• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <errno.h>
18 #include <inttypes.h>
19 #include <sys/auxv.h>
20 #include <sys/mman.h>
21 #include <unistd.h>
22 
23 #if defined(__BIONIC__)
24 #include <bionic/mte.h>
25 #endif
26 
27 #include <map>
28 #include <utility>
29 
30 #include "Allocator.h"
31 #include "HeapWalker.h"
32 #include "LeakFolding.h"
33 #include "ScopedSignalHandler.h"
34 #include "log.h"
35 
36 namespace android {
UntagAddress(uintptr_t addr)37 static inline uintptr_t UntagAddress(uintptr_t addr) {
38 #if defined(__aarch64__)
39   constexpr uintptr_t mask = (static_cast<uintptr_t>(1) << 56) - 1;
40   addr = addr & mask;
41 #endif
42   return addr;
43 }
44 
Allocation(uintptr_t begin,uintptr_t end)45 bool HeapWalker::Allocation(uintptr_t begin, uintptr_t end) {
46   if (end == begin) {
47     end = begin + 1;
48   }
49   begin = UntagAddress(begin);
50   end = UntagAddress(end);
51   Range range{begin, end};
52   if (valid_mappings_range_.end != 0 &&
53       (begin < valid_mappings_range_.begin || end > valid_mappings_range_.end)) {
54     MEM_LOG_ALWAYS_FATAL("allocation %p-%p is outside mapping range %p-%p",
55                          reinterpret_cast<void*>(begin), reinterpret_cast<void*>(end),
56                          reinterpret_cast<void*>(valid_mappings_range_.begin),
57                          reinterpret_cast<void*>(valid_mappings_range_.end));
58   }
59   auto inserted = allocations_.insert(std::pair<Range, AllocationInfo>(range, AllocationInfo{}));
60   if (inserted.second) {
61     valid_allocations_range_.begin = std::min(valid_allocations_range_.begin, begin);
62     valid_allocations_range_.end = std::max(valid_allocations_range_.end, end);
63     allocation_bytes_ += range.size();
64     return true;
65   } else {
66     Range overlap = inserted.first->first;
67     if (overlap != range) {
68       MEM_ALOGE("range %p-%p overlaps with existing range %p-%p", reinterpret_cast<void*>(begin),
69                 reinterpret_cast<void*>(end), reinterpret_cast<void*>(overlap.begin),
70                 reinterpret_cast<void*>(overlap.end));
71     }
72     return false;
73   }
74 }
75 
76 // Sanitizers and MTE may consider certain memory inaccessible through certain pointers.
77 // With MTE we set PSTATE.TCO during the access to suppress tag checks.
ReadWordAtAddressUnsafe(uintptr_t word_ptr)78 static uintptr_t ReadWordAtAddressUnsafe(uintptr_t word_ptr)
79     __attribute__((no_sanitize("address", "hwaddress"))) {
80 #if defined(__BIONIC__)
81   ScopedDisableMTE x;
82 #endif
83   return *reinterpret_cast<uintptr_t*>(word_ptr);
84 }
85 
WordContainsAllocationPtr(uintptr_t word_ptr,Range * range,AllocationInfo ** info)86 bool HeapWalker::WordContainsAllocationPtr(uintptr_t word_ptr, Range* range, AllocationInfo** info) {
87   walking_ptr_ = word_ptr;
88   // This access may segfault if the process under test has done something strange,
89   // for example mprotect(PROT_NONE) on a native heap page.  If so, it will be
90   // caught and handled by mmaping a zero page over the faulting page.
91   uintptr_t value = ReadWordAtAddressUnsafe(word_ptr);
92   value = UntagAddress(value);
93   walking_ptr_ = 0;
94   if (value >= valid_allocations_range_.begin && value < valid_allocations_range_.end) {
95     AllocationMap::iterator it = allocations_.find(Range{value, value + 1});
96     if (it != allocations_.end()) {
97       *range = it->first;
98       *info = &it->second;
99       return true;
100     }
101   }
102   return false;
103 }
104 
RecurseRoot(const Range & root)105 void HeapWalker::RecurseRoot(const Range& root) {
106   allocator::vector<Range> to_do(1, root, allocator_);
107   while (!to_do.empty()) {
108     Range range = to_do.back();
109     to_do.pop_back();
110 
111     walking_range_ = range;
112     ForEachPtrInRange(range, [&](Range& ref_range, AllocationInfo* ref_info) {
113       if (!ref_info->referenced_from_root) {
114         ref_info->referenced_from_root = true;
115         to_do.push_back(ref_range);
116       }
117     });
118     walking_range_ = Range{0, 0};
119   }
120 }
121 
Mapping(uintptr_t begin,uintptr_t end)122 void HeapWalker::Mapping(uintptr_t begin, uintptr_t end) {
123   valid_mappings_range_.begin = std::min(valid_mappings_range_.begin, begin);
124   valid_mappings_range_.end = std::max(valid_mappings_range_.end, end);
125 }
126 
Root(uintptr_t begin,uintptr_t end)127 void HeapWalker::Root(uintptr_t begin, uintptr_t end) {
128   roots_.push_back(Range{begin, end});
129 }
130 
Root(const allocator::vector<uintptr_t> & vals)131 void HeapWalker::Root(const allocator::vector<uintptr_t>& vals) {
132   root_vals_.insert(root_vals_.end(), vals.begin(), vals.end());
133 }
134 
Allocations()135 size_t HeapWalker::Allocations() {
136   return allocations_.size();
137 }
138 
AllocationBytes()139 size_t HeapWalker::AllocationBytes() {
140   return allocation_bytes_;
141 }
142 
DetectLeaks()143 bool HeapWalker::DetectLeaks() {
144   // Recursively walk pointers from roots to mark referenced allocations
145   for (auto it = roots_.begin(); it != roots_.end(); it++) {
146     RecurseRoot(*it);
147   }
148 
149   Range vals;
150   vals.begin = reinterpret_cast<uintptr_t>(root_vals_.data());
151   vals.end = vals.begin + root_vals_.size() * sizeof(uintptr_t);
152 
153   RecurseRoot(vals);
154 
155   if (segv_page_count_ > 0) {
156     MEM_ALOGE("%zu pages skipped due to segfaults", segv_page_count_);
157   }
158 
159   return true;
160 }
161 
Leaked(allocator::vector<Range> & leaked,size_t limit,size_t * num_leaks_out,size_t * leak_bytes_out)162 bool HeapWalker::Leaked(allocator::vector<Range>& leaked, size_t limit, size_t* num_leaks_out,
163                         size_t* leak_bytes_out) {
164   leaked.clear();
165 
166   size_t num_leaks = 0;
167   size_t leak_bytes = 0;
168   for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
169     if (!it->second.referenced_from_root) {
170       num_leaks++;
171       leak_bytes += it->first.end - it->first.begin;
172     }
173   }
174 
175   size_t n = 0;
176   for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
177     if (!it->second.referenced_from_root) {
178       if (n++ < limit) {
179         leaked.push_back(it->first);
180       }
181     }
182   }
183 
184   if (num_leaks_out) {
185     *num_leaks_out = num_leaks;
186   }
187   if (leak_bytes_out) {
188     *leak_bytes_out = leak_bytes;
189   }
190 
191   return true;
192 }
193 
MapOverPage(void * addr)194 static bool MapOverPage(void* addr) {
195   const size_t page_size = sysconf(_SC_PAGE_SIZE);
196   void* page = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) & ~(page_size - 1));
197 
198   void* ret = mmap(page, page_size, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
199   if (ret == MAP_FAILED) {
200     MEM_ALOGE("failed to map page at %p: %s", page, strerror(errno));
201     return false;
202   }
203 
204   return true;
205 }
206 
HandleSegFault(ScopedSignalHandler & handler,int signal,siginfo_t * si,void *)207 void HeapWalker::HandleSegFault(ScopedSignalHandler& handler, int signal, siginfo_t* si,
208                                 void* /*uctx*/) {
209   uintptr_t addr = reinterpret_cast<uintptr_t>(si->si_addr);
210   if (addr != walking_ptr_) {
211     handler.reset();
212     return;
213   }
214   if (!segv_logged_) {
215     MEM_ALOGW("failed to read page at %p, signal %d", si->si_addr, signal);
216     if (walking_range_.begin != 0U) {
217       MEM_ALOGW("while walking range %p-%p", reinterpret_cast<void*>(walking_range_.begin),
218                 reinterpret_cast<void*>(walking_range_.end));
219     }
220     segv_logged_ = true;
221   }
222   segv_page_count_++;
223   if (!MapOverPage(si->si_addr)) {
224     handler.reset();
225   }
226 }
227 
228 Allocator<ScopedSignalHandler::SignalFnMap>::unique_ptr ScopedSignalHandler::handler_map_;
229 
230 }  // namespace android
231