1 /* -*- Mode: C; tab-width: 4 -*-
2 *
3 * Copyright (c) 2002-2003 Apple Computer, Inc. All rights reserved.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18
19 #ifdef __cplusplus
20 extern "C" {
21 #endif
22
23 #include "mDNSEmbeddedAPI.h"
24 #include "DNSCommon.h"
25
26 // Disable certain benign warnings with Microsoft compilers
27 #if(defined(_MSC_VER))
28 // Disable "conditional expression is constant" warning for debug macros.
29 // Otherwise, this generates warnings for the perfectly natural construct "while(1)"
30 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
31 #pragma warning(disable:4127)
32 #endif
33
34
35 // ***************************************************************************
36 #if COMPILER_LIKES_PRAGMA_MARK
37 #pragma mark - Byte Swapping Functions
38 #endif
39
NToH16(mDNSu8 * bytes)40 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes)
41 {
42 return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]);
43 }
44
NToH32(mDNSu8 * bytes)45 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes)
46 {
47 return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]);
48 }
49
50 // ***************************************************************************
51 #if COMPILER_LIKES_PRAGMA_MARK
52 #pragma mark - MD5 Hash Functions
53 #endif
54
55
56 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h.
57 * The following changes have been made to the original sources:
58 * replaced CC_LONG w/ mDNSu32
59 * replaced CC_MD5* with MD5*
60 * replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h
61 * removed extern decls for MD5_Init/Update/Final from CommonDigest.h
62 * removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h
63 *
64 * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code
65 * to aid in platform-specific optimizations and debugging.
66 * Sources originally distributed under the following license headers:
67 * CommonDigest.h - APSL
68 *
69 * md32_Common.h
70 * ====================================================================
71 * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 *
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 *
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in
82 * the documentation and/or other materials provided with the
83 * distribution.
84 *
85 * 3. All advertising materials mentioning features or use of this
86 * software must display the following acknowledgment:
87 * "This product includes software developed by the OpenSSL Project
88 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
89 *
90 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
91 * endorse or promote products derived from this software without
92 * prior written permission. For written permission, please contact
93 * licensing@OpenSSL.org.
94 *
95 * 5. Products derived from this software may not be called "OpenSSL"
96 * nor may "OpenSSL" appear in their names without prior written
97 * permission of the OpenSSL Project.
98 *
99 * 6. Redistributions of any form whatsoever must retain the following
100 * acknowledgment:
101 * "This product includes software developed by the OpenSSL Project
102 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
103 *
104 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
105 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
106 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
107 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
108 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
109 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
110 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
111 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
112 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
113 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
114 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
115 * OF THE POSSIBILITY OF SUCH DAMAGE.
116 *
117 *
118 * md5_dgst.c, md5_locl.h
119 * ====================================================================
120 *
121 * This product includes cryptographic software written by Eric Young
122 * (eay@cryptsoft.com). This product includes software written by Tim
123 * Hudson (tjh@cryptsoft.com).
124 *
125 * Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
126 * All rights reserved.
127 *
128 * This package is an SSL implementation written
129 * by Eric Young (eay@cryptsoft.com).
130 * The implementation was written so as to conform with Netscapes SSL.
131 *
132 * This library is free for commercial and non-commercial use as long as
133 * the following conditions are aheared to. The following conditions
134 * apply to all code found in this distribution, be it the RC4, RSA,
135 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
136 * included with this distribution is covered by the same copyright terms
137 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
138 *
139 * Copyright remains Eric Young's, and as such any Copyright notices in
140 * the code are not to be removed.
141 * If this package is used in a product, Eric Young should be given attribution
142 * as the author of the parts of the library used.
143 * This can be in the form of a textual message at program startup or
144 * in documentation (online or textual) provided with the package.
145 *
146 * Redistribution and use in source and binary forms, with or without
147 * modification, are permitted provided that the following conditions
148 * are met:
149 * 1. Redistributions of source code must retain the copyright
150 * notice, this list of conditions and the following disclaimer.
151 * 2. Redistributions in binary form must reproduce the above copyright
152 * notice, this list of conditions and the following disclaimer in the
153 * documentation and/or other materials provided with the distribution.
154 * 3. All advertising materials mentioning features or use of this software
155 * must display the following acknowledgement:
156 * "This product includes cryptographic software written by
157 * Eric Young (eay@cryptsoft.com)"
158 * The word 'cryptographic' can be left out if the rouines from the library
159 * being used are not cryptographic related :-).
160 * 4. If you include any Windows specific code (or a derivative thereof) from
161 * the apps directory (application code) you must include an acknowledgement:
162 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
163 *
164 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
165 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
166 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
167 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
168 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
169 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
170 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
171 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
172 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
173 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
174 * SUCH DAMAGE.
175 *
176 * The licence and distribution terms for any publically available version or
177 * derivative of this code cannot be changed. i.e. this code cannot simply be
178 * copied and put under another distribution licence
179 * [including the GNU Public Licence.]
180 *
181 */
182
183 //from CommonDigest.h
184
185 #define MD5_DIGEST_LENGTH 16 /* digest length in bytes */
186 #define MD5_BLOCK_BYTES 64 /* block size in bytes */
187 #define MD5_BLOCK_LONG (MD5_BLOCK_BYTES / sizeof(mDNSu32))
188
189 typedef struct MD5state_st
190 {
191 mDNSu32 A,B,C,D;
192 mDNSu32 Nl,Nh;
193 mDNSu32 data[MD5_BLOCK_LONG];
194 int num;
195 } MD5_CTX;
196
197 #ifndef HAVE_MD5
198
199 // from openssl/md5.h
200
201 #define MD5_CBLOCK 64
202 #define MD5_LBLOCK (MD5_CBLOCK/4)
203 #define MD5_DIGEST_LENGTH 16
204
205 int MD5_Init(MD5_CTX *c);
206 int MD5_Update(MD5_CTX *c, const void *data, unsigned long len);
207 int MD5_Final(unsigned char *md, MD5_CTX *c);
208 void MD5_Transform(MD5_CTX *c, const unsigned char *b);
209
210 // From md5_locl.h
211
212 #ifndef MD5_LONG_LOG2
213 #define MD5_LONG_LOG2 2 /* default to 32 bits */
214 #endif
215
216 #ifdef MD5_ASM
217 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
218 # define md5_block_host_order md5_block_asm_host_order
219 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
220 void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num);
221 # define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned
222 # endif
223 #endif
224
225 void md5_block_host_order (MD5_CTX *c, const void *p,int num);
226 void md5_block_data_order (MD5_CTX *c, const void *p,int num);
227
228 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
229 /*
230 * *_block_host_order is expected to handle aligned data while
231 * *_block_data_order - unaligned. As algorithm and host (x86)
232 * are in this case of the same "endianness" these two are
233 * otherwise indistinguishable. But normally you don't want to
234 * call the same function because unaligned access in places
235 * where alignment is expected is usually a "Bad Thing". Indeed,
236 * on RISCs you get punished with BUS ERROR signal or *severe*
237 * performance degradation. Intel CPUs are in turn perfectly
238 * capable of loading unaligned data without such drastic side
239 * effect. Yes, they say it's slower than aligned load, but no
240 * exception is generated and therefore performance degradation
241 * is *incomparable* with RISCs. What we should weight here is
242 * costs of unaligned access against costs of aligning data.
243 * According to my measurements allowing unaligned access results
244 * in ~9% performance improvement on Pentium II operating at
245 * 266MHz. I won't be surprised if the difference will be higher
246 * on faster systems:-)
247 *
248 * <appro@fy.chalmers.se>
249 */
250 #define md5_block_data_order md5_block_host_order
251 #endif
252
253 #define DATA_ORDER_IS_LITTLE_ENDIAN
254
255 #define HASH_LONG mDNSu32
256 #define HASH_LONG_LOG2 MD5_LONG_LOG2
257 #define HASH_CTX MD5_CTX
258 #define HASH_CBLOCK MD5_CBLOCK
259 #define HASH_LBLOCK MD5_LBLOCK
260
261 #define HASH_UPDATE MD5_Update
262 #define HASH_TRANSFORM MD5_Transform
263 #define HASH_FINAL MD5_Final
264
265 #define HASH_MAKE_STRING(c,s) do { \
266 unsigned long ll; \
267 ll=(c)->A; HOST_l2c(ll,(s)); \
268 ll=(c)->B; HOST_l2c(ll,(s)); \
269 ll=(c)->C; HOST_l2c(ll,(s)); \
270 ll=(c)->D; HOST_l2c(ll,(s)); \
271 } while (0)
272 #define HASH_BLOCK_HOST_ORDER md5_block_host_order
273 #if !defined(L_ENDIAN) || defined(md5_block_data_order)
274 #define HASH_BLOCK_DATA_ORDER md5_block_data_order
275 /*
276 * Little-endians (Intel and Alpha) feel better without this.
277 * It looks like memcpy does better job than generic
278 * md5_block_data_order on copying-n-aligning input data.
279 * But frankly speaking I didn't expect such result on Alpha.
280 * On the other hand I've got this with egcs-1.0.2 and if
281 * program is compiled with another (better?) compiler it
282 * might turn out other way around.
283 *
284 * <appro@fy.chalmers.se>
285 */
286 #endif
287
288
289 // from md32_common.h
290
291 /*
292 * This is a generic 32 bit "collector" for message digest algorithms.
293 * Whenever needed it collects input character stream into chunks of
294 * 32 bit values and invokes a block function that performs actual hash
295 * calculations.
296 *
297 * Porting guide.
298 *
299 * Obligatory macros:
300 *
301 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
302 * this macro defines byte order of input stream.
303 * HASH_CBLOCK
304 * size of a unit chunk HASH_BLOCK operates on.
305 * HASH_LONG
306 * has to be at lest 32 bit wide, if it's wider, then
307 * HASH_LONG_LOG2 *has to* be defined along
308 * HASH_CTX
309 * context structure that at least contains following
310 * members:
311 * typedef struct {
312 * ...
313 * HASH_LONG Nl,Nh;
314 * HASH_LONG data[HASH_LBLOCK];
315 * int num;
316 * ...
317 * } HASH_CTX;
318 * HASH_UPDATE
319 * name of "Update" function, implemented here.
320 * HASH_TRANSFORM
321 * name of "Transform" function, implemented here.
322 * HASH_FINAL
323 * name of "Final" function, implemented here.
324 * HASH_BLOCK_HOST_ORDER
325 * name of "block" function treating *aligned* input message
326 * in host byte order, implemented externally.
327 * HASH_BLOCK_DATA_ORDER
328 * name of "block" function treating *unaligned* input message
329 * in original (data) byte order, implemented externally (it
330 * actually is optional if data and host are of the same
331 * "endianess").
332 * HASH_MAKE_STRING
333 * macro convering context variables to an ASCII hash string.
334 *
335 * Optional macros:
336 *
337 * B_ENDIAN or L_ENDIAN
338 * defines host byte-order.
339 * HASH_LONG_LOG2
340 * defaults to 2 if not states otherwise.
341 * HASH_LBLOCK
342 * assumed to be HASH_CBLOCK/4 if not stated otherwise.
343 * HASH_BLOCK_DATA_ORDER_ALIGNED
344 * alternative "block" function capable of treating
345 * aligned input message in original (data) order,
346 * implemented externally.
347 *
348 * MD5 example:
349 *
350 * #define DATA_ORDER_IS_LITTLE_ENDIAN
351 *
352 * #define HASH_LONG mDNSu32
353 * #define HASH_LONG_LOG2 mDNSu32_LOG2
354 * #define HASH_CTX MD5_CTX
355 * #define HASH_CBLOCK MD5_CBLOCK
356 * #define HASH_LBLOCK MD5_LBLOCK
357 * #define HASH_UPDATE MD5_Update
358 * #define HASH_TRANSFORM MD5_Transform
359 * #define HASH_FINAL MD5_Final
360 * #define HASH_BLOCK_HOST_ORDER md5_block_host_order
361 * #define HASH_BLOCK_DATA_ORDER md5_block_data_order
362 *
363 * <appro@fy.chalmers.se>
364 */
365
366 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
367 #error "DATA_ORDER must be defined!"
368 #endif
369
370 #ifndef HASH_CBLOCK
371 #error "HASH_CBLOCK must be defined!"
372 #endif
373 #ifndef HASH_LONG
374 #error "HASH_LONG must be defined!"
375 #endif
376 #ifndef HASH_CTX
377 #error "HASH_CTX must be defined!"
378 #endif
379
380 #ifndef HASH_UPDATE
381 #error "HASH_UPDATE must be defined!"
382 #endif
383 #ifndef HASH_TRANSFORM
384 #error "HASH_TRANSFORM must be defined!"
385 #endif
386 #ifndef HASH_FINAL
387 #error "HASH_FINAL must be defined!"
388 #endif
389
390 #ifndef HASH_BLOCK_HOST_ORDER
391 #error "HASH_BLOCK_HOST_ORDER must be defined!"
392 #endif
393
394 #if 0
395 /*
396 * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
397 * isn't defined.
398 */
399 #ifndef HASH_BLOCK_DATA_ORDER
400 #error "HASH_BLOCK_DATA_ORDER must be defined!"
401 #endif
402 #endif
403
404 #ifndef HASH_LBLOCK
405 #define HASH_LBLOCK (HASH_CBLOCK/4)
406 #endif
407
408 #ifndef HASH_LONG_LOG2
409 #define HASH_LONG_LOG2 2
410 #endif
411
412 /*
413 * Engage compiler specific rotate intrinsic function if available.
414 */
415 #undef ROTATE
416 #ifndef PEDANTIC
417 # if 0 /* defined(_MSC_VER) */
418 # define ROTATE(a,n) _lrotl(a,n)
419 # elif defined(__MWERKS__)
420 # if defined(__POWERPC__)
421 # define ROTATE(a,n) (unsigned MD32_REG_T)__rlwinm((int)a,n,0,31)
422 # elif defined(__MC68K__)
423 /* Motorola specific tweak. <appro@fy.chalmers.se> */
424 # define ROTATE(a,n) (n<24 ? __rol(a,n) : __ror(a,32-n))
425 # else
426 # define ROTATE(a,n) __rol(a,n)
427 # endif
428 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
429 /*
430 * Some GNU C inline assembler templates. Note that these are
431 * rotates by *constant* number of bits! But that's exactly
432 * what we need here...
433 *
434 * <appro@fy.chalmers.se>
435 */
436 /*
437 * LLVM is more strict about compatibility of types between input & output constraints,
438 * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the
439 * most significant bytes by casting to an unsigned int.
440 */
441 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
442 # define ROTATE(a,n) ({ register unsigned int ret; \
443 asm ( \
444 "roll %1,%0" \
445 : "=r"(ret) \
446 : "I"(n), "0"((unsigned int)a) \
447 : "cc"); \
448 ret; \
449 })
450 # elif defined(__powerpc) || defined(__ppc)
451 # define ROTATE(a,n) ({ register unsigned int ret; \
452 asm ( \
453 "rlwinm %0,%1,%2,0,31" \
454 : "=r"(ret) \
455 : "r"(a), "I"(n)); \
456 ret; \
457 })
458 # endif
459 # endif
460
461 /*
462 * Engage compiler specific "fetch in reverse byte order"
463 * intrinsic function if available.
464 */
465 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
466 /* some GNU C inline assembler templates by <appro@fy.chalmers.se> */
467 # if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY)
468 # define BE_FETCH32(a) ({ register unsigned int l=(a);\
469 asm ( \
470 "bswapl %0" \
471 : "=r"(l) : "0"(l)); \
472 l; \
473 })
474 # elif defined(__powerpc)
475 # define LE_FETCH32(a) ({ register unsigned int l; \
476 asm ( \
477 "lwbrx %0,0,%1" \
478 : "=r"(l) \
479 : "r"(a)); \
480 l; \
481 })
482
483 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
484 # define LE_FETCH32(a) ({ register unsigned int l; \
485 asm ( \
486 "lda [%1]#ASI_PRIMARY_LITTLE,%0"\
487 : "=r"(l) \
488 : "r"(a)); \
489 l; \
490 })
491 # endif
492 # endif
493 #endif /* PEDANTIC */
494
495 #if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */
496 /* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
497 #ifdef ROTATE
498 /* 5 instructions with rotate instruction, else 9 */
499 #define REVERSE_FETCH32(a,l) ( \
500 l=*(const HASH_LONG *)(a), \
501 ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \
502 )
503 #else
504 /* 6 instructions with rotate instruction, else 8 */
505 #define REVERSE_FETCH32(a,l) ( \
506 l=*(const HASH_LONG *)(a), \
507 l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \
508 ROTATE(l,16) \
509 )
510 /*
511 * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
512 * It's rewritten as above for two reasons:
513 * - RISCs aren't good at long constants and have to explicitely
514 * compose 'em with several (well, usually 2) instructions in a
515 * register before performing the actual operation and (as you
516 * already realized:-) having same constant should inspire the
517 * compiler to permanently allocate the only register for it;
518 * - most modern CPUs have two ALUs, but usually only one has
519 * circuitry for shifts:-( this minor tweak inspires compiler
520 * to schedule shift instructions in a better way...
521 *
522 * <appro@fy.chalmers.se>
523 */
524 #endif
525 #endif
526
527 #ifndef ROTATE
528 #define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
529 #endif
530
531 /*
532 * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
533 * and HASH_BLOCK_HOST_ORDER ought to be the same if input data
534 * and host are of the same "endianess". It's possible to mask
535 * this with blank #define HASH_BLOCK_DATA_ORDER though...
536 *
537 * <appro@fy.chalmers.se>
538 */
539 #if defined(B_ENDIAN)
540 # if defined(DATA_ORDER_IS_BIG_ENDIAN)
541 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
542 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
543 # endif
544 # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
545 # ifndef HOST_FETCH32
546 # ifdef LE_FETCH32
547 # define HOST_FETCH32(p,l) LE_FETCH32(p)
548 # elif defined(REVERSE_FETCH32)
549 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l)
550 # endif
551 # endif
552 # endif
553 #elif defined(L_ENDIAN)
554 # if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
555 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
556 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
557 # endif
558 # elif defined(DATA_ORDER_IS_BIG_ENDIAN)
559 # ifndef HOST_FETCH32
560 # ifdef BE_FETCH32
561 # define HOST_FETCH32(p,l) BE_FETCH32(p)
562 # elif defined(REVERSE_FETCH32)
563 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l)
564 # endif
565 # endif
566 # endif
567 #endif
568
569 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
570 #ifndef HASH_BLOCK_DATA_ORDER
571 #error "HASH_BLOCK_DATA_ORDER must be defined!"
572 #endif
573 #endif
574
575 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
576
577 #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \
578 l|=(((unsigned long)(*((c)++)))<<16), \
579 l|=(((unsigned long)(*((c)++)))<< 8), \
580 l|=(((unsigned long)(*((c)++))) ), \
581 l)
582 #define HOST_p_c2l(c,l,n) { \
583 switch (n) { \
584 case 0: l =((unsigned long)(*((c)++)))<<24; \
585 case 1: l|=((unsigned long)(*((c)++)))<<16; \
586 case 2: l|=((unsigned long)(*((c)++)))<< 8; \
587 case 3: l|=((unsigned long)(*((c)++))); \
588 } }
589 #define HOST_p_c2l_p(c,l,sc,len) { \
590 switch (sc) { \
591 case 0: l =((unsigned long)(*((c)++)))<<24; \
592 if (--len == 0) break; \
593 case 1: l|=((unsigned long)(*((c)++)))<<16; \
594 if (--len == 0) break; \
595 case 2: l|=((unsigned long)(*((c)++)))<< 8; \
596 } }
597 /* NOTE the pointer is not incremented at the end of this */
598 #define HOST_c2l_p(c,l,n) { \
599 l=0; (c)+=n; \
600 switch (n) { \
601 case 3: l =((unsigned long)(*(--(c))))<< 8; \
602 case 2: l|=((unsigned long)(*(--(c))))<<16; \
603 case 1: l|=((unsigned long)(*(--(c))))<<24; \
604 } }
605 #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
606 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
607 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
608 *((c)++)=(unsigned char)(((l) )&0xff), \
609 l)
610
611 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
612
613 #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \
614 l|=(((unsigned long)(*((c)++)))<< 8), \
615 l|=(((unsigned long)(*((c)++)))<<16), \
616 l|=(((unsigned long)(*((c)++)))<<24), \
617 l)
618 #define HOST_p_c2l(c,l,n) { \
619 switch (n) { \
620 case 0: l =((unsigned long)(*((c)++))); \
621 case 1: l|=((unsigned long)(*((c)++)))<< 8; \
622 case 2: l|=((unsigned long)(*((c)++)))<<16; \
623 case 3: l|=((unsigned long)(*((c)++)))<<24; \
624 } }
625 #define HOST_p_c2l_p(c,l,sc,len) { \
626 switch (sc) { \
627 case 0: l =((unsigned long)(*((c)++))); \
628 if (--len == 0) break; \
629 case 1: l|=((unsigned long)(*((c)++)))<< 8; \
630 if (--len == 0) break; \
631 case 2: l|=((unsigned long)(*((c)++)))<<16; \
632 } }
633 /* NOTE the pointer is not incremented at the end of this */
634 #define HOST_c2l_p(c,l,n) { \
635 l=0; (c)+=n; \
636 switch (n) { \
637 case 3: l =((unsigned long)(*(--(c))))<<16; \
638 case 2: l|=((unsigned long)(*(--(c))))<< 8; \
639 case 1: l|=((unsigned long)(*(--(c)))); \
640 } }
641 #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \
642 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
643 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
644 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
645 l)
646
647 #endif
648
649 /*
650 * Time for some action:-)
651 */
652
HASH_UPDATE(HASH_CTX * c,const void * data_,unsigned long len)653 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len)
654 {
655 const unsigned char *data=(const unsigned char *)data_;
656 register HASH_LONG * p;
657 register unsigned long l;
658 int sw,sc,ew,ec;
659
660 if (len==0) return 1;
661
662 l=(c->Nl+(len<<3))&0xffffffffL;
663 /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
664 * Wei Dai <weidai@eskimo.com> for pointing it out. */
665 if (l < c->Nl) /* overflow */
666 c->Nh++;
667 c->Nh+=(len>>29);
668 c->Nl=l;
669
670 if (c->num != 0)
671 {
672 p=c->data;
673 sw=c->num>>2;
674 sc=c->num&0x03;
675
676 if ((c->num+len) >= HASH_CBLOCK)
677 {
678 l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
679 for (; sw<HASH_LBLOCK; sw++)
680 {
681 HOST_c2l(data,l); p[sw]=l;
682 }
683 HASH_BLOCK_HOST_ORDER (c,p,1);
684 len-=(HASH_CBLOCK-c->num);
685 c->num=0;
686 /* drop through and do the rest */
687 }
688 else
689 {
690 c->num+=len;
691 if ((sc+len) < 4) /* ugly, add char's to a word */
692 {
693 l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
694 }
695 else
696 {
697 ew=(c->num>>2);
698 ec=(c->num&0x03);
699 if (sc)
700 l=p[sw];
701 HOST_p_c2l(data,l,sc);
702 p[sw++]=l;
703 for (; sw < ew; sw++)
704 {
705 HOST_c2l(data,l); p[sw]=l;
706 }
707 if (ec)
708 {
709 HOST_c2l_p(data,l,ec); p[sw]=l;
710 }
711 }
712 return 1;
713 }
714 }
715
716 sw=(int)(len/HASH_CBLOCK);
717 if (sw > 0)
718 {
719 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
720 /*
721 * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
722 * only if sizeof(HASH_LONG)==4.
723 */
724 if ((((unsigned long)data)%4) == 0)
725 {
726 /* data is properly aligned so that we can cast it: */
727 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw);
728 sw*=HASH_CBLOCK;
729 data+=sw;
730 len-=sw;
731 }
732 else
733 #if !defined(HASH_BLOCK_DATA_ORDER)
734 while (sw--)
735 {
736 mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK);
737 HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
738 data+=HASH_CBLOCK;
739 len-=HASH_CBLOCK;
740 }
741 #endif
742 #endif
743 #if defined(HASH_BLOCK_DATA_ORDER)
744 {
745 HASH_BLOCK_DATA_ORDER(c,data,sw);
746 sw*=HASH_CBLOCK;
747 data+=sw;
748 len-=sw;
749 }
750 #endif
751 }
752
753 if (len!=0)
754 {
755 p = c->data;
756 c->num = (int)len;
757 ew=(int)(len>>2); /* words to copy */
758 ec=(int)(len&0x03);
759 for (; ew; ew--,p++)
760 {
761 HOST_c2l(data,l); *p=l;
762 }
763 HOST_c2l_p(data,l,ec);
764 *p=l;
765 }
766 return 1;
767 }
768
769
HASH_TRANSFORM(HASH_CTX * c,const unsigned char * data)770 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
771 {
772 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
773 if ((((unsigned long)data)%4) == 0)
774 /* data is properly aligned so that we can cast it: */
775 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1);
776 else
777 #if !defined(HASH_BLOCK_DATA_ORDER)
778 {
779 mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK);
780 HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
781 }
782 #endif
783 #endif
784 #if defined(HASH_BLOCK_DATA_ORDER)
785 HASH_BLOCK_DATA_ORDER (c,data,1);
786 #endif
787 }
788
789
HASH_FINAL(unsigned char * md,HASH_CTX * c)790 int HASH_FINAL (unsigned char *md, HASH_CTX *c)
791 {
792 register HASH_LONG *p;
793 register unsigned long l;
794 register int i,j;
795 static const unsigned char end[4]={0x80,0x00,0x00,0x00};
796 const unsigned char *cp=end;
797
798 /* c->num should definitly have room for at least one more byte. */
799 p=c->data;
800 i=c->num>>2;
801 j=c->num&0x03;
802
803 #if 0
804 /* purify often complains about the following line as an
805 * Uninitialized Memory Read. While this can be true, the
806 * following p_c2l macro will reset l when that case is true.
807 * This is because j&0x03 contains the number of 'valid' bytes
808 * already in p[i]. If and only if j&0x03 == 0, the UMR will
809 * occur but this is also the only time p_c2l will do
810 * l= *(cp++) instead of l|= *(cp++)
811 * Many thanks to Alex Tang <altitude@cic.net> for pickup this
812 * 'potential bug' */
813 #ifdef PURIFY
814 if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
815 #endif
816 l=p[i];
817 #else
818 l = (j==0) ? 0 : p[i];
819 #endif
820 HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
821
822 if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
823 {
824 if (i<HASH_LBLOCK) p[i]=0;
825 HASH_BLOCK_HOST_ORDER (c,p,1);
826 i=0;
827 }
828 for (; i<(HASH_LBLOCK-2); i++)
829 p[i]=0;
830
831 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
832 p[HASH_LBLOCK-2]=c->Nh;
833 p[HASH_LBLOCK-1]=c->Nl;
834 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
835 p[HASH_LBLOCK-2]=c->Nl;
836 p[HASH_LBLOCK-1]=c->Nh;
837 #endif
838 HASH_BLOCK_HOST_ORDER (c,p,1);
839
840 #ifndef HASH_MAKE_STRING
841 #error "HASH_MAKE_STRING must be defined!"
842 #else
843 HASH_MAKE_STRING(c,md);
844 #endif
845
846 c->num=0;
847 /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
848 * but I'm not worried :-)
849 OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
850 */
851 return 1;
852 }
853
854 #ifndef MD32_REG_T
855 #define MD32_REG_T long
856 /*
857 * This comment was originaly written for MD5, which is why it
858 * discusses A-D. But it basically applies to all 32-bit digests,
859 * which is why it was moved to common header file.
860 *
861 * In case you wonder why A-D are declared as long and not
862 * as mDNSu32. Doing so results in slight performance
863 * boost on LP64 architectures. The catch is we don't
864 * really care if 32 MSBs of a 64-bit register get polluted
865 * with eventual overflows as we *save* only 32 LSBs in
866 * *either* case. Now declaring 'em long excuses the compiler
867 * from keeping 32 MSBs zeroed resulting in 13% performance
868 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
869 * Well, to be honest it should say that this *prevents*
870 * performance degradation.
871 * <appro@fy.chalmers.se>
872 * Apparently there're LP64 compilers that generate better
873 * code if A-D are declared int. Most notably GCC-x86_64
874 * generates better code.
875 * <appro@fy.chalmers.se>
876 */
877 #endif
878
879
880 // from md5_locl.h (continued)
881
882 /*
883 #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
884 #define G(x,y,z) (((x) & (z)) | ((y) & (~(z))))
885 */
886
887 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
888 * simplified to the code below. Wei attributes these optimizations
889 * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
890 */
891 #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
892 #define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c))
893 #define H(b,c,d) ((b) ^ (c) ^ (d))
894 #define I(b,c,d) (((~(d)) | (b)) ^ (c))
895
896 #define R0(a,b,c,d,k,s,t) { \
897 a+=((k)+(t)+F((b),(c),(d))); \
898 a=ROTATE(a,s); \
899 a+=b; };\
900
901 #define R1(a,b,c,d,k,s,t) { \
902 a+=((k)+(t)+G((b),(c),(d))); \
903 a=ROTATE(a,s); \
904 a+=b; };
905
906 #define R2(a,b,c,d,k,s,t) { \
907 a+=((k)+(t)+H((b),(c),(d))); \
908 a=ROTATE(a,s); \
909 a+=b; };
910
911 #define R3(a,b,c,d,k,s,t) { \
912 a+=((k)+(t)+I((b),(c),(d))); \
913 a=ROTATE(a,s); \
914 a+=b; };
915
916 // from md5_dgst.c
917
918
919 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm
920 */
921
922 #define INIT_DATA_A (unsigned long)0x67452301L
923 #define INIT_DATA_B (unsigned long)0xefcdab89L
924 #define INIT_DATA_C (unsigned long)0x98badcfeL
925 #define INIT_DATA_D (unsigned long)0x10325476L
926
MD5_Init(MD5_CTX * c)927 int MD5_Init(MD5_CTX *c)
928 {
929 c->A=INIT_DATA_A;
930 c->B=INIT_DATA_B;
931 c->C=INIT_DATA_C;
932 c->D=INIT_DATA_D;
933 c->Nl=0;
934 c->Nh=0;
935 c->num=0;
936 return 1;
937 }
938
939 #ifndef md5_block_host_order
md5_block_host_order(MD5_CTX * c,const void * data,int num)940 void md5_block_host_order (MD5_CTX *c, const void *data, int num)
941 {
942 const mDNSu32 *X=(const mDNSu32 *)data;
943 register unsigned MD32_REG_T A,B,C,D;
944
945 A=c->A;
946 B=c->B;
947 C=c->C;
948 D=c->D;
949
950 for (;num--;X+=HASH_LBLOCK)
951 {
952 /* Round 0 */
953 R0(A,B,C,D,X[ 0], 7,0xd76aa478L);
954 R0(D,A,B,C,X[ 1],12,0xe8c7b756L);
955 R0(C,D,A,B,X[ 2],17,0x242070dbL);
956 R0(B,C,D,A,X[ 3],22,0xc1bdceeeL);
957 R0(A,B,C,D,X[ 4], 7,0xf57c0fafL);
958 R0(D,A,B,C,X[ 5],12,0x4787c62aL);
959 R0(C,D,A,B,X[ 6],17,0xa8304613L);
960 R0(B,C,D,A,X[ 7],22,0xfd469501L);
961 R0(A,B,C,D,X[ 8], 7,0x698098d8L);
962 R0(D,A,B,C,X[ 9],12,0x8b44f7afL);
963 R0(C,D,A,B,X[10],17,0xffff5bb1L);
964 R0(B,C,D,A,X[11],22,0x895cd7beL);
965 R0(A,B,C,D,X[12], 7,0x6b901122L);
966 R0(D,A,B,C,X[13],12,0xfd987193L);
967 R0(C,D,A,B,X[14],17,0xa679438eL);
968 R0(B,C,D,A,X[15],22,0x49b40821L);
969 /* Round 1 */
970 R1(A,B,C,D,X[ 1], 5,0xf61e2562L);
971 R1(D,A,B,C,X[ 6], 9,0xc040b340L);
972 R1(C,D,A,B,X[11],14,0x265e5a51L);
973 R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL);
974 R1(A,B,C,D,X[ 5], 5,0xd62f105dL);
975 R1(D,A,B,C,X[10], 9,0x02441453L);
976 R1(C,D,A,B,X[15],14,0xd8a1e681L);
977 R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L);
978 R1(A,B,C,D,X[ 9], 5,0x21e1cde6L);
979 R1(D,A,B,C,X[14], 9,0xc33707d6L);
980 R1(C,D,A,B,X[ 3],14,0xf4d50d87L);
981 R1(B,C,D,A,X[ 8],20,0x455a14edL);
982 R1(A,B,C,D,X[13], 5,0xa9e3e905L);
983 R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L);
984 R1(C,D,A,B,X[ 7],14,0x676f02d9L);
985 R1(B,C,D,A,X[12],20,0x8d2a4c8aL);
986 /* Round 2 */
987 R2(A,B,C,D,X[ 5], 4,0xfffa3942L);
988 R2(D,A,B,C,X[ 8],11,0x8771f681L);
989 R2(C,D,A,B,X[11],16,0x6d9d6122L);
990 R2(B,C,D,A,X[14],23,0xfde5380cL);
991 R2(A,B,C,D,X[ 1], 4,0xa4beea44L);
992 R2(D,A,B,C,X[ 4],11,0x4bdecfa9L);
993 R2(C,D,A,B,X[ 7],16,0xf6bb4b60L);
994 R2(B,C,D,A,X[10],23,0xbebfbc70L);
995 R2(A,B,C,D,X[13], 4,0x289b7ec6L);
996 R2(D,A,B,C,X[ 0],11,0xeaa127faL);
997 R2(C,D,A,B,X[ 3],16,0xd4ef3085L);
998 R2(B,C,D,A,X[ 6],23,0x04881d05L);
999 R2(A,B,C,D,X[ 9], 4,0xd9d4d039L);
1000 R2(D,A,B,C,X[12],11,0xe6db99e5L);
1001 R2(C,D,A,B,X[15],16,0x1fa27cf8L);
1002 R2(B,C,D,A,X[ 2],23,0xc4ac5665L);
1003 /* Round 3 */
1004 R3(A,B,C,D,X[ 0], 6,0xf4292244L);
1005 R3(D,A,B,C,X[ 7],10,0x432aff97L);
1006 R3(C,D,A,B,X[14],15,0xab9423a7L);
1007 R3(B,C,D,A,X[ 5],21,0xfc93a039L);
1008 R3(A,B,C,D,X[12], 6,0x655b59c3L);
1009 R3(D,A,B,C,X[ 3],10,0x8f0ccc92L);
1010 R3(C,D,A,B,X[10],15,0xffeff47dL);
1011 R3(B,C,D,A,X[ 1],21,0x85845dd1L);
1012 R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL);
1013 R3(D,A,B,C,X[15],10,0xfe2ce6e0L);
1014 R3(C,D,A,B,X[ 6],15,0xa3014314L);
1015 R3(B,C,D,A,X[13],21,0x4e0811a1L);
1016 R3(A,B,C,D,X[ 4], 6,0xf7537e82L);
1017 R3(D,A,B,C,X[11],10,0xbd3af235L);
1018 R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL);
1019 R3(B,C,D,A,X[ 9],21,0xeb86d391L);
1020
1021 A = c->A += A;
1022 B = c->B += B;
1023 C = c->C += C;
1024 D = c->D += D;
1025 }
1026 }
1027 #endif
1028
1029 #ifndef md5_block_data_order
1030 #ifdef X
1031 #undef X
1032 #endif
md5_block_data_order(MD5_CTX * c,const void * data_,int num)1033 void md5_block_data_order (MD5_CTX *c, const void *data_, int num)
1034 {
1035 const unsigned char *data=data_;
1036 register unsigned MD32_REG_T A,B,C,D,l;
1037 #ifndef MD32_XARRAY
1038 /* See comment in crypto/sha/sha_locl.h for details. */
1039 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
1040 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
1041 # define X(i) XX##i
1042 #else
1043 mDNSu32 XX[MD5_LBLOCK];
1044 # define X(i) XX[i]
1045 #endif
1046
1047 A=c->A;
1048 B=c->B;
1049 C=c->C;
1050 D=c->D;
1051
1052 for (;num--;)
1053 {
1054 HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l;
1055 /* Round 0 */
1056 R0(A,B,C,D,X( 0), 7,0xd76aa478L); HOST_c2l(data,l); X( 2)=l;
1057 R0(D,A,B,C,X( 1),12,0xe8c7b756L); HOST_c2l(data,l); X( 3)=l;
1058 R0(C,D,A,B,X( 2),17,0x242070dbL); HOST_c2l(data,l); X( 4)=l;
1059 R0(B,C,D,A,X( 3),22,0xc1bdceeeL); HOST_c2l(data,l); X( 5)=l;
1060 R0(A,B,C,D,X( 4), 7,0xf57c0fafL); HOST_c2l(data,l); X( 6)=l;
1061 R0(D,A,B,C,X( 5),12,0x4787c62aL); HOST_c2l(data,l); X( 7)=l;
1062 R0(C,D,A,B,X( 6),17,0xa8304613L); HOST_c2l(data,l); X( 8)=l;
1063 R0(B,C,D,A,X( 7),22,0xfd469501L); HOST_c2l(data,l); X( 9)=l;
1064 R0(A,B,C,D,X( 8), 7,0x698098d8L); HOST_c2l(data,l); X(10)=l;
1065 R0(D,A,B,C,X( 9),12,0x8b44f7afL); HOST_c2l(data,l); X(11)=l;
1066 R0(C,D,A,B,X(10),17,0xffff5bb1L); HOST_c2l(data,l); X(12)=l;
1067 R0(B,C,D,A,X(11),22,0x895cd7beL); HOST_c2l(data,l); X(13)=l;
1068 R0(A,B,C,D,X(12), 7,0x6b901122L); HOST_c2l(data,l); X(14)=l;
1069 R0(D,A,B,C,X(13),12,0xfd987193L); HOST_c2l(data,l); X(15)=l;
1070 R0(C,D,A,B,X(14),17,0xa679438eL);
1071 R0(B,C,D,A,X(15),22,0x49b40821L);
1072 /* Round 1 */
1073 R1(A,B,C,D,X( 1), 5,0xf61e2562L);
1074 R1(D,A,B,C,X( 6), 9,0xc040b340L);
1075 R1(C,D,A,B,X(11),14,0x265e5a51L);
1076 R1(B,C,D,A,X( 0),20,0xe9b6c7aaL);
1077 R1(A,B,C,D,X( 5), 5,0xd62f105dL);
1078 R1(D,A,B,C,X(10), 9,0x02441453L);
1079 R1(C,D,A,B,X(15),14,0xd8a1e681L);
1080 R1(B,C,D,A,X( 4),20,0xe7d3fbc8L);
1081 R1(A,B,C,D,X( 9), 5,0x21e1cde6L);
1082 R1(D,A,B,C,X(14), 9,0xc33707d6L);
1083 R1(C,D,A,B,X( 3),14,0xf4d50d87L);
1084 R1(B,C,D,A,X( 8),20,0x455a14edL);
1085 R1(A,B,C,D,X(13), 5,0xa9e3e905L);
1086 R1(D,A,B,C,X( 2), 9,0xfcefa3f8L);
1087 R1(C,D,A,B,X( 7),14,0x676f02d9L);
1088 R1(B,C,D,A,X(12),20,0x8d2a4c8aL);
1089 /* Round 2 */
1090 R2(A,B,C,D,X( 5), 4,0xfffa3942L);
1091 R2(D,A,B,C,X( 8),11,0x8771f681L);
1092 R2(C,D,A,B,X(11),16,0x6d9d6122L);
1093 R2(B,C,D,A,X(14),23,0xfde5380cL);
1094 R2(A,B,C,D,X( 1), 4,0xa4beea44L);
1095 R2(D,A,B,C,X( 4),11,0x4bdecfa9L);
1096 R2(C,D,A,B,X( 7),16,0xf6bb4b60L);
1097 R2(B,C,D,A,X(10),23,0xbebfbc70L);
1098 R2(A,B,C,D,X(13), 4,0x289b7ec6L);
1099 R2(D,A,B,C,X( 0),11,0xeaa127faL);
1100 R2(C,D,A,B,X( 3),16,0xd4ef3085L);
1101 R2(B,C,D,A,X( 6),23,0x04881d05L);
1102 R2(A,B,C,D,X( 9), 4,0xd9d4d039L);
1103 R2(D,A,B,C,X(12),11,0xe6db99e5L);
1104 R2(C,D,A,B,X(15),16,0x1fa27cf8L);
1105 R2(B,C,D,A,X( 2),23,0xc4ac5665L);
1106 /* Round 3 */
1107 R3(A,B,C,D,X( 0), 6,0xf4292244L);
1108 R3(D,A,B,C,X( 7),10,0x432aff97L);
1109 R3(C,D,A,B,X(14),15,0xab9423a7L);
1110 R3(B,C,D,A,X( 5),21,0xfc93a039L);
1111 R3(A,B,C,D,X(12), 6,0x655b59c3L);
1112 R3(D,A,B,C,X( 3),10,0x8f0ccc92L);
1113 R3(C,D,A,B,X(10),15,0xffeff47dL);
1114 R3(B,C,D,A,X( 1),21,0x85845dd1L);
1115 R3(A,B,C,D,X( 8), 6,0x6fa87e4fL);
1116 R3(D,A,B,C,X(15),10,0xfe2ce6e0L);
1117 R3(C,D,A,B,X( 6),15,0xa3014314L);
1118 R3(B,C,D,A,X(13),21,0x4e0811a1L);
1119 R3(A,B,C,D,X( 4), 6,0xf7537e82L);
1120 R3(D,A,B,C,X(11),10,0xbd3af235L);
1121 R3(C,D,A,B,X( 2),15,0x2ad7d2bbL);
1122 R3(B,C,D,A,X( 9),21,0xeb86d391L);
1123
1124 A = c->A += A;
1125 B = c->B += B;
1126 C = c->C += C;
1127 D = c->D += D;
1128 }
1129 }
1130 #endif
1131
1132 #endif // !HAVE_MD5
1133
1134 // ***************************************************************************
1135 #if COMPILER_LIKES_PRAGMA_MARK
1136 #pragma mark - base64 -> binary conversion
1137 #endif
1138
1139 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
1140 static const char Pad64 = '=';
1141
1142
1143 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ')
1144
mDNSstrchr(const char * s,int c)1145 mDNSlocal const char *mDNSstrchr(const char *s, int c)
1146 {
1147 while (1)
1148 {
1149 if (c == *s) return s;
1150 if (!*s) return mDNSNULL;
1151 s++;
1152 }
1153 }
1154
1155 // skips all whitespace anywhere.
1156 // converts characters, four at a time, starting at (or after)
1157 // src from base - 64 numbers into three 8 bit bytes in the target area.
1158 // it returns the number of data bytes stored at the target, or -1 on error.
1159 // adapted from BIND sources
1160
DNSDigest_Base64ToBin(const char * src,mDNSu8 * target,mDNSu32 targsize)1161 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize)
1162 {
1163 int tarindex, state, ch;
1164 const char *pos;
1165
1166 state = 0;
1167 tarindex = 0;
1168
1169 while ((ch = *src++) != '\0') {
1170 if (mDNSisspace(ch)) /* Skip whitespace anywhere. */
1171 continue;
1172
1173 if (ch == Pad64)
1174 break;
1175
1176 pos = mDNSstrchr(Base64, ch);
1177 if (pos == 0) /* A non-base64 character. */
1178 return (-1);
1179
1180 switch (state) {
1181 case 0:
1182 if (target) {
1183 if ((mDNSu32)tarindex >= targsize)
1184 return (-1);
1185 target[tarindex] = (mDNSu8)((pos - Base64) << 2);
1186 }
1187 state = 1;
1188 break;
1189 case 1:
1190 if (target) {
1191 if ((mDNSu32)tarindex + 1 >= targsize)
1192 return (-1);
1193 target[tarindex] |= (pos - Base64) >> 4;
1194 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x0f) << 4);
1195 }
1196 tarindex++;
1197 state = 2;
1198 break;
1199 case 2:
1200 if (target) {
1201 if ((mDNSu32)tarindex + 1 >= targsize)
1202 return (-1);
1203 target[tarindex] |= (pos - Base64) >> 2;
1204 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x03) << 6);
1205 }
1206 tarindex++;
1207 state = 3;
1208 break;
1209 case 3:
1210 if (target) {
1211 if ((mDNSu32)tarindex >= targsize)
1212 return (-1);
1213 target[tarindex] |= (pos - Base64);
1214 }
1215 tarindex++;
1216 state = 0;
1217 break;
1218 default:
1219 return -1;
1220 }
1221 }
1222
1223 /*
1224 * We are done decoding Base-64 chars. Let's see if we ended
1225 * on a byte boundary, and/or with erroneous trailing characters.
1226 */
1227
1228 if (ch == Pad64) { /* We got a pad char. */
1229 ch = *src++; /* Skip it, get next. */
1230 switch (state) {
1231 case 0: /* Invalid = in first position */
1232 case 1: /* Invalid = in second position */
1233 return (-1);
1234
1235 case 2: /* Valid, means one byte of info */
1236 /* Skip any number of spaces. */
1237 for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1238 if (!mDNSisspace(ch))
1239 break;
1240 /* Make sure there is another trailing = sign. */
1241 if (ch != Pad64)
1242 return (-1);
1243 ch = *src++; /* Skip the = */
1244 /* Fall through to "single trailing =" case. */
1245 /* FALLTHROUGH */
1246
1247 case 3: /* Valid, means two bytes of info */
1248 /*
1249 * We know this char is an =. Is there anything but
1250 * whitespace after it?
1251 */
1252 for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1253 if (!mDNSisspace(ch))
1254 return (-1);
1255
1256 /*
1257 * Now make sure for cases 2 and 3 that the "extra"
1258 * bits that slopped past the last full byte were
1259 * zeros. If we don't check them, they become a
1260 * subliminal channel.
1261 */
1262 if (target && target[tarindex] != 0)
1263 return (-1);
1264 }
1265 } else {
1266 /*
1267 * We ended by seeing the end of the string. Make sure we
1268 * have no partial bytes lying around.
1269 */
1270 if (state != 0)
1271 return (-1);
1272 }
1273
1274 return (tarindex);
1275 }
1276
1277
1278 // ***************************************************************************
1279 #if COMPILER_LIKES_PRAGMA_MARK
1280 #pragma mark - API exported to mDNS Core
1281 #endif
1282
1283 // Constants
1284 #define HMAC_IPAD 0x36
1285 #define HMAC_OPAD 0x5c
1286 #define MD5_LEN 16
1287
1288 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int")
1289
1290 // Adapted from Appendix, RFC 2104
DNSDigest_ConstructHMACKey(DomainAuthInfo * info,const mDNSu8 * key,mDNSu32 len)1291 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len)
1292 {
1293 MD5_CTX k;
1294 mDNSu8 buf[MD5_LEN];
1295 int i;
1296
1297 // If key is longer than HMAC_LEN reset it to MD5(key)
1298 if (len > HMAC_LEN)
1299 {
1300 MD5_Init(&k);
1301 MD5_Update(&k, key, len);
1302 MD5_Final(buf, &k);
1303 key = buf;
1304 len = MD5_LEN;
1305 }
1306
1307 // store key in pads
1308 mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN);
1309 mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN);
1310 mDNSPlatformMemCopy(info->keydata_ipad, key, len);
1311 mDNSPlatformMemCopy(info->keydata_opad, key, len);
1312
1313 // XOR key with ipad and opad values
1314 for (i = 0; i < HMAC_LEN; i++)
1315 {
1316 info->keydata_ipad[i] ^= HMAC_IPAD;
1317 info->keydata_opad[i] ^= HMAC_OPAD;
1318 }
1319
1320 }
1321
DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo * info,const char * b64key)1322 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key)
1323 {
1324 mDNSu8 keybuf[1024];
1325 mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf));
1326 if (keylen < 0) return(keylen);
1327 DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen);
1328 return(keylen);
1329 }
1330
DNSDigest_SignMessage(DNSMessage * msg,mDNSu8 ** end,DomainAuthInfo * info,mDNSu16 tcode)1331 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode)
1332 {
1333 AuthRecord tsig;
1334 mDNSu8 *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals; // Get existing numAdditionals value
1335 mDNSu32 utc32;
1336 mDNSu8 utc48[6];
1337 mDNSu8 digest[MD5_LEN];
1338 mDNSu8 *ptr = *end;
1339 mDNSu32 len;
1340 mDNSOpaque16 buf;
1341 MD5_CTX c;
1342 mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]);
1343
1344 // Init MD5 context, digest inner key pad and message
1345 MD5_Init(&c);
1346 MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1347 MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg));
1348
1349 // Construct TSIG RR, digesting variables as apporpriate
1350 mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
1351
1352 // key name
1353 AssignDomainName(&tsig.namestorage, &info->keyname);
1354 MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname));
1355
1356 // class
1357 tsig.resrec.rrclass = kDNSQClass_ANY;
1358 buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY);
1359 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1360
1361 // ttl
1362 tsig.resrec.rroriginalttl = 0;
1363 MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl));
1364
1365 // alg name
1366 AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName);
1367 len = DomainNameLength(&HMAC_MD5_AlgName);
1368 rdata = tsig.resrec.rdata->u.data + len;
1369 MD5_Update(&c, HMAC_MD5_AlgName.c, len);
1370
1371 // time
1372 // get UTC (universal time), convert to 48-bit unsigned in network byte order
1373 utc32 = (mDNSu32)mDNSPlatformUTC();
1374 if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; }
1375 utc48[0] = 0;
1376 utc48[1] = 0;
1377 utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff);
1378 utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff);
1379 utc48[4] = (mDNSu8)((utc32 >> 8) & 0xff);
1380 utc48[5] = (mDNSu8)( utc32 & 0xff);
1381
1382 mDNSPlatformMemCopy(rdata, utc48, 6);
1383 rdata += 6;
1384 MD5_Update(&c, utc48, 6);
1385
1386 // 300 sec is fudge recommended in RFC 2485
1387 rdata[0] = (mDNSu8)((300 >> 8) & 0xff);
1388 rdata[1] = (mDNSu8)( 300 & 0xff);
1389 MD5_Update(&c, rdata, sizeof(mDNSOpaque16));
1390 rdata += sizeof(mDNSOpaque16);
1391
1392 // digest error (tcode) and other data len (zero) - we'll add them to the rdata later
1393 buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff);
1394 buf.b[1] = (mDNSu8)( tcode & 0xff);
1395 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error
1396 buf.NotAnInteger = 0;
1397 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len
1398
1399 // finish the message & tsig var hash
1400 MD5_Final(digest, &c);
1401
1402 // perform outer MD5 (outer key pad, inner digest)
1403 MD5_Init(&c);
1404 MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1405 MD5_Update(&c, digest, MD5_LEN);
1406 MD5_Final(digest, &c);
1407
1408 // set remaining rdata fields
1409 rdata[0] = (mDNSu8)((MD5_LEN >> 8) & 0xff);
1410 rdata[1] = (mDNSu8)( MD5_LEN & 0xff);
1411 rdata += sizeof(mDNSOpaque16);
1412 mDNSPlatformMemCopy(rdata, digest, MD5_LEN); // MAC
1413 rdata += MD5_LEN;
1414 rdata[0] = msg->h.id.b[0]; // original ID
1415 rdata[1] = msg->h.id.b[1];
1416 rdata[2] = (mDNSu8)((tcode >> 8) & 0xff);
1417 rdata[3] = (mDNSu8)( tcode & 0xff);
1418 rdata[4] = 0; // other data len
1419 rdata[5] = 0;
1420 rdata += 6;
1421
1422 tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data);
1423 *end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0);
1424 if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; }
1425
1426 // Write back updated numAdditionals value
1427 countPtr[0] = (mDNSu8)(numAdditionals >> 8);
1428 countPtr[1] = (mDNSu8)(numAdditionals & 0xFF);
1429 }
1430
DNSDigest_VerifyMessage(DNSMessage * msg,mDNSu8 * end,LargeCacheRecord * lcr,DomainAuthInfo * info,mDNSu16 * rcode,mDNSu16 * tcode)1431 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode)
1432 {
1433 mDNSu8 * ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data;
1434 mDNSs32 now;
1435 mDNSs32 then;
1436 mDNSu8 thisDigest[MD5_LEN];
1437 mDNSu8 thatDigest[MD5_LEN];
1438 mDNSu32 macsize;
1439 mDNSOpaque16 buf;
1440 mDNSu8 utc48[6];
1441 mDNSs32 delta;
1442 mDNSu16 fudge;
1443 domainname * algo;
1444 MD5_CTX c;
1445 mDNSBool ok = mDNSfalse;
1446
1447 // We only support HMAC-MD5 for now
1448
1449 algo = (domainname*) ptr;
1450
1451 if (!SameDomainName(algo, &HMAC_MD5_AlgName))
1452 {
1453 LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c);
1454 *rcode = kDNSFlag1_RC_NotAuth;
1455 *tcode = TSIG_ErrBadKey;
1456 ok = mDNSfalse;
1457 goto exit;
1458 }
1459
1460 ptr += DomainNameLength(algo);
1461
1462 // Check the times
1463
1464 now = mDNSPlatformUTC();
1465 if (now == -1)
1466 {
1467 LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1");
1468 *rcode = kDNSFlag1_RC_NotAuth;
1469 *tcode = TSIG_ErrBadTime;
1470 ok = mDNSfalse;
1471 goto exit;
1472 }
1473
1474 // Get the 48 bit time field, skipping over the first word
1475
1476 utc48[0] = *ptr++;
1477 utc48[1] = *ptr++;
1478 utc48[2] = *ptr++;
1479 utc48[3] = *ptr++;
1480 utc48[4] = *ptr++;
1481 utc48[5] = *ptr++;
1482
1483 then = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16));
1484
1485 fudge = NToH16(ptr);
1486
1487 ptr += sizeof(mDNSu16);
1488
1489 delta = (now > then) ? now - then : then - now;
1490
1491 if (delta > fudge)
1492 {
1493 LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge);
1494 *rcode = kDNSFlag1_RC_NotAuth;
1495 *tcode = TSIG_ErrBadTime;
1496 ok = mDNSfalse;
1497 goto exit;
1498 }
1499
1500 // MAC size
1501
1502 macsize = (mDNSu32) NToH16(ptr);
1503
1504 ptr += sizeof(mDNSu16);
1505
1506 // MAC
1507
1508 mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN);
1509
1510 // Init MD5 context, digest inner key pad and message
1511
1512 MD5_Init(&c);
1513 MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1514 MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg));
1515
1516 // Key name
1517
1518 MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name));
1519
1520 // Class name
1521
1522 buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass);
1523 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1524
1525 // TTL
1526
1527 MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl));
1528
1529 // Algorithm
1530
1531 MD5_Update(&c, algo->c, DomainNameLength(algo));
1532
1533 // Time
1534
1535 MD5_Update(&c, utc48, 6);
1536
1537 // Fudge
1538
1539 buf = mDNSOpaque16fromIntVal(fudge);
1540 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1541
1542 // Digest error and other data len (both zero) - we'll add them to the rdata later
1543
1544 buf.NotAnInteger = 0;
1545 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error
1546 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len
1547
1548 // Finish the message & tsig var hash
1549
1550 MD5_Final(thisDigest, &c);
1551
1552 // perform outer MD5 (outer key pad, inner digest)
1553
1554 MD5_Init(&c);
1555 MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1556 MD5_Update(&c, thisDigest, MD5_LEN);
1557 MD5_Final(thisDigest, &c);
1558
1559 if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN))
1560 {
1561 LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature");
1562 *rcode = kDNSFlag1_RC_NotAuth;
1563 *tcode = TSIG_ErrBadSig;
1564 ok = mDNSfalse;
1565 goto exit;
1566 }
1567
1568 // set remaining rdata fields
1569 ok = mDNStrue;
1570
1571 exit:
1572
1573 return ok;
1574 }
1575
1576
1577 #ifdef __cplusplus
1578 }
1579 #endif
1580