1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 #include "tensorflow/compiler/xla/service/dump.h"
17
18 #include "absl/strings/ascii.h"
19 #include "tensorflow/compiler/xla/service/hlo_graph_dumper.h"
20 #include "tensorflow/compiler/xla/service/hlo_module.h"
21 #include "tensorflow/compiler/xla/service/hlo_proto_util.h"
22 #include "tensorflow/compiler/xla/util.h"
23 #include "tensorflow/core/lib/core/status.h"
24 #include "tensorflow/core/lib/io/path.h"
25 #include "tensorflow/core/lib/strings/proto_serialization.h"
26 #include "tensorflow/core/platform/env.h"
27 #include "tensorflow/core/platform/path.h"
28 #include "tensorflow/core/platform/regexp.h"
29
30 namespace xla {
31
32 namespace {
33
34 using absl::StrCat;
35 using absl::StrFormat;
36 using absl::string_view;
37
38 struct CanonicalDebugOptions {
CanonicalDebugOptionsxla::__anonde4f81840111::CanonicalDebugOptions39 explicit CanonicalDebugOptions(const DebugOptions& opts)
40 : dump_to(opts.xla_dump_to()),
41 dump_as_text(opts.xla_dump_hlo_as_text()),
42 dump_as_proto(opts.xla_dump_hlo_as_proto()),
43 dump_as_dot(opts.xla_dump_hlo_as_dot()),
44 dump_as_html(opts.xla_dump_hlo_as_html()),
45 dump_as_url(opts.xla_dump_hlo_as_url()),
46 dump_fusion_visualization(opts.xla_dump_fusion_visualization()),
47 dump_snapshots(opts.xla_dump_hlo_snapshots()),
48 dump_include_timestamp(opts.xla_dump_include_timestamp()),
49 dump_max_hlo_modules(opts.xla_dump_max_hlo_modules()),
50 dump_module_metadata(opts.xla_dump_module_metadata()) {
51 // This constructor examines the values in `opts` and turns on other flags
52 // based on what we think is the user's intent. To reduce confusion about
53 // what was a user-specified value versus an extrapolated value, within this
54 // function we treat this struct's members as write-only, and read only from
55 // `opts`.
56
57 // Did the user specify an explicit format for dumping?
58 bool output_format_other_than_url_specified =
59 opts.xla_dump_hlo_as_text() || opts.xla_dump_hlo_as_proto() ||
60 opts.xla_dump_hlo_as_dot() || opts.xla_dump_hlo_as_html() ||
61 opts.xla_dump_hlo_snapshots();
62 bool output_format_specified =
63 output_format_other_than_url_specified || opts.xla_dump_hlo_as_url();
64
65 // If we haven't specified an output format, default to dumping as text.
66 if (!output_format_specified) {
67 dump_as_text = true;
68 }
69
70 // If dump_to is empty, default to dumping to stdout, so long as some dump
71 // format other than dump-as-url was specified. If the user only specified
72 // --xla_dump_hlo_as_url, then don't dump to stdout, that is likely noise
73 // they don't want.
74 if (opts.xla_dump_to().empty() && output_format_other_than_url_specified) {
75 dump_to = "-";
76 }
77
78 // If we specified a regular expression restricting which modules to dump,
79 // respect that.
80 //
81 // If we didn't specify which modules to dump but we passed some other flag
82 // which implies dumping modules, dump all modules.
83 //
84 // Otherwise, don't dump any HLO modules.
85 if (!opts.xla_dump_hlo_module_re().empty()) {
86 // RE2 object is not copyable, and we can't capture "by move", so we
87 // resort to this hack.
88 string pattern = opts.xla_dump_hlo_module_re();
89 should_dump_module = [pattern](string_view module_name) {
90 return RE2::PartialMatch(module_name, pattern);
91 };
92 } else if (!opts.xla_dump_hlo_pass_re().empty() ||
93 !opts.xla_dump_to().empty() || output_format_specified) {
94 should_dump_module = [](string_view) { return true; };
95 } else {
96 should_dump_module = [](string_view) { return false; };
97 }
98
99 // Initialize should_dump_pass. This one is easy: We only dump per-pass
100 // data if the user asked for it explicitly.
101 if (!opts.xla_dump_hlo_pass_re().empty()) {
102 string pattern = opts.xla_dump_hlo_pass_re();
103 should_dump_pass = [pattern](string_view pass_name) {
104 return RE2::PartialMatch(pass_name, pattern);
105 };
106 } else {
107 should_dump_pass = [](string_view) { return false; };
108 }
109
110 // Output dirs "sponge" and "test_undeclared_outputs_dir" (case-insensitive)
111 // have a special meaning: Dump into the directory specified by the
112 // environment variable TEST_UNDECLARED_OUTPUTS_DIR.
113 string dump_to_lower = absl::AsciiStrToLower(opts.xla_dump_to());
114 if (dump_to_lower == "sponge" ||
115 dump_to_lower == "test_undeclared_outputs_dir") {
116 if (!tensorflow::io::GetTestUndeclaredOutputsDir(&dump_to)) {
117 LOG(ERROR) << "--xla_dump_to=" << opts.xla_dump_to()
118 << ", but environment variable TEST_UNDECLARED_OUTPUTS_DIR "
119 "is not set, so cannot dump anywhere.";
120 should_dump_module = [](string_view) { return false; };
121 should_dump_pass = [](string_view) { return false; };
122 }
123 }
124 }
125
dumping_to_stdoutxla::__anonde4f81840111::CanonicalDebugOptions126 bool dumping_to_stdout() const { return dump_to == "-"; }
127
128 string dump_to;
129 std::function<bool(string_view module_name)> should_dump_module;
130 std::function<bool(string_view pass_name)> should_dump_pass;
131
132 // dump_ir isn't present here because this file is mostly concerned with
133 // dumping HLO.
134 bool dump_as_text;
135 bool dump_as_proto;
136 bool dump_as_dot;
137 bool dump_as_html;
138 bool dump_as_url;
139 bool dump_fusion_visualization;
140 bool dump_snapshots;
141 bool dump_include_timestamp;
142 int64 dump_max_hlo_modules;
143 bool dump_module_metadata;
144 };
145
DumpToFileInDirImpl(string_view filename,string_view contents,const CanonicalDebugOptions & opts)146 absl::optional<std::string> DumpToFileInDirImpl(
147 string_view filename, string_view contents,
148 const CanonicalDebugOptions& opts) {
149 if (opts.dumping_to_stdout()) {
150 LOG(ERROR) << "Refusing to write " << filename
151 << " to stdout. Pass --xla_dump_to=<path> to write to a file.";
152 return absl::nullopt;
153 }
154
155 if (opts.dump_to.empty()) {
156 return absl::nullopt;
157 }
158
159 const string& dir = opts.dump_to;
160 VLOG(1) << "Dumping " << filename << " to " << dir;
161
162 tensorflow::Env* env = tensorflow::Env::Default();
163 // Two threads can race to observe the absence of the dump directory and
164 // simultaneously try to create it, causing the "losing" thread to get a
165 // "directory already exists" error. We can work around this by checking
166 // again whether the dir exists.
167 if (!env->IsDirectory(dir).ok()) {
168 auto status = env->RecursivelyCreateDir(dir);
169 if (!status.ok() && !env->IsDirectory(dir).ok()) {
170 LOG(ERROR) << "Could not create directory " << dir
171 << " for dumping XLA debug data: " << status;
172 return absl::nullopt;
173 }
174 }
175
176 // Make sure we are not going to dump more modules than the user has asked.
177 if (opts.dump_max_hlo_modules > 0) {
178 std::vector<string> matches;
179 auto pattern = tensorflow::io::JoinPath(dir, "*module_*.0000.*");
180 auto status = env->GetMatchingPaths(pattern, &matches);
181 if (!status.ok()) {
182 LOG(ERROR) << "Could not get matching paths for pattern " << pattern
183 << ": " << status;
184 }
185 if (matches.size() > opts.dump_max_hlo_modules) {
186 LOG(ERROR) << "Have already dumped " << matches.size()
187 << " modules, more than the limit of "
188 << opts.dump_max_hlo_modules;
189 return absl::nullopt;
190 }
191 }
192
193 string file_path =
194 tensorflow::io::JoinPath(dir, SanitizeFileName(string(filename)));
195 auto status = tensorflow::WriteStringToFile(env, file_path, contents);
196 if (!status.ok()) {
197 LOG(ERROR) << "Could not write XLA debug data to " << file_path << ": "
198 << status;
199 }
200
201 return file_path;
202 }
203
DumpToFileInDirOrStdoutImpl(string_view filename,string_view contents,const CanonicalDebugOptions & opts)204 absl::optional<std::string> DumpToFileInDirOrStdoutImpl(
205 string_view filename, string_view contents,
206 const CanonicalDebugOptions& opts) {
207 // Dump to stdout if that's called for.
208 if (opts.dumping_to_stdout()) {
209 std::cout << "*** Begin " << filename << " ***\n"
210 << contents << "\n*** End " << filename << " ***" << std::endl;
211 return absl::nullopt;
212 }
213
214 // Otherwise, dump to a file.
215 return DumpToFileInDirImpl(filename, contents, opts);
216 }
217
218 // Returns full file paths of all dumps of the module.
DumpHloModuleImpl(const HloModule & module,const BufferAssignment * buffer_assn,const HloExecutionProfile * profile,string_view prefix,string_view suffix,const CanonicalDebugOptions & opts)219 std::vector<std::string> DumpHloModuleImpl(const HloModule& module,
220 const BufferAssignment* buffer_assn,
221 const HloExecutionProfile* profile,
222 string_view prefix,
223 string_view suffix,
224 const CanonicalDebugOptions& opts) {
225 string filename = FilenameFor(module, prefix, suffix);
226
227 std::vector<absl::optional<std::string>> file_paths;
228
229 if (opts.dump_as_text) {
230 file_paths.push_back(DumpToFileInDirOrStdoutImpl(StrCat(filename, ".txt"),
231 module.ToString(), opts));
232 if (buffer_assn) {
233 file_paths.push_back(DumpToFileInDirOrStdoutImpl(
234 StrCat(filename, "-buffer-assignment.txt"), buffer_assn->ToString(),
235 opts));
236 }
237 }
238
239 if (opts.dump_as_proto) {
240 HloProto module_proto =
241 buffer_assn ? MakeHloProto(module, *buffer_assn) : MakeHloProto(module);
242 string pb;
243 if (!tensorflow::SerializeToStringDeterministic(module_proto, &pb)) {
244 pb = "Failed to serialize HLO module proto.";
245 }
246 file_paths.push_back(
247 DumpToFileInDirImpl(StrCat(filename, ".hlo.pb"), pb, opts));
248 }
249
250 auto render_graph = [&](RenderedGraphFormat format) {
251 StatusOr<string> rendered_graph = RenderGraph(
252 *module.entry_computation(),
253 /*label=*/filename, module.config().debug_options(), format, profile);
254 if (rendered_graph.ok()) {
255 return std::move(rendered_graph).ValueOrDie();
256 }
257 return StrFormat("Error rendering graph: %s",
258 rendered_graph.status().ToString());
259 };
260
261 if (opts.dump_as_dot) {
262 file_paths.push_back(
263 DumpToFileInDirImpl(StrFormat("%s.dot", filename),
264 render_graph(RenderedGraphFormat::kDot), opts));
265 }
266
267 if (opts.dump_as_html) {
268 file_paths.push_back(
269 DumpToFileInDirImpl(StrFormat("%s.html", filename),
270 render_graph(RenderedGraphFormat::kHtml), opts));
271 }
272
273 if (opts.dump_fusion_visualization) {
274 for (const HloComputation* computation :
275 module.MakeNonfusionComputations()) {
276 StatusOr<string> rendered_graph = RenderGraph(
277 *computation,
278 /*label=*/absl::StrCat(filename, "_", computation->name()),
279 module.config().debug_options(),
280 RenderedGraphFormat::kFusionVisualization, profile);
281 file_paths.push_back(DumpToFileInDirImpl(
282 StrFormat("%s_%s_fusion_visualization.html", filename,
283 computation->name()),
284 rendered_graph.ok() ? *rendered_graph
285 : StrFormat("Error rendering graph: %s",
286 rendered_graph.status().ToString()),
287 opts));
288 }
289 }
290
291 // Special case for rendering graphs as URLs. We'll dump them to a file
292 // because why not, but we always log them to stdout as well.
293 if (opts.dump_as_url) {
294 string url = render_graph(RenderedGraphFormat::kUrl);
295 std::cout << filename << " --> " << url << std::endl;
296 if (!opts.dumping_to_stdout()) {
297 file_paths.push_back(
298 DumpToFileInDirImpl(StrFormat("%s.url", filename), url, opts));
299 }
300 }
301
302 std::vector<std::string> dumped_file_paths;
303 for (const absl::optional<std::string>& path : file_paths) {
304 if (path.has_value()) {
305 dumped_file_paths.push_back(*path);
306 }
307 }
308 return dumped_file_paths;
309 }
310
DumpHloModuleMetadata(const HloModuleMetadataProto & metadata,const CanonicalDebugOptions & opts,absl::flat_hash_set<int64> * dumped_module_ids)311 void DumpHloModuleMetadata(const HloModuleMetadataProto& metadata,
312 const CanonicalDebugOptions& opts,
313 absl::flat_hash_set<int64>* dumped_module_ids) {
314 // Return if metadata for this module has already been dumped.
315 if (!dumped_module_ids->insert(metadata.canonical_module_id()).second) {
316 return;
317 }
318 std::string filename = absl::StrFormat("module_%04d.metadata.textproto",
319 metadata.canonical_module_id());
320 std::string content;
321 if (tensorflow::protobuf::TextFormat::PrintToString(metadata, &content)) {
322 DumpToFileInDirImpl(filename, content, opts);
323 } else {
324 LOG(ERROR) << "Failed to convert HloModuleMetadataProto to text.";
325 }
326 }
327
328 static tensorflow::mutex mu(tensorflow::LINKER_INITIALIZED);
329
330 // Maps a module's unique ID to a counter indicating how many times we've dumped
331 // this module during the compilation pipeline. This lets us keep the filenames
332 // ordered nicely.
333 //
334 // Entries added here leak forever; we have no way to GC them when a module
335 // dies. But we only add an entry if dumping is enabled for this module, and
336 // dumping a module leaks buffer space in stdout or bytes on disk *way* faster
337 // than this hashtable leaks memory.
338 static auto& module_id_to_step_number TF_GUARDED_BY(mu) =
339 *new absl::flat_hash_map<int64, int64>();
340
341 // Maps a module's unique ID to a timestamp indicating when we've first dumped
342 // this module during the compilation pipeline and when we first started
343 // compiling this module. This lets us keep the filenames ordered nicely.
344 //
345 // Entries added here leak forever; we have no way to GC them when a module
346 // dies. But we only add an entry if dumping is enabled for this module, and
347 // dumping a module leaks buffer space in stdout or bytes on disk *way* faster
348 // than this hashtable leaks memory.
349 static auto& module_id_to_timestamp TF_GUARDED_BY(mu) =
350 *new absl::flat_hash_map<int64, uint64>();
351
StepNumberForModule(const HloModule & module)352 int64 StepNumberForModule(const HloModule& module) {
353 tensorflow::mutex_lock lock(mu);
354 return module_id_to_step_number[module.unique_id()]++;
355 }
356 } // namespace
357
TimestampFor(const HloModule & module)358 string TimestampFor(const HloModule& module) {
359 if (!module.config().debug_options().xla_dump_include_timestamp()) {
360 return "";
361 }
362 tensorflow::mutex_lock lock(mu);
363 auto timestamp_emplace = module_id_to_timestamp.try_emplace(
364 module.unique_id(), tensorflow::Env::Default()->NowMicros());
365 return std::to_string(timestamp_emplace.first->second);
366 }
367
FilenameFor(const HloModule & module,string_view prefix,string_view suffix)368 string FilenameFor(const HloModule& module, string_view prefix,
369 string_view suffix) {
370 return StrFormat("%s%smodule_%04d.%s", prefix, prefix.empty() ? "" : ".",
371 module.unique_id(), suffix);
372 }
373
DumpToFileInDir(const HloModule & module,string_view file_prefix,string_view file_suffix,string_view contents)374 void DumpToFileInDir(const HloModule& module, string_view file_prefix,
375 string_view file_suffix, string_view contents) {
376 DumpToFileInDirImpl(FilenameFor(module, file_prefix, file_suffix), contents,
377 CanonicalDebugOptions(module.config().debug_options()));
378 }
379
DumpToFileInDirOrStdout(const HloModule & module,string_view file_prefix,string_view file_suffix,string_view contents)380 void DumpToFileInDirOrStdout(const HloModule& module, string_view file_prefix,
381 string_view file_suffix, string_view contents) {
382 DumpToFileInDirOrStdoutImpl(
383 FilenameFor(module, file_prefix, file_suffix), contents,
384 CanonicalDebugOptions(module.config().debug_options()));
385 }
386
DumpExecutionOptions(const ExecutionOptions & execution_options,const DebugOptions & debug_options)387 void DumpExecutionOptions(const ExecutionOptions& execution_options,
388 const DebugOptions& debug_options) {
389 CanonicalDebugOptions opts(debug_options);
390 tensorflow::Env* env = tensorflow::Env::Default();
391 const string& dir = opts.dump_to;
392 if (env->IsDirectory(dir).ok()) {
393 string filename = tensorflow::io::JoinPath(dir, "execution_options");
394 Status status;
395 if (opts.dump_as_text) {
396 status = tensorflow::WriteTextProto(env, absl::StrCat(filename, ".txt"),
397 execution_options);
398 } else {
399 status = tensorflow::WriteBinaryProto(env, absl::StrCat(filename, ".pb"),
400 execution_options);
401 }
402 if (!status.ok()) {
403 LOG(ERROR) << "Could not write XLA debug data to " << filename << ": "
404 << status;
405 }
406 }
407 }
408
DumpHloModuleIfEnabled(const HloModule & module,string_view name)409 void DumpHloModuleIfEnabled(const HloModule& module, string_view name) {
410 CanonicalDebugOptions opts(module.config().debug_options());
411 if (opts.should_dump_module(module.name())) {
412 DumpHloModuleImpl(module, /*buffer_assn=*/nullptr, /*profile=*/nullptr,
413 TimestampFor(module), name, opts);
414 }
415 }
DumpHloModuleIfEnabled(const HloModule & module,const BufferAssignment & buffer_assn,string_view name)416 void DumpHloModuleIfEnabled(const HloModule& module,
417 const BufferAssignment& buffer_assn,
418 string_view name) {
419 CanonicalDebugOptions opts(module.config().debug_options());
420 if (opts.should_dump_module(module.name())) {
421 DumpHloModuleImpl(module, &buffer_assn, /*profile=*/nullptr,
422 TimestampFor(module), name, opts);
423 }
424 }
425
DumpHloModuleIfEnabled(const HloModule & module,const HloExecutionProfile & profile,string_view name)426 void DumpHloModuleIfEnabled(const HloModule& module,
427 const HloExecutionProfile& profile,
428 string_view name) {
429 CanonicalDebugOptions opts(module.config().debug_options());
430 if (opts.should_dump_module(module.name())) {
431 DumpHloModuleImpl(module, /*buffer_assn=*/nullptr, &profile,
432 TimestampFor(module), name, opts);
433 }
434 }
435
DumpingEnabledForHloModule(string_view hlo_module_name,const DebugOptions & opts)436 bool DumpingEnabledForHloModule(string_view hlo_module_name,
437 const DebugOptions& opts) {
438 return CanonicalDebugOptions(opts).should_dump_module(hlo_module_name);
439 }
440
DumpingToStdout(const DebugOptions & opts)441 bool DumpingToStdout(const DebugOptions& opts) {
442 return CanonicalDebugOptions(opts).dumping_to_stdout();
443 }
444
DumpHloModuleBetweenPassesIfEnabled(string_view pipeline_name,string_view before_pass_name,string_view after_pass_name,const HloModule & module)445 std::vector<std::string> DumpHloModuleBetweenPassesIfEnabled(
446 string_view pipeline_name, string_view before_pass_name,
447 string_view after_pass_name, const HloModule& module) {
448 CanonicalDebugOptions opts(module.config().debug_options());
449 if (!opts.should_dump_module(module.name())) {
450 return {};
451 }
452
453 if (!opts.should_dump_pass(before_pass_name) &&
454 !opts.should_dump_pass(after_pass_name)) {
455 return {};
456 }
457
458 int64 step_number = StepNumberForModule(module);
459 std::string timestamp = TimestampFor(module);
460
461 string filename_suffix =
462 StrFormat("%04d.%s.after_%s.before_%s", step_number, pipeline_name,
463 after_pass_name, before_pass_name);
464 return DumpHloModuleImpl(module, /*buffer_assn=*/nullptr, /*profile=*/nullptr,
465 timestamp, filename_suffix, opts);
466 }
467
DumpHloModuleDuringPassIfEnabled(string_view pass_name,string_view step_name,const HloModule & module)468 void DumpHloModuleDuringPassIfEnabled(string_view pass_name,
469 string_view step_name,
470 const HloModule& module) {
471 CanonicalDebugOptions opts(module.config().debug_options());
472 if (!opts.should_dump_module(module.name()) ||
473 !opts.should_dump_pass(pass_name)) {
474 return;
475 }
476
477 int64 step_number = StepNumberForModule(module);
478 std::string timestamp = TimestampFor(module);
479
480 string filename_suffix =
481 StrFormat("%04d.%s.%s", step_number, pass_name, step_name);
482 DumpHloModuleImpl(module, /*buffer_assn=*/nullptr, /*profile=*/nullptr,
483 timestamp, filename_suffix, opts);
484 }
485
DumpHloSnapshotIfEnabled(const HloModule & module,const HloSnapshot & snapshot)486 void DumpHloSnapshotIfEnabled(const HloModule& module,
487 const HloSnapshot& snapshot) {
488 CanonicalDebugOptions opts(module.config().debug_options());
489 if (!opts.should_dump_module(module.name()) || !opts.dump_snapshots) {
490 return;
491 }
492 int64 execution_count;
493 uint64 timestamp;
494 {
495 static auto& module_id_to_execution_count TF_GUARDED_BY(mu) =
496 *new absl::flat_hash_map<int64, int64>();
497 tensorflow::mutex_lock lock(mu);
498 execution_count = module_id_to_execution_count[module.unique_id()]++;
499 auto timestamp_emplace = module_id_to_timestamp.try_emplace(
500 module.unique_id(), tensorflow::Env::Default()->NowMicros());
501 timestamp = timestamp_emplace.first->second;
502 }
503 string filename =
504 StrCat(FilenameFor(module, std::to_string(timestamp),
505 StrFormat("execution_%04d", execution_count)),
506 ".hlo_snapshot.pb");
507 if (opts.dumping_to_stdout()) {
508 LOG(ERROR) << "Refusing to write HLO snapshot proto for " << filename
509 << " to stdout. Pass --xla_dump_to=<path> to write to a file.";
510 return;
511 }
512 string pb;
513 if (!tensorflow::SerializeToStringDeterministic(snapshot, &pb)) {
514 LOG(ERROR) << "Failed to serialize HLO snapshot proto " << filename;
515 }
516 DumpToFileInDirImpl(filename, pb, opts);
517 }
518
DumpHloSnapshotIfEnabled(const HloSnapshot & snapshot,const DebugOptions & opts)519 void DumpHloSnapshotIfEnabled(const HloSnapshot& snapshot,
520 const DebugOptions& opts) {
521 CanonicalDebugOptions canonical_opts(opts);
522 string name = snapshot.hlo().hlo_module().name();
523 if (!canonical_opts.should_dump_module(name) ||
524 !canonical_opts.dump_snapshots) {
525 return;
526 }
527
528 // We don't have a unique id for an HloSnapshot, so in this overload we just
529 // have to use its name.
530 int64 execution_count;
531 {
532 static auto& module_name_to_execution_count TF_GUARDED_BY(mu) =
533 *new absl::flat_hash_map<string, int64>();
534 tensorflow::mutex_lock lock(mu);
535 execution_count = module_name_to_execution_count[name]++;
536 }
537 string filename = StrFormat("module_%s.execution_%04d.hlo_snapshot.pb", name,
538 execution_count);
539 if (canonical_opts.dumping_to_stdout()) {
540 LOG(ERROR) << "Refusing to write HLO snapshot proto for " << filename
541 << " to stdout. Pass --xla_dump_to=<path> to write to a file.";
542 return;
543 }
544 string pb;
545 if (!tensorflow::SerializeToStringDeterministic(snapshot, &pb)) {
546 LOG(ERROR) << "Failed to serialize HLO snapshot proto " << filename;
547 }
548 DumpToFileInDirImpl(filename, pb, canonical_opts);
549 }
550
DumpHloModuleMetadataIfEnabled(const std::vector<HloModule * > & modules)551 void DumpHloModuleMetadataIfEnabled(const std::vector<HloModule*>& modules) {
552 absl::flat_hash_set<int64> dumped_module_ids;
553 for (const HloModule* module : modules) {
554 CanonicalDebugOptions opts(module->config().debug_options());
555 if (!opts.dump_module_metadata) {
556 continue;
557 }
558 DumpHloModuleMetadata(module->metadata().proto(), opts, &dumped_module_ids);
559 const absl::optional<HloModuleMetadataProto>& prepartitioning_metadata =
560 module->metadata().prepartitioning_metadata();
561 if (prepartitioning_metadata.has_value()) {
562 DumpHloModuleMetadata(*prepartitioning_metadata, opts,
563 &dumped_module_ids);
564 }
565 }
566 }
567
568 } // namespace xla
569