1 //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This set of linked tablegen backends is responsible for emitting the bits
10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11 // and provides a set of types and functions for (more or less) direct access
12 // to the MVE instruction set, including the scalar shifts as well as the
13 // vector instructions.
14 //
15 // MVE's standard intrinsic functions are unusual in that they have a system of
16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18 // arguments you give it.
19 //
20 // This constrains the implementation strategies. The usual approach to making
21 // the user-facing functions polymorphic would be to either use
22 // __attribute__((overloadable)) to make a set of vaddq() functions that are
23 // all inline wrappers on the underlying clang builtins, or to define a single
24 // vaddq() macro which expands to an instance of _Generic.
25 //
26 // The inline-wrappers approach would work fine for most intrinsics, except for
27 // the ones that take an argument required to be a compile-time constant,
28 // because if you wrap an inline function around a call to a builtin, the
29 // constant nature of the argument is not passed through.
30 //
31 // The _Generic approach can be made to work with enough effort, but it takes a
32 // lot of machinery, because of the design feature of _Generic that even the
33 // untaken branches are required to pass all front-end validity checks such as
34 // type-correctness. You can work around that by nesting further _Generics all
35 // over the place to coerce things to the right type in untaken branches, but
36 // what you get out is complicated, hard to guarantee its correctness, and
37 // worst of all, gives _completely unreadable_ error messages if the user gets
38 // the types wrong for an intrinsic call.
39 //
40 // Therefore, my strategy is to introduce a new __attribute__ that allows a
41 // function to be mapped to a clang builtin even though it doesn't have the
42 // same name, and then declare all the user-facing MVE function names with that
43 // attribute, mapping each one directly to the clang builtin. And the
44 // polymorphic ones have __attribute__((overloadable)) as well. So once the
45 // compiler has resolved the overload, it knows the internal builtin ID of the
46 // selected function, and can check the immediate arguments against that; and
47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they
48 // get a completely clear error message showing all the declarations of that
49 // function in the header file and explaining why each one doesn't fit their
50 // call.
51 //
52 // The downside of this is that if every clang builtin has to correspond
53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the
54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56 // description for an MVE intrinsic has to contain a full description of the
57 // sequence of IRBuilder calls that clang will need to make.
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/StringRef.h"
63 #include "llvm/ADT/StringSwitch.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/TableGen/Error.h"
67 #include "llvm/TableGen/Record.h"
68 #include "llvm/TableGen/StringToOffsetTable.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <list>
73 #include <map>
74 #include <memory>
75 #include <set>
76 #include <string>
77 #include <vector>
78
79 using namespace llvm;
80
81 namespace {
82
83 class EmitterBase;
84 class Result;
85
86 // -----------------------------------------------------------------------------
87 // A system of classes to represent all the types we'll need to deal with in
88 // the prototypes of intrinsics.
89 //
90 // Query methods include finding out the C name of a type; the "LLVM name" in
91 // the sense of a C++ code snippet that can be used in the codegen function;
92 // the suffix that represents the type in the ACLE intrinsic naming scheme
93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
94 // type is floating-point related (hence should be under #ifdef in the MVE
95 // header so that it isn't included in integer-only MVE mode); and the type's
96 // size in bits. Not all subtypes support all these queries.
97
98 class Type {
99 public:
100 enum class TypeKind {
101 // Void appears as a return type (for store intrinsics, which are pure
102 // side-effect). It's also used as the parameter type in the Tablegen
103 // when an intrinsic doesn't need to come in various suffixed forms like
104 // vfooq_s8,vfooq_u16,vfooq_f32.
105 Void,
106
107 // Scalar is used for ordinary int and float types of all sizes.
108 Scalar,
109
110 // Vector is used for anything that occupies exactly one MVE vector
111 // register, i.e. {uint,int,float}NxM_t.
112 Vector,
113
114 // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
115 // interleaving load/store intrinsics v{ld,st}{2,4}q.
116 MultiVector,
117
118 // Predicate is used by all the predicated intrinsics. Its C
119 // representation is mve_pred16_t (which is just an alias for uint16_t).
120 // But we give more detail here, by indicating that a given predicate
121 // instruction is logically regarded as a vector of i1 containing the
122 // same number of lanes as the input vector type. So our Predicate type
123 // comes with a lane count, which we use to decide which kind of <n x i1>
124 // we'll invoke the pred_i2v IR intrinsic to translate it into.
125 Predicate,
126
127 // Pointer is used for pointer types (obviously), and comes with a flag
128 // indicating whether it's a pointer to a const or mutable instance of
129 // the pointee type.
130 Pointer,
131 };
132
133 private:
134 const TypeKind TKind;
135
136 protected:
Type(TypeKind K)137 Type(TypeKind K) : TKind(K) {}
138
139 public:
typeKind() const140 TypeKind typeKind() const { return TKind; }
141 virtual ~Type() = default;
142 virtual bool requiresFloat() const = 0;
143 virtual bool requiresMVE() const = 0;
144 virtual unsigned sizeInBits() const = 0;
145 virtual std::string cName() const = 0;
llvmName() const146 virtual std::string llvmName() const {
147 PrintFatalError("no LLVM type name available for type " + cName());
148 }
acleSuffix(std::string) const149 virtual std::string acleSuffix(std::string) const {
150 PrintFatalError("no ACLE suffix available for this type");
151 }
152 };
153
154 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
toLetter(ScalarTypeKind kind)155 inline std::string toLetter(ScalarTypeKind kind) {
156 switch (kind) {
157 case ScalarTypeKind::SignedInt:
158 return "s";
159 case ScalarTypeKind::UnsignedInt:
160 return "u";
161 case ScalarTypeKind::Float:
162 return "f";
163 }
164 llvm_unreachable("Unhandled ScalarTypeKind enum");
165 }
toCPrefix(ScalarTypeKind kind)166 inline std::string toCPrefix(ScalarTypeKind kind) {
167 switch (kind) {
168 case ScalarTypeKind::SignedInt:
169 return "int";
170 case ScalarTypeKind::UnsignedInt:
171 return "uint";
172 case ScalarTypeKind::Float:
173 return "float";
174 }
175 llvm_unreachable("Unhandled ScalarTypeKind enum");
176 }
177
178 class VoidType : public Type {
179 public:
VoidType()180 VoidType() : Type(TypeKind::Void) {}
sizeInBits() const181 unsigned sizeInBits() const override { return 0; }
requiresFloat() const182 bool requiresFloat() const override { return false; }
requiresMVE() const183 bool requiresMVE() const override { return false; }
cName() const184 std::string cName() const override { return "void"; }
185
classof(const Type * T)186 static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
acleSuffix(std::string) const187 std::string acleSuffix(std::string) const override { return ""; }
188 };
189
190 class PointerType : public Type {
191 const Type *Pointee;
192 bool Const;
193
194 public:
PointerType(const Type * Pointee,bool Const)195 PointerType(const Type *Pointee, bool Const)
196 : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
sizeInBits() const197 unsigned sizeInBits() const override { return 32; }
requiresFloat() const198 bool requiresFloat() const override { return Pointee->requiresFloat(); }
requiresMVE() const199 bool requiresMVE() const override { return Pointee->requiresMVE(); }
cName() const200 std::string cName() const override {
201 std::string Name = Pointee->cName();
202
203 // The syntax for a pointer in C is different when the pointee is
204 // itself a pointer. The MVE intrinsics don't contain any double
205 // pointers, so we don't need to worry about that wrinkle.
206 assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
207
208 if (Const)
209 Name = "const " + Name;
210 return Name + " *";
211 }
llvmName() const212 std::string llvmName() const override {
213 return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
214 }
215
classof(const Type * T)216 static bool classof(const Type *T) {
217 return T->typeKind() == TypeKind::Pointer;
218 }
219 };
220
221 // Base class for all the types that have a name of the form
222 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
223 //
224 // For this sub-hierarchy we invent a cNameBase() method which returns the
225 // whole name except for the trailing "_t", so that Vector and MultiVector can
226 // append an extra "x2" or whatever to their element type's cNameBase(). Then
227 // the main cName() query method puts "_t" on the end for the final type name.
228
229 class CRegularNamedType : public Type {
230 using Type::Type;
231 virtual std::string cNameBase() const = 0;
232
233 public:
cName() const234 std::string cName() const override { return cNameBase() + "_t"; }
235 };
236
237 class ScalarType : public CRegularNamedType {
238 ScalarTypeKind Kind;
239 unsigned Bits;
240 std::string NameOverride;
241
242 public:
ScalarType(const Record * Record)243 ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
244 Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
245 .Case("s", ScalarTypeKind::SignedInt)
246 .Case("u", ScalarTypeKind::UnsignedInt)
247 .Case("f", ScalarTypeKind::Float);
248 Bits = Record->getValueAsInt("size");
249 NameOverride = std::string(Record->getValueAsString("nameOverride"));
250 }
sizeInBits() const251 unsigned sizeInBits() const override { return Bits; }
kind() const252 ScalarTypeKind kind() const { return Kind; }
suffix() const253 std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
cNameBase() const254 std::string cNameBase() const override {
255 return toCPrefix(Kind) + utostr(Bits);
256 }
cName() const257 std::string cName() const override {
258 if (NameOverride.empty())
259 return CRegularNamedType::cName();
260 return NameOverride;
261 }
llvmName() const262 std::string llvmName() const override {
263 if (Kind == ScalarTypeKind::Float) {
264 if (Bits == 16)
265 return "HalfTy";
266 if (Bits == 32)
267 return "FloatTy";
268 if (Bits == 64)
269 return "DoubleTy";
270 PrintFatalError("bad size for floating type");
271 }
272 return "Int" + utostr(Bits) + "Ty";
273 }
acleSuffix(std::string overrideLetter) const274 std::string acleSuffix(std::string overrideLetter) const override {
275 return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
276 + utostr(Bits);
277 }
isInteger() const278 bool isInteger() const { return Kind != ScalarTypeKind::Float; }
requiresFloat() const279 bool requiresFloat() const override { return !isInteger(); }
requiresMVE() const280 bool requiresMVE() const override { return false; }
hasNonstandardName() const281 bool hasNonstandardName() const { return !NameOverride.empty(); }
282
classof(const Type * T)283 static bool classof(const Type *T) {
284 return T->typeKind() == TypeKind::Scalar;
285 }
286 };
287
288 class VectorType : public CRegularNamedType {
289 const ScalarType *Element;
290 unsigned Lanes;
291
292 public:
VectorType(const ScalarType * Element,unsigned Lanes)293 VectorType(const ScalarType *Element, unsigned Lanes)
294 : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
sizeInBits() const295 unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
lanes() const296 unsigned lanes() const { return Lanes; }
requiresFloat() const297 bool requiresFloat() const override { return Element->requiresFloat(); }
requiresMVE() const298 bool requiresMVE() const override { return true; }
cNameBase() const299 std::string cNameBase() const override {
300 return Element->cNameBase() + "x" + utostr(Lanes);
301 }
llvmName() const302 std::string llvmName() const override {
303 return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
304 utostr(Lanes) + ")";
305 }
306
classof(const Type * T)307 static bool classof(const Type *T) {
308 return T->typeKind() == TypeKind::Vector;
309 }
310 };
311
312 class MultiVectorType : public CRegularNamedType {
313 const VectorType *Element;
314 unsigned Registers;
315
316 public:
MultiVectorType(unsigned Registers,const VectorType * Element)317 MultiVectorType(unsigned Registers, const VectorType *Element)
318 : CRegularNamedType(TypeKind::MultiVector), Element(Element),
319 Registers(Registers) {}
sizeInBits() const320 unsigned sizeInBits() const override {
321 return Registers * Element->sizeInBits();
322 }
registers() const323 unsigned registers() const { return Registers; }
requiresFloat() const324 bool requiresFloat() const override { return Element->requiresFloat(); }
requiresMVE() const325 bool requiresMVE() const override { return true; }
cNameBase() const326 std::string cNameBase() const override {
327 return Element->cNameBase() + "x" + utostr(Registers);
328 }
329
330 // MultiVectorType doesn't override llvmName, because we don't expect to do
331 // automatic code generation for the MVE intrinsics that use it: the {vld2,
332 // vld4, vst2, vst4} family are the only ones that use these types, so it was
333 // easier to hand-write the codegen for dealing with these structs than to
334 // build in lots of extra automatic machinery that would only be used once.
335
classof(const Type * T)336 static bool classof(const Type *T) {
337 return T->typeKind() == TypeKind::MultiVector;
338 }
339 };
340
341 class PredicateType : public CRegularNamedType {
342 unsigned Lanes;
343
344 public:
PredicateType(unsigned Lanes)345 PredicateType(unsigned Lanes)
346 : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
sizeInBits() const347 unsigned sizeInBits() const override { return 16; }
cNameBase() const348 std::string cNameBase() const override { return "mve_pred16"; }
requiresFloat() const349 bool requiresFloat() const override { return false; };
requiresMVE() const350 bool requiresMVE() const override { return true; }
llvmName() const351 std::string llvmName() const override {
352 // Use <4 x i1> instead of <2 x i1> for two-lane vector types. See
353 // the comment in llvm/lib/Target/ARM/ARMInstrMVE.td for further
354 // explanation.
355 unsigned ModifiedLanes = (Lanes == 2 ? 4 : Lanes);
356
357 return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " +
358 utostr(ModifiedLanes) + ")";
359 }
360
classof(const Type * T)361 static bool classof(const Type *T) {
362 return T->typeKind() == TypeKind::Predicate;
363 }
364 };
365
366 // -----------------------------------------------------------------------------
367 // Class to facilitate merging together the code generation for many intrinsics
368 // by means of varying a few constant or type parameters.
369 //
370 // Most obviously, the intrinsics in a single parametrised family will have
371 // code generation sequences that only differ in a type or two, e.g. vaddq_s8
372 // and vaddq_u16 will look the same apart from putting a different vector type
373 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
374 // will often code-generate in the same way, with only a different choice of
375 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
376 // marshalling the arguments and return values of the IR intrinsic in exactly
377 // the same way. And others might differ only in some other kind of constant,
378 // such as a lane index.
379 //
380 // So, when we generate the IR-building code for all these intrinsics, we keep
381 // track of every value that could possibly be pulled out of the code and
382 // stored ahead of time in a local variable. Then we group together intrinsics
383 // by textual equivalence of the code that would result if _all_ those
384 // parameters were stored in local variables. That gives us maximal sets that
385 // can be implemented by a single piece of IR-building code by changing
386 // parameter values ahead of time.
387 //
388 // After we've done that, we do a second pass in which we only allocate _some_
389 // of the parameters into local variables, by tracking which ones have the same
390 // values as each other (so that a single variable can be reused) and which
391 // ones are the same across the whole set (so that no variable is needed at
392 // all).
393 //
394 // Hence the class below. Its allocParam method is invoked during code
395 // generation by every method of a Result subclass (see below) that wants to
396 // give it the opportunity to pull something out into a switchable parameter.
397 // It returns a variable name for the parameter, or (if it's being used in the
398 // second pass once we've decided that some parameters don't need to be stored
399 // in variables after all) it might just return the input expression unchanged.
400
401 struct CodeGenParamAllocator {
402 // Accumulated during code generation
403 std::vector<std::string> *ParamTypes = nullptr;
404 std::vector<std::string> *ParamValues = nullptr;
405
406 // Provided ahead of time in pass 2, to indicate which parameters are being
407 // assigned to what. This vector contains an entry for each call to
408 // allocParam expected during code gen (which we counted up in pass 1), and
409 // indicates the number of the parameter variable that should be returned, or
410 // -1 if this call shouldn't allocate a parameter variable at all.
411 //
412 // We rely on the recursive code generation working identically in passes 1
413 // and 2, so that the same list of calls to allocParam happen in the same
414 // order. That guarantees that the parameter numbers recorded in pass 1 will
415 // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
416 // decided to do about each one in pass 2.
417 std::vector<int> *ParamNumberMap = nullptr;
418
419 // Internally track how many things we've allocated
420 unsigned nparams = 0;
421
allocParam__anonf88c1dfe0111::CodeGenParamAllocator422 std::string allocParam(StringRef Type, StringRef Value) {
423 unsigned ParamNumber;
424
425 if (!ParamNumberMap) {
426 // In pass 1, unconditionally assign a new parameter variable to every
427 // value we're asked to process.
428 ParamNumber = nparams++;
429 } else {
430 // In pass 2, consult the map provided by the caller to find out which
431 // variable we should be keeping things in.
432 int MapValue = (*ParamNumberMap)[nparams++];
433 if (MapValue < 0)
434 return std::string(Value);
435 ParamNumber = MapValue;
436 }
437
438 // If we've allocated a new parameter variable for the first time, store
439 // its type and value to be retrieved after codegen.
440 if (ParamTypes && ParamTypes->size() == ParamNumber)
441 ParamTypes->push_back(std::string(Type));
442 if (ParamValues && ParamValues->size() == ParamNumber)
443 ParamValues->push_back(std::string(Value));
444
445 // Unimaginative naming scheme for parameter variables.
446 return "Param" + utostr(ParamNumber);
447 }
448 };
449
450 // -----------------------------------------------------------------------------
451 // System of classes that represent all the intermediate values used during
452 // code-generation for an intrinsic.
453 //
454 // The base class 'Result' can represent a value of the LLVM type 'Value', or
455 // sometimes 'Address' (for loads/stores, including an alignment requirement).
456 //
457 // In the case where the Tablegen provides a value in the codegen dag as a
458 // plain integer literal, the Result object we construct here will be one that
459 // returns true from hasIntegerConstantValue(). This allows the generated C++
460 // code to use the constant directly in contexts which can take a literal
461 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
462 // effort of calling llvm::ConstantInt::get() and then pulling the constant
463 // back out of the resulting llvm:Value later.
464
465 class Result {
466 public:
467 // Convenient shorthand for the pointer type we'll be using everywhere.
468 using Ptr = std::shared_ptr<Result>;
469
470 private:
471 Ptr Predecessor;
472 std::string VarName;
473 bool VarNameUsed = false;
474 unsigned Visited = 0;
475
476 public:
477 virtual ~Result() = default;
478 using Scope = std::map<std::string, Ptr>;
479 virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
hasIntegerConstantValue() const480 virtual bool hasIntegerConstantValue() const { return false; }
integerConstantValue() const481 virtual uint32_t integerConstantValue() const { return 0; }
hasIntegerValue() const482 virtual bool hasIntegerValue() const { return false; }
getIntegerValue(const std::string &)483 virtual std::string getIntegerValue(const std::string &) {
484 llvm_unreachable("non-working Result::getIntegerValue called");
485 }
typeName() const486 virtual std::string typeName() const { return "Value *"; }
487
488 // Mostly, when a code-generation operation has a dependency on prior
489 // operations, it's because it uses the output values of those operations as
490 // inputs. But there's one exception, which is the use of 'seq' in Tablegen
491 // to indicate that operations have to be performed in sequence regardless of
492 // whether they use each others' output values.
493 //
494 // So, the actual generation of code is done by depth-first search, using the
495 // prerequisites() method to get a list of all the other Results that have to
496 // be computed before this one. That method divides into the 'predecessor',
497 // set by setPredecessor() while processing a 'seq' dag node, and the list
498 // returned by 'morePrerequisites', which each subclass implements to return
499 // a list of the Results it uses as input to whatever its own computation is
500 // doing.
501
morePrerequisites(std::vector<Ptr> & output) const502 virtual void morePrerequisites(std::vector<Ptr> &output) const {}
prerequisites() const503 std::vector<Ptr> prerequisites() const {
504 std::vector<Ptr> ToRet;
505 if (Predecessor)
506 ToRet.push_back(Predecessor);
507 morePrerequisites(ToRet);
508 return ToRet;
509 }
510
setPredecessor(Ptr p)511 void setPredecessor(Ptr p) {
512 // If the user has nested one 'seq' node inside another, and this
513 // method is called on the return value of the inner 'seq' (i.e.
514 // the final item inside it), then we can't link _this_ node to p,
515 // because it already has a predecessor. Instead, walk the chain
516 // until we find the first item in the inner seq, and link that to
517 // p, so that nesting seqs has the obvious effect of linking
518 // everything together into one long sequential chain.
519 Result *r = this;
520 while (r->Predecessor)
521 r = r->Predecessor.get();
522 r->Predecessor = p;
523 }
524
525 // Each Result will be assigned a variable name in the output code, but not
526 // all those variable names will actually be used (e.g. the return value of
527 // Builder.CreateStore has void type, so nobody will want to refer to it). To
528 // prevent annoying compiler warnings, we track whether each Result's
529 // variable name was ever actually mentioned in subsequent statements, so
530 // that it can be left out of the final generated code.
varname()531 std::string varname() {
532 VarNameUsed = true;
533 return VarName;
534 }
setVarname(const StringRef s)535 void setVarname(const StringRef s) { VarName = std::string(s); }
varnameUsed() const536 bool varnameUsed() const { return VarNameUsed; }
537
538 // Emit code to generate this result as a Value *.
asValue()539 virtual std::string asValue() {
540 return varname();
541 }
542
543 // Code generation happens in multiple passes. This method tracks whether a
544 // Result has yet been visited in a given pass, without the need for a
545 // tedious loop in between passes that goes through and resets a 'visited'
546 // flag back to false: you just set Pass=1 the first time round, and Pass=2
547 // the second time.
needsVisiting(unsigned Pass)548 bool needsVisiting(unsigned Pass) {
549 bool ToRet = Visited < Pass;
550 Visited = Pass;
551 return ToRet;
552 }
553 };
554
555 // Result subclass that retrieves one of the arguments to the clang builtin
556 // function. In cases where the argument has pointer type, we call
557 // EmitPointerWithAlignment and store the result in a variable of type Address,
558 // so that load and store IR nodes can know the right alignment. Otherwise, we
559 // call EmitScalarExpr.
560 //
561 // There are aggregate parameters in the MVE intrinsics API, but we don't deal
562 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
563 // vst2q/vst4q family, which is few enough that we just write the code by hand
564 // for those in CGBuiltin.cpp.
565 class BuiltinArgResult : public Result {
566 public:
567 unsigned ArgNum;
568 bool AddressType;
569 bool Immediate;
BuiltinArgResult(unsigned ArgNum,bool AddressType,bool Immediate)570 BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
571 : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
genCode(raw_ostream & OS,CodeGenParamAllocator &) const572 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
573 OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
574 << "(E->getArg(" << ArgNum << "))";
575 }
typeName() const576 std::string typeName() const override {
577 return AddressType ? "Address" : Result::typeName();
578 }
579 // Emit code to generate this result as a Value *.
asValue()580 std::string asValue() override {
581 if (AddressType)
582 return "(" + varname() + ".getPointer())";
583 return Result::asValue();
584 }
hasIntegerValue() const585 bool hasIntegerValue() const override { return Immediate; }
getIntegerValue(const std::string & IntType)586 std::string getIntegerValue(const std::string &IntType) override {
587 return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
588 utostr(ArgNum) + "), getContext())";
589 }
590 };
591
592 // Result subclass for an integer literal appearing in Tablegen. This may need
593 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
594 // it may be used directly as an integer, depending on which IRBuilder method
595 // it's being passed to.
596 class IntLiteralResult : public Result {
597 public:
598 const ScalarType *IntegerType;
599 uint32_t IntegerValue;
IntLiteralResult(const ScalarType * IntegerType,uint32_t IntegerValue)600 IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
601 : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const602 void genCode(raw_ostream &OS,
603 CodeGenParamAllocator &ParamAlloc) const override {
604 OS << "llvm::ConstantInt::get("
605 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
606 << ", ";
607 OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
608 << ")";
609 }
hasIntegerConstantValue() const610 bool hasIntegerConstantValue() const override { return true; }
integerConstantValue() const611 uint32_t integerConstantValue() const override { return IntegerValue; }
612 };
613
614 // Result subclass representing a cast between different integer types. We use
615 // our own ScalarType abstraction as the representation of the target type,
616 // which gives both size and signedness.
617 class IntCastResult : public Result {
618 public:
619 const ScalarType *IntegerType;
620 Ptr V;
IntCastResult(const ScalarType * IntegerType,Ptr V)621 IntCastResult(const ScalarType *IntegerType, Ptr V)
622 : IntegerType(IntegerType), V(V) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const623 void genCode(raw_ostream &OS,
624 CodeGenParamAllocator &ParamAlloc) const override {
625 OS << "Builder.CreateIntCast(" << V->varname() << ", "
626 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
627 << ParamAlloc.allocParam("bool",
628 IntegerType->kind() == ScalarTypeKind::SignedInt
629 ? "true"
630 : "false")
631 << ")";
632 }
morePrerequisites(std::vector<Ptr> & output) const633 void morePrerequisites(std::vector<Ptr> &output) const override {
634 output.push_back(V);
635 }
636 };
637
638 // Result subclass representing a cast between different pointer types.
639 class PointerCastResult : public Result {
640 public:
641 const PointerType *PtrType;
642 Ptr V;
PointerCastResult(const PointerType * PtrType,Ptr V)643 PointerCastResult(const PointerType *PtrType, Ptr V)
644 : PtrType(PtrType), V(V) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const645 void genCode(raw_ostream &OS,
646 CodeGenParamAllocator &ParamAlloc) const override {
647 OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
648 << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
649 }
morePrerequisites(std::vector<Ptr> & output) const650 void morePrerequisites(std::vector<Ptr> &output) const override {
651 output.push_back(V);
652 }
653 };
654
655 // Result subclass representing a call to an IRBuilder method. Each IRBuilder
656 // method we want to use will have a Tablegen record giving the method name and
657 // describing any important details of how to call it, such as whether a
658 // particular argument should be an integer constant instead of an llvm::Value.
659 class IRBuilderResult : public Result {
660 public:
661 StringRef CallPrefix;
662 std::vector<Ptr> Args;
663 std::set<unsigned> AddressArgs;
664 std::map<unsigned, std::string> IntegerArgs;
IRBuilderResult(StringRef CallPrefix,std::vector<Ptr> Args,std::set<unsigned> AddressArgs,std::map<unsigned,std::string> IntegerArgs)665 IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args,
666 std::set<unsigned> AddressArgs,
667 std::map<unsigned, std::string> IntegerArgs)
668 : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
669 IntegerArgs(IntegerArgs) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const670 void genCode(raw_ostream &OS,
671 CodeGenParamAllocator &ParamAlloc) const override {
672 OS << CallPrefix;
673 const char *Sep = "";
674 for (unsigned i = 0, e = Args.size(); i < e; ++i) {
675 Ptr Arg = Args[i];
676 auto it = IntegerArgs.find(i);
677
678 OS << Sep;
679 Sep = ", ";
680
681 if (it != IntegerArgs.end()) {
682 if (Arg->hasIntegerConstantValue())
683 OS << "static_cast<" << it->second << ">("
684 << ParamAlloc.allocParam(it->second,
685 utostr(Arg->integerConstantValue()))
686 << ")";
687 else if (Arg->hasIntegerValue())
688 OS << ParamAlloc.allocParam(it->second,
689 Arg->getIntegerValue(it->second));
690 } else {
691 OS << Arg->varname();
692 }
693 }
694 OS << ")";
695 }
morePrerequisites(std::vector<Ptr> & output) const696 void morePrerequisites(std::vector<Ptr> &output) const override {
697 for (unsigned i = 0, e = Args.size(); i < e; ++i) {
698 Ptr Arg = Args[i];
699 if (IntegerArgs.find(i) != IntegerArgs.end())
700 continue;
701 output.push_back(Arg);
702 }
703 }
704 };
705
706 // Result subclass representing making an Address out of a Value.
707 class AddressResult : public Result {
708 public:
709 Ptr Arg;
710 unsigned Align;
AddressResult(Ptr Arg,unsigned Align)711 AddressResult(Ptr Arg, unsigned Align) : Arg(Arg), Align(Align) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const712 void genCode(raw_ostream &OS,
713 CodeGenParamAllocator &ParamAlloc) const override {
714 OS << "Address(" << Arg->varname() << ", CharUnits::fromQuantity("
715 << Align << "))";
716 }
typeName() const717 std::string typeName() const override {
718 return "Address";
719 }
morePrerequisites(std::vector<Ptr> & output) const720 void morePrerequisites(std::vector<Ptr> &output) const override {
721 output.push_back(Arg);
722 }
723 };
724
725 // Result subclass representing a call to an IR intrinsic, which we first have
726 // to look up using an Intrinsic::ID constant and an array of types.
727 class IRIntrinsicResult : public Result {
728 public:
729 std::string IntrinsicID;
730 std::vector<const Type *> ParamTypes;
731 std::vector<Ptr> Args;
IRIntrinsicResult(StringRef IntrinsicID,std::vector<const Type * > ParamTypes,std::vector<Ptr> Args)732 IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
733 std::vector<Ptr> Args)
734 : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
735 Args(Args) {}
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc) const736 void genCode(raw_ostream &OS,
737 CodeGenParamAllocator &ParamAlloc) const override {
738 std::string IntNo = ParamAlloc.allocParam(
739 "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
740 OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
741 if (!ParamTypes.empty()) {
742 OS << ", {";
743 const char *Sep = "";
744 for (auto T : ParamTypes) {
745 OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
746 Sep = ", ";
747 }
748 OS << "}";
749 }
750 OS << "), {";
751 const char *Sep = "";
752 for (auto Arg : Args) {
753 OS << Sep << Arg->asValue();
754 Sep = ", ";
755 }
756 OS << "})";
757 }
morePrerequisites(std::vector<Ptr> & output) const758 void morePrerequisites(std::vector<Ptr> &output) const override {
759 output.insert(output.end(), Args.begin(), Args.end());
760 }
761 };
762
763 // Result subclass that specifies a type, for use in IRBuilder operations such
764 // as CreateBitCast that take a type argument.
765 class TypeResult : public Result {
766 public:
767 const Type *T;
TypeResult(const Type * T)768 TypeResult(const Type *T) : T(T) {}
genCode(raw_ostream & OS,CodeGenParamAllocator &) const769 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
770 OS << T->llvmName();
771 }
typeName() const772 std::string typeName() const override {
773 return "llvm::Type *";
774 }
775 };
776
777 // -----------------------------------------------------------------------------
778 // Class that describes a single ACLE intrinsic.
779 //
780 // A Tablegen record will typically describe more than one ACLE intrinsic, by
781 // means of setting the 'list<Type> Params' field to a list of multiple
782 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
783 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
784 // rather than a single one for all of them. Hence, the constructor takes both
785 // a Tablegen record and the current value of the parameter type.
786
787 class ACLEIntrinsic {
788 // Structure documenting that one of the intrinsic's arguments is required to
789 // be a compile-time constant integer, and what constraints there are on its
790 // value. Used when generating Sema checking code.
791 struct ImmediateArg {
792 enum class BoundsType { ExplicitRange, UInt };
793 BoundsType boundsType;
794 int64_t i1, i2;
795 StringRef ExtraCheckType, ExtraCheckArgs;
796 const Type *ArgType;
797 };
798
799 // For polymorphic intrinsics, FullName is the explicit name that uniquely
800 // identifies this variant of the intrinsic, and ShortName is the name it
801 // shares with at least one other intrinsic.
802 std::string ShortName, FullName;
803
804 // Name of the architecture extension, used in the Clang builtin name
805 StringRef BuiltinExtension;
806
807 // A very small number of intrinsics _only_ have a polymorphic
808 // variant (vuninitializedq taking an unevaluated argument).
809 bool PolymorphicOnly;
810
811 // Another rarely-used flag indicating that the builtin doesn't
812 // evaluate its argument(s) at all.
813 bool NonEvaluating;
814
815 // True if the intrinsic needs only the C header part (no codegen, semantic
816 // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
817 bool HeaderOnly;
818
819 const Type *ReturnType;
820 std::vector<const Type *> ArgTypes;
821 std::map<unsigned, ImmediateArg> ImmediateArgs;
822 Result::Ptr Code;
823
824 std::map<std::string, std::string> CustomCodeGenArgs;
825
826 // Recursive function that does the internals of code generation.
genCodeDfs(Result::Ptr V,std::list<Result::Ptr> & Used,unsigned Pass) const827 void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
828 unsigned Pass) const {
829 if (!V->needsVisiting(Pass))
830 return;
831
832 for (Result::Ptr W : V->prerequisites())
833 genCodeDfs(W, Used, Pass);
834
835 Used.push_back(V);
836 }
837
838 public:
shortName() const839 const std::string &shortName() const { return ShortName; }
fullName() const840 const std::string &fullName() const { return FullName; }
builtinExtension() const841 StringRef builtinExtension() const { return BuiltinExtension; }
returnType() const842 const Type *returnType() const { return ReturnType; }
argTypes() const843 const std::vector<const Type *> &argTypes() const { return ArgTypes; }
requiresFloat() const844 bool requiresFloat() const {
845 if (ReturnType->requiresFloat())
846 return true;
847 for (const Type *T : ArgTypes)
848 if (T->requiresFloat())
849 return true;
850 return false;
851 }
requiresMVE() const852 bool requiresMVE() const {
853 return ReturnType->requiresMVE() ||
854 any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
855 }
polymorphic() const856 bool polymorphic() const { return ShortName != FullName; }
polymorphicOnly() const857 bool polymorphicOnly() const { return PolymorphicOnly; }
nonEvaluating() const858 bool nonEvaluating() const { return NonEvaluating; }
headerOnly() const859 bool headerOnly() const { return HeaderOnly; }
860
861 // External entry point for code generation, called from EmitterBase.
genCode(raw_ostream & OS,CodeGenParamAllocator & ParamAlloc,unsigned Pass) const862 void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
863 unsigned Pass) const {
864 assert(!headerOnly() && "Called genCode for header-only intrinsic");
865 if (!hasCode()) {
866 for (auto kv : CustomCodeGenArgs)
867 OS << " " << kv.first << " = " << kv.second << ";\n";
868 OS << " break; // custom code gen\n";
869 return;
870 }
871 std::list<Result::Ptr> Used;
872 genCodeDfs(Code, Used, Pass);
873
874 unsigned varindex = 0;
875 for (Result::Ptr V : Used)
876 if (V->varnameUsed())
877 V->setVarname("Val" + utostr(varindex++));
878
879 for (Result::Ptr V : Used) {
880 OS << " ";
881 if (V == Used.back()) {
882 assert(!V->varnameUsed());
883 OS << "return "; // FIXME: what if the top-level thing is void?
884 } else if (V->varnameUsed()) {
885 std::string Type = V->typeName();
886 OS << V->typeName();
887 if (!StringRef(Type).endswith("*"))
888 OS << " ";
889 OS << V->varname() << " = ";
890 }
891 V->genCode(OS, ParamAlloc);
892 OS << ";\n";
893 }
894 }
hasCode() const895 bool hasCode() const { return Code != nullptr; }
896
signedHexLiteral(const llvm::APInt & iOrig)897 static std::string signedHexLiteral(const llvm::APInt &iOrig) {
898 llvm::APInt i = iOrig.trunc(64);
899 SmallString<40> s;
900 i.toString(s, 16, true, true);
901 return std::string(s.str());
902 }
903
genSema() const904 std::string genSema() const {
905 assert(!headerOnly() && "Called genSema for header-only intrinsic");
906 std::vector<std::string> SemaChecks;
907
908 for (const auto &kv : ImmediateArgs) {
909 const ImmediateArg &IA = kv.second;
910
911 llvm::APInt lo(128, 0), hi(128, 0);
912 switch (IA.boundsType) {
913 case ImmediateArg::BoundsType::ExplicitRange:
914 lo = IA.i1;
915 hi = IA.i2;
916 break;
917 case ImmediateArg::BoundsType::UInt:
918 lo = 0;
919 hi = llvm::APInt::getMaxValue(IA.i1).zext(128);
920 break;
921 }
922
923 std::string Index = utostr(kv.first);
924
925 // Emit a range check if the legal range of values for the
926 // immediate is smaller than the _possible_ range of values for
927 // its type.
928 unsigned ArgTypeBits = IA.ArgType->sizeInBits();
929 llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128);
930 llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128);
931 if (ActualRange.ult(ArgTypeRange))
932 SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
933 ", " + signedHexLiteral(lo) + ", " +
934 signedHexLiteral(hi) + ")");
935
936 if (!IA.ExtraCheckType.empty()) {
937 std::string Suffix;
938 if (!IA.ExtraCheckArgs.empty()) {
939 std::string tmp;
940 StringRef Arg = IA.ExtraCheckArgs;
941 if (Arg == "!lanesize") {
942 tmp = utostr(IA.ArgType->sizeInBits());
943 Arg = tmp;
944 }
945 Suffix = (Twine(", ") + Arg).str();
946 }
947 SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
948 IA.ExtraCheckType + "(TheCall, " + Index +
949 Suffix + ")")
950 .str());
951 }
952
953 assert(!SemaChecks.empty());
954 }
955 if (SemaChecks.empty())
956 return "";
957 return join(std::begin(SemaChecks), std::end(SemaChecks),
958 " ||\n ") +
959 ";\n";
960 }
961
962 ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param);
963 };
964
965 // -----------------------------------------------------------------------------
966 // The top-level class that holds all the state from analyzing the entire
967 // Tablegen input.
968
969 class EmitterBase {
970 protected:
971 // EmitterBase holds a collection of all the types we've instantiated.
972 VoidType Void;
973 std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
974 std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
975 std::unique_ptr<VectorType>>
976 VectorTypes;
977 std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
978 MultiVectorTypes;
979 std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
980 std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
981
982 // And all the ACLEIntrinsic instances we've created.
983 std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
984
985 public:
986 // Methods to create a Type object, or return the right existing one from the
987 // maps stored in this object.
getVoidType()988 const VoidType *getVoidType() { return &Void; }
getScalarType(StringRef Name)989 const ScalarType *getScalarType(StringRef Name) {
990 return ScalarTypes[std::string(Name)].get();
991 }
getScalarType(Record * R)992 const ScalarType *getScalarType(Record *R) {
993 return getScalarType(R->getName());
994 }
getVectorType(const ScalarType * ST,unsigned Lanes)995 const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
996 std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
997 ST->sizeInBits(), Lanes);
998 if (VectorTypes.find(key) == VectorTypes.end())
999 VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
1000 return VectorTypes[key].get();
1001 }
getVectorType(const ScalarType * ST)1002 const VectorType *getVectorType(const ScalarType *ST) {
1003 return getVectorType(ST, 128 / ST->sizeInBits());
1004 }
getMultiVectorType(unsigned Registers,const VectorType * VT)1005 const MultiVectorType *getMultiVectorType(unsigned Registers,
1006 const VectorType *VT) {
1007 std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
1008 if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
1009 MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
1010 return MultiVectorTypes[key].get();
1011 }
getPredicateType(unsigned Lanes)1012 const PredicateType *getPredicateType(unsigned Lanes) {
1013 unsigned key = Lanes;
1014 if (PredicateTypes.find(key) == PredicateTypes.end())
1015 PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
1016 return PredicateTypes[key].get();
1017 }
getPointerType(const Type * T,bool Const)1018 const PointerType *getPointerType(const Type *T, bool Const) {
1019 PointerType PT(T, Const);
1020 std::string key = PT.cName();
1021 if (PointerTypes.find(key) == PointerTypes.end())
1022 PointerTypes[key] = std::make_unique<PointerType>(PT);
1023 return PointerTypes[key].get();
1024 }
1025
1026 // Methods to construct a type from various pieces of Tablegen. These are
1027 // always called in the context of setting up a particular ACLEIntrinsic, so
1028 // there's always an ambient parameter type (because we're iterating through
1029 // the Params list in the Tablegen record for the intrinsic), which is used
1030 // to expand Tablegen classes like 'Vector' which mean something different in
1031 // each member of a parametric family.
1032 const Type *getType(Record *R, const Type *Param);
1033 const Type *getType(DagInit *D, const Type *Param);
1034 const Type *getType(Init *I, const Type *Param);
1035
1036 // Functions that translate the Tablegen representation of an intrinsic's
1037 // code generation into a collection of Value objects (which will then be
1038 // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1039 Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
1040 const Type *Param);
1041 Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
1042 const Result::Scope &Scope, const Type *Param);
1043 Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1044 bool Immediate);
1045
1046 void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);
1047
1048 // Constructor and top-level functions.
1049
1050 EmitterBase(RecordKeeper &Records);
1051 virtual ~EmitterBase() = default;
1052
1053 virtual void EmitHeader(raw_ostream &OS) = 0;
1054 virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
1055 virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
1056 void EmitBuiltinCG(raw_ostream &OS);
1057 void EmitBuiltinAliases(raw_ostream &OS);
1058 };
1059
getType(Init * I,const Type * Param)1060 const Type *EmitterBase::getType(Init *I, const Type *Param) {
1061 if (auto Dag = dyn_cast<DagInit>(I))
1062 return getType(Dag, Param);
1063 if (auto Def = dyn_cast<DefInit>(I))
1064 return getType(Def->getDef(), Param);
1065
1066 PrintFatalError("Could not convert this value into a type");
1067 }
1068
getType(Record * R,const Type * Param)1069 const Type *EmitterBase::getType(Record *R, const Type *Param) {
1070 // Pass to a subfield of any wrapper records. We don't expect more than one
1071 // of these: immediate operands are used as plain numbers rather than as
1072 // llvm::Value, so it's meaningless to promote their type anyway.
1073 if (R->isSubClassOf("Immediate"))
1074 R = R->getValueAsDef("type");
1075 else if (R->isSubClassOf("unpromoted"))
1076 R = R->getValueAsDef("underlying_type");
1077
1078 if (R->getName() == "Void")
1079 return getVoidType();
1080 if (R->isSubClassOf("PrimitiveType"))
1081 return getScalarType(R);
1082 if (R->isSubClassOf("ComplexType"))
1083 return getType(R->getValueAsDag("spec"), Param);
1084
1085 PrintFatalError(R->getLoc(), "Could not convert this record into a type");
1086 }
1087
getType(DagInit * D,const Type * Param)1088 const Type *EmitterBase::getType(DagInit *D, const Type *Param) {
1089 // The meat of the getType system: types in the Tablegen are represented by a
1090 // dag whose operators select sub-cases of this function.
1091
1092 Record *Op = cast<DefInit>(D->getOperator())->getDef();
1093 if (!Op->isSubClassOf("ComplexTypeOp"))
1094 PrintFatalError(
1095 "Expected ComplexTypeOp as dag operator in type expression");
1096
1097 if (Op->getName() == "CTO_Parameter") {
1098 if (isa<VoidType>(Param))
1099 PrintFatalError("Parametric type in unparametrised context");
1100 return Param;
1101 }
1102
1103 if (Op->getName() == "CTO_Vec") {
1104 const Type *Element = getType(D->getArg(0), Param);
1105 if (D->getNumArgs() == 1) {
1106 return getVectorType(cast<ScalarType>(Element));
1107 } else {
1108 const Type *ExistingVector = getType(D->getArg(1), Param);
1109 return getVectorType(cast<ScalarType>(Element),
1110 cast<VectorType>(ExistingVector)->lanes());
1111 }
1112 }
1113
1114 if (Op->getName() == "CTO_Pred") {
1115 const Type *Element = getType(D->getArg(0), Param);
1116 return getPredicateType(128 / Element->sizeInBits());
1117 }
1118
1119 if (Op->isSubClassOf("CTO_Tuple")) {
1120 unsigned Registers = Op->getValueAsInt("n");
1121 const Type *Element = getType(D->getArg(0), Param);
1122 return getMultiVectorType(Registers, cast<VectorType>(Element));
1123 }
1124
1125 if (Op->isSubClassOf("CTO_Pointer")) {
1126 const Type *Pointee = getType(D->getArg(0), Param);
1127 return getPointerType(Pointee, Op->getValueAsBit("const"));
1128 }
1129
1130 if (Op->getName() == "CTO_CopyKind") {
1131 const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
1132 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
1133 for (const auto &kv : ScalarTypes) {
1134 const ScalarType *RT = kv.second.get();
1135 if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1136 return RT;
1137 }
1138 PrintFatalError("Cannot find a type to satisfy CopyKind");
1139 }
1140
1141 if (Op->isSubClassOf("CTO_ScaleSize")) {
1142 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
1143 int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
1144 unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1145 for (const auto &kv : ScalarTypes) {
1146 const ScalarType *RT = kv.second.get();
1147 if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1148 return RT;
1149 }
1150 PrintFatalError("Cannot find a type to satisfy ScaleSize");
1151 }
1152
1153 PrintFatalError("Bad operator in type dag expression");
1154 }
1155
getCodeForDag(DagInit * D,const Result::Scope & Scope,const Type * Param)1156 Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope,
1157 const Type *Param) {
1158 Record *Op = cast<DefInit>(D->getOperator())->getDef();
1159
1160 if (Op->getName() == "seq") {
1161 Result::Scope SubScope = Scope;
1162 Result::Ptr PrevV = nullptr;
1163 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1164 // We don't use getCodeForDagArg here, because the argument name
1165 // has different semantics in a seq
1166 Result::Ptr V =
1167 getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
1168 StringRef ArgName = D->getArgNameStr(i);
1169 if (!ArgName.empty())
1170 SubScope[std::string(ArgName)] = V;
1171 if (PrevV)
1172 V->setPredecessor(PrevV);
1173 PrevV = V;
1174 }
1175 return PrevV;
1176 } else if (Op->isSubClassOf("Type")) {
1177 if (D->getNumArgs() != 1)
1178 PrintFatalError("Type casts should have exactly one argument");
1179 const Type *CastType = getType(Op, Param);
1180 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1181 if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
1182 if (!ST->requiresFloat()) {
1183 if (Arg->hasIntegerConstantValue())
1184 return std::make_shared<IntLiteralResult>(
1185 ST, Arg->integerConstantValue());
1186 else
1187 return std::make_shared<IntCastResult>(ST, Arg);
1188 }
1189 } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
1190 return std::make_shared<PointerCastResult>(PT, Arg);
1191 }
1192 PrintFatalError("Unsupported type cast");
1193 } else if (Op->getName() == "address") {
1194 if (D->getNumArgs() != 2)
1195 PrintFatalError("'address' should have two arguments");
1196 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1197 unsigned Alignment;
1198 if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
1199 Alignment = II->getValue();
1200 } else {
1201 PrintFatalError("'address' alignment argument should be an integer");
1202 }
1203 return std::make_shared<AddressResult>(Arg, Alignment);
1204 } else if (Op->getName() == "unsignedflag") {
1205 if (D->getNumArgs() != 1)
1206 PrintFatalError("unsignedflag should have exactly one argument");
1207 Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1208 if (!TypeRec->isSubClassOf("Type"))
1209 PrintFatalError("unsignedflag's argument should be a type");
1210 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1211 return std::make_shared<IntLiteralResult>(
1212 getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
1213 } else {
1214 PrintFatalError("unsignedflag's argument should be a scalar type");
1215 }
1216 } else if (Op->getName() == "bitsize") {
1217 if (D->getNumArgs() != 1)
1218 PrintFatalError("bitsize should have exactly one argument");
1219 Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1220 if (!TypeRec->isSubClassOf("Type"))
1221 PrintFatalError("bitsize's argument should be a type");
1222 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1223 return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1224 ST->sizeInBits());
1225 } else {
1226 PrintFatalError("bitsize's argument should be a scalar type");
1227 }
1228 } else {
1229 std::vector<Result::Ptr> Args;
1230 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1231 Args.push_back(getCodeForDagArg(D, i, Scope, Param));
1232 if (Op->isSubClassOf("IRBuilderBase")) {
1233 std::set<unsigned> AddressArgs;
1234 std::map<unsigned, std::string> IntegerArgs;
1235 for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
1236 unsigned Index = sp->getValueAsInt("index");
1237 if (sp->isSubClassOf("IRBuilderAddrParam")) {
1238 AddressArgs.insert(Index);
1239 } else if (sp->isSubClassOf("IRBuilderIntParam")) {
1240 IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
1241 }
1242 }
1243 return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
1244 Args, AddressArgs, IntegerArgs);
1245 } else if (Op->isSubClassOf("IRIntBase")) {
1246 std::vector<const Type *> ParamTypes;
1247 for (Record *RParam : Op->getValueAsListOfDefs("params"))
1248 ParamTypes.push_back(getType(RParam, Param));
1249 std::string IntName = std::string(Op->getValueAsString("intname"));
1250 if (Op->getValueAsBit("appendKind"))
1251 IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
1252 return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
1253 } else {
1254 PrintFatalError("Unsupported dag node " + Op->getName());
1255 }
1256 }
1257 }
1258
getCodeForDagArg(DagInit * D,unsigned ArgNum,const Result::Scope & Scope,const Type * Param)1259 Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum,
1260 const Result::Scope &Scope,
1261 const Type *Param) {
1262 Init *Arg = D->getArg(ArgNum);
1263 StringRef Name = D->getArgNameStr(ArgNum);
1264
1265 if (!Name.empty()) {
1266 if (!isa<UnsetInit>(Arg))
1267 PrintFatalError(
1268 "dag operator argument should not have both a value and a name");
1269 auto it = Scope.find(std::string(Name));
1270 if (it == Scope.end())
1271 PrintFatalError("unrecognized variable name '" + Name + "'");
1272 return it->second;
1273 }
1274
1275 if (auto *II = dyn_cast<IntInit>(Arg))
1276 return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1277 II->getValue());
1278
1279 if (auto *DI = dyn_cast<DagInit>(Arg))
1280 return getCodeForDag(DI, Scope, Param);
1281
1282 if (auto *DI = dyn_cast<DefInit>(Arg)) {
1283 Record *Rec = DI->getDef();
1284 if (Rec->isSubClassOf("Type")) {
1285 const Type *T = getType(Rec, Param);
1286 return std::make_shared<TypeResult>(T);
1287 }
1288 }
1289
1290 PrintFatalError("bad dag argument type for code generation");
1291 }
1292
getCodeForArg(unsigned ArgNum,const Type * ArgType,bool Promote,bool Immediate)1293 Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1294 bool Promote, bool Immediate) {
1295 Result::Ptr V = std::make_shared<BuiltinArgResult>(
1296 ArgNum, isa<PointerType>(ArgType), Immediate);
1297
1298 if (Promote) {
1299 if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
1300 if (ST->isInteger() && ST->sizeInBits() < 32)
1301 V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1302 } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
1303 V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1304 V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
1305 std::vector<const Type *>{PT},
1306 std::vector<Result::Ptr>{V});
1307 }
1308 }
1309
1310 return V;
1311 }
1312
ACLEIntrinsic(EmitterBase & ME,Record * R,const Type * Param)1313 ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param)
1314 : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
1315 // Derive the intrinsic's full name, by taking the name of the
1316 // Tablegen record (or override) and appending the suffix from its
1317 // parameter type. (If the intrinsic is unparametrised, its
1318 // parameter type will be given as Void, which returns the empty
1319 // string for acleSuffix.)
1320 StringRef BaseName =
1321 (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
1322 : R->getName());
1323 StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
1324 FullName =
1325 (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
1326
1327 // Derive the intrinsic's polymorphic name, by removing components from the
1328 // full name as specified by its 'pnt' member ('polymorphic name type'),
1329 // which indicates how many type suffixes to remove, and any other piece of
1330 // the name that should be removed.
1331 Record *PolymorphicNameType = R->getValueAsDef("pnt");
1332 SmallVector<StringRef, 8> NameParts;
1333 StringRef(FullName).split(NameParts, '_');
1334 for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1335 "NumTypeSuffixesToDiscard");
1336 i < e; ++i)
1337 NameParts.pop_back();
1338 if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
1339 StringRef ExtraSuffix =
1340 PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
1341 auto it = NameParts.end();
1342 while (it != NameParts.begin()) {
1343 --it;
1344 if (*it == ExtraSuffix) {
1345 NameParts.erase(it);
1346 break;
1347 }
1348 }
1349 }
1350 ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
1351
1352 BuiltinExtension = R->getValueAsString("builtinExtension");
1353
1354 PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
1355 NonEvaluating = R->getValueAsBit("nonEvaluating");
1356 HeaderOnly = R->getValueAsBit("headerOnly");
1357
1358 // Process the intrinsic's argument list.
1359 DagInit *ArgsDag = R->getValueAsDag("args");
1360 Result::Scope Scope;
1361 for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1362 Init *TypeInit = ArgsDag->getArg(i);
1363
1364 bool Promote = true;
1365 if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
1366 if (TypeDI->getDef()->isSubClassOf("unpromoted"))
1367 Promote = false;
1368
1369 // Work out the type of the argument, for use in the function prototype in
1370 // the header file.
1371 const Type *ArgType = ME.getType(TypeInit, Param);
1372 ArgTypes.push_back(ArgType);
1373
1374 // If the argument is a subclass of Immediate, record the details about
1375 // what values it can take, for Sema checking.
1376 bool Immediate = false;
1377 if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
1378 Record *TypeRec = TypeDI->getDef();
1379 if (TypeRec->isSubClassOf("Immediate")) {
1380 Immediate = true;
1381
1382 Record *Bounds = TypeRec->getValueAsDef("bounds");
1383 ImmediateArg &IA = ImmediateArgs[i];
1384 if (Bounds->isSubClassOf("IB_ConstRange")) {
1385 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1386 IA.i1 = Bounds->getValueAsInt("lo");
1387 IA.i2 = Bounds->getValueAsInt("hi");
1388 } else if (Bounds->getName() == "IB_UEltValue") {
1389 IA.boundsType = ImmediateArg::BoundsType::UInt;
1390 IA.i1 = Param->sizeInBits();
1391 } else if (Bounds->getName() == "IB_LaneIndex") {
1392 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1393 IA.i1 = 0;
1394 IA.i2 = 128 / Param->sizeInBits() - 1;
1395 } else if (Bounds->isSubClassOf("IB_EltBit")) {
1396 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1397 IA.i1 = Bounds->getValueAsInt("base");
1398 const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
1399 IA.i2 = IA.i1 + T->sizeInBits() - 1;
1400 } else {
1401 PrintFatalError("unrecognised ImmediateBounds subclass");
1402 }
1403
1404 IA.ArgType = ArgType;
1405
1406 if (!TypeRec->isValueUnset("extra")) {
1407 IA.ExtraCheckType = TypeRec->getValueAsString("extra");
1408 if (!TypeRec->isValueUnset("extraarg"))
1409 IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
1410 }
1411 }
1412 }
1413
1414 // The argument will usually have a name in the arguments dag, which goes
1415 // into the variable-name scope that the code gen will refer to.
1416 StringRef ArgName = ArgsDag->getArgNameStr(i);
1417 if (!ArgName.empty())
1418 Scope[std::string(ArgName)] =
1419 ME.getCodeForArg(i, ArgType, Promote, Immediate);
1420 }
1421
1422 // Finally, go through the codegen dag and translate it into a Result object
1423 // (with an arbitrary DAG of depended-on Results hanging off it).
1424 DagInit *CodeDag = R->getValueAsDag("codegen");
1425 Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
1426 if (MainOp->isSubClassOf("CustomCodegen")) {
1427 // Or, if it's the special case of CustomCodegen, just accumulate
1428 // a list of parameters we're going to assign to variables before
1429 // breaking from the loop.
1430 CustomCodeGenArgs["CustomCodeGenType"] =
1431 (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
1432 for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1433 StringRef Name = CodeDag->getArgNameStr(i);
1434 if (Name.empty()) {
1435 PrintFatalError("Operands to CustomCodegen should have names");
1436 } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
1437 CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
1438 } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
1439 CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
1440 } else {
1441 PrintFatalError("Operands to CustomCodegen should be integers");
1442 }
1443 }
1444 } else {
1445 Code = ME.getCodeForDag(CodeDag, Scope, Param);
1446 }
1447 }
1448
EmitterBase(RecordKeeper & Records)1449 EmitterBase::EmitterBase(RecordKeeper &Records) {
1450 // Construct the whole EmitterBase.
1451
1452 // First, look up all the instances of PrimitiveType. This gives us the list
1453 // of vector typedefs we have to put in arm_mve.h, and also allows us to
1454 // collect all the useful ScalarType instances into a big list so that we can
1455 // use it for operations such as 'find the unsigned version of this signed
1456 // integer type'.
1457 for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
1458 ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);
1459
1460 // Now go through the instances of Intrinsic, and for each one, iterate
1461 // through its list of type parameters making an ACLEIntrinsic for each one.
1462 for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
1463 for (Record *RParam : R->getValueAsListOfDefs("params")) {
1464 const Type *Param = getType(RParam, getVoidType());
1465 auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
1466 ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1467 }
1468 }
1469 }
1470
1471 /// A wrapper on raw_string_ostream that contains its own buffer rather than
1472 /// having to point it at one elsewhere. (In other words, it works just like
1473 /// std::ostringstream; also, this makes it convenient to declare a whole array
1474 /// of them at once.)
1475 ///
1476 /// We have to set this up using multiple inheritance, to ensure that the
1477 /// string member has been constructed before raw_string_ostream's constructor
1478 /// is given a pointer to it.
1479 class string_holder {
1480 protected:
1481 std::string S;
1482 };
1483 class raw_self_contained_string_ostream : private string_holder,
1484 public raw_string_ostream {
1485 public:
raw_self_contained_string_ostream()1486 raw_self_contained_string_ostream()
1487 : string_holder(), raw_string_ostream(S) {}
1488 };
1489
1490 const char LLVMLicenseHeader[] =
1491 " *\n"
1492 " *\n"
1493 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
1494 " Exceptions.\n"
1495 " * See https://llvm.org/LICENSE.txt for license information.\n"
1496 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1497 " *\n"
1498 " *===-----------------------------------------------------------------"
1499 "------===\n"
1500 " */\n"
1501 "\n";
1502
1503 // Machinery for the grouping of intrinsics by similar codegen.
1504 //
1505 // The general setup is that 'MergeableGroup' stores the things that a set of
1506 // similarly shaped intrinsics have in common: the text of their code
1507 // generation, and the number and type of their parameter variables.
1508 // MergeableGroup is the key in a std::map whose value is a set of
1509 // OutputIntrinsic, which stores the ways in which a particular intrinsic
1510 // specializes the MergeableGroup's generic description: the function name and
1511 // the _values_ of the parameter variables.
1512
1513 struct ComparableStringVector : std::vector<std::string> {
1514 // Infrastructure: a derived class of vector<string> which comes with an
1515 // ordering, so that it can be used as a key in maps and an element in sets.
1516 // There's no requirement on the ordering beyond being deterministic.
operator <__anonf88c1dfe0111::ComparableStringVector1517 bool operator<(const ComparableStringVector &rhs) const {
1518 if (size() != rhs.size())
1519 return size() < rhs.size();
1520 for (size_t i = 0, e = size(); i < e; ++i)
1521 if ((*this)[i] != rhs[i])
1522 return (*this)[i] < rhs[i];
1523 return false;
1524 }
1525 };
1526
1527 struct OutputIntrinsic {
1528 const ACLEIntrinsic *Int;
1529 std::string Name;
1530 ComparableStringVector ParamValues;
operator <__anonf88c1dfe0111::OutputIntrinsic1531 bool operator<(const OutputIntrinsic &rhs) const {
1532 if (Name != rhs.Name)
1533 return Name < rhs.Name;
1534 return ParamValues < rhs.ParamValues;
1535 }
1536 };
1537 struct MergeableGroup {
1538 std::string Code;
1539 ComparableStringVector ParamTypes;
operator <__anonf88c1dfe0111::MergeableGroup1540 bool operator<(const MergeableGroup &rhs) const {
1541 if (Code != rhs.Code)
1542 return Code < rhs.Code;
1543 return ParamTypes < rhs.ParamTypes;
1544 }
1545 };
1546
EmitBuiltinCG(raw_ostream & OS)1547 void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
1548 // Pass 1: generate code for all the intrinsics as if every type or constant
1549 // that can possibly be abstracted out into a parameter variable will be.
1550 // This identifies the sets of intrinsics we'll group together into a single
1551 // piece of code generation.
1552
1553 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1554
1555 for (const auto &kv : ACLEIntrinsics) {
1556 const ACLEIntrinsic &Int = *kv.second;
1557 if (Int.headerOnly())
1558 continue;
1559
1560 MergeableGroup MG;
1561 OutputIntrinsic OI;
1562
1563 OI.Int = ∬
1564 OI.Name = Int.fullName();
1565 CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
1566 raw_string_ostream OS(MG.Code);
1567 Int.genCode(OS, ParamAllocPrelim, 1);
1568 OS.flush();
1569
1570 MergeableGroupsPrelim[MG].insert(OI);
1571 }
1572
1573 // Pass 2: for each of those groups, optimize the parameter variable set by
1574 // eliminating 'parameters' that are the same for all intrinsics in the
1575 // group, and merging together pairs of parameter variables that take the
1576 // same values as each other for all intrinsics in the group.
1577
1578 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1579
1580 for (const auto &kv : MergeableGroupsPrelim) {
1581 const MergeableGroup &MG = kv.first;
1582 std::vector<int> ParamNumbers;
1583 std::map<ComparableStringVector, int> ParamNumberMap;
1584
1585 // Loop over the parameters for this group.
1586 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1587 // Is this parameter the same for all intrinsics in the group?
1588 const OutputIntrinsic &OI_first = *kv.second.begin();
1589 bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
1590 return OI.ParamValues[i] == OI_first.ParamValues[i];
1591 });
1592
1593 // If so, record it as -1, meaning 'no parameter variable needed'. Then
1594 // the corresponding call to allocParam in pass 2 will not generate a
1595 // variable at all, and just use the value inline.
1596 if (Constant) {
1597 ParamNumbers.push_back(-1);
1598 continue;
1599 }
1600
1601 // Otherwise, make a list of the values this parameter takes for each
1602 // intrinsic, and see if that value vector matches anything we already
1603 // have. We also record the parameter type, so that we don't accidentally
1604 // match up two parameter variables with different types. (Not that
1605 // there's much chance of them having textually equivalent values, but in
1606 // _principle_ it could happen.)
1607 ComparableStringVector key;
1608 key.push_back(MG.ParamTypes[i]);
1609 for (const auto &OI : kv.second)
1610 key.push_back(OI.ParamValues[i]);
1611
1612 auto Found = ParamNumberMap.find(key);
1613 if (Found != ParamNumberMap.end()) {
1614 // Yes, an existing parameter variable can be reused for this.
1615 ParamNumbers.push_back(Found->second);
1616 continue;
1617 }
1618
1619 // No, we need a new parameter variable.
1620 int ExistingIndex = ParamNumberMap.size();
1621 ParamNumberMap[key] = ExistingIndex;
1622 ParamNumbers.push_back(ExistingIndex);
1623 }
1624
1625 // Now we're ready to do the pass 2 code generation, which will emit the
1626 // reduced set of parameter variables we've just worked out.
1627
1628 for (const auto &OI_prelim : kv.second) {
1629 const ACLEIntrinsic *Int = OI_prelim.Int;
1630
1631 MergeableGroup MG;
1632 OutputIntrinsic OI;
1633
1634 OI.Int = OI_prelim.Int;
1635 OI.Name = OI_prelim.Name;
1636 CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
1637 &ParamNumbers};
1638 raw_string_ostream OS(MG.Code);
1639 Int->genCode(OS, ParamAlloc, 2);
1640 OS.flush();
1641
1642 MergeableGroups[MG].insert(OI);
1643 }
1644 }
1645
1646 // Output the actual C++ code.
1647
1648 for (const auto &kv : MergeableGroups) {
1649 const MergeableGroup &MG = kv.first;
1650
1651 // List of case statements in the main switch on BuiltinID, and an open
1652 // brace.
1653 const char *prefix = "";
1654 for (const auto &OI : kv.second) {
1655 OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1656 << "_" << OI.Name << ":";
1657
1658 prefix = "\n";
1659 }
1660 OS << " {\n";
1661
1662 if (!MG.ParamTypes.empty()) {
1663 // If we've got some parameter variables, then emit their declarations...
1664 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1665 StringRef Type = MG.ParamTypes[i];
1666 OS << " " << Type;
1667 if (!Type.endswith("*"))
1668 OS << " ";
1669 OS << " Param" << utostr(i) << ";\n";
1670 }
1671
1672 // ... and an inner switch on BuiltinID that will fill them in with each
1673 // individual intrinsic's values.
1674 OS << " switch (BuiltinID) {\n";
1675 for (const auto &OI : kv.second) {
1676 OS << " case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1677 << "_" << OI.Name << ":\n";
1678 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1679 OS << " Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
1680 OS << " break;\n";
1681 }
1682 OS << " }\n";
1683 }
1684
1685 // And finally, output the code, and close the outer pair of braces. (The
1686 // code will always end with a 'return' statement, so we need not insert a
1687 // 'break' here.)
1688 OS << MG.Code << "}\n";
1689 }
1690 }
1691
EmitBuiltinAliases(raw_ostream & OS)1692 void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
1693 // Build a sorted table of:
1694 // - intrinsic id number
1695 // - full name
1696 // - polymorphic name or -1
1697 StringToOffsetTable StringTable;
1698 OS << "static const IntrinToName MapData[] = {\n";
1699 for (const auto &kv : ACLEIntrinsics) {
1700 const ACLEIntrinsic &Int = *kv.second;
1701 if (Int.headerOnly())
1702 continue;
1703 int32_t ShortNameOffset =
1704 Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
1705 : -1;
1706 OS << " { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
1707 << Int.fullName() << ", "
1708 << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
1709 << ShortNameOffset << "},\n";
1710 }
1711 OS << "};\n\n";
1712
1713 OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";
1714
1715 OS << "static const char IntrinNames[] = {\n";
1716 StringTable.EmitString(OS);
1717 OS << "};\n\n";
1718 }
1719
GroupSemaChecks(std::map<std::string,std::set<std::string>> & Checks)1720 void EmitterBase::GroupSemaChecks(
1721 std::map<std::string, std::set<std::string>> &Checks) {
1722 for (const auto &kv : ACLEIntrinsics) {
1723 const ACLEIntrinsic &Int = *kv.second;
1724 if (Int.headerOnly())
1725 continue;
1726 std::string Check = Int.genSema();
1727 if (!Check.empty())
1728 Checks[Check].insert(Int.fullName());
1729 }
1730 }
1731
1732 // -----------------------------------------------------------------------------
1733 // The class used for generating arm_mve.h and related Clang bits
1734 //
1735
1736 class MveEmitter : public EmitterBase {
1737 public:
MveEmitter(RecordKeeper & Records)1738 MveEmitter(RecordKeeper &Records) : EmitterBase(Records){};
1739 void EmitHeader(raw_ostream &OS) override;
1740 void EmitBuiltinDef(raw_ostream &OS) override;
1741 void EmitBuiltinSema(raw_ostream &OS) override;
1742 };
1743
EmitHeader(raw_ostream & OS)1744 void MveEmitter::EmitHeader(raw_ostream &OS) {
1745 // Accumulate pieces of the header file that will be enabled under various
1746 // different combinations of #ifdef. The index into parts[] is made up of
1747 // the following bit flags.
1748 constexpr unsigned Float = 1;
1749 constexpr unsigned UseUserNamespace = 2;
1750
1751 constexpr unsigned NumParts = 4;
1752 raw_self_contained_string_ostream parts[NumParts];
1753
1754 // Write typedefs for all the required vector types, and a few scalar
1755 // types that don't already have the name we want them to have.
1756
1757 parts[0] << "typedef uint16_t mve_pred16_t;\n";
1758 parts[Float] << "typedef __fp16 float16_t;\n"
1759 "typedef float float32_t;\n";
1760 for (const auto &kv : ScalarTypes) {
1761 const ScalarType *ST = kv.second.get();
1762 if (ST->hasNonstandardName())
1763 continue;
1764 raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1765 const VectorType *VT = getVectorType(ST);
1766
1767 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
1768 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
1769 << VT->cName() << ";\n";
1770
1771 // Every vector type also comes with a pair of multi-vector types for
1772 // the VLD2 and VLD4 instructions.
1773 for (unsigned n = 2; n <= 4; n += 2) {
1774 const MultiVectorType *MT = getMultiVectorType(n, VT);
1775 OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1776 << MT->cName() << ";\n";
1777 }
1778 }
1779 parts[0] << "\n";
1780 parts[Float] << "\n";
1781
1782 // Write declarations for all the intrinsics.
1783
1784 for (const auto &kv : ACLEIntrinsics) {
1785 const ACLEIntrinsic &Int = *kv.second;
1786
1787 // We generate each intrinsic twice, under its full unambiguous
1788 // name and its shorter polymorphic name (if the latter exists).
1789 for (bool Polymorphic : {false, true}) {
1790 if (Polymorphic && !Int.polymorphic())
1791 continue;
1792 if (!Polymorphic && Int.polymorphicOnly())
1793 continue;
1794
1795 // We also generate each intrinsic under a name like __arm_vfooq
1796 // (which is in C language implementation namespace, so it's
1797 // safe to define in any conforming user program) and a shorter
1798 // one like vfooq (which is in user namespace, so a user might
1799 // reasonably have used it for something already). If so, they
1800 // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1801 // including the header, which will suppress the shorter names
1802 // and leave only the implementation-namespace ones. Then they
1803 // have to write __arm_vfooq everywhere, of course.
1804
1805 for (bool UserNamespace : {false, true}) {
1806 raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1807 (UserNamespace ? UseUserNamespace : 0)];
1808
1809 // Make the name of the function in this declaration.
1810
1811 std::string FunctionName =
1812 Polymorphic ? Int.shortName() : Int.fullName();
1813 if (!UserNamespace)
1814 FunctionName = "__arm_" + FunctionName;
1815
1816 // Make strings for the types involved in the function's
1817 // prototype.
1818
1819 std::string RetTypeName = Int.returnType()->cName();
1820 if (!StringRef(RetTypeName).endswith("*"))
1821 RetTypeName += " ";
1822
1823 std::vector<std::string> ArgTypeNames;
1824 for (const Type *ArgTypePtr : Int.argTypes())
1825 ArgTypeNames.push_back(ArgTypePtr->cName());
1826 std::string ArgTypesString =
1827 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
1828
1829 // Emit the actual declaration. All these functions are
1830 // declared 'static inline' without a body, which is fine
1831 // provided clang recognizes them as builtins, and has the
1832 // effect that this type signature is used in place of the one
1833 // that Builtins.def didn't provide. That's how we can get
1834 // structure types that weren't defined until this header was
1835 // included to be part of the type signature of a builtin that
1836 // was known to clang already.
1837 //
1838 // The declarations use __attribute__(__clang_arm_builtin_alias),
1839 // so that each function declared will be recognized as the
1840 // appropriate MVE builtin in spite of its user-facing name.
1841 //
1842 // (That's better than making them all wrapper functions,
1843 // partly because it avoids any compiler error message citing
1844 // the wrapper function definition instead of the user's code,
1845 // and mostly because some MVE intrinsics have arguments
1846 // required to be compile-time constants, and that property
1847 // can't be propagated through a wrapper function. It can be
1848 // propagated through a macro, but macros can't be overloaded
1849 // on argument types very easily - you have to use _Generic,
1850 // which makes error messages very confusing when the user
1851 // gets it wrong.)
1852 //
1853 // Finally, the polymorphic versions of the intrinsics are
1854 // also defined with __attribute__(overloadable), so that when
1855 // the same name is defined with several type signatures, the
1856 // right thing happens. Each one of the overloaded
1857 // declarations is given a different builtin id, which
1858 // has exactly the effect we want: first clang resolves the
1859 // overload to the right function, then it knows which builtin
1860 // it's referring to, and then the Sema checking for that
1861 // builtin can check further things like the constant
1862 // arguments.
1863 //
1864 // One more subtlety is the newline just before the return
1865 // type name. That's a cosmetic tweak to make the error
1866 // messages legible if the user gets the types wrong in a call
1867 // to a polymorphic function: this way, clang will print just
1868 // the _final_ line of each declaration in the header, to show
1869 // the type signatures that would have been legal. So all the
1870 // confusing machinery with __attribute__ is left out of the
1871 // error message, and the user sees something that's more or
1872 // less self-documenting: "here's a list of actually readable
1873 // type signatures for vfooq(), and here's why each one didn't
1874 // match your call".
1875
1876 OS << "static __inline__ __attribute__(("
1877 << (Polymorphic ? "__overloadable__, " : "")
1878 << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
1879 << ")))\n"
1880 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1881 }
1882 }
1883 }
1884 for (auto &part : parts)
1885 part << "\n";
1886
1887 // Now we've finished accumulating bits and pieces into the parts[] array.
1888 // Put it all together to write the final output file.
1889
1890 OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1891 "-----------------------------------===\n"
1892 << LLVMLicenseHeader
1893 << "#ifndef __ARM_MVE_H\n"
1894 "#define __ARM_MVE_H\n"
1895 "\n"
1896 "#if !__ARM_FEATURE_MVE\n"
1897 "#error \"MVE support not enabled\"\n"
1898 "#endif\n"
1899 "\n"
1900 "#include <stdint.h>\n"
1901 "\n"
1902 "#ifdef __cplusplus\n"
1903 "extern \"C\" {\n"
1904 "#endif\n"
1905 "\n";
1906
1907 for (size_t i = 0; i < NumParts; ++i) {
1908 std::vector<std::string> conditions;
1909 if (i & Float)
1910 conditions.push_back("(__ARM_FEATURE_MVE & 2)");
1911 if (i & UseUserNamespace)
1912 conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1913
1914 std::string condition =
1915 join(std::begin(conditions), std::end(conditions), " && ");
1916 if (!condition.empty())
1917 OS << "#if " << condition << "\n\n";
1918 OS << parts[i].str();
1919 if (!condition.empty())
1920 OS << "#endif /* " << condition << " */\n\n";
1921 }
1922
1923 OS << "#ifdef __cplusplus\n"
1924 "} /* extern \"C\" */\n"
1925 "#endif\n"
1926 "\n"
1927 "#endif /* __ARM_MVE_H */\n";
1928 }
1929
EmitBuiltinDef(raw_ostream & OS)1930 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1931 for (const auto &kv : ACLEIntrinsics) {
1932 const ACLEIntrinsic &Int = *kv.second;
1933 OS << "TARGET_HEADER_BUILTIN(__builtin_arm_mve_" << Int.fullName()
1934 << ", \"\", \"n\", \"arm_mve.h\", ALL_LANGUAGES, \"\")\n";
1935 }
1936
1937 std::set<std::string> ShortNamesSeen;
1938
1939 for (const auto &kv : ACLEIntrinsics) {
1940 const ACLEIntrinsic &Int = *kv.second;
1941 if (Int.polymorphic()) {
1942 StringRef Name = Int.shortName();
1943 if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
1944 OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
1945 if (Int.nonEvaluating())
1946 OS << "u"; // indicate that this builtin doesn't evaluate its args
1947 OS << "\")\n";
1948 ShortNamesSeen.insert(std::string(Name));
1949 }
1950 }
1951 }
1952 }
1953
EmitBuiltinSema(raw_ostream & OS)1954 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1955 std::map<std::string, std::set<std::string>> Checks;
1956 GroupSemaChecks(Checks);
1957
1958 for (const auto &kv : Checks) {
1959 for (StringRef Name : kv.second)
1960 OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1961 OS << " return " << kv.first;
1962 }
1963 }
1964
1965 // -----------------------------------------------------------------------------
1966 // Class that describes an ACLE intrinsic implemented as a macro.
1967 //
1968 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
1969 // want to avoid a combinatorial explosion by reinterpreting the arguments to
1970 // fixed types.
1971
1972 class FunctionMacro {
1973 std::vector<StringRef> Params;
1974 StringRef Definition;
1975
1976 public:
1977 FunctionMacro(const Record &R);
1978
getParams() const1979 const std::vector<StringRef> &getParams() const { return Params; }
getDefinition() const1980 StringRef getDefinition() const { return Definition; }
1981 };
1982
FunctionMacro(const Record & R)1983 FunctionMacro::FunctionMacro(const Record &R) {
1984 Params = R.getValueAsListOfStrings("params");
1985 Definition = R.getValueAsString("definition");
1986 }
1987
1988 // -----------------------------------------------------------------------------
1989 // The class used for generating arm_cde.h and related Clang bits
1990 //
1991
1992 class CdeEmitter : public EmitterBase {
1993 std::map<StringRef, FunctionMacro> FunctionMacros;
1994
1995 public:
1996 CdeEmitter(RecordKeeper &Records);
1997 void EmitHeader(raw_ostream &OS) override;
1998 void EmitBuiltinDef(raw_ostream &OS) override;
1999 void EmitBuiltinSema(raw_ostream &OS) override;
2000 };
2001
CdeEmitter(RecordKeeper & Records)2002 CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) {
2003 for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
2004 FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
2005 }
2006
EmitHeader(raw_ostream & OS)2007 void CdeEmitter::EmitHeader(raw_ostream &OS) {
2008 // Accumulate pieces of the header file that will be enabled under various
2009 // different combinations of #ifdef. The index into parts[] is one of the
2010 // following:
2011 constexpr unsigned None = 0;
2012 constexpr unsigned MVE = 1;
2013 constexpr unsigned MVEFloat = 2;
2014
2015 constexpr unsigned NumParts = 3;
2016 raw_self_contained_string_ostream parts[NumParts];
2017
2018 // Write typedefs for all the required vector types, and a few scalar
2019 // types that don't already have the name we want them to have.
2020
2021 parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
2022 parts[MVEFloat] << "typedef __fp16 float16_t;\n"
2023 "typedef float float32_t;\n";
2024 for (const auto &kv : ScalarTypes) {
2025 const ScalarType *ST = kv.second.get();
2026 if (ST->hasNonstandardName())
2027 continue;
2028 // We don't have float64x2_t
2029 if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
2030 continue;
2031 raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
2032 const VectorType *VT = getVectorType(ST);
2033
2034 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
2035 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
2036 << VT->cName() << ";\n";
2037 }
2038 parts[MVE] << "\n";
2039 parts[MVEFloat] << "\n";
2040
2041 // Write declarations for all the intrinsics.
2042
2043 for (const auto &kv : ACLEIntrinsics) {
2044 const ACLEIntrinsic &Int = *kv.second;
2045
2046 // We generate each intrinsic twice, under its full unambiguous
2047 // name and its shorter polymorphic name (if the latter exists).
2048 for (bool Polymorphic : {false, true}) {
2049 if (Polymorphic && !Int.polymorphic())
2050 continue;
2051 if (!Polymorphic && Int.polymorphicOnly())
2052 continue;
2053
2054 raw_ostream &OS =
2055 parts[Int.requiresFloat() ? MVEFloat
2056 : Int.requiresMVE() ? MVE : None];
2057
2058 // Make the name of the function in this declaration.
2059 std::string FunctionName =
2060 "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());
2061
2062 // Make strings for the types involved in the function's
2063 // prototype.
2064 std::string RetTypeName = Int.returnType()->cName();
2065 if (!StringRef(RetTypeName).endswith("*"))
2066 RetTypeName += " ";
2067
2068 std::vector<std::string> ArgTypeNames;
2069 for (const Type *ArgTypePtr : Int.argTypes())
2070 ArgTypeNames.push_back(ArgTypePtr->cName());
2071 std::string ArgTypesString =
2072 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
2073
2074 // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
2075 // comments
2076 OS << "static __inline__ __attribute__(("
2077 << (Polymorphic ? "__overloadable__, " : "")
2078 << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
2079 << "_" << Int.fullName() << ")))\n"
2080 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
2081 }
2082 }
2083
2084 for (const auto &kv : FunctionMacros) {
2085 StringRef Name = kv.first;
2086 const FunctionMacro &FM = kv.second;
2087
2088 raw_ostream &OS = parts[MVE];
2089 OS << "#define "
2090 << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
2091 << FM.getDefinition() << "\n";
2092 }
2093
2094 for (auto &part : parts)
2095 part << "\n";
2096
2097 // Now we've finished accumulating bits and pieces into the parts[] array.
2098 // Put it all together to write the final output file.
2099
2100 OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
2101 "-----------------------------------===\n"
2102 << LLVMLicenseHeader
2103 << "#ifndef __ARM_CDE_H\n"
2104 "#define __ARM_CDE_H\n"
2105 "\n"
2106 "#if !__ARM_FEATURE_CDE\n"
2107 "#error \"CDE support not enabled\"\n"
2108 "#endif\n"
2109 "\n"
2110 "#include <stdint.h>\n"
2111 "\n"
2112 "#ifdef __cplusplus\n"
2113 "extern \"C\" {\n"
2114 "#endif\n"
2115 "\n";
2116
2117 for (size_t i = 0; i < NumParts; ++i) {
2118 std::string condition;
2119 if (i == MVEFloat)
2120 condition = "__ARM_FEATURE_MVE & 2";
2121 else if (i == MVE)
2122 condition = "__ARM_FEATURE_MVE";
2123
2124 if (!condition.empty())
2125 OS << "#if " << condition << "\n\n";
2126 OS << parts[i].str();
2127 if (!condition.empty())
2128 OS << "#endif /* " << condition << " */\n\n";
2129 }
2130
2131 OS << "#ifdef __cplusplus\n"
2132 "} /* extern \"C\" */\n"
2133 "#endif\n"
2134 "\n"
2135 "#endif /* __ARM_CDE_H */\n";
2136 }
2137
EmitBuiltinDef(raw_ostream & OS)2138 void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
2139 for (const auto &kv : ACLEIntrinsics) {
2140 if (kv.second->headerOnly())
2141 continue;
2142 const ACLEIntrinsic &Int = *kv.second;
2143 OS << "TARGET_HEADER_BUILTIN(__builtin_arm_cde_" << Int.fullName()
2144 << ", \"\", \"ncU\", \"arm_cde.h\", ALL_LANGUAGES, \"\")\n";
2145 }
2146 }
2147
EmitBuiltinSema(raw_ostream & OS)2148 void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
2149 std::map<std::string, std::set<std::string>> Checks;
2150 GroupSemaChecks(Checks);
2151
2152 for (const auto &kv : Checks) {
2153 for (StringRef Name : kv.second)
2154 OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
2155 OS << " Err = " << kv.first << " break;\n";
2156 }
2157 }
2158
2159 } // namespace
2160
2161 namespace clang {
2162
2163 // MVE
2164
EmitMveHeader(RecordKeeper & Records,raw_ostream & OS)2165 void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
2166 MveEmitter(Records).EmitHeader(OS);
2167 }
2168
EmitMveBuiltinDef(RecordKeeper & Records,raw_ostream & OS)2169 void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2170 MveEmitter(Records).EmitBuiltinDef(OS);
2171 }
2172
EmitMveBuiltinSema(RecordKeeper & Records,raw_ostream & OS)2173 void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2174 MveEmitter(Records).EmitBuiltinSema(OS);
2175 }
2176
EmitMveBuiltinCG(RecordKeeper & Records,raw_ostream & OS)2177 void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2178 MveEmitter(Records).EmitBuiltinCG(OS);
2179 }
2180
EmitMveBuiltinAliases(RecordKeeper & Records,raw_ostream & OS)2181 void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2182 MveEmitter(Records).EmitBuiltinAliases(OS);
2183 }
2184
2185 // CDE
2186
EmitCdeHeader(RecordKeeper & Records,raw_ostream & OS)2187 void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) {
2188 CdeEmitter(Records).EmitHeader(OS);
2189 }
2190
EmitCdeBuiltinDef(RecordKeeper & Records,raw_ostream & OS)2191 void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2192 CdeEmitter(Records).EmitBuiltinDef(OS);
2193 }
2194
EmitCdeBuiltinSema(RecordKeeper & Records,raw_ostream & OS)2195 void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2196 CdeEmitter(Records).EmitBuiltinSema(OS);
2197 }
2198
EmitCdeBuiltinCG(RecordKeeper & Records,raw_ostream & OS)2199 void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2200 CdeEmitter(Records).EmitBuiltinCG(OS);
2201 }
2202
EmitCdeBuiltinAliases(RecordKeeper & Records,raw_ostream & OS)2203 void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2204 CdeEmitter(Records).EmitBuiltinAliases(OS);
2205 }
2206
2207 } // end namespace clang
2208