1 /* basicmbr.cc -- Functions for loading, saving, and manipulating legacy MBR partition
2 data. */
3
4 /* Initial coding by Rod Smith, January to February, 2009 */
5
6 /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
7 under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
8
9 #define __STDC_LIMIT_MACROS
10 #ifndef __STDC_CONSTANT_MACROS
11 #define __STDC_CONSTANT_MACROS
12 #endif
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <stdint.h>
17 #include <fcntl.h>
18 #include <string.h>
19 #include <time.h>
20 #include <sys/stat.h>
21 #include <errno.h>
22 #include <iostream>
23 #include <algorithm>
24 #include "mbr.h"
25 #include "support.h"
26
27 using namespace std;
28
29 /****************************************
30 * *
31 * MBRData class and related structures *
32 * *
33 ****************************************/
34
BasicMBRData(void)35 BasicMBRData::BasicMBRData(void) {
36 blockSize = SECTOR_SIZE;
37 diskSize = 0;
38 device = "";
39 state = invalid;
40 numHeads = MAX_HEADS;
41 numSecspTrack = MAX_SECSPERTRACK;
42 myDisk = NULL;
43 canDeleteMyDisk = 0;
44 // memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint32_t));
45 EmptyMBR();
46 } // BasicMBRData default constructor
47
BasicMBRData(const BasicMBRData & orig)48 BasicMBRData::BasicMBRData(const BasicMBRData & orig) {
49 int i;
50
51 if (&orig != this) {
52 memcpy(code, orig.code, 440);
53 diskSignature = orig.diskSignature;
54 nulls = orig.nulls;
55 MBRSignature = orig.MBRSignature;
56 blockSize = orig.blockSize;
57 diskSize = orig.diskSize;
58 numHeads = orig.numHeads;
59 numSecspTrack = orig.numSecspTrack;
60 canDeleteMyDisk = orig.canDeleteMyDisk;
61 device = orig.device;
62 state = orig.state;
63
64 myDisk = new DiskIO;
65 if (myDisk == NULL) {
66 cerr << "Unable to allocate memory in BasicMBRData copy constructor! Terminating!\n";
67 exit(1);
68 } // if
69 if (orig.myDisk != NULL)
70 myDisk->OpenForRead(orig.myDisk->GetName());
71
72 for (i = 0; i < MAX_MBR_PARTS; i++) {
73 partitions[i] = orig.partitions[i];
74 } // for
75 } // if
76 } // BasicMBRData copy constructor
77
BasicMBRData(string filename)78 BasicMBRData::BasicMBRData(string filename) {
79 blockSize = SECTOR_SIZE;
80 diskSize = 0;
81 device = filename;
82 state = invalid;
83 numHeads = MAX_HEADS;
84 numSecspTrack = MAX_SECSPERTRACK;
85 myDisk = NULL;
86 canDeleteMyDisk = 0;
87 // memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint32_t));
88
89 // Try to read the specified partition table, but if it fails....
90 if (!ReadMBRData(filename)) {
91 EmptyMBR();
92 device = "";
93 } // if
94 } // BasicMBRData(string filename) constructor
95
96 // Free space used by myDisk only if that's OK -- sometimes it will be
97 // copied from an outside source, in which case that source should handle
98 // it!
~BasicMBRData(void)99 BasicMBRData::~BasicMBRData(void) {
100 if (canDeleteMyDisk)
101 delete myDisk;
102 } // BasicMBRData destructor
103
104 // Assignment operator -- copy entire set of MBR data.
operator =(const BasicMBRData & orig)105 BasicMBRData & BasicMBRData::operator=(const BasicMBRData & orig) {
106 int i;
107
108 if (&orig != this) {
109 memcpy(code, orig.code, 440);
110 diskSignature = orig.diskSignature;
111 nulls = orig.nulls;
112 MBRSignature = orig.MBRSignature;
113 blockSize = orig.blockSize;
114 diskSize = orig.diskSize;
115 numHeads = orig.numHeads;
116 numSecspTrack = orig.numSecspTrack;
117 canDeleteMyDisk = orig.canDeleteMyDisk;
118 device = orig.device;
119 state = orig.state;
120
121 myDisk = new DiskIO;
122 if (myDisk == NULL) {
123 cerr << "Unable to allocate memory in BasicMBRData::operator=()! Terminating!\n";
124 exit(1);
125 } // if
126 if (orig.myDisk != NULL)
127 myDisk->OpenForRead(orig.myDisk->GetName());
128
129 for (i = 0; i < MAX_MBR_PARTS; i++) {
130 partitions[i] = orig.partitions[i];
131 } // for
132 } // if
133 return *this;
134 } // BasicMBRData::operator=()
135
136 /**********************
137 * *
138 * Disk I/O functions *
139 * *
140 **********************/
141
142 // Read data from MBR. Returns 1 if read was successful (even if the
143 // data isn't a valid MBR), 0 if the read failed.
ReadMBRData(const string & deviceFilename)144 int BasicMBRData::ReadMBRData(const string & deviceFilename) {
145 int allOK = 1;
146
147 if (myDisk == NULL) {
148 myDisk = new DiskIO;
149 if (myDisk == NULL) {
150 cerr << "Unable to allocate memory in BasicMBRData::ReadMBRData()! Terminating!\n";
151 exit(1);
152 } // if
153 canDeleteMyDisk = 1;
154 } // if
155 if (myDisk->OpenForRead(deviceFilename)) {
156 allOK = ReadMBRData(myDisk);
157 } else {
158 allOK = 0;
159 } // if
160
161 if (allOK)
162 device = deviceFilename;
163
164 return allOK;
165 } // BasicMBRData::ReadMBRData(const string & deviceFilename)
166
167 // Read data from MBR. If checkBlockSize == 1 (the default), the block
168 // size is checked; otherwise it's set to the default (512 bytes).
169 // Note that any extended partition(s) present will be omitted from
170 // in the partitions[] array; these partitions must be re-created when
171 // the partition table is saved in MBR format.
ReadMBRData(DiskIO * theDisk,int checkBlockSize)172 int BasicMBRData::ReadMBRData(DiskIO * theDisk, int checkBlockSize) {
173 int allOK = 1, i, logicalNum = 3;
174 int err = 1;
175 TempMBR tempMBR;
176
177 if ((myDisk != NULL) && (myDisk != theDisk) && (canDeleteMyDisk)) {
178 delete myDisk;
179 canDeleteMyDisk = 0;
180 } // if
181
182 myDisk = theDisk;
183
184 // Empty existing MBR data, including the logical partitions...
185 EmptyMBR(0);
186
187 if (myDisk->Seek(0))
188 if (myDisk->Read(&tempMBR, 512))
189 err = 0;
190 if (err) {
191 cerr << "Problem reading disk in BasicMBRData::ReadMBRData()!\n";
192 } else {
193 for (i = 0; i < 440; i++)
194 code[i] = tempMBR.code[i];
195 diskSignature = tempMBR.diskSignature;
196 nulls = tempMBR.nulls;
197 for (i = 0; i < 4; i++) {
198 partitions[i] = tempMBR.partitions[i];
199 if (partitions[i].GetLengthLBA() > 0)
200 partitions[i].SetInclusion(PRIMARY);
201 } // for i... (reading all four partitions)
202 MBRSignature = tempMBR.MBRSignature;
203 ReadCHSGeom();
204
205 // Reverse the byte order, if necessary
206 if (IsLittleEndian() == 0) {
207 ReverseBytes(&diskSignature, 4);
208 ReverseBytes(&nulls, 2);
209 ReverseBytes(&MBRSignature, 2);
210 for (i = 0; i < 4; i++) {
211 partitions[i].ReverseByteOrder();
212 } // for
213 } // if
214
215 if (MBRSignature != MBR_SIGNATURE) {
216 allOK = 0;
217 state = invalid;
218 } // if
219
220 // Find disk size
221 diskSize = myDisk->DiskSize(&err);
222
223 // Find block size
224 if (checkBlockSize) {
225 blockSize = myDisk->GetBlockSize();
226 } // if (checkBlockSize)
227
228 // Load logical partition data, if any is found....
229 if (allOK) {
230 for (i = 0; i < 4; i++) {
231 if ((partitions[i].GetType() == 0x05) || (partitions[i].GetType() == 0x0f)
232 || (partitions[i].GetType() == 0x85)) {
233 // Found it, so call a function to load everything from them....
234 logicalNum = ReadLogicalParts(partitions[i].GetStartLBA(), abs(logicalNum) + 1);
235 if (logicalNum < 0) {
236 cerr << "Error reading logical partitions! List may be truncated!\n";
237 } // if maxLogicals valid
238 DeletePartition(i);
239 } // if primary partition is extended
240 } // for primary partition loop
241 if (allOK) { // Loaded logicals OK
242 state = mbr;
243 } else {
244 state = invalid;
245 } // if
246 } // if
247
248 // Check to see if it's in GPT format....
249 if (allOK) {
250 for (i = 0; i < 4; i++) {
251 if (partitions[i].GetType() == UINT8_C(0xEE)) {
252 state = gpt;
253 } // if
254 } // for
255 } // if
256
257 // If there's an EFI GPT partition, look for other partition types,
258 // to flag as hybrid
259 if (state == gpt) {
260 for (i = 0 ; i < 4; i++) {
261 if ((partitions[i].GetType() != UINT8_C(0xEE)) &&
262 (partitions[i].GetType() != UINT8_C(0x00)))
263 state = hybrid;
264 if (logicalNum != 3)
265 cerr << "Warning! MBR Logical partitions found on a hybrid MBR disk! This is an\n"
266 << "EXTREMELY dangerous configuration!\n\a";
267 } // for
268 } // if (hybrid detection code)
269 } // no initial error
270 return allOK;
271 } // BasicMBRData::ReadMBRData(DiskIO * theDisk, int checkBlockSize)
272
273 // This is a function to read all the logical partitions, following the
274 // logical partition linked list from the disk and storing the basic data in the
275 // partitions[] array. Returns last index to partitions[] used, or -1 times the
276 // that index if there was a problem. (Some problems can leave valid logical
277 // partition data.)
278 // Parameters:
279 // extendedStart = LBA of the start of the extended partition
280 // partNum = number of first partition in extended partition (normally 4).
ReadLogicalParts(uint64_t extendedStart,int partNum)281 int BasicMBRData::ReadLogicalParts(uint64_t extendedStart, int partNum) {
282 struct TempMBR ebr;
283 int i, another = 1, allOK = 1;
284 uint8_t ebrType;
285 uint64_t offset;
286 uint64_t EbrLocations[MAX_MBR_PARTS];
287
288 offset = extendedStart;
289 memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint64_t));
290 while (another && (partNum < MAX_MBR_PARTS) && (partNum >= 0) && (allOK > 0)) {
291 for (i = 0; i < MAX_MBR_PARTS; i++) {
292 if (EbrLocations[i] == offset) { // already read this one; infinite logical partition loop!
293 cerr << "Logical partition infinite loop detected! This is being corrected.\n";
294 allOK = -1;
295 if(partNum > 0) //don't go negative
296 partNum -= 1;
297 } // if
298 } // for
299 EbrLocations[partNum] = offset;
300 if (myDisk->Seek(offset) == 0) { // seek to EBR record
301 cerr << "Unable to seek to " << offset << "! Aborting!\n";
302 allOK = -1;
303 }
304 if (myDisk->Read(&ebr, 512) != 512) { // Load the data....
305 cerr << "Error seeking to or reading logical partition data from " << offset
306 << "!\nSome logical partitions may be missing!\n";
307 allOK = -1;
308 } else if (IsLittleEndian() != 1) { // Reverse byte ordering of some data....
309 ReverseBytes(&ebr.MBRSignature, 2);
310 ReverseBytes(&ebr.partitions[0].firstLBA, 4);
311 ReverseBytes(&ebr.partitions[0].lengthLBA, 4);
312 ReverseBytes(&ebr.partitions[1].firstLBA, 4);
313 ReverseBytes(&ebr.partitions[1].lengthLBA, 4);
314 } // if/else/if
315
316 if (ebr.MBRSignature != MBR_SIGNATURE) {
317 allOK = -1;
318 cerr << "EBR signature for logical partition invalid; read 0x";
319 cerr.fill('0');
320 cerr.width(4);
321 cerr.setf(ios::uppercase);
322 cerr << hex << ebr.MBRSignature << ", but should be 0x";
323 cerr.width(4);
324 cerr << MBR_SIGNATURE << dec << "\n";
325 cerr.fill(' ');
326 } // if
327
328 if ((partNum >= 0) && (partNum < MAX_MBR_PARTS) && (allOK > 0)) {
329 // Sometimes an EBR points directly to another EBR, rather than defining
330 // a logical partition and then pointing to another EBR. Thus, we skip
331 // the logical partition when this is the case....
332 ebrType = ebr.partitions[0].partitionType;
333 if ((ebrType == 0x05) || (ebrType == 0x0f) || (ebrType == 0x85)) {
334 cout << "EBR points to an EBR!\n";
335 offset = extendedStart + ebr.partitions[0].firstLBA;
336 } else {
337 // Copy over the basic data....
338 partitions[partNum] = ebr.partitions[0];
339 // Adjust the start LBA, since it's encoded strangely....
340 partitions[partNum].SetStartLBA(ebr.partitions[0].firstLBA + offset);
341 partitions[partNum].SetInclusion(LOGICAL);
342
343 // Find the next partition (if there is one)
344 if ((ebr.partitions[1].firstLBA != UINT32_C(0)) && (partNum < (MAX_MBR_PARTS - 1))) {
345 offset = extendedStart + ebr.partitions[1].firstLBA;
346 partNum++;
347 } else {
348 another = 0;
349 } // if another partition
350 } // if/else
351 } // if
352 } // while()
353 return (partNum * allOK);
354 } // BasicMBRData::ReadLogicalPart()
355
356 // Write the MBR data to the default defined device. This writes both the
357 // MBR itself and any defined logical partitions, provided there's an
358 // MBR extended partition.
WriteMBRData(void)359 int BasicMBRData::WriteMBRData(void) {
360 int allOK = 1;
361
362 if (myDisk != NULL) {
363 if (myDisk->OpenForWrite() != 0) {
364 allOK = WriteMBRData(myDisk);
365 cout << "Done writing data!\n";
366 } else {
367 allOK = 0;
368 } // if/else
369 myDisk->Close();
370 } else allOK = 0;
371 return allOK;
372 } // BasicMBRData::WriteMBRData(void)
373
374 // Save the MBR data to a file. This writes both the
375 // MBR itself and any defined logical partitions.
WriteMBRData(DiskIO * theDisk)376 int BasicMBRData::WriteMBRData(DiskIO *theDisk) {
377 int i, j, partNum, next, allOK = 1, moreLogicals = 0;
378 uint64_t extFirstLBA = 0;
379 uint64_t writeEbrTo; // 64-bit because we support extended in 2-4TiB range
380 TempMBR tempMBR;
381
382 allOK = CreateExtended();
383 if (allOK) {
384 // First write the main MBR data structure....
385 memcpy(tempMBR.code, code, 440);
386 tempMBR.diskSignature = diskSignature;
387 tempMBR.nulls = nulls;
388 tempMBR.MBRSignature = MBRSignature;
389 for (i = 0; i < 4; i++) {
390 partitions[i].StoreInStruct(&tempMBR.partitions[i]);
391 if (partitions[i].GetType() == 0x0f) {
392 extFirstLBA = partitions[i].GetStartLBA();
393 moreLogicals = 1;
394 } // if
395 } // for i...
396 } // if
397 allOK = allOK && WriteMBRData(tempMBR, theDisk, 0);
398
399 // Set up tempMBR with some constant data for logical partitions...
400 tempMBR.diskSignature = 0;
401 for (i = 2; i < 4; i++) {
402 tempMBR.partitions[i].firstLBA = tempMBR.partitions[i].lengthLBA = 0;
403 tempMBR.partitions[i].partitionType = 0x00;
404 for (j = 0; j < 3; j++) {
405 tempMBR.partitions[i].firstSector[j] = 0;
406 tempMBR.partitions[i].lastSector[j] = 0;
407 } // for j
408 } // for i
409
410 partNum = FindNextInUse(4);
411 writeEbrTo = (uint64_t) extFirstLBA;
412 // Write logicals...
413 while (allOK && moreLogicals && (partNum < MAX_MBR_PARTS) && (partNum >= 0)) {
414 partitions[partNum].StoreInStruct(&tempMBR.partitions[0]);
415 tempMBR.partitions[0].firstLBA = 1;
416 // tempMBR.partitions[1] points to next EBR or terminates EBR linked list...
417 next = FindNextInUse(partNum + 1);
418 if ((next < MAX_MBR_PARTS) && (next > 0) && (partitions[next].GetStartLBA() > 0)) {
419 tempMBR.partitions[1].partitionType = 0x0f;
420 tempMBR.partitions[1].firstLBA = (uint32_t) (partitions[next].GetStartLBA() - extFirstLBA - 1);
421 tempMBR.partitions[1].lengthLBA = (uint32_t) (partitions[next].GetLengthLBA() + 1);
422 LBAtoCHS((uint64_t) tempMBR.partitions[1].firstLBA,
423 (uint8_t *) &tempMBR.partitions[1].firstSector);
424 LBAtoCHS(tempMBR.partitions[1].lengthLBA - extFirstLBA,
425 (uint8_t *) &tempMBR.partitions[1].lastSector);
426 } else {
427 tempMBR.partitions[1].partitionType = 0x00;
428 tempMBR.partitions[1].firstLBA = 0;
429 tempMBR.partitions[1].lengthLBA = 0;
430 moreLogicals = 0;
431 } // if/else
432 allOK = WriteMBRData(tempMBR, theDisk, writeEbrTo);
433 writeEbrTo = (uint64_t) tempMBR.partitions[1].firstLBA + (uint64_t) extFirstLBA;
434 partNum = next;
435 } // while
436 DeleteExtendedParts();
437 return allOK;
438 } // BasicMBRData::WriteMBRData(DiskIO *theDisk)
439
WriteMBRData(const string & deviceFilename)440 int BasicMBRData::WriteMBRData(const string & deviceFilename) {
441 device = deviceFilename;
442 return WriteMBRData();
443 } // BasicMBRData::WriteMBRData(const string & deviceFilename)
444
445 // Write a single MBR record to the specified sector. Used by the like-named
446 // function to write both the MBR and multiple EBR (for logical partition)
447 // records.
448 // Returns 1 on success, 0 on failure
WriteMBRData(struct TempMBR & mbr,DiskIO * theDisk,uint64_t sector)449 int BasicMBRData::WriteMBRData(struct TempMBR & mbr, DiskIO *theDisk, uint64_t sector) {
450 int i, allOK;
451
452 // Reverse the byte order, if necessary
453 if (IsLittleEndian() == 0) {
454 ReverseBytes(&mbr.diskSignature, 4);
455 ReverseBytes(&mbr.nulls, 2);
456 ReverseBytes(&mbr.MBRSignature, 2);
457 for (i = 0; i < 4; i++) {
458 ReverseBytes(&mbr.partitions[i].firstLBA, 4);
459 ReverseBytes(&mbr.partitions[i].lengthLBA, 4);
460 } // for
461 } // if
462
463 // Now write the data structure...
464 allOK = theDisk->OpenForWrite();
465 if (allOK && theDisk->Seek(sector)) {
466 if (theDisk->Write(&mbr, 512) != 512) {
467 allOK = 0;
468 cerr << "Error " << errno << " when saving MBR!\n";
469 } // if
470 } else {
471 allOK = 0;
472 cerr << "Error " << errno << " when seeking to MBR to write it!\n";
473 } // if/else
474 theDisk->Close();
475
476 // Reverse the byte order back, if necessary
477 if (IsLittleEndian() == 0) {
478 ReverseBytes(&mbr.diskSignature, 4);
479 ReverseBytes(&mbr.nulls, 2);
480 ReverseBytes(&mbr.MBRSignature, 2);
481 for (i = 0; i < 4; i++) {
482 ReverseBytes(&mbr.partitions[i].firstLBA, 4);
483 ReverseBytes(&mbr.partitions[i].lengthLBA, 4);
484 } // for
485 }// if
486 return allOK;
487 } // BasicMBRData::WriteMBRData(uint64_t sector)
488
489 // Set a new disk device; used in copying one disk's partition
490 // table to another disk.
SetDisk(DiskIO * theDisk)491 void BasicMBRData::SetDisk(DiskIO *theDisk) {
492 int err;
493
494 myDisk = theDisk;
495 diskSize = theDisk->DiskSize(&err);
496 canDeleteMyDisk = 0;
497 ReadCHSGeom();
498 } // BasicMBRData::SetDisk()
499
500 /********************************************
501 * *
502 * Functions that display data for the user *
503 * *
504 ********************************************/
505
506 // Show the MBR data to the user, up to the specified maximum number
507 // of partitions....
DisplayMBRData(void)508 void BasicMBRData::DisplayMBRData(void) {
509 int i;
510
511 cout << "\nDisk size is " << diskSize << " sectors ("
512 << BytesToIeee(diskSize, blockSize) << ")\n";
513 cout << "MBR disk identifier: 0x";
514 cout.width(8);
515 cout.fill('0');
516 cout.setf(ios::uppercase);
517 cout << hex << diskSignature << dec << "\n";
518 cout << "MBR partitions:\n\n";
519 if ((state == gpt) || (state == hybrid)) {
520 cout << "Number Boot Start Sector End Sector Status Code\n";
521 } else {
522 cout << " Can Be Can Be\n";
523 cout << "Number Boot Start Sector End Sector Status Logical Primary Code\n";
524 UpdateCanBeLogical();
525 } //
526 for (i = 0; i < MAX_MBR_PARTS; i++) {
527 if (partitions[i].GetLengthLBA() != 0) {
528 cout.fill(' ');
529 cout.width(4);
530 cout << i + 1 << " ";
531 partitions[i].ShowData((state == gpt) || (state == hybrid));
532 } // if
533 cout.fill(' ');
534 } // for
535 } // BasicMBRData::DisplayMBRData()
536
537 // Displays the state, as a word, on stdout. Used for debugging & to
538 // tell the user about the MBR state when the program launches....
ShowState(void)539 void BasicMBRData::ShowState(void) {
540 switch (state) {
541 case invalid:
542 cout << " MBR: not present\n";
543 break;
544 case gpt:
545 cout << " MBR: protective\n";
546 break;
547 case hybrid:
548 cout << " MBR: hybrid\n";
549 break;
550 case mbr:
551 cout << " MBR: MBR only\n";
552 break;
553 default:
554 cout << "\a MBR: unknown -- bug!\n";
555 break;
556 } // switch
557 } // BasicMBRData::ShowState()
558
559 /************************
560 * *
561 * GPT Checks and fixes *
562 * *
563 ************************/
564
565 // Perform a very rudimentary check for GPT data on the disk; searches for
566 // the GPT signature in the main and backup metadata areas.
567 // Returns 0 if GPT data not found, 1 if main data only is found, 2 if
568 // backup only is found, 3 if both main and backup data are found, and
569 // -1 if a disk error occurred.
CheckForGPT(void)570 int BasicMBRData::CheckForGPT(void) {
571 int retval = 0, err;
572 char signature1[9], signature2[9];
573
574 if (myDisk != NULL) {
575 if (myDisk->OpenForRead() != 0) {
576 if (myDisk->Seek(1)) {
577 myDisk->Read(signature1, 8);
578 signature1[8] = '\0';
579 } else retval = -1;
580 if (myDisk->Seek(myDisk->DiskSize(&err) - 1)) {
581 myDisk->Read(signature2, 8);
582 signature2[8] = '\0';
583 } else retval = -1;
584 if ((retval >= 0) && (strcmp(signature1, "EFI PART") == 0))
585 retval += 1;
586 if ((retval >= 0) && (strcmp(signature2, "EFI PART") == 0))
587 retval += 2;
588 } else {
589 retval = -1;
590 } // if/else
591 myDisk->Close();
592 } else retval = -1;
593 return retval;
594 } // BasicMBRData::CheckForGPT()
595
596 // Blanks the 2nd (sector #1, numbered from 0) and last sectors of the disk,
597 // but only if GPT data are verified on the disk, and only for the sector(s)
598 // with GPT signatures.
599 // Returns 1 if operation completes successfully, 0 if not (returns 1 if
600 // no GPT data are found on the disk).
BlankGPTData(void)601 int BasicMBRData::BlankGPTData(void) {
602 int allOK = 1, err;
603 uint8_t blank[512];
604
605 memset(blank, 0, 512);
606 switch (CheckForGPT()) {
607 case -1:
608 allOK = 0;
609 break;
610 case 0:
611 break;
612 case 1:
613 if ((myDisk != NULL) && (myDisk->OpenForWrite())) {
614 if (!((myDisk->Seek(1)) && (myDisk->Write(blank, 512) == 512)))
615 allOK = 0;
616 myDisk->Close();
617 } else allOK = 0;
618 break;
619 case 2:
620 if ((myDisk != NULL) && (myDisk->OpenForWrite())) {
621 if (!((myDisk->Seek(myDisk->DiskSize(&err) - 1)) &&
622 (myDisk->Write(blank, 512) == 512)))
623 allOK = 0;
624 myDisk->Close();
625 } else allOK = 0;
626 break;
627 case 3:
628 if ((myDisk != NULL) && (myDisk->OpenForWrite())) {
629 if (!((myDisk->Seek(1)) && (myDisk->Write(blank, 512) == 512)))
630 allOK = 0;
631 if (!((myDisk->Seek(myDisk->DiskSize(&err) - 1)) &&
632 (myDisk->Write(blank, 512) == 512)))
633 allOK = 0;
634 myDisk->Close();
635 } else allOK = 0;
636 break;
637 default:
638 break;
639 } // switch()
640 return allOK;
641 } // BasicMBRData::BlankGPTData
642
643 /*********************************************************************
644 * *
645 * Functions that set or get disk metadata (CHS geometry, disk size, *
646 * etc.) *
647 * *
648 *********************************************************************/
649
650 // Read the CHS geometry using OS calls, or if that fails, set to
651 // the most common value for big disks (255 heads, 63 sectors per
652 // track, & however many cylinders that computes to).
ReadCHSGeom(void)653 void BasicMBRData::ReadCHSGeom(void) {
654 int err;
655
656 numHeads = myDisk->GetNumHeads();
657 numSecspTrack = myDisk->GetNumSecsPerTrack();
658 diskSize = myDisk->DiskSize(&err);
659 blockSize = myDisk->GetBlockSize();
660 partitions[0].SetGeometry(numHeads, numSecspTrack, diskSize, blockSize);
661 } // BasicMBRData::ReadCHSGeom()
662
663 // Find the low and high used partition numbers (numbered from 0).
664 // Return value is the number of partitions found. Note that the
665 // *low and *high values are both set to 0 when no partitions
666 // are found, as well as when a single partition in the first
667 // position exists. Thus, the return value is the only way to
668 // tell when no partitions exist.
GetPartRange(uint32_t * low,uint32_t * high)669 int BasicMBRData::GetPartRange(uint32_t *low, uint32_t *high) {
670 uint32_t i;
671 int numFound = 0;
672
673 *low = MAX_MBR_PARTS + 1; // code for "not found"
674 *high = 0;
675 for (i = 0; i < MAX_MBR_PARTS; i++) {
676 if (partitions[i].GetStartLBA() != UINT32_C(0)) { // it exists
677 *high = i; // since we're counting up, set the high value
678 // Set the low value only if it's not yet found...
679 if (*low == (MAX_MBR_PARTS + 1))
680 *low = i;
681 numFound++;
682 } // if
683 } // for
684
685 // Above will leave *low pointing to its "not found" value if no partitions
686 // are defined, so reset to 0 if this is the case....
687 if (*low == (MAX_MBR_PARTS + 1))
688 *low = 0;
689 return numFound;
690 } // GPTData::GetPartRange()
691
692 // Converts 64-bit LBA value to MBR-style CHS value. Returns 1 if conversion
693 // was within the range that can be expressed by CHS (including 0, for an
694 // empty partition), 0 if the value is outside that range, and -1 if chs is
695 // invalid.
LBAtoCHS(uint64_t lba,uint8_t * chs)696 int BasicMBRData::LBAtoCHS(uint64_t lba, uint8_t * chs) {
697 uint64_t cylinder, head, sector; // all numbered from 0
698 uint64_t remainder;
699 int retval = 1;
700 int done = 0;
701
702 if (chs != NULL) {
703 // Special case: In case of 0 LBA value, zero out CHS values....
704 if (lba == 0) {
705 chs[0] = chs[1] = chs[2] = UINT8_C(0);
706 done = 1;
707 } // if
708 // If LBA value is too large for CHS, max out CHS values....
709 if ((!done) && (lba >= ((uint64_t) numHeads * numSecspTrack * MAX_CYLINDERS))) {
710 chs[0] = 254;
711 chs[1] = chs[2] = 255;
712 done = 1;
713 retval = 0;
714 } // if
715 // If neither of the above applies, compute CHS values....
716 if (!done) {
717 cylinder = lba / (uint64_t) (numHeads * numSecspTrack);
718 remainder = lba - (cylinder * numHeads * numSecspTrack);
719 head = remainder / numSecspTrack;
720 remainder -= head * numSecspTrack;
721 sector = remainder;
722 if (head < numHeads)
723 chs[0] = (uint8_t) head;
724 else
725 retval = 0;
726 if (sector < numSecspTrack) {
727 chs[1] = (uint8_t) ((sector + 1) + (cylinder >> 8) * 64);
728 chs[2] = (uint8_t) (cylinder & UINT64_C(0xFF));
729 } else {
730 retval = 0;
731 } // if/else
732 } // if value is expressible and non-0
733 } else { // Invalid (NULL) chs pointer
734 retval = -1;
735 } // if CHS pointer valid
736 return (retval);
737 } // BasicMBRData::LBAtoCHS()
738
739 // Look for overlapping partitions. Also looks for a couple of non-error
740 // conditions that the user should be told about.
741 // Returns the number of problems found
FindOverlaps(void)742 int BasicMBRData::FindOverlaps(void) {
743 int i, j, numProbs = 0, numEE = 0, ProtectiveOnOne = 0;
744
745 for (i = 0; i < MAX_MBR_PARTS; i++) {
746 for (j = i + 1; j < MAX_MBR_PARTS; j++) {
747 if ((partitions[i].GetInclusion() != NONE) && (partitions[j].GetInclusion() != NONE) &&
748 (partitions[i].DoTheyOverlap(partitions[j]))) {
749 numProbs++;
750 cout << "\nProblem: MBR partitions " << i + 1 << " and " << j + 1
751 << " overlap!\n";
752 } // if
753 } // for (j...)
754 if (partitions[i].GetType() == 0xEE) {
755 numEE++;
756 if (partitions[i].GetStartLBA() == 1)
757 ProtectiveOnOne = 1;
758 } // if
759 } // for (i...)
760
761 if (numEE > 1)
762 cout << "\nCaution: More than one 0xEE MBR partition found. This can cause problems\n"
763 << "in some OSes.\n";
764 if (!ProtectiveOnOne && (numEE > 0))
765 cout << "\nWarning: 0xEE partition doesn't start on sector 1. This can cause "
766 << "problems\nin some OSes.\n";
767
768 return numProbs;
769 } // BasicMBRData::FindOverlaps()
770
771 // Returns the number of primary partitions, including the extended partition
772 // required to hold any logical partitions found.
NumPrimaries(void)773 int BasicMBRData::NumPrimaries(void) {
774 int i, numPrimaries = 0, logicalsFound = 0;
775
776 for (i = 0; i < MAX_MBR_PARTS; i++) {
777 if (partitions[i].GetLengthLBA() > 0) {
778 if (partitions[i].GetInclusion() == PRIMARY)
779 numPrimaries++;
780 if (partitions[i].GetInclusion() == LOGICAL)
781 logicalsFound = 1;
782 } // if
783 } // for
784 return (numPrimaries + logicalsFound);
785 } // BasicMBRData::NumPrimaries()
786
787 // Returns the number of logical partitions.
NumLogicals(void)788 int BasicMBRData::NumLogicals(void) {
789 int i, numLogicals = 0;
790
791 for (i = 0; i < MAX_MBR_PARTS; i++) {
792 if (partitions[i].GetInclusion() == LOGICAL)
793 numLogicals++;
794 } // for
795 return numLogicals;
796 } // BasicMBRData::NumLogicals()
797
798 // Returns the number of partitions (primaries plus logicals), NOT including
799 // the extended partition required to house the logicals.
CountParts(void)800 int BasicMBRData::CountParts(void) {
801 int i, num = 0;
802
803 for (i = 0; i < MAX_MBR_PARTS; i++) {
804 if ((partitions[i].GetInclusion() == LOGICAL) ||
805 (partitions[i].GetInclusion() == PRIMARY))
806 num++;
807 } // for
808 return num;
809 } // BasicMBRData::CountParts()
810
811 // Updates the canBeLogical and canBePrimary flags for all the partitions.
UpdateCanBeLogical(void)812 void BasicMBRData::UpdateCanBeLogical(void) {
813 int i, j, sectorBefore, numPrimaries, numLogicals, usedAsEBR;
814 uint64_t firstLogical, lastLogical, lStart, pStart;
815
816 numPrimaries = NumPrimaries();
817 numLogicals = NumLogicals();
818 firstLogical = FirstLogicalLBA() - 1;
819 lastLogical = LastLogicalLBA();
820 for (i = 0; i < MAX_MBR_PARTS; i++) {
821 usedAsEBR = (SectorUsedAs(partitions[i].GetLastLBA()) == EBR);
822 if (usedAsEBR) {
823 partitions[i].SetCanBeLogical(0);
824 partitions[i].SetCanBePrimary(0);
825 } else if (partitions[i].GetLengthLBA() > 0) {
826 // First determine if it can be logical....
827 sectorBefore = SectorUsedAs(partitions[i].GetStartLBA() - 1);
828 lStart = partitions[i].GetStartLBA(); // start of potential logical part.
829 if ((lastLogical > 0) &&
830 ((sectorBefore == EBR) || (sectorBefore == NONE))) {
831 // Assume it can be logical, then search for primaries that make it
832 // not work and, if found, flag appropriately.
833 partitions[i].SetCanBeLogical(1);
834 for (j = 0; j < MAX_MBR_PARTS; j++) {
835 if ((i != j) && (partitions[j].GetInclusion() == PRIMARY)) {
836 pStart = partitions[j].GetStartLBA();
837 if (((pStart < lStart) && (firstLogical < pStart)) ||
838 ((pStart > lStart) && (firstLogical > pStart))) {
839 partitions[i].SetCanBeLogical(0);
840 } // if/else
841 } // if
842 } // for
843 } else {
844 if ((sectorBefore != EBR) && (sectorBefore != NONE))
845 partitions[i].SetCanBeLogical(0);
846 else
847 partitions[i].SetCanBeLogical(lastLogical == 0); // can be logical only if no logicals already
848 } // if/else
849 // Now determine if it can be primary. Start by assuming it can be...
850 partitions[i].SetCanBePrimary(1);
851 if ((numPrimaries >= 4) && (partitions[i].GetInclusion() != PRIMARY)) {
852 partitions[i].SetCanBePrimary(0);
853 if ((partitions[i].GetInclusion() == LOGICAL) && (numLogicals == 1) &&
854 (numPrimaries == 4))
855 partitions[i].SetCanBePrimary(1);
856 } // if
857 if ((partitions[i].GetStartLBA() > (firstLogical + 1)) &&
858 (partitions[i].GetLastLBA() < lastLogical))
859 partitions[i].SetCanBePrimary(0);
860 } // else if
861 } // for
862 } // BasicMBRData::UpdateCanBeLogical()
863
864 // Returns the first sector occupied by any logical partition. Note that
865 // this does NOT include the logical partition's EBR! Returns UINT32_MAX
866 // if there are no logical partitions defined.
FirstLogicalLBA(void)867 uint64_t BasicMBRData::FirstLogicalLBA(void) {
868 int i;
869 uint64_t firstFound = UINT32_MAX;
870
871 for (i = 0; i < MAX_MBR_PARTS; i++) {
872 if ((partitions[i].GetInclusion() == LOGICAL) &&
873 (partitions[i].GetStartLBA() < firstFound)) {
874 firstFound = partitions[i].GetStartLBA();
875 } // if
876 } // for
877 return firstFound;
878 } // BasicMBRData::FirstLogicalLBA()
879
880 // Returns the last sector occupied by any logical partition, or 0 if
881 // there are no logical partitions defined.
LastLogicalLBA(void)882 uint64_t BasicMBRData::LastLogicalLBA(void) {
883 int i;
884 uint64_t lastFound = 0;
885
886 for (i = 0; i < MAX_MBR_PARTS; i++) {
887 if ((partitions[i].GetInclusion() == LOGICAL) &&
888 (partitions[i].GetLastLBA() > lastFound))
889 lastFound = partitions[i].GetLastLBA();
890 } // for
891 return lastFound;
892 } // BasicMBRData::LastLogicalLBA()
893
894 // Returns 1 if logical partitions are contiguous (have no primaries
895 // in their midst), or 0 if one or more primaries exist between
896 // logicals.
AreLogicalsContiguous(void)897 int BasicMBRData::AreLogicalsContiguous(void) {
898 int allOK = 1, i = 0;
899 uint64_t firstLogical, lastLogical;
900
901 firstLogical = FirstLogicalLBA() - 1; // subtract 1 for EBR
902 lastLogical = LastLogicalLBA();
903 if (lastLogical > 0) {
904 do {
905 if ((partitions[i].GetInclusion() == PRIMARY) &&
906 (partitions[i].GetStartLBA() >= firstLogical) &&
907 (partitions[i].GetStartLBA() <= lastLogical)) {
908 allOK = 0;
909 } // if
910 i++;
911 } while ((i < MAX_MBR_PARTS) && allOK);
912 } // if
913 return allOK;
914 } // BasicMBRData::AreLogicalsContiguous()
915
916 // Returns 1 if all partitions fit on the disk, given its size; 0 if any
917 // partition is too big.
DoTheyFit(void)918 int BasicMBRData::DoTheyFit(void) {
919 int i, allOK = 1;
920
921 for (i = 0; i < MAX_MBR_PARTS; i++) {
922 if ((partitions[i].GetStartLBA() > diskSize) || (partitions[i].GetLastLBA() > diskSize)) {
923 allOK = 0;
924 } // if
925 } // for
926 return allOK;
927 } // BasicMBRData::DoTheyFit(void)
928
929 // Returns 1 if there's at least one free sector immediately preceding
930 // all partitions flagged as logical; 0 if any logical partition lacks
931 // this space.
SpaceBeforeAllLogicals(void)932 int BasicMBRData::SpaceBeforeAllLogicals(void) {
933 int i = 0, allOK = 1;
934
935 do {
936 if ((partitions[i].GetStartLBA() > 0) && (partitions[i].GetInclusion() == LOGICAL)) {
937 allOK = allOK && (SectorUsedAs(partitions[i].GetStartLBA() - 1) == EBR);
938 } // if
939 i++;
940 } while (allOK && (i < MAX_MBR_PARTS));
941 return allOK;
942 } // BasicMBRData::SpaceBeforeAllLogicals()
943
944 // Returns 1 if the partitions describe a legal layout -- all logicals
945 // are contiguous and have at least one preceding empty sector,
946 // the number of primaries is under 4 (or under 3 if there are any
947 // logicals), there are no overlapping partitions, etc.
948 // Does NOT assume that primaries are numbered 1-4; uses the
949 // IsItPrimary() function of the MBRPart class to determine
950 // primary status. Also does NOT consider partition order; there
951 // can be gaps and it will still be considered legal.
IsLegal(void)952 int BasicMBRData::IsLegal(void) {
953 int allOK = 1;
954
955 allOK = (FindOverlaps() == 0);
956 allOK = (allOK && (NumPrimaries() <= 4));
957 allOK = (allOK && AreLogicalsContiguous());
958 allOK = (allOK && DoTheyFit());
959 allOK = (allOK && SpaceBeforeAllLogicals());
960 return allOK;
961 } // BasicMBRData::IsLegal()
962
963 // Returns 1 if the 0xEE partition in the protective/hybrid MBR is marked as
964 // active/bootable.
IsEEActive(void)965 int BasicMBRData::IsEEActive(void) {
966 int i, IsActive = 0;
967
968 for (i = 0; i < MAX_MBR_PARTS; i++) {
969 if ((partitions[i].GetStatus() & 0x80) && (partitions[i].GetType() == 0xEE))
970 IsActive = 1;
971 }
972 return IsActive;
973 } // BasicMBRData::IsEEActive()
974
975 // Finds the next in-use partition, starting with start (will return start
976 // if it's in use). Returns -1 if no subsequent partition is in use.
FindNextInUse(int start)977 int BasicMBRData::FindNextInUse(int start) {
978 if (start >= MAX_MBR_PARTS)
979 start = -1;
980 while ((start < MAX_MBR_PARTS) && (start >= 0) && (partitions[start].GetInclusion() == NONE))
981 start++;
982 if ((start < 0) || (start >= MAX_MBR_PARTS))
983 start = -1;
984 return start;
985 } // BasicMBRData::FindFirstLogical();
986
987 /*****************************************************
988 * *
989 * Functions to create, delete, or change partitions *
990 * *
991 *****************************************************/
992
993 // Empty all data. Meant mainly for calling by constructors, but it's also
994 // used by the hybrid MBR functions in the GPTData class.
EmptyMBR(int clearBootloader)995 void BasicMBRData::EmptyMBR(int clearBootloader) {
996 int i;
997
998 // Zero out the boot loader section, the disk signature, and the
999 // 2-byte nulls area only if requested to do so. (This is the
1000 // default.)
1001 if (clearBootloader == 1) {
1002 EmptyBootloader();
1003 } // if
1004
1005 // Blank out the partitions
1006 for (i = 0; i < MAX_MBR_PARTS; i++) {
1007 partitions[i].Empty();
1008 } // for
1009 MBRSignature = MBR_SIGNATURE;
1010 state = mbr;
1011 } // BasicMBRData::EmptyMBR()
1012
1013 // Blank out the boot loader area. Done with the initial MBR-to-GPT
1014 // conversion, since MBR boot loaders don't understand GPT, and so
1015 // need to be replaced....
EmptyBootloader(void)1016 void BasicMBRData::EmptyBootloader(void) {
1017 int i;
1018
1019 for (i = 0; i < 440; i++)
1020 code[i] = 0;
1021 nulls = 0;
1022 } // BasicMBRData::EmptyBootloader
1023
1024 // Create a partition of the specified number based on the passed
1025 // partition. This function does *NO* error checking, so it's possible
1026 // to seriously screw up a partition table using this function!
1027 // Note: This function should NOT be used to create the 0xEE partition
1028 // in a conventional GPT configuration, since that partition has
1029 // specific size requirements that this function won't handle. It may
1030 // be used for creating the 0xEE partition(s) in a hybrid MBR, though,
1031 // since those toss the rulebook away anyhow....
AddPart(int num,const MBRPart & newPart)1032 void BasicMBRData::AddPart(int num, const MBRPart& newPart) {
1033 partitions[num] = newPart;
1034 } // BasicMBRData::AddPart()
1035
1036 // Create a partition of the specified number, starting LBA, and
1037 // length. This function does almost no error checking, so it's possible
1038 // to seriously screw up a partition table using this function!
1039 // Note: This function should NOT be used to create the 0xEE partition
1040 // in a conventional GPT configuration, since that partition has
1041 // specific size requirements that this function won't handle. It may
1042 // be used for creating the 0xEE partition(s) in a hybrid MBR, though,
1043 // since those toss the rulebook away anyhow....
MakePart(int num,uint64_t start,uint64_t length,int type,int bootable)1044 void BasicMBRData::MakePart(int num, uint64_t start, uint64_t length, int type, int bootable) {
1045 if ((num >= 0) && (num < MAX_MBR_PARTS) && (start <= UINT32_MAX) && (length <= UINT32_MAX)) {
1046 partitions[num].Empty();
1047 partitions[num].SetType(type);
1048 partitions[num].SetLocation(start, length);
1049 if (num < 4)
1050 partitions[num].SetInclusion(PRIMARY);
1051 else
1052 partitions[num].SetInclusion(LOGICAL);
1053 SetPartBootable(num, bootable);
1054 } // if valid partition number & size
1055 } // BasicMBRData::MakePart()
1056
1057 // Set the partition's type code.
1058 // Returns 1 if successful, 0 if not (invalid partition number)
SetPartType(int num,int type)1059 int BasicMBRData::SetPartType(int num, int type) {
1060 int allOK = 1;
1061
1062 if ((num >= 0) && (num < MAX_MBR_PARTS)) {
1063 if (partitions[num].GetLengthLBA() != UINT32_C(0)) {
1064 allOK = partitions[num].SetType(type);
1065 } else allOK = 0;
1066 } else allOK = 0;
1067 return allOK;
1068 } // BasicMBRData::SetPartType()
1069
1070 // Set (or remove) the partition's bootable flag. Setting it is the
1071 // default; pass 0 as bootable to remove the flag.
1072 // Returns 1 if successful, 0 if not (invalid partition number)
SetPartBootable(int num,int bootable)1073 int BasicMBRData::SetPartBootable(int num, int bootable) {
1074 int allOK = 1;
1075
1076 if ((num >= 0) && (num < MAX_MBR_PARTS)) {
1077 if (partitions[num].GetLengthLBA() != UINT32_C(0)) {
1078 if (bootable == 0)
1079 partitions[num].SetStatus(UINT8_C(0x00));
1080 else
1081 partitions[num].SetStatus(UINT8_C(0x80));
1082 } else allOK = 0;
1083 } else allOK = 0;
1084 return allOK;
1085 } // BasicMBRData::SetPartBootable()
1086
1087 // Create a partition that fills the most available space. Returns
1088 // 1 if partition was created, 0 otherwise. Intended for use in
1089 // creating hybrid MBRs.
MakeBiggestPart(int i,int type)1090 int BasicMBRData::MakeBiggestPart(int i, int type) {
1091 uint64_t start = UINT64_C(1); // starting point for each search
1092 uint64_t firstBlock; // first block in a segment
1093 uint64_t lastBlock; // last block in a segment
1094 uint64_t segmentSize; // size of segment in blocks
1095 uint64_t selectedSegment = UINT64_C(0); // location of largest segment
1096 uint64_t selectedSize = UINT64_C(0); // size of largest segment in blocks
1097 int found = 0;
1098 string anything;
1099
1100 do {
1101 firstBlock = FindFirstAvailable(start);
1102 if (firstBlock > UINT64_C(0)) { // something's free...
1103 lastBlock = FindLastInFree(firstBlock);
1104 segmentSize = lastBlock - firstBlock + UINT64_C(1);
1105 if (segmentSize > selectedSize) {
1106 selectedSize = segmentSize;
1107 selectedSegment = firstBlock;
1108 } // if
1109 start = lastBlock + 1;
1110 } // if
1111 } while (firstBlock != 0);
1112 if ((selectedSize > UINT64_C(0)) && (selectedSize < diskSize)) {
1113 found = 1;
1114 MakePart(i, selectedSegment, selectedSize, type, 0);
1115 } else {
1116 found = 0;
1117 } // if/else
1118 return found;
1119 } // BasicMBRData::MakeBiggestPart(int i)
1120
1121 // Delete partition #i
DeletePartition(int i)1122 void BasicMBRData::DeletePartition(int i) {
1123 partitions[i].Empty();
1124 } // BasicMBRData::DeletePartition()
1125
1126 // Set the inclusion status (PRIMARY, LOGICAL, or NONE) with some sanity
1127 // checks to ensure the table remains legal.
1128 // Returns 1 on success, 0 on failure.
SetInclusionwChecks(int num,int inclStatus)1129 int BasicMBRData::SetInclusionwChecks(int num, int inclStatus) {
1130 int allOK = 1, origValue;
1131
1132 if (IsLegal()) {
1133 if ((inclStatus == PRIMARY) || (inclStatus == LOGICAL) || (inclStatus == NONE)) {
1134 origValue = partitions[num].GetInclusion();
1135 partitions[num].SetInclusion(inclStatus);
1136 if (!IsLegal()) {
1137 partitions[num].SetInclusion(origValue);
1138 cerr << "Specified change is not legal! Aborting change!\n";
1139 } // if
1140 } else {
1141 cerr << "Invalid partition inclusion code in BasicMBRData::SetInclusionwChecks()!\n";
1142 } // if/else
1143 } else {
1144 cerr << "Partition table is not currently in a valid state. Aborting change!\n";
1145 allOK = 0;
1146 } // if/else
1147 return allOK;
1148 } // BasicMBRData::SetInclusionwChecks()
1149
1150 // Recomputes the CHS values for the specified partition and adjusts the value.
1151 // Note that this will create a technically incorrect CHS value for EFI GPT (0xEE)
1152 // protective partitions, but this is required by some buggy BIOSes, so I'm
1153 // providing a function to do this deliberately at the user's command.
1154 // This function does nothing if the partition's length is 0.
RecomputeCHS(int partNum)1155 void BasicMBRData::RecomputeCHS(int partNum) {
1156 partitions[partNum].RecomputeCHS();
1157 } // BasicMBRData::RecomputeCHS()
1158
1159 // Sorts the partitions starting with partition #start. This function
1160 // does NOT pay attention to primary/logical assignment, which is
1161 // critical when writing the partitions.
SortMBR(int start)1162 void BasicMBRData::SortMBR(int start) {
1163 if ((start < MAX_MBR_PARTS) && (start >= 0))
1164 sort(partitions + start, partitions + MAX_MBR_PARTS);
1165 } // BasicMBRData::SortMBR()
1166
1167 // Delete any partitions that are too big to fit on the disk
1168 // or that are too big for MBR (32-bit limits).
1169 // This deletes the partitions by setting values to 0, not just
1170 // by setting them as being omitted.
1171 // Returns the number of partitions deleted in this way.
DeleteOversizedParts()1172 int BasicMBRData::DeleteOversizedParts() {
1173 int num = 0, i;
1174
1175 for (i = 0; i < MAX_MBR_PARTS; i++) {
1176 if ((partitions[i].GetStartLBA() > diskSize) || (partitions[i].GetLastLBA() > diskSize) ||
1177 (partitions[i].GetStartLBA() > UINT32_MAX) || (partitions[i].GetLengthLBA() > UINT32_MAX)) {
1178 cerr << "\aWarning: Deleting oversized partition #" << i + 1 << "! Start = "
1179 << partitions[i].GetStartLBA() << ", length = " << partitions[i].GetLengthLBA() << "\n";
1180 partitions[i].Empty();
1181 num++;
1182 } // if
1183 } // for
1184 return num;
1185 } // BasicMBRData::DeleteOversizedParts()
1186
1187 // Search for and delete extended partitions.
1188 // Returns the number of partitions deleted.
DeleteExtendedParts()1189 int BasicMBRData::DeleteExtendedParts() {
1190 int i, numDeleted = 0;
1191 uint8_t type;
1192
1193 for (i = 0; i < MAX_MBR_PARTS; i++) {
1194 type = partitions[i].GetType();
1195 if (((type == 0x05) || (type == 0x0f) || (type == (0x85))) &&
1196 (partitions[i].GetLengthLBA() > 0)) {
1197 partitions[i].Empty();
1198 numDeleted++;
1199 } // if
1200 } // for
1201 return numDeleted;
1202 } // BasicMBRData::DeleteExtendedParts()
1203
1204 // Finds any overlapping partitions and omits the smaller of the two.
OmitOverlaps()1205 void BasicMBRData::OmitOverlaps() {
1206 int i, j;
1207
1208 for (i = 0; i < MAX_MBR_PARTS; i++) {
1209 for (j = i + 1; j < MAX_MBR_PARTS; j++) {
1210 if ((partitions[i].GetInclusion() != NONE) &&
1211 partitions[i].DoTheyOverlap(partitions[j])) {
1212 if (partitions[i].GetLengthLBA() < partitions[j].GetLengthLBA())
1213 partitions[i].SetInclusion(NONE);
1214 else
1215 partitions[j].SetInclusion(NONE);
1216 } // if
1217 } // for (j...)
1218 } // for (i...)
1219 } // BasicMBRData::OmitOverlaps()
1220
1221 // Convert as many partitions into logicals as possible, except for
1222 // the first partition, if possible.
MaximizeLogicals()1223 void BasicMBRData::MaximizeLogicals() {
1224 int earliestPart = 0, earliestPartWas = NONE, i;
1225
1226 for (i = MAX_MBR_PARTS - 1; i >= 0; i--) {
1227 UpdateCanBeLogical();
1228 earliestPart = i;
1229 if (partitions[i].CanBeLogical()) {
1230 partitions[i].SetInclusion(LOGICAL);
1231 } else if (partitions[i].CanBePrimary()) {
1232 partitions[i].SetInclusion(PRIMARY);
1233 } else {
1234 partitions[i].SetInclusion(NONE);
1235 } // if/elseif/else
1236 } // for
1237 // If we have spare primaries, convert back the earliest partition to
1238 // its original state....
1239 if ((NumPrimaries() < 4) && (partitions[earliestPart].GetInclusion() == LOGICAL))
1240 partitions[earliestPart].SetInclusion(earliestPartWas);
1241 } // BasicMBRData::MaximizeLogicals()
1242
1243 // Add primaries up to the maximum allowed, from the omitted category.
MaximizePrimaries()1244 void BasicMBRData::MaximizePrimaries() {
1245 int num, i = 0;
1246
1247 num = NumPrimaries();
1248 while ((num < 4) && (i < MAX_MBR_PARTS)) {
1249 if ((partitions[i].GetInclusion() == NONE) && (partitions[i].CanBePrimary())) {
1250 partitions[i].SetInclusion(PRIMARY);
1251 num++;
1252 UpdateCanBeLogical();
1253 } // if
1254 i++;
1255 } // while
1256 } // BasicMBRData::MaximizePrimaries()
1257
1258 // Remove primary partitions in excess of 4, starting with the later ones,
1259 // in terms of the array location....
TrimPrimaries(void)1260 void BasicMBRData::TrimPrimaries(void) {
1261 int numToDelete, i = MAX_MBR_PARTS - 1;
1262
1263 numToDelete = NumPrimaries() - 4;
1264 while ((numToDelete > 0) && (i >= 0)) {
1265 if (partitions[i].GetInclusion() == PRIMARY) {
1266 partitions[i].SetInclusion(NONE);
1267 numToDelete--;
1268 } // if
1269 i--;
1270 } // while (numToDelete > 0)
1271 } // BasicMBRData::TrimPrimaries()
1272
1273 // Locates primary partitions located between logical partitions and
1274 // either converts the primaries into logicals (if possible) or omits
1275 // them.
MakeLogicalsContiguous(void)1276 void BasicMBRData::MakeLogicalsContiguous(void) {
1277 uint64_t firstLogicalLBA, lastLogicalLBA;
1278 int i;
1279
1280 firstLogicalLBA = FirstLogicalLBA();
1281 lastLogicalLBA = LastLogicalLBA();
1282 for (i = 0; i < MAX_MBR_PARTS; i++) {
1283 if ((partitions[i].GetInclusion() == PRIMARY) &&
1284 (partitions[i].GetStartLBA() >= firstLogicalLBA) &&
1285 (partitions[i].GetLastLBA() <= lastLogicalLBA)) {
1286 if (SectorUsedAs(partitions[i].GetStartLBA() - 1) == NONE)
1287 partitions[i].SetInclusion(LOGICAL);
1288 else
1289 partitions[i].SetInclusion(NONE);
1290 } // if
1291 } // for
1292 } // BasicMBRData::MakeLogicalsContiguous()
1293
1294 // If MBR data aren't legal, adjust primary/logical assignments and,
1295 // if necessary, drop partitions, to make the data legal.
MakeItLegal(void)1296 void BasicMBRData::MakeItLegal(void) {
1297 if (!IsLegal()) {
1298 DeleteOversizedParts();
1299 MaximizeLogicals();
1300 MaximizePrimaries();
1301 if (!AreLogicalsContiguous())
1302 MakeLogicalsContiguous();
1303 if (NumPrimaries() > 4)
1304 TrimPrimaries();
1305 OmitOverlaps();
1306 } // if
1307 } // BasicMBRData::MakeItLegal()
1308
1309 // Removes logical partitions and deactivated partitions from first four
1310 // entries (primary space).
1311 // Returns the number of partitions moved.
RemoveLogicalsFromFirstFour(void)1312 int BasicMBRData::RemoveLogicalsFromFirstFour(void) {
1313 int i, j = 4, numMoved = 0, swapped = 0;
1314 MBRPart temp;
1315
1316 for (i = 0; i < 4; i++) {
1317 if ((partitions[i].GetInclusion() != PRIMARY) && (partitions[i].GetLengthLBA() > 0)) {
1318 j = 4;
1319 swapped = 0;
1320 do {
1321 if ((partitions[j].GetInclusion() == NONE) && (partitions[j].GetLengthLBA() == 0)) {
1322 temp = partitions[j];
1323 partitions[j] = partitions[i];
1324 partitions[i] = temp;
1325 swapped = 1;
1326 numMoved++;
1327 } // if
1328 j++;
1329 } while ((j < MAX_MBR_PARTS) && !swapped);
1330 if (j >= MAX_MBR_PARTS)
1331 cerr << "Warning! Too many partitions in BasicMBRData::RemoveLogicalsFromFirstFour()!\n";
1332 } // if
1333 } // for i...
1334 return numMoved;
1335 } // BasicMBRData::RemoveLogicalsFromFirstFour()
1336
1337 // Move all primaries into the first four partition spaces
1338 // Returns the number of partitions moved.
MovePrimariesToFirstFour(void)1339 int BasicMBRData::MovePrimariesToFirstFour(void) {
1340 int i, j = 0, numMoved = 0, swapped = 0;
1341 MBRPart temp;
1342
1343 for (i = 4; i < MAX_MBR_PARTS; i++) {
1344 if (partitions[i].GetInclusion() == PRIMARY) {
1345 j = 0;
1346 swapped = 0;
1347 do {
1348 if (partitions[j].GetInclusion() != PRIMARY) {
1349 temp = partitions[j];
1350 partitions[j] = partitions[i];
1351 partitions[i] = temp;
1352 swapped = 1;
1353 numMoved++;
1354 } // if
1355 j++;
1356 } while ((j < 4) && !swapped);
1357 } // if
1358 } // for
1359 return numMoved;
1360 } // BasicMBRData::MovePrimariesToFirstFour()
1361
1362 // Create an extended partition, if necessary, to hold the logical partitions.
1363 // This function also sorts the primaries into the first four positions of
1364 // the table.
1365 // Returns 1 on success, 0 on failure.
CreateExtended(void)1366 int BasicMBRData::CreateExtended(void) {
1367 int allOK = 1, i = 0, swapped = 0;
1368 MBRPart temp;
1369
1370 if (IsLegal()) {
1371 // Move logicals out of primary space...
1372 RemoveLogicalsFromFirstFour();
1373 // Move primaries out of logical space...
1374 MovePrimariesToFirstFour();
1375
1376 // Create the extended partition
1377 if (NumLogicals() > 0) {
1378 SortMBR(4); // sort starting from 4 -- that is, logicals only
1379 temp.Empty();
1380 temp.SetStartLBA(FirstLogicalLBA() - 1);
1381 temp.SetLengthLBA(LastLogicalLBA() - FirstLogicalLBA() + 2);
1382 temp.SetType(0x0f, 1);
1383 temp.SetInclusion(PRIMARY);
1384 do {
1385 if ((partitions[i].GetInclusion() == NONE) || (partitions[i].GetLengthLBA() == 0)) {
1386 partitions[i] = temp;
1387 swapped = 1;
1388 } // if
1389 i++;
1390 } while ((i < 4) && !swapped);
1391 if (!swapped) {
1392 cerr << "Could not create extended partition; no room in primary table!\n";
1393 allOK = 0;
1394 } // if
1395 } // if (NumLogicals() > 0)
1396 } else allOK = 0;
1397 // Do a final check for EFI GPT (0xEE) partitions & flag as a problem if found
1398 // along with an extended partition
1399 for (i = 0; i < MAX_MBR_PARTS; i++)
1400 if (swapped && partitions[i].GetType() == 0xEE)
1401 allOK = 0;
1402 return allOK;
1403 } // BasicMBRData::CreateExtended()
1404
1405 /****************************************
1406 * *
1407 * Functions to find data on free space *
1408 * *
1409 ****************************************/
1410
1411 // Finds the first free space on the disk from start onward; returns 0
1412 // if none available....
FindFirstAvailable(uint64_t start)1413 uint64_t BasicMBRData::FindFirstAvailable(uint64_t start) {
1414 uint64_t first;
1415 uint64_t i;
1416 int firstMoved;
1417
1418 if ((start >= (UINT32_MAX - 1)) || (start >= (diskSize - 1)))
1419 return 0;
1420
1421 first = start;
1422
1423 // ...now search through all partitions; if first is within an
1424 // existing partition, move it to the next sector after that
1425 // partition and repeat. If first was moved, set firstMoved
1426 // flag; repeat until firstMoved is not set, so as to catch
1427 // cases where partitions are out of sequential order....
1428 do {
1429 firstMoved = 0;
1430 for (i = 0; i < 4; i++) {
1431 // Check if it's in the existing partition
1432 if ((first >= partitions[i].GetStartLBA()) &&
1433 (first < (partitions[i].GetStartLBA() + partitions[i].GetLengthLBA()))) {
1434 first = partitions[i].GetStartLBA() + partitions[i].GetLengthLBA();
1435 firstMoved = 1;
1436 } // if
1437 } // for
1438 } while (firstMoved == 1);
1439 if ((first >= diskSize) || (first > UINT32_MAX))
1440 first = 0;
1441 return (first);
1442 } // BasicMBRData::FindFirstAvailable()
1443
1444 // Finds the last free sector on the disk from start forward.
FindLastInFree(uint64_t start)1445 uint64_t BasicMBRData::FindLastInFree(uint64_t start) {
1446 uint64_t nearestStart;
1447 uint64_t i;
1448
1449 if ((diskSize <= UINT32_MAX) && (diskSize > 0))
1450 nearestStart = diskSize - 1;
1451 else
1452 nearestStart = UINT32_MAX - 1;
1453
1454 for (i = 0; i < 4; i++) {
1455 if ((nearestStart > partitions[i].GetStartLBA()) &&
1456 (partitions[i].GetStartLBA() > start)) {
1457 nearestStart = partitions[i].GetStartLBA() - 1;
1458 } // if
1459 } // for
1460 return (nearestStart);
1461 } // BasicMBRData::FindLastInFree()
1462
1463 // Finds the first free sector on the disk from start backward.
FindFirstInFree(uint64_t start)1464 uint64_t BasicMBRData::FindFirstInFree(uint64_t start) {
1465 uint64_t bestLastLBA, thisLastLBA;
1466 int i;
1467
1468 bestLastLBA = 1;
1469 for (i = 0; i < 4; i++) {
1470 thisLastLBA = partitions[i].GetLastLBA() + 1;
1471 if (thisLastLBA > 0)
1472 thisLastLBA--;
1473 if ((thisLastLBA > bestLastLBA) && (thisLastLBA < start))
1474 bestLastLBA = thisLastLBA + 1;
1475 } // for
1476 return (bestLastLBA);
1477 } // BasicMBRData::FindFirstInFree()
1478
1479 // Returns NONE (unused), PRIMARY, LOGICAL, EBR (for EBR or MBR), or INVALID.
1480 // Note: If the sector immediately before a logical partition is in use by
1481 // another partition, this function returns PRIMARY or LOGICAL for that
1482 // sector, rather than EBR.
SectorUsedAs(uint64_t sector,int topPartNum)1483 int BasicMBRData::SectorUsedAs(uint64_t sector, int topPartNum) {
1484 int i = 0, usedAs = NONE;
1485
1486 do {
1487 if ((partitions[i].GetStartLBA() <= sector) && (partitions[i].GetLastLBA() >= sector))
1488 usedAs = partitions[i].GetInclusion();
1489 if ((partitions[i].GetStartLBA() == (sector + 1)) && (partitions[i].GetInclusion() == LOGICAL))
1490 usedAs = EBR;
1491 if (sector == 0)
1492 usedAs = EBR;
1493 if (sector >= diskSize)
1494 usedAs = INVALID;
1495 i++;
1496 } while ((i < topPartNum) && ((usedAs == NONE) || (usedAs == EBR)));
1497 return usedAs;
1498 } // BasicMBRData::SectorUsedAs()
1499
1500 /******************************************************
1501 * *
1502 * Functions that extract data on specific partitions *
1503 * *
1504 ******************************************************/
1505
GetStatus(int i)1506 uint8_t BasicMBRData::GetStatus(int i) {
1507 MBRPart* thePart;
1508 uint8_t retval;
1509
1510 thePart = GetPartition(i);
1511 if (thePart != NULL)
1512 retval = thePart->GetStatus();
1513 else
1514 retval = UINT8_C(0);
1515 return retval;
1516 } // BasicMBRData::GetStatus()
1517
GetType(int i)1518 uint8_t BasicMBRData::GetType(int i) {
1519 MBRPart* thePart;
1520 uint8_t retval;
1521
1522 thePart = GetPartition(i);
1523 if (thePart != NULL)
1524 retval = thePart->GetType();
1525 else
1526 retval = UINT8_C(0);
1527 return retval;
1528 } // BasicMBRData::GetType()
1529
GetFirstSector(int i)1530 uint64_t BasicMBRData::GetFirstSector(int i) {
1531 MBRPart* thePart;
1532 uint64_t retval;
1533
1534 thePart = GetPartition(i);
1535 if (thePart != NULL)
1536 retval = thePart->GetStartLBA();
1537 else
1538 retval = UINT32_C(0);
1539 return retval;
1540 } // BasicMBRData::GetFirstSector()
1541
GetLength(int i)1542 uint64_t BasicMBRData::GetLength(int i) {
1543 MBRPart* thePart;
1544 uint64_t retval;
1545
1546 thePart = GetPartition(i);
1547 if (thePart != NULL)
1548 retval = thePart->GetLengthLBA();
1549 else
1550 retval = UINT64_C(0);
1551 return retval;
1552 } // BasicMBRData::GetLength()
1553
1554 /***********************
1555 * *
1556 * Protected functions *
1557 * *
1558 ***********************/
1559
1560 // Return a pointer to a primary or logical partition, or NULL if
1561 // the partition is out of range....
GetPartition(int i)1562 MBRPart* BasicMBRData::GetPartition(int i) {
1563 MBRPart* thePart = NULL;
1564
1565 if ((i >= 0) && (i < MAX_MBR_PARTS))
1566 thePart = &partitions[i];
1567 return thePart;
1568 } // GetPartition()
1569
1570 /*******************************************
1571 * *
1572 * Functions that involve user interaction *
1573 * *
1574 *******************************************/
1575
1576 // Present the MBR operations menu. Note that the 'w' option does not
1577 // immediately write data; that's handled by the calling function.
1578 // Returns the number of partitions defined on exit, or -1 if the
1579 // user selected the 'q' option. (Thus, the caller should save data
1580 // if the return value is >0, or possibly >=0 depending on intentions.)
DoMenu(const string & prompt)1581 int BasicMBRData::DoMenu(const string& prompt) {
1582 int goOn = 1, quitting = 0, retval, num, haveShownInfo = 0;
1583 unsigned int hexCode;
1584 string tempStr;
1585
1586 do {
1587 cout << prompt;
1588 switch (ReadString()[0]) {
1589 case '\0':
1590 goOn = cin.good();
1591 break;
1592 case 'a': case 'A':
1593 num = GetNumber(1, MAX_MBR_PARTS, 1, "Toggle active flag for partition: ") - 1;
1594 if (partitions[num].GetInclusion() != NONE)
1595 partitions[num].SetStatus(partitions[num].GetStatus() ^ 0x80);
1596 break;
1597 case 'c': case 'C':
1598 for (num = 0; num < MAX_MBR_PARTS; num++)
1599 RecomputeCHS(num);
1600 break;
1601 case 'l': case 'L':
1602 num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to set as logical: ") - 1;
1603 SetInclusionwChecks(num, LOGICAL);
1604 break;
1605 case 'o': case 'O':
1606 num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to omit: ") - 1;
1607 SetInclusionwChecks(num, NONE);
1608 break;
1609 case 'p': case 'P':
1610 if (!haveShownInfo) {
1611 cout << "\n** NOTE: Partition numbers do NOT indicate final primary/logical "
1612 << "status,\n** unlike in most MBR partitioning tools!\n\a";
1613 cout << "\n** Extended partitions are not displayed, but will be generated "
1614 << "as required.\n";
1615 haveShownInfo = 1;
1616 } // if
1617 DisplayMBRData();
1618 break;
1619 case 'q': case 'Q':
1620 cout << "This will abandon your changes. Are you sure? ";
1621 if (GetYN() == 'Y') {
1622 goOn = 0;
1623 quitting = 1;
1624 } // if
1625 break;
1626 case 'r': case 'R':
1627 num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to set as primary: ") - 1;
1628 SetInclusionwChecks(num, PRIMARY);
1629 break;
1630 case 's': case 'S':
1631 SortMBR();
1632 break;
1633 case 't': case 'T':
1634 num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to change type code: ") - 1;
1635 hexCode = 0x00;
1636 if (partitions[num].GetLengthLBA() > 0) {
1637 while ((hexCode <= 0) || (hexCode > 255)) {
1638 cout << "Enter an MBR hex code: ";
1639 tempStr = ReadString();
1640 if (IsHex(tempStr))
1641 sscanf(tempStr.c_str(), "%x", &hexCode);
1642 } // while
1643 partitions[num].SetType(hexCode);
1644 } // if
1645 break;
1646 case 'w': case 'W':
1647 goOn = 0;
1648 break;
1649 default:
1650 ShowCommands();
1651 break;
1652 } // switch
1653 } while (goOn);
1654 if (quitting)
1655 retval = -1;
1656 else
1657 retval = CountParts();
1658 return (retval);
1659 } // BasicMBRData::DoMenu()
1660
ShowCommands(void)1661 void BasicMBRData::ShowCommands(void) {
1662 cout << "a\ttoggle the active/boot flag\n";
1663 cout << "c\trecompute all CHS values\n";
1664 cout << "l\tset partition as logical\n";
1665 cout << "o\tomit partition\n";
1666 cout << "p\tprint the MBR partition table\n";
1667 cout << "q\tquit without saving changes\n";
1668 cout << "r\tset partition as primary\n";
1669 cout << "s\tsort MBR partitions\n";
1670 cout << "t\tchange partition type code\n";
1671 cout << "w\twrite the MBR partition table to disk and exit\n";
1672 } // BasicMBRData::ShowCommands()
1673