox on Mac,
56 // see crbug.com/583348. Until further investigated, only use one thread.
57 // if (width * height >= 1920 * 1080 && number_of_cores > 8) {
58 // return 8; // 8 threads for 1080p on high perf machines.
59 // } else if (width * height > 1280 * 960 && number_of_cores >= 6) {
60 // return 3; // 3 threads for 1080p.
61 // } else if (width * height > 640 * 480 && number_of_cores >= 3) {
62 // return 2; // 2 threads for qHD/HD.
63 // } else {
64 // return 1; // 1 thread for VGA or less.
65 // }
66 // TODO(sprang): Also check sSliceArgument.uiSliceNum om GetEncoderPrams(),
67 // before enabling multithreading here.
68 return 1;
69 }
70
ConvertToVideoFrameType(EVideoFrameType type)71 VideoFrameType ConvertToVideoFrameType(EVideoFrameType type) {
72 switch (type) {
73 case videoFrameTypeIDR:
74 return VideoFrameType::kVideoFrameKey;
75 case videoFrameTypeSkip:
76 case videoFrameTypeI:
77 case videoFrameTypeP:
78 case videoFrameTypeIPMixed:
79 return VideoFrameType::kVideoFrameDelta;
80 case videoFrameTypeInvalid:
81 break;
82 }
83 RTC_NOTREACHED() << "Unexpected/invalid frame type: " << type;
84 return VideoFrameType::kEmptyFrame;
85 }
86
87 } // namespace
88
89 // Helper method used by H264EncoderImpl::Encode.
90 // Copies the encoded bytes from |info| to |encoded_image| and updates the
91 // fragmentation information of |frag_header|. The |encoded_image->_buffer| may
92 // be deleted and reallocated if a bigger buffer is required.
93 //
94 // After OpenH264 encoding, the encoded bytes are stored in |info| spread out
95 // over a number of layers and "NAL units". Each NAL unit is a fragment starting
96 // with the four-byte start code {0,0,0,1}. All of this data (including the
97 // start codes) is copied to the |encoded_image->_buffer| and the |frag_header|
98 // is updated to point to each fragment, with offsets and lengths set as to
99 // exclude the start codes.
RtpFragmentize(EncodedImage * encoded_image,SFrameBSInfo * info,RTPFragmentationHeader * frag_header)100 static void RtpFragmentize(EncodedImage* encoded_image,
101 SFrameBSInfo* info,
102 RTPFragmentationHeader* frag_header) {
103 // Calculate minimum buffer size required to hold encoded data.
104 size_t required_capacity = 0;
105 size_t fragments_count = 0;
106 for (int layer = 0; layer < info->iLayerNum; ++layer) {
107 const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
108 for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++fragments_count) {
109 RTC_CHECK_GE(layerInfo.pNalLengthInByte[nal], 0);
110 // Ensure |required_capacity| will not overflow.
111 RTC_CHECK_LE(layerInfo.pNalLengthInByte[nal],
112 std::numeric_limits<size_t>::max() - required_capacity);
113 required_capacity += layerInfo.pNalLengthInByte[nal];
114 }
115 }
116 // TODO(nisse): Use a cache or buffer pool to avoid allocation?
117 encoded_image->SetEncodedData(EncodedImageBuffer::Create(required_capacity));
118
119 // Iterate layers and NAL units, note each NAL unit as a fragment and copy
120 // the data to |encoded_image->_buffer|.
121 const uint8_t start_code[4] = {0, 0, 0, 1};
122 frag_header->VerifyAndAllocateFragmentationHeader(fragments_count);
123 size_t frag = 0;
124 encoded_image->set_size(0);
125 for (int layer = 0; layer < info->iLayerNum; ++layer) {
126 const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
127 // Iterate NAL units making up this layer, noting fragments.
128 size_t layer_len = 0;
129 for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++frag) {
130 // Because the sum of all layer lengths, |required_capacity|, fits in a
131 // |size_t|, we know that any indices in-between will not overflow.
132 RTC_DCHECK_GE(layerInfo.pNalLengthInByte[nal], 4);
133 RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 0], start_code[0]);
134 RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 1], start_code[1]);
135 RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 2], start_code[2]);
136 RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 3], start_code[3]);
137 frag_header->fragmentationOffset[frag] =
138 encoded_image->size() + layer_len + sizeof(start_code);
139 frag_header->fragmentationLength[frag] =
140 layerInfo.pNalLengthInByte[nal] - sizeof(start_code);
141 layer_len += layerInfo.pNalLengthInByte[nal];
142 }
143 // Copy the entire layer's data (including start codes).
144 memcpy(encoded_image->data() + encoded_image->size(), layerInfo.pBsBuf,
145 layer_len);
146 encoded_image->set_size(encoded_image->size() + layer_len);
147 }
148 }
149
H264EncoderImpl(const cricket::VideoCodec & codec)150 H264EncoderImpl::H264EncoderImpl(const cricket::VideoCodec& codec)
151 : packetization_mode_(H264PacketizationMode::SingleNalUnit),
152 max_payload_size_(0),
153 number_of_cores_(0),
154 encoded_image_callback_(nullptr),
155 has_reported_init_(false),
156 has_reported_error_(false) {
157 RTC_CHECK(absl::EqualsIgnoreCase(codec.name, cricket::kH264CodecName));
158 std::string packetization_mode_string;
159 if (codec.GetParam(cricket::kH264FmtpPacketizationMode,
160 &packetization_mode_string) &&
161 packetization_mode_string == "1") {
162 packetization_mode_ = H264PacketizationMode::NonInterleaved;
163 }
164 downscaled_buffers_.reserve(kMaxSimulcastStreams - 1);
165 encoded_images_.reserve(kMaxSimulcastStreams);
166 encoders_.reserve(kMaxSimulcastStreams);
167 configurations_.reserve(kMaxSimulcastStreams);
168 tl0sync_limit_.reserve(kMaxSimulcastStreams);
169 }
170
~H264EncoderImpl()171 H264EncoderImpl::~H264EncoderImpl() {
172 Release();
173 }
174
InitEncode(const VideoCodec * inst,const VideoEncoder::Settings & settings)175 int32_t H264EncoderImpl::InitEncode(const VideoCodec* inst,
176 const VideoEncoder::Settings& settings) {
177 ReportInit();
178 if (!inst || inst->codecType != kVideoCodecH264) {
179 ReportError();
180 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
181 }
182 if (inst->maxFramerate == 0) {
183 ReportError();
184 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
185 }
186 if (inst->width < 1 || inst->height < 1) {
187 ReportError();
188 return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
189 }
190
191 int32_t release_ret = Release();
192 if (release_ret != WEBRTC_VIDEO_CODEC_OK) {
193 ReportError();
194 return release_ret;
195 }
196
197 int number_of_streams = SimulcastUtility::NumberOfSimulcastStreams(*inst);
198 bool doing_simulcast = (number_of_streams > 1);
199
200 if (doing_simulcast &&
201 !SimulcastUtility::ValidSimulcastParameters(*inst, number_of_streams)) {
202 return WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED;
203 }
204 downscaled_buffers_.resize(number_of_streams - 1);
205 encoded_images_.resize(number_of_streams);
206 encoders_.resize(number_of_streams);
207 pictures_.resize(number_of_streams);
208 configurations_.resize(number_of_streams);
209 tl0sync_limit_.resize(number_of_streams);
210
211 number_of_cores_ = settings.number_of_cores;
212 max_payload_size_ = settings.max_payload_size;
213 codec_ = *inst;
214
215 // Code expects simulcastStream resolutions to be correct, make sure they are
216 // filled even when there are no simulcast layers.
217 if (codec_.numberOfSimulcastStreams == 0) {
218 codec_.simulcastStream[0].width = codec_.width;
219 codec_.simulcastStream[0].height = codec_.height;
220 }
221
222 for (int i = 0, idx = number_of_streams - 1; i < number_of_streams;
223 ++i, --idx) {
224 ISVCEncoder* openh264_encoder;
225 // Create encoder.
226 if (WelsCreateSVCEncoder(&openh264_encoder) != 0) {
227 // Failed to create encoder.
228 RTC_LOG(LS_ERROR) << "Failed to create OpenH264 encoder";
229 RTC_DCHECK(!openh264_encoder);
230 Release();
231 ReportError();
232 return WEBRTC_VIDEO_CODEC_ERROR;
233 }
234 RTC_DCHECK(openh264_encoder);
235 if (kOpenH264EncoderDetailedLogging) {
236 int trace_level = WELS_LOG_DETAIL;
237 openh264_encoder->SetOption(ENCODER_OPTION_TRACE_LEVEL, &trace_level);
238 }
239 // else WELS_LOG_DEFAULT is used by default.
240
241 // Store h264 encoder.
242 encoders_[i] = openh264_encoder;
243
244 // Set internal settings from codec_settings
245 configurations_[i].simulcast_idx = idx;
246 configurations_[i].sending = false;
247 configurations_[i].width = codec_.simulcastStream[idx].width;
248 configurations_[i].height = codec_.simulcastStream[idx].height;
249 configurations_[i].max_frame_rate = static_cast<float>(codec_.maxFramerate);
250 configurations_[i].frame_dropping_on = codec_.H264()->frameDroppingOn;
251 configurations_[i].key_frame_interval = codec_.H264()->keyFrameInterval;
252 configurations_[i].num_temporal_layers =
253 codec_.simulcastStream[idx].numberOfTemporalLayers;
254
255 // Create downscaled image buffers.
256 if (i > 0) {
257 downscaled_buffers_[i - 1] = I420Buffer::Create(
258 configurations_[i].width, configurations_[i].height,
259 configurations_[i].width, configurations_[i].width / 2,
260 configurations_[i].width / 2);
261 }
262
263 // Codec_settings uses kbits/second; encoder uses bits/second.
264 configurations_[i].max_bps = codec_.maxBitrate * 1000;
265 configurations_[i].target_bps = codec_.startBitrate * 1000;
266
267 // Create encoder parameters based on the layer configuration.
268 SEncParamExt encoder_params = CreateEncoderParams(i);
269
270 // Initialize.
271 if (openh264_encoder->InitializeExt(&encoder_params) != 0) {
272 RTC_LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder";
273 Release();
274 ReportError();
275 return WEBRTC_VIDEO_CODEC_ERROR;
276 }
277 // TODO(pbos): Base init params on these values before submitting.
278 int video_format = EVideoFormatType::videoFormatI420;
279 openh264_encoder->SetOption(ENCODER_OPTION_DATAFORMAT, &video_format);
280
281 // Initialize encoded image. Default buffer size: size of unencoded data.
282
283 const size_t new_capacity =
284 CalcBufferSize(VideoType::kI420, codec_.simulcastStream[idx].width,
285 codec_.simulcastStream[idx].height);
286 encoded_images_[i].SetEncodedData(EncodedImageBuffer::Create(new_capacity));
287 encoded_images_[i]._completeFrame = true;
288 encoded_images_[i]._encodedWidth = codec_.simulcastStream[idx].width;
289 encoded_images_[i]._encodedHeight = codec_.simulcastStream[idx].height;
290 encoded_images_[i].set_size(0);
291
292 tl0sync_limit_[i] = configurations_[i].num_temporal_layers;
293 }
294
295 SimulcastRateAllocator init_allocator(codec_);
296 VideoBitrateAllocation allocation =
297 init_allocator.Allocate(VideoBitrateAllocationParameters(
298 DataRate::KilobitsPerSec(codec_.startBitrate), codec_.maxFramerate));
299 SetRates(RateControlParameters(allocation, codec_.maxFramerate));
300 return WEBRTC_VIDEO_CODEC_OK;
301 }
302
Release()303 int32_t H264EncoderImpl::Release() {
304 while (!encoders_.empty()) {
305 ISVCEncoder* openh264_encoder = encoders_.back();
306 if (openh264_encoder) {
307 RTC_CHECK_EQ(0, openh264_encoder->Uninitialize());
308 WelsDestroySVCEncoder(openh264_encoder);
309 }
310 encoders_.pop_back();
311 }
312 downscaled_buffers_.clear();
313 configurations_.clear();
314 encoded_images_.clear();
315 pictures_.clear();
316 tl0sync_limit_.clear();
317 return WEBRTC_VIDEO_CODEC_OK;
318 }
319
RegisterEncodeCompleteCallback(EncodedImageCallback * callback)320 int32_t H264EncoderImpl::RegisterEncodeCompleteCallback(
321 EncodedImageCallback* callback) {
322 encoded_image_callback_ = callback;
323 return WEBRTC_VIDEO_CODEC_OK;
324 }
325
SetRates(const RateControlParameters & parameters)326 void H264EncoderImpl::SetRates(const RateControlParameters& parameters) {
327 if (encoders_.empty()) {
328 RTC_LOG(LS_WARNING) << "SetRates() while uninitialized.";
329 return;
330 }
331
332 if (parameters.framerate_fps < 1.0) {
333 RTC_LOG(LS_WARNING) << "Invalid frame rate: " << parameters.framerate_fps;
334 return;
335 }
336
337 if (parameters.bitrate.get_sum_bps() == 0) {
338 // Encoder paused, turn off all encoding.
339 for (size_t i = 0; i < configurations_.size(); ++i) {
340 configurations_[i].SetStreamState(false);
341 }
342 return;
343 }
344
345 codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps);
346
347 size_t stream_idx = encoders_.size() - 1;
348 for (size_t i = 0; i < encoders_.size(); ++i, --stream_idx) {
349 // Update layer config.
350 configurations_[i].target_bps =
351 parameters.bitrate.GetSpatialLayerSum(stream_idx);
352 configurations_[i].max_frame_rate = parameters.framerate_fps;
353
354 if (configurations_[i].target_bps) {
355 configurations_[i].SetStreamState(true);
356
357 // Update h264 encoder.
358 SBitrateInfo target_bitrate;
359 memset(&target_bitrate, 0, sizeof(SBitrateInfo));
360 target_bitrate.iLayer = SPATIAL_LAYER_ALL,
361 target_bitrate.iBitrate = configurations_[i].target_bps;
362 encoders_[i]->SetOption(ENCODER_OPTION_BITRATE, &target_bitrate);
363 encoders_[i]->SetOption(ENCODER_OPTION_FRAME_RATE,
364 &configurations_[i].max_frame_rate);
365 } else {
366 configurations_[i].SetStreamState(false);
367 }
368 }
369 }
370
Encode(const VideoFrame & input_frame,const std::vector<VideoFrameType> * frame_types)371 int32_t H264EncoderImpl::Encode(
372 const VideoFrame& input_frame,
373 const std::vector<VideoFrameType>* frame_types) {
374 if (encoders_.empty()) {
375 ReportError();
376 return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
377 }
378 if (!encoded_image_callback_) {
379 RTC_LOG(LS_WARNING)
380 << "InitEncode() has been called, but a callback function "
381 "has not been set with RegisterEncodeCompleteCallback()";
382 ReportError();
383 return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
384 }
385
386 rtc::scoped_refptr<const I420BufferInterface> frame_buffer =
387 input_frame.video_frame_buffer()->ToI420();
388
389 bool send_key_frame = false;
390 for (size_t i = 0; i < configurations_.size(); ++i) {
391 if (configurations_[i].key_frame_request && configurations_[i].sending) {
392 send_key_frame = true;
393 break;
394 }
395 }
396
397 if (!send_key_frame && frame_types) {
398 for (size_t i = 0; i < configurations_.size(); ++i) {
399 const size_t simulcast_idx =
400 static_cast<size_t>(configurations_[i].simulcast_idx);
401 if (configurations_[i].sending && simulcast_idx < frame_types->size() &&
402 (*frame_types)[simulcast_idx] == VideoFrameType::kVideoFrameKey) {
403 send_key_frame = true;
404 break;
405 }
406 }
407 }
408
409 RTC_DCHECK_EQ(configurations_[0].width, frame_buffer->width());
410 RTC_DCHECK_EQ(configurations_[0].height, frame_buffer->height());
411
412 // Encode image for each layer.
413 for (size_t i = 0; i < encoders_.size(); ++i) {
414 // EncodeFrame input.
415 pictures_[i] = {0};
416 pictures_[i].iPicWidth = configurations_[i].width;
417 pictures_[i].iPicHeight = configurations_[i].height;
418 pictures_[i].iColorFormat = EVideoFormatType::videoFormatI420;
419 pictures_[i].uiTimeStamp = input_frame.ntp_time_ms();
420 // Downscale images on second and ongoing layers.
421 if (i == 0) {
422 pictures_[i].iStride[0] = frame_buffer->StrideY();
423 pictures_[i].iStride[1] = frame_buffer->StrideU();
424 pictures_[i].iStride[2] = frame_buffer->StrideV();
425 pictures_[i].pData[0] = const_cast<uint8_t*>(frame_buffer->DataY());
426 pictures_[i].pData[1] = const_cast<uint8_t*>(frame_buffer->DataU());
427 pictures_[i].pData[2] = const_cast<uint8_t*>(frame_buffer->DataV());
428 } else {
429 pictures_[i].iStride[0] = downscaled_buffers_[i - 1]->StrideY();
430 pictures_[i].iStride[1] = downscaled_buffers_[i - 1]->StrideU();
431 pictures_[i].iStride[2] = downscaled_buffers_[i - 1]->StrideV();
432 pictures_[i].pData[0] =
433 const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataY());
434 pictures_[i].pData[1] =
435 const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataU());
436 pictures_[i].pData[2] =
437 const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataV());
438 // Scale the image down a number of times by downsampling factor.
439 libyuv::I420Scale(pictures_[i - 1].pData[0], pictures_[i - 1].iStride[0],
440 pictures_[i - 1].pData[1], pictures_[i - 1].iStride[1],
441 pictures_[i - 1].pData[2], pictures_[i - 1].iStride[2],
442 configurations_[i - 1].width,
443 configurations_[i - 1].height, pictures_[i].pData[0],
444 pictures_[i].iStride[0], pictures_[i].pData[1],
445 pictures_[i].iStride[1], pictures_[i].pData[2],
446 pictures_[i].iStride[2], configurations_[i].width,
447 configurations_[i].height, libyuv::kFilterBilinear);
448 }
449
450 if (!configurations_[i].sending) {
451 continue;
452 }
453 if (frame_types != nullptr) {
454 // Skip frame?
455 if ((*frame_types)[i] == VideoFrameType::kEmptyFrame) {
456 continue;
457 }
458 }
459 if (send_key_frame) {
460 // API doc says ForceIntraFrame(false) does nothing, but calling this
461 // function forces a key frame regardless of the |bIDR| argument's value.
462 // (If every frame is a key frame we get lag/delays.)
463 encoders_[i]->ForceIntraFrame(true);
464 configurations_[i].key_frame_request = false;
465 }
466 // EncodeFrame output.
467 SFrameBSInfo info;
468 memset(&info, 0, sizeof(SFrameBSInfo));
469
470 // Encode!
471 int enc_ret = encoders_[i]->EncodeFrame(&pictures_[i], &info);
472 if (enc_ret != 0) {
473 RTC_LOG(LS_ERROR)
474 << "OpenH264 frame encoding failed, EncodeFrame returned " << enc_ret
475 << ".";
476 ReportError();
477 return WEBRTC_VIDEO_CODEC_ERROR;
478 }
479
480 encoded_images_[i]._encodedWidth = configurations_[i].width;
481 encoded_images_[i]._encodedHeight = configurations_[i].height;
482 encoded_images_[i].SetTimestamp(input_frame.timestamp());
483 encoded_images_[i]._frameType = ConvertToVideoFrameType(info.eFrameType);
484 encoded_images_[i].SetSpatialIndex(configurations_[i].simulcast_idx);
485
486 // Split encoded image up into fragments. This also updates
487 // |encoded_image_|.
488 RTPFragmentationHeader frag_header;
489 RtpFragmentize(&encoded_images_[i], &info, &frag_header);
490
491 // Encoder can skip frames to save bandwidth in which case
492 // |encoded_images_[i]._length| == 0.
493 if (encoded_images_[i].size() > 0) {
494 // Parse QP.
495 h264_bitstream_parser_.ParseBitstream(encoded_images_[i].data(),
496 encoded_images_[i].size());
497 h264_bitstream_parser_.GetLastSliceQp(&encoded_images_[i].qp_);
498
499 // Deliver encoded image.
500 CodecSpecificInfo codec_specific;
501 codec_specific.codecType = kVideoCodecH264;
502 codec_specific.codecSpecific.H264.packetization_mode =
503 packetization_mode_;
504 codec_specific.codecSpecific.H264.temporal_idx = kNoTemporalIdx;
505 codec_specific.codecSpecific.H264.idr_frame =
506 info.eFrameType == videoFrameTypeIDR;
507 codec_specific.codecSpecific.H264.base_layer_sync = false;
508 if (configurations_[i].num_temporal_layers > 1) {
509 const uint8_t tid = info.sLayerInfo[0].uiTemporalId;
510 codec_specific.codecSpecific.H264.temporal_idx = tid;
511 codec_specific.codecSpecific.H264.base_layer_sync =
512 tid > 0 && tid < tl0sync_limit_[i];
513 if (codec_specific.codecSpecific.H264.base_layer_sync) {
514 tl0sync_limit_[i] = tid;
515 }
516 if (tid == 0) {
517 tl0sync_limit_[i] = configurations_[i].num_temporal_layers;
518 }
519 }
520 encoded_image_callback_->OnEncodedImage(encoded_images_[i],
521 &codec_specific, &frag_header);
522 }
523 }
524 return WEBRTC_VIDEO_CODEC_OK;
525 }
526
527 // Initialization parameters.
528 // There are two ways to initialize. There is SEncParamBase (cleared with
529 // memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt
530 // which is a superset of SEncParamBase (cleared with GetDefaultParams) used
531 // in InitializeExt.
CreateEncoderParams(size_t i) const532 SEncParamExt H264EncoderImpl::CreateEncoderParams(size_t i) const {
533 SEncParamExt encoder_params;
534 encoders_[i]->GetDefaultParams(&encoder_params);
535 if (codec_.mode == VideoCodecMode::kRealtimeVideo) {
536 encoder_params.iUsageType = CAMERA_VIDEO_REAL_TIME;
537 } else if (codec_.mode == VideoCodecMode::kScreensharing) {
538 encoder_params.iUsageType = SCREEN_CONTENT_REAL_TIME;
539 } else {
540 RTC_NOTREACHED();
541 }
542 encoder_params.iPicWidth = configurations_[i].width;
543 encoder_params.iPicHeight = configurations_[i].height;
544 encoder_params.iTargetBitrate = configurations_[i].target_bps;
545 // Keep unspecified. WebRTC's max codec bitrate is not the same setting
546 // as OpenH264's iMaxBitrate. More details in https://crbug.com/webrtc/11543
547 encoder_params.iMaxBitrate = UNSPECIFIED_BIT_RATE;
548 // Rate Control mode
549 encoder_params.iRCMode = RC_BITRATE_MODE;
550 encoder_params.fMaxFrameRate = configurations_[i].max_frame_rate;
551
552 // The following parameters are extension parameters (they're in SEncParamExt,
553 // not in SEncParamBase).
554 encoder_params.bEnableFrameSkip = configurations_[i].frame_dropping_on;
555 // |uiIntraPeriod| - multiple of GOP size
556 // |keyFrameInterval| - number of frames
557 encoder_params.uiIntraPeriod = configurations_[i].key_frame_interval;
558 encoder_params.uiMaxNalSize = 0;
559 // Threading model: use auto.
560 // 0: auto (dynamic imp. internal encoder)
561 // 1: single thread (default value)
562 // >1: number of threads
563 encoder_params.iMultipleThreadIdc = NumberOfThreads(
564 encoder_params.iPicWidth, encoder_params.iPicHeight, number_of_cores_);
565 // The base spatial layer 0 is the only one we use.
566 encoder_params.sSpatialLayers[0].iVideoWidth = encoder_params.iPicWidth;
567 encoder_params.sSpatialLayers[0].iVideoHeight = encoder_params.iPicHeight;
568 encoder_params.sSpatialLayers[0].fFrameRate = encoder_params.fMaxFrameRate;
569 encoder_params.sSpatialLayers[0].iSpatialBitrate =
570 encoder_params.iTargetBitrate;
571 encoder_params.sSpatialLayers[0].iMaxSpatialBitrate =
572 encoder_params.iMaxBitrate;
573 encoder_params.iTemporalLayerNum = configurations_[i].num_temporal_layers;
574 if (encoder_params.iTemporalLayerNum > 1) {
575 encoder_params.iNumRefFrame = 1;
576 }
577 RTC_LOG(INFO) << "OpenH264 version is " << OPENH264_MAJOR << "."
578 << OPENH264_MINOR;
579 switch (packetization_mode_) {
580 case H264PacketizationMode::SingleNalUnit:
581 // Limit the size of the packets produced.
582 encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
583 encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
584 SM_SIZELIMITED_SLICE;
585 encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceSizeConstraint =
586 static_cast<unsigned int>(max_payload_size_);
587 RTC_LOG(INFO) << "Encoder is configured with NALU constraint: "
588 << max_payload_size_ << " bytes";
589 break;
590 case H264PacketizationMode::NonInterleaved:
591 // When uiSliceMode = SM_FIXEDSLCNUM_SLICE, uiSliceNum = 0 means auto
592 // design it with cpu core number.
593 // TODO(sprang): Set to 0 when we understand why the rate controller borks
594 // when uiSliceNum > 1.
595 encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
596 encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
597 SM_FIXEDSLCNUM_SLICE;
598 break;
599 }
600 return encoder_params;
601 }
602
ReportInit()603 void H264EncoderImpl::ReportInit() {
604 if (has_reported_init_)
605 return;
606 RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
607 kH264EncoderEventInit, kH264EncoderEventMax);
608 has_reported_init_ = true;
609 }
610
ReportError()611 void H264EncoderImpl::ReportError() {
612 if (has_reported_error_)
613 return;
614 RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
615 kH264EncoderEventError, kH264EncoderEventMax);
616 has_reported_error_ = true;
617 }
618
GetEncoderInfo() const619 VideoEncoder::EncoderInfo H264EncoderImpl::GetEncoderInfo() const {
620 EncoderInfo info;
621 info.supports_native_handle = false;
622 info.implementation_name = "OpenH264";
623 info.scaling_settings =
624 VideoEncoder::ScalingSettings(kLowH264QpThreshold, kHighH264QpThreshold);
625 info.is_hardware_accelerated = false;
626 info.has_internal_source = false;
627 info.supports_simulcast = true;
628 return info;
629 }
630
SetStreamState(bool send_stream)631 void H264EncoderImpl::LayerConfig::SetStreamState(bool send_stream) {
632 if (send_stream && !sending) {
633 // Need a key frame if we have not sent this stream before.
634 key_frame_request = true;
635 }
636 sending = send_stream;
637 }
638
639 } // namespace webrtc
640
641 #endif // WEBRTC_USE_H264
642