1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/audio_coding/neteq/neteq_impl.h"
12
13 #include <assert.h>
14
15 #include <algorithm>
16 #include <cstdint>
17 #include <cstring>
18 #include <list>
19 #include <map>
20 #include <utility>
21 #include <vector>
22
23 #include "api/audio_codecs/audio_decoder.h"
24 #include "api/neteq/tick_timer.h"
25 #include "common_audio/signal_processing/include/signal_processing_library.h"
26 #include "modules/audio_coding/codecs/cng/webrtc_cng.h"
27 #include "modules/audio_coding/neteq/accelerate.h"
28 #include "modules/audio_coding/neteq/background_noise.h"
29 #include "modules/audio_coding/neteq/comfort_noise.h"
30 #include "modules/audio_coding/neteq/decision_logic.h"
31 #include "modules/audio_coding/neteq/decoder_database.h"
32 #include "modules/audio_coding/neteq/dtmf_buffer.h"
33 #include "modules/audio_coding/neteq/dtmf_tone_generator.h"
34 #include "modules/audio_coding/neteq/expand.h"
35 #include "modules/audio_coding/neteq/merge.h"
36 #include "modules/audio_coding/neteq/nack_tracker.h"
37 #include "modules/audio_coding/neteq/normal.h"
38 #include "modules/audio_coding/neteq/packet.h"
39 #include "modules/audio_coding/neteq/packet_buffer.h"
40 #include "modules/audio_coding/neteq/post_decode_vad.h"
41 #include "modules/audio_coding/neteq/preemptive_expand.h"
42 #include "modules/audio_coding/neteq/red_payload_splitter.h"
43 #include "modules/audio_coding/neteq/statistics_calculator.h"
44 #include "modules/audio_coding/neteq/sync_buffer.h"
45 #include "modules/audio_coding/neteq/time_stretch.h"
46 #include "modules/audio_coding/neteq/timestamp_scaler.h"
47 #include "rtc_base/checks.h"
48 #include "rtc_base/logging.h"
49 #include "rtc_base/numerics/safe_conversions.h"
50 #include "rtc_base/sanitizer.h"
51 #include "rtc_base/strings/audio_format_to_string.h"
52 #include "rtc_base/trace_event.h"
53 #include "system_wrappers/include/clock.h"
54 #include "system_wrappers/include/field_trial.h"
55
56 namespace webrtc {
57 namespace {
58
CreateNetEqController(const NetEqControllerFactory & controller_factory,int base_min_delay,int max_packets_in_buffer,bool enable_rtx_handling,bool allow_time_stretching,TickTimer * tick_timer,webrtc::Clock * clock)59 std::unique_ptr<NetEqController> CreateNetEqController(
60 const NetEqControllerFactory& controller_factory,
61 int base_min_delay,
62 int max_packets_in_buffer,
63 bool enable_rtx_handling,
64 bool allow_time_stretching,
65 TickTimer* tick_timer,
66 webrtc::Clock* clock) {
67 NetEqController::Config config;
68 config.base_min_delay_ms = base_min_delay;
69 config.max_packets_in_buffer = max_packets_in_buffer;
70 config.enable_rtx_handling = enable_rtx_handling;
71 config.allow_time_stretching = allow_time_stretching;
72 config.tick_timer = tick_timer;
73 config.clock = clock;
74 return controller_factory.CreateNetEqController(config);
75 }
76
GetDelayChainLengthMs(int config_extra_delay_ms)77 int GetDelayChainLengthMs(int config_extra_delay_ms) {
78 constexpr char kExtraDelayFieldTrial[] = "WebRTC-Audio-NetEqExtraDelay";
79 if (webrtc::field_trial::IsEnabled(kExtraDelayFieldTrial)) {
80 const auto field_trial_string =
81 webrtc::field_trial::FindFullName(kExtraDelayFieldTrial);
82 int extra_delay_ms = -1;
83 if (sscanf(field_trial_string.c_str(), "Enabled-%d", &extra_delay_ms) ==
84 1 &&
85 extra_delay_ms >= 0 && extra_delay_ms <= 2000) {
86 RTC_LOG(LS_INFO) << "Delay chain length set to " << extra_delay_ms
87 << " ms in field trial";
88 return (extra_delay_ms / 10) * 10; // Rounding down to multiple of 10.
89 }
90 }
91 // Field trial not set, or invalid value read. Use value from config.
92 return config_extra_delay_ms;
93 }
94
95 } // namespace
96
Dependencies(const NetEq::Config & config,Clock * clock,const rtc::scoped_refptr<AudioDecoderFactory> & decoder_factory,const NetEqControllerFactory & controller_factory)97 NetEqImpl::Dependencies::Dependencies(
98 const NetEq::Config& config,
99 Clock* clock,
100 const rtc::scoped_refptr<AudioDecoderFactory>& decoder_factory,
101 const NetEqControllerFactory& controller_factory)
102 : clock(clock),
103 tick_timer(new TickTimer),
104 stats(new StatisticsCalculator),
105 decoder_database(
106 new DecoderDatabase(decoder_factory, config.codec_pair_id)),
107 dtmf_buffer(new DtmfBuffer(config.sample_rate_hz)),
108 dtmf_tone_generator(new DtmfToneGenerator),
109 packet_buffer(
110 new PacketBuffer(config.max_packets_in_buffer, tick_timer.get())),
111 neteq_controller(
112 CreateNetEqController(controller_factory,
113 config.min_delay_ms,
114 config.max_packets_in_buffer,
115 config.enable_rtx_handling,
116 !config.for_test_no_time_stretching,
117 tick_timer.get(),
118 clock)),
119 red_payload_splitter(new RedPayloadSplitter),
120 timestamp_scaler(new TimestampScaler(*decoder_database)),
121 accelerate_factory(new AccelerateFactory),
122 expand_factory(new ExpandFactory),
123 preemptive_expand_factory(new PreemptiveExpandFactory) {}
124
125 NetEqImpl::Dependencies::~Dependencies() = default;
126
NetEqImpl(const NetEq::Config & config,Dependencies && deps,bool create_components)127 NetEqImpl::NetEqImpl(const NetEq::Config& config,
128 Dependencies&& deps,
129 bool create_components)
130 : clock_(deps.clock),
131 tick_timer_(std::move(deps.tick_timer)),
132 decoder_database_(std::move(deps.decoder_database)),
133 dtmf_buffer_(std::move(deps.dtmf_buffer)),
134 dtmf_tone_generator_(std::move(deps.dtmf_tone_generator)),
135 packet_buffer_(std::move(deps.packet_buffer)),
136 red_payload_splitter_(std::move(deps.red_payload_splitter)),
137 timestamp_scaler_(std::move(deps.timestamp_scaler)),
138 vad_(new PostDecodeVad()),
139 expand_factory_(std::move(deps.expand_factory)),
140 accelerate_factory_(std::move(deps.accelerate_factory)),
141 preemptive_expand_factory_(std::move(deps.preemptive_expand_factory)),
142 stats_(std::move(deps.stats)),
143 controller_(std::move(deps.neteq_controller)),
144 last_mode_(Mode::kNormal),
145 decoded_buffer_length_(kMaxFrameSize),
146 decoded_buffer_(new int16_t[decoded_buffer_length_]),
147 playout_timestamp_(0),
148 new_codec_(false),
149 timestamp_(0),
150 reset_decoder_(false),
151 first_packet_(true),
152 enable_fast_accelerate_(config.enable_fast_accelerate),
153 nack_enabled_(false),
154 enable_muted_state_(config.enable_muted_state),
155 expand_uma_logger_("WebRTC.Audio.ExpandRatePercent",
156 10, // Report once every 10 s.
157 tick_timer_.get()),
158 speech_expand_uma_logger_("WebRTC.Audio.SpeechExpandRatePercent",
159 10, // Report once every 10 s.
160 tick_timer_.get()),
161 no_time_stretching_(config.for_test_no_time_stretching),
162 enable_rtx_handling_(config.enable_rtx_handling),
163 output_delay_chain_ms_(
164 GetDelayChainLengthMs(config.extra_output_delay_ms)),
165 output_delay_chain_(rtc::CheckedDivExact(output_delay_chain_ms_, 10)) {
166 RTC_LOG(LS_INFO) << "NetEq config: " << config.ToString();
167 int fs = config.sample_rate_hz;
168 if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) {
169 RTC_LOG(LS_ERROR) << "Sample rate " << fs
170 << " Hz not supported. "
171 "Changing to 8000 Hz.";
172 fs = 8000;
173 }
174 controller_->SetMaximumDelay(config.max_delay_ms);
175 fs_hz_ = fs;
176 fs_mult_ = fs / 8000;
177 last_output_sample_rate_hz_ = fs;
178 output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
179 controller_->SetSampleRate(fs_hz_, output_size_samples_);
180 decoder_frame_length_ = 2 * output_size_samples_; // 20 ms.
181 if (create_components) {
182 SetSampleRateAndChannels(fs, 1); // Default is 1 channel.
183 }
184 RTC_DCHECK(!vad_->enabled());
185 if (config.enable_post_decode_vad) {
186 vad_->Enable();
187 }
188 }
189
190 NetEqImpl::~NetEqImpl() = default;
191
InsertPacket(const RTPHeader & rtp_header,rtc::ArrayView<const uint8_t> payload)192 int NetEqImpl::InsertPacket(const RTPHeader& rtp_header,
193 rtc::ArrayView<const uint8_t> payload) {
194 rtc::MsanCheckInitialized(payload);
195 TRACE_EVENT0("webrtc", "NetEqImpl::InsertPacket");
196 MutexLock lock(&mutex_);
197 if (InsertPacketInternal(rtp_header, payload) != 0) {
198 return kFail;
199 }
200 return kOK;
201 }
202
InsertEmptyPacket(const RTPHeader &)203 void NetEqImpl::InsertEmptyPacket(const RTPHeader& /*rtp_header*/) {
204 // TODO(henrik.lundin) Handle NACK as well. This will make use of the
205 // rtp_header parameter.
206 // https://bugs.chromium.org/p/webrtc/issues/detail?id=7611
207 MutexLock lock(&mutex_);
208 controller_->RegisterEmptyPacket();
209 }
210
211 namespace {
SetAudioFrameActivityAndType(bool vad_enabled,NetEqImpl::OutputType type,AudioFrame::VADActivity last_vad_activity,AudioFrame * audio_frame)212 void SetAudioFrameActivityAndType(bool vad_enabled,
213 NetEqImpl::OutputType type,
214 AudioFrame::VADActivity last_vad_activity,
215 AudioFrame* audio_frame) {
216 switch (type) {
217 case NetEqImpl::OutputType::kNormalSpeech: {
218 audio_frame->speech_type_ = AudioFrame::kNormalSpeech;
219 audio_frame->vad_activity_ = AudioFrame::kVadActive;
220 break;
221 }
222 case NetEqImpl::OutputType::kVadPassive: {
223 // This should only be reached if the VAD is enabled.
224 RTC_DCHECK(vad_enabled);
225 audio_frame->speech_type_ = AudioFrame::kNormalSpeech;
226 audio_frame->vad_activity_ = AudioFrame::kVadPassive;
227 break;
228 }
229 case NetEqImpl::OutputType::kCNG: {
230 audio_frame->speech_type_ = AudioFrame::kCNG;
231 audio_frame->vad_activity_ = AudioFrame::kVadPassive;
232 break;
233 }
234 case NetEqImpl::OutputType::kPLC: {
235 audio_frame->speech_type_ = AudioFrame::kPLC;
236 audio_frame->vad_activity_ = last_vad_activity;
237 break;
238 }
239 case NetEqImpl::OutputType::kPLCCNG: {
240 audio_frame->speech_type_ = AudioFrame::kPLCCNG;
241 audio_frame->vad_activity_ = AudioFrame::kVadPassive;
242 break;
243 }
244 case NetEqImpl::OutputType::kCodecPLC: {
245 audio_frame->speech_type_ = AudioFrame::kCodecPLC;
246 audio_frame->vad_activity_ = last_vad_activity;
247 break;
248 }
249 default:
250 RTC_NOTREACHED();
251 }
252 if (!vad_enabled) {
253 // Always set kVadUnknown when receive VAD is inactive.
254 audio_frame->vad_activity_ = AudioFrame::kVadUnknown;
255 }
256 }
257 } // namespace
258
GetAudio(AudioFrame * audio_frame,bool * muted,absl::optional<Operation> action_override)259 int NetEqImpl::GetAudio(AudioFrame* audio_frame,
260 bool* muted,
261 absl::optional<Operation> action_override) {
262 TRACE_EVENT0("webrtc", "NetEqImpl::GetAudio");
263 MutexLock lock(&mutex_);
264 if (GetAudioInternal(audio_frame, muted, action_override) != 0) {
265 return kFail;
266 }
267 RTC_DCHECK_EQ(
268 audio_frame->sample_rate_hz_,
269 rtc::dchecked_cast<int>(audio_frame->samples_per_channel_ * 100));
270 RTC_DCHECK_EQ(*muted, audio_frame->muted());
271 SetAudioFrameActivityAndType(vad_->enabled(), LastOutputType(),
272 last_vad_activity_, audio_frame);
273 last_vad_activity_ = audio_frame->vad_activity_;
274 last_output_sample_rate_hz_ = audio_frame->sample_rate_hz_;
275 RTC_DCHECK(last_output_sample_rate_hz_ == 8000 ||
276 last_output_sample_rate_hz_ == 16000 ||
277 last_output_sample_rate_hz_ == 32000 ||
278 last_output_sample_rate_hz_ == 48000)
279 << "Unexpected sample rate " << last_output_sample_rate_hz_;
280
281 if (!output_delay_chain_.empty()) {
282 if (output_delay_chain_empty_) {
283 for (auto& f : output_delay_chain_) {
284 f.CopyFrom(*audio_frame);
285 }
286 output_delay_chain_empty_ = false;
287 delayed_last_output_sample_rate_hz_ = last_output_sample_rate_hz_;
288 } else {
289 RTC_DCHECK_GE(output_delay_chain_ix_, 0);
290 RTC_DCHECK_LT(output_delay_chain_ix_, output_delay_chain_.size());
291 swap(output_delay_chain_[output_delay_chain_ix_], *audio_frame);
292 *muted = audio_frame->muted();
293 output_delay_chain_ix_ =
294 (output_delay_chain_ix_ + 1) % output_delay_chain_.size();
295 delayed_last_output_sample_rate_hz_ = audio_frame->sample_rate_hz();
296 }
297 }
298
299 return kOK;
300 }
301
SetCodecs(const std::map<int,SdpAudioFormat> & codecs)302 void NetEqImpl::SetCodecs(const std::map<int, SdpAudioFormat>& codecs) {
303 MutexLock lock(&mutex_);
304 const std::vector<int> changed_payload_types =
305 decoder_database_->SetCodecs(codecs);
306 for (const int pt : changed_payload_types) {
307 packet_buffer_->DiscardPacketsWithPayloadType(pt, stats_.get());
308 }
309 }
310
RegisterPayloadType(int rtp_payload_type,const SdpAudioFormat & audio_format)311 bool NetEqImpl::RegisterPayloadType(int rtp_payload_type,
312 const SdpAudioFormat& audio_format) {
313 RTC_LOG(LS_VERBOSE) << "NetEqImpl::RegisterPayloadType: payload type "
314 << rtp_payload_type << ", codec "
315 << rtc::ToString(audio_format);
316 MutexLock lock(&mutex_);
317 return decoder_database_->RegisterPayload(rtp_payload_type, audio_format) ==
318 DecoderDatabase::kOK;
319 }
320
RemovePayloadType(uint8_t rtp_payload_type)321 int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) {
322 MutexLock lock(&mutex_);
323 int ret = decoder_database_->Remove(rtp_payload_type);
324 if (ret == DecoderDatabase::kOK || ret == DecoderDatabase::kDecoderNotFound) {
325 packet_buffer_->DiscardPacketsWithPayloadType(rtp_payload_type,
326 stats_.get());
327 return kOK;
328 }
329 return kFail;
330 }
331
RemoveAllPayloadTypes()332 void NetEqImpl::RemoveAllPayloadTypes() {
333 MutexLock lock(&mutex_);
334 decoder_database_->RemoveAll();
335 }
336
SetMinimumDelay(int delay_ms)337 bool NetEqImpl::SetMinimumDelay(int delay_ms) {
338 MutexLock lock(&mutex_);
339 if (delay_ms >= 0 && delay_ms <= 10000) {
340 assert(controller_.get());
341 return controller_->SetMinimumDelay(
342 std::max(delay_ms - output_delay_chain_ms_, 0));
343 }
344 return false;
345 }
346
SetMaximumDelay(int delay_ms)347 bool NetEqImpl::SetMaximumDelay(int delay_ms) {
348 MutexLock lock(&mutex_);
349 if (delay_ms >= 0 && delay_ms <= 10000) {
350 assert(controller_.get());
351 return controller_->SetMaximumDelay(
352 std::max(delay_ms - output_delay_chain_ms_, 0));
353 }
354 return false;
355 }
356
SetBaseMinimumDelayMs(int delay_ms)357 bool NetEqImpl::SetBaseMinimumDelayMs(int delay_ms) {
358 MutexLock lock(&mutex_);
359 if (delay_ms >= 0 && delay_ms <= 10000) {
360 return controller_->SetBaseMinimumDelay(delay_ms);
361 }
362 return false;
363 }
364
GetBaseMinimumDelayMs() const365 int NetEqImpl::GetBaseMinimumDelayMs() const {
366 MutexLock lock(&mutex_);
367 return controller_->GetBaseMinimumDelay();
368 }
369
TargetDelayMs() const370 int NetEqImpl::TargetDelayMs() const {
371 MutexLock lock(&mutex_);
372 RTC_DCHECK(controller_.get());
373 return controller_->TargetLevelMs() + output_delay_chain_ms_;
374 }
375
FilteredCurrentDelayMs() const376 int NetEqImpl::FilteredCurrentDelayMs() const {
377 MutexLock lock(&mutex_);
378 // Sum up the filtered packet buffer level with the future length of the sync
379 // buffer.
380 const int delay_samples =
381 controller_->GetFilteredBufferLevel() + sync_buffer_->FutureLength();
382 // The division below will truncate. The return value is in ms.
383 return delay_samples / rtc::CheckedDivExact(fs_hz_, 1000) +
384 output_delay_chain_ms_;
385 }
386
NetworkStatistics(NetEqNetworkStatistics * stats)387 int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) {
388 MutexLock lock(&mutex_);
389 assert(decoder_database_.get());
390 const size_t total_samples_in_buffers =
391 packet_buffer_->NumSamplesInBuffer(decoder_frame_length_) +
392 sync_buffer_->FutureLength();
393 assert(controller_.get());
394 stats->preferred_buffer_size_ms = controller_->TargetLevelMs();
395 stats->jitter_peaks_found = controller_->PeakFound();
396 stats_->GetNetworkStatistics(fs_hz_, total_samples_in_buffers,
397 decoder_frame_length_, stats);
398 // Compensate for output delay chain.
399 stats->current_buffer_size_ms += output_delay_chain_ms_;
400 stats->preferred_buffer_size_ms += output_delay_chain_ms_;
401 stats->mean_waiting_time_ms += output_delay_chain_ms_;
402 stats->median_waiting_time_ms += output_delay_chain_ms_;
403 stats->min_waiting_time_ms += output_delay_chain_ms_;
404 stats->max_waiting_time_ms += output_delay_chain_ms_;
405 return 0;
406 }
407
GetLifetimeStatistics() const408 NetEqLifetimeStatistics NetEqImpl::GetLifetimeStatistics() const {
409 MutexLock lock(&mutex_);
410 return stats_->GetLifetimeStatistics();
411 }
412
GetOperationsAndState() const413 NetEqOperationsAndState NetEqImpl::GetOperationsAndState() const {
414 MutexLock lock(&mutex_);
415 auto result = stats_->GetOperationsAndState();
416 result.current_buffer_size_ms =
417 (packet_buffer_->NumSamplesInBuffer(decoder_frame_length_) +
418 sync_buffer_->FutureLength()) *
419 1000 / fs_hz_;
420 result.current_frame_size_ms = decoder_frame_length_ * 1000 / fs_hz_;
421 result.next_packet_available = packet_buffer_->PeekNextPacket() &&
422 packet_buffer_->PeekNextPacket()->timestamp ==
423 sync_buffer_->end_timestamp();
424 return result;
425 }
426
EnableVad()427 void NetEqImpl::EnableVad() {
428 MutexLock lock(&mutex_);
429 assert(vad_.get());
430 vad_->Enable();
431 }
432
DisableVad()433 void NetEqImpl::DisableVad() {
434 MutexLock lock(&mutex_);
435 assert(vad_.get());
436 vad_->Disable();
437 }
438
GetPlayoutTimestamp() const439 absl::optional<uint32_t> NetEqImpl::GetPlayoutTimestamp() const {
440 MutexLock lock(&mutex_);
441 if (first_packet_ || last_mode_ == Mode::kRfc3389Cng ||
442 last_mode_ == Mode::kCodecInternalCng) {
443 // We don't have a valid RTP timestamp until we have decoded our first
444 // RTP packet. Also, the RTP timestamp is not accurate while playing CNG,
445 // which is indicated by returning an empty value.
446 return absl::nullopt;
447 }
448 size_t sum_samples_in_output_delay_chain = 0;
449 for (const auto& audio_frame : output_delay_chain_) {
450 sum_samples_in_output_delay_chain += audio_frame.samples_per_channel();
451 }
452 return timestamp_scaler_->ToExternal(
453 playout_timestamp_ -
454 static_cast<uint32_t>(sum_samples_in_output_delay_chain));
455 }
456
last_output_sample_rate_hz() const457 int NetEqImpl::last_output_sample_rate_hz() const {
458 MutexLock lock(&mutex_);
459 return delayed_last_output_sample_rate_hz_.value_or(
460 last_output_sample_rate_hz_);
461 }
462
GetDecoderFormat(int payload_type) const463 absl::optional<NetEq::DecoderFormat> NetEqImpl::GetDecoderFormat(
464 int payload_type) const {
465 MutexLock lock(&mutex_);
466 const DecoderDatabase::DecoderInfo* const di =
467 decoder_database_->GetDecoderInfo(payload_type);
468 if (di) {
469 const AudioDecoder* const decoder = di->GetDecoder();
470 // TODO(kwiberg): Why the special case for RED?
471 return DecoderFormat{
472 /*sample_rate_hz=*/di->IsRed() ? 8000 : di->SampleRateHz(),
473 /*num_channels=*/
474 decoder ? rtc::dchecked_cast<int>(decoder->Channels()) : 1,
475 /*sdp_format=*/di->GetFormat()};
476 } else {
477 // Payload type not registered.
478 return absl::nullopt;
479 }
480 }
481
FlushBuffers()482 void NetEqImpl::FlushBuffers() {
483 MutexLock lock(&mutex_);
484 RTC_LOG(LS_VERBOSE) << "FlushBuffers";
485 packet_buffer_->Flush();
486 assert(sync_buffer_.get());
487 assert(expand_.get());
488 sync_buffer_->Flush();
489 sync_buffer_->set_next_index(sync_buffer_->next_index() -
490 expand_->overlap_length());
491 // Set to wait for new codec.
492 first_packet_ = true;
493 }
494
EnableNack(size_t max_nack_list_size)495 void NetEqImpl::EnableNack(size_t max_nack_list_size) {
496 MutexLock lock(&mutex_);
497 if (!nack_enabled_) {
498 const int kNackThresholdPackets = 2;
499 nack_.reset(NackTracker::Create(kNackThresholdPackets));
500 nack_enabled_ = true;
501 nack_->UpdateSampleRate(fs_hz_);
502 }
503 nack_->SetMaxNackListSize(max_nack_list_size);
504 }
505
DisableNack()506 void NetEqImpl::DisableNack() {
507 MutexLock lock(&mutex_);
508 nack_.reset();
509 nack_enabled_ = false;
510 }
511
GetNackList(int64_t round_trip_time_ms) const512 std::vector<uint16_t> NetEqImpl::GetNackList(int64_t round_trip_time_ms) const {
513 MutexLock lock(&mutex_);
514 if (!nack_enabled_) {
515 return std::vector<uint16_t>();
516 }
517 RTC_DCHECK(nack_.get());
518 return nack_->GetNackList(round_trip_time_ms);
519 }
520
LastDecodedTimestamps() const521 std::vector<uint32_t> NetEqImpl::LastDecodedTimestamps() const {
522 MutexLock lock(&mutex_);
523 return last_decoded_timestamps_;
524 }
525
SyncBufferSizeMs() const526 int NetEqImpl::SyncBufferSizeMs() const {
527 MutexLock lock(&mutex_);
528 return rtc::dchecked_cast<int>(sync_buffer_->FutureLength() /
529 rtc::CheckedDivExact(fs_hz_, 1000));
530 }
531
sync_buffer_for_test() const532 const SyncBuffer* NetEqImpl::sync_buffer_for_test() const {
533 MutexLock lock(&mutex_);
534 return sync_buffer_.get();
535 }
536
last_operation_for_test() const537 NetEq::Operation NetEqImpl::last_operation_for_test() const {
538 MutexLock lock(&mutex_);
539 return last_operation_;
540 }
541
542 // Methods below this line are private.
543
InsertPacketInternal(const RTPHeader & rtp_header,rtc::ArrayView<const uint8_t> payload)544 int NetEqImpl::InsertPacketInternal(const RTPHeader& rtp_header,
545 rtc::ArrayView<const uint8_t> payload) {
546 if (payload.empty()) {
547 RTC_LOG_F(LS_ERROR) << "payload is empty";
548 return kInvalidPointer;
549 }
550
551 int64_t receive_time_ms = clock_->TimeInMilliseconds();
552 stats_->ReceivedPacket();
553
554 PacketList packet_list;
555 // Insert packet in a packet list.
556 packet_list.push_back([&rtp_header, &payload, &receive_time_ms] {
557 // Convert to Packet.
558 Packet packet;
559 packet.payload_type = rtp_header.payloadType;
560 packet.sequence_number = rtp_header.sequenceNumber;
561 packet.timestamp = rtp_header.timestamp;
562 packet.payload.SetData(payload.data(), payload.size());
563 packet.packet_info = RtpPacketInfo(rtp_header, receive_time_ms);
564 // Waiting time will be set upon inserting the packet in the buffer.
565 RTC_DCHECK(!packet.waiting_time);
566 return packet;
567 }());
568
569 bool update_sample_rate_and_channels = first_packet_;
570
571 if (update_sample_rate_and_channels) {
572 // Reset timestamp scaling.
573 timestamp_scaler_->Reset();
574 }
575
576 if (!decoder_database_->IsRed(rtp_header.payloadType)) {
577 // Scale timestamp to internal domain (only for some codecs).
578 timestamp_scaler_->ToInternal(&packet_list);
579 }
580
581 // Store these for later use, since the first packet may very well disappear
582 // before we need these values.
583 uint32_t main_timestamp = packet_list.front().timestamp;
584 uint8_t main_payload_type = packet_list.front().payload_type;
585 uint16_t main_sequence_number = packet_list.front().sequence_number;
586
587 // Reinitialize NetEq if it's needed (changed SSRC or first call).
588 if (update_sample_rate_and_channels) {
589 // Note: |first_packet_| will be cleared further down in this method, once
590 // the packet has been successfully inserted into the packet buffer.
591
592 // Flush the packet buffer and DTMF buffer.
593 packet_buffer_->Flush();
594 dtmf_buffer_->Flush();
595
596 // Update audio buffer timestamp.
597 sync_buffer_->IncreaseEndTimestamp(main_timestamp - timestamp_);
598
599 // Update codecs.
600 timestamp_ = main_timestamp;
601 }
602
603 if (nack_enabled_) {
604 RTC_DCHECK(nack_);
605 if (update_sample_rate_and_channels) {
606 nack_->Reset();
607 }
608 nack_->UpdateLastReceivedPacket(rtp_header.sequenceNumber,
609 rtp_header.timestamp);
610 }
611
612 // Check for RED payload type, and separate payloads into several packets.
613 if (decoder_database_->IsRed(rtp_header.payloadType)) {
614 if (!red_payload_splitter_->SplitRed(&packet_list)) {
615 return kRedundancySplitError;
616 }
617 // Only accept a few RED payloads of the same type as the main data,
618 // DTMF events and CNG.
619 red_payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_);
620 if (packet_list.empty()) {
621 return kRedundancySplitError;
622 }
623 }
624
625 // Check payload types.
626 if (decoder_database_->CheckPayloadTypes(packet_list) ==
627 DecoderDatabase::kDecoderNotFound) {
628 return kUnknownRtpPayloadType;
629 }
630
631 RTC_DCHECK(!packet_list.empty());
632
633 // Update main_timestamp, if new packets appear in the list
634 // after RED splitting.
635 if (decoder_database_->IsRed(rtp_header.payloadType)) {
636 timestamp_scaler_->ToInternal(&packet_list);
637 main_timestamp = packet_list.front().timestamp;
638 main_payload_type = packet_list.front().payload_type;
639 main_sequence_number = packet_list.front().sequence_number;
640 }
641
642 // Process DTMF payloads. Cycle through the list of packets, and pick out any
643 // DTMF payloads found.
644 PacketList::iterator it = packet_list.begin();
645 while (it != packet_list.end()) {
646 const Packet& current_packet = (*it);
647 RTC_DCHECK(!current_packet.payload.empty());
648 if (decoder_database_->IsDtmf(current_packet.payload_type)) {
649 DtmfEvent event;
650 int ret = DtmfBuffer::ParseEvent(current_packet.timestamp,
651 current_packet.payload.data(),
652 current_packet.payload.size(), &event);
653 if (ret != DtmfBuffer::kOK) {
654 return kDtmfParsingError;
655 }
656 if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) {
657 return kDtmfInsertError;
658 }
659 it = packet_list.erase(it);
660 } else {
661 ++it;
662 }
663 }
664
665 PacketList parsed_packet_list;
666 while (!packet_list.empty()) {
667 Packet& packet = packet_list.front();
668 const DecoderDatabase::DecoderInfo* info =
669 decoder_database_->GetDecoderInfo(packet.payload_type);
670 if (!info) {
671 RTC_LOG(LS_WARNING) << "SplitAudio unknown payload type";
672 return kUnknownRtpPayloadType;
673 }
674
675 if (info->IsComfortNoise()) {
676 // Carry comfort noise packets along.
677 parsed_packet_list.splice(parsed_packet_list.end(), packet_list,
678 packet_list.begin());
679 } else {
680 const auto sequence_number = packet.sequence_number;
681 const auto payload_type = packet.payload_type;
682 const Packet::Priority original_priority = packet.priority;
683 const auto& packet_info = packet.packet_info;
684 auto packet_from_result = [&](AudioDecoder::ParseResult& result) {
685 Packet new_packet;
686 new_packet.sequence_number = sequence_number;
687 new_packet.payload_type = payload_type;
688 new_packet.timestamp = result.timestamp;
689 new_packet.priority.codec_level = result.priority;
690 new_packet.priority.red_level = original_priority.red_level;
691 new_packet.packet_info = packet_info;
692 new_packet.frame = std::move(result.frame);
693 return new_packet;
694 };
695
696 std::vector<AudioDecoder::ParseResult> results =
697 info->GetDecoder()->ParsePayload(std::move(packet.payload),
698 packet.timestamp);
699 if (results.empty()) {
700 packet_list.pop_front();
701 } else {
702 bool first = true;
703 for (auto& result : results) {
704 RTC_DCHECK(result.frame);
705 RTC_DCHECK_GE(result.priority, 0);
706 if (first) {
707 // Re-use the node and move it to parsed_packet_list.
708 packet_list.front() = packet_from_result(result);
709 parsed_packet_list.splice(parsed_packet_list.end(), packet_list,
710 packet_list.begin());
711 first = false;
712 } else {
713 parsed_packet_list.push_back(packet_from_result(result));
714 }
715 }
716 }
717 }
718 }
719
720 // Calculate the number of primary (non-FEC/RED) packets.
721 const size_t number_of_primary_packets = std::count_if(
722 parsed_packet_list.begin(), parsed_packet_list.end(),
723 [](const Packet& in) { return in.priority.codec_level == 0; });
724 if (number_of_primary_packets < parsed_packet_list.size()) {
725 stats_->SecondaryPacketsReceived(parsed_packet_list.size() -
726 number_of_primary_packets);
727 }
728
729 // Insert packets in buffer.
730 const int ret = packet_buffer_->InsertPacketList(
731 &parsed_packet_list, *decoder_database_, ¤t_rtp_payload_type_,
732 ¤t_cng_rtp_payload_type_, stats_.get());
733 if (ret == PacketBuffer::kFlushed) {
734 // Reset DSP timestamp etc. if packet buffer flushed.
735 new_codec_ = true;
736 update_sample_rate_and_channels = true;
737 } else if (ret != PacketBuffer::kOK) {
738 return kOtherError;
739 }
740
741 if (first_packet_) {
742 first_packet_ = false;
743 // Update the codec on the next GetAudio call.
744 new_codec_ = true;
745 }
746
747 if (current_rtp_payload_type_) {
748 RTC_DCHECK(decoder_database_->GetDecoderInfo(*current_rtp_payload_type_))
749 << "Payload type " << static_cast<int>(*current_rtp_payload_type_)
750 << " is unknown where it shouldn't be";
751 }
752
753 if (update_sample_rate_and_channels && !packet_buffer_->Empty()) {
754 // We do not use |current_rtp_payload_type_| to |set payload_type|, but
755 // get the next RTP header from |packet_buffer_| to obtain the payload type.
756 // The reason for it is the following corner case. If NetEq receives a
757 // CNG packet with a sample rate different than the current CNG then it
758 // flushes its buffer, assuming send codec must have been changed. However,
759 // payload type of the hypothetically new send codec is not known.
760 const Packet* next_packet = packet_buffer_->PeekNextPacket();
761 RTC_DCHECK(next_packet);
762 const int payload_type = next_packet->payload_type;
763 size_t channels = 1;
764 if (!decoder_database_->IsComfortNoise(payload_type)) {
765 AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type);
766 assert(decoder); // Payloads are already checked to be valid.
767 channels = decoder->Channels();
768 }
769 const DecoderDatabase::DecoderInfo* decoder_info =
770 decoder_database_->GetDecoderInfo(payload_type);
771 assert(decoder_info);
772 if (decoder_info->SampleRateHz() != fs_hz_ ||
773 channels != algorithm_buffer_->Channels()) {
774 SetSampleRateAndChannels(decoder_info->SampleRateHz(), channels);
775 }
776 if (nack_enabled_) {
777 RTC_DCHECK(nack_);
778 // Update the sample rate even if the rate is not new, because of Reset().
779 nack_->UpdateSampleRate(fs_hz_);
780 }
781 }
782
783 const DecoderDatabase::DecoderInfo* dec_info =
784 decoder_database_->GetDecoderInfo(main_payload_type);
785 assert(dec_info); // Already checked that the payload type is known.
786
787 const bool last_cng_or_dtmf =
788 dec_info->IsComfortNoise() || dec_info->IsDtmf();
789 const size_t packet_length_samples =
790 number_of_primary_packets * decoder_frame_length_;
791 // Only update statistics if incoming packet is not older than last played
792 // out packet or RTX handling is enabled, and if new codec flag is not
793 // set.
794 const bool should_update_stats =
795 (enable_rtx_handling_ ||
796 static_cast<int32_t>(main_timestamp - timestamp_) >= 0) &&
797 !new_codec_;
798
799 auto relative_delay = controller_->PacketArrived(
800 last_cng_or_dtmf, packet_length_samples, should_update_stats,
801 main_sequence_number, main_timestamp, fs_hz_);
802 if (relative_delay) {
803 stats_->RelativePacketArrivalDelay(relative_delay.value());
804 }
805 return 0;
806 }
807
GetAudioInternal(AudioFrame * audio_frame,bool * muted,absl::optional<Operation> action_override)808 int NetEqImpl::GetAudioInternal(AudioFrame* audio_frame,
809 bool* muted,
810 absl::optional<Operation> action_override) {
811 PacketList packet_list;
812 DtmfEvent dtmf_event;
813 Operation operation;
814 bool play_dtmf;
815 *muted = false;
816 last_decoded_timestamps_.clear();
817 last_decoded_packet_infos_.clear();
818 tick_timer_->Increment();
819 stats_->IncreaseCounter(output_size_samples_, fs_hz_);
820 const auto lifetime_stats = stats_->GetLifetimeStatistics();
821 expand_uma_logger_.UpdateSampleCounter(lifetime_stats.concealed_samples,
822 fs_hz_);
823 speech_expand_uma_logger_.UpdateSampleCounter(
824 lifetime_stats.concealed_samples -
825 lifetime_stats.silent_concealed_samples,
826 fs_hz_);
827
828 // Check for muted state.
829 if (enable_muted_state_ && expand_->Muted() && packet_buffer_->Empty()) {
830 RTC_DCHECK_EQ(last_mode_, Mode::kExpand);
831 audio_frame->Reset();
832 RTC_DCHECK(audio_frame->muted()); // Reset() should mute the frame.
833 playout_timestamp_ += static_cast<uint32_t>(output_size_samples_);
834 audio_frame->sample_rate_hz_ = fs_hz_;
835 audio_frame->samples_per_channel_ = output_size_samples_;
836 audio_frame->timestamp_ =
837 first_packet_
838 ? 0
839 : timestamp_scaler_->ToExternal(playout_timestamp_) -
840 static_cast<uint32_t>(audio_frame->samples_per_channel_);
841 audio_frame->num_channels_ = sync_buffer_->Channels();
842 stats_->ExpandedNoiseSamples(output_size_samples_, false);
843 *muted = true;
844 return 0;
845 }
846 int return_value = GetDecision(&operation, &packet_list, &dtmf_event,
847 &play_dtmf, action_override);
848 if (return_value != 0) {
849 last_mode_ = Mode::kError;
850 return return_value;
851 }
852
853 AudioDecoder::SpeechType speech_type;
854 int length = 0;
855 const size_t start_num_packets = packet_list.size();
856 int decode_return_value =
857 Decode(&packet_list, &operation, &length, &speech_type);
858
859 assert(vad_.get());
860 bool sid_frame_available =
861 (operation == Operation::kRfc3389Cng && !packet_list.empty());
862 vad_->Update(decoded_buffer_.get(), static_cast<size_t>(length), speech_type,
863 sid_frame_available, fs_hz_);
864
865 // This is the criterion that we did decode some data through the speech
866 // decoder, and the operation resulted in comfort noise.
867 const bool codec_internal_sid_frame =
868 (speech_type == AudioDecoder::kComfortNoise &&
869 start_num_packets > packet_list.size());
870
871 if (sid_frame_available || codec_internal_sid_frame) {
872 // Start a new stopwatch since we are decoding a new CNG packet.
873 generated_noise_stopwatch_ = tick_timer_->GetNewStopwatch();
874 }
875
876 algorithm_buffer_->Clear();
877 switch (operation) {
878 case Operation::kNormal: {
879 DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf);
880 if (length > 0) {
881 stats_->DecodedOutputPlayed();
882 }
883 break;
884 }
885 case Operation::kMerge: {
886 DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf);
887 break;
888 }
889 case Operation::kExpand: {
890 RTC_DCHECK_EQ(return_value, 0);
891 if (!current_rtp_payload_type_ || !DoCodecPlc()) {
892 return_value = DoExpand(play_dtmf);
893 }
894 RTC_DCHECK_GE(sync_buffer_->FutureLength() - expand_->overlap_length(),
895 output_size_samples_);
896 break;
897 }
898 case Operation::kAccelerate:
899 case Operation::kFastAccelerate: {
900 const bool fast_accelerate =
901 enable_fast_accelerate_ && (operation == Operation::kFastAccelerate);
902 return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type,
903 play_dtmf, fast_accelerate);
904 break;
905 }
906 case Operation::kPreemptiveExpand: {
907 return_value = DoPreemptiveExpand(decoded_buffer_.get(), length,
908 speech_type, play_dtmf);
909 break;
910 }
911 case Operation::kRfc3389Cng:
912 case Operation::kRfc3389CngNoPacket: {
913 return_value = DoRfc3389Cng(&packet_list, play_dtmf);
914 break;
915 }
916 case Operation::kCodecInternalCng: {
917 // This handles the case when there is no transmission and the decoder
918 // should produce internal comfort noise.
919 // TODO(hlundin): Write test for codec-internal CNG.
920 DoCodecInternalCng(decoded_buffer_.get(), length);
921 break;
922 }
923 case Operation::kDtmf: {
924 // TODO(hlundin): Write test for this.
925 return_value = DoDtmf(dtmf_event, &play_dtmf);
926 break;
927 }
928 case Operation::kUndefined: {
929 RTC_LOG(LS_ERROR) << "Invalid operation kUndefined.";
930 assert(false); // This should not happen.
931 last_mode_ = Mode::kError;
932 return kInvalidOperation;
933 }
934 } // End of switch.
935 last_operation_ = operation;
936 if (return_value < 0) {
937 return return_value;
938 }
939
940 if (last_mode_ != Mode::kRfc3389Cng) {
941 comfort_noise_->Reset();
942 }
943
944 // We treat it as if all packets referenced to by |last_decoded_packet_infos_|
945 // were mashed together when creating the samples in |algorithm_buffer_|.
946 RtpPacketInfos packet_infos(last_decoded_packet_infos_);
947
948 // Copy samples from |algorithm_buffer_| to |sync_buffer_|.
949 //
950 // TODO(bugs.webrtc.org/10757):
951 // We would in the future also like to pass |packet_infos| so that we can do
952 // sample-perfect tracking of that information across |sync_buffer_|.
953 sync_buffer_->PushBack(*algorithm_buffer_);
954
955 // Extract data from |sync_buffer_| to |output|.
956 size_t num_output_samples_per_channel = output_size_samples_;
957 size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels();
958 if (num_output_samples > AudioFrame::kMaxDataSizeSamples) {
959 RTC_LOG(LS_WARNING) << "Output array is too short. "
960 << AudioFrame::kMaxDataSizeSamples << " < "
961 << output_size_samples_ << " * "
962 << sync_buffer_->Channels();
963 num_output_samples = AudioFrame::kMaxDataSizeSamples;
964 num_output_samples_per_channel =
965 AudioFrame::kMaxDataSizeSamples / sync_buffer_->Channels();
966 }
967 sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel,
968 audio_frame);
969 audio_frame->sample_rate_hz_ = fs_hz_;
970 // TODO(bugs.webrtc.org/10757):
971 // We don't have the ability to properly track individual packets once their
972 // audio samples have entered |sync_buffer_|. So for now, treat it as if
973 // |packet_infos| from packets decoded by the current |GetAudioInternal()|
974 // call were all consumed assembling the current audio frame and the current
975 // audio frame only.
976 audio_frame->packet_infos_ = std::move(packet_infos);
977 if (sync_buffer_->FutureLength() < expand_->overlap_length()) {
978 // The sync buffer should always contain |overlap_length| samples, but now
979 // too many samples have been extracted. Reinstall the |overlap_length|
980 // lookahead by moving the index.
981 const size_t missing_lookahead_samples =
982 expand_->overlap_length() - sync_buffer_->FutureLength();
983 RTC_DCHECK_GE(sync_buffer_->next_index(), missing_lookahead_samples);
984 sync_buffer_->set_next_index(sync_buffer_->next_index() -
985 missing_lookahead_samples);
986 }
987 if (audio_frame->samples_per_channel_ != output_size_samples_) {
988 RTC_LOG(LS_ERROR) << "audio_frame->samples_per_channel_ ("
989 << audio_frame->samples_per_channel_
990 << ") != output_size_samples_ (" << output_size_samples_
991 << ")";
992 // TODO(minyue): treatment of under-run, filling zeros
993 audio_frame->Mute();
994 return kSampleUnderrun;
995 }
996
997 // Should always have overlap samples left in the |sync_buffer_|.
998 RTC_DCHECK_GE(sync_buffer_->FutureLength(), expand_->overlap_length());
999
1000 // TODO(yujo): For muted frames, this can be a copy rather than an addition.
1001 if (play_dtmf) {
1002 return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(),
1003 audio_frame->mutable_data());
1004 }
1005
1006 // Update the background noise parameters if last operation wrote data
1007 // straight from the decoder to the |sync_buffer_|. That is, none of the
1008 // operations that modify the signal can be followed by a parameter update.
1009 if ((last_mode_ == Mode::kNormal) || (last_mode_ == Mode::kAccelerateFail) ||
1010 (last_mode_ == Mode::kPreemptiveExpandFail) ||
1011 (last_mode_ == Mode::kRfc3389Cng) ||
1012 (last_mode_ == Mode::kCodecInternalCng)) {
1013 background_noise_->Update(*sync_buffer_, *vad_.get());
1014 }
1015
1016 if (operation == Operation::kDtmf) {
1017 // DTMF data was written the end of |sync_buffer_|.
1018 // Update index to end of DTMF data in |sync_buffer_|.
1019 sync_buffer_->set_dtmf_index(sync_buffer_->Size());
1020 }
1021
1022 if (last_mode_ != Mode::kExpand && last_mode_ != Mode::kCodecPlc) {
1023 // If last operation was not expand, calculate the |playout_timestamp_| from
1024 // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it
1025 // would be moved "backwards".
1026 uint32_t temp_timestamp =
1027 sync_buffer_->end_timestamp() -
1028 static_cast<uint32_t>(sync_buffer_->FutureLength());
1029 if (static_cast<int32_t>(temp_timestamp - playout_timestamp_) > 0) {
1030 playout_timestamp_ = temp_timestamp;
1031 }
1032 } else {
1033 // Use dead reckoning to estimate the |playout_timestamp_|.
1034 playout_timestamp_ += static_cast<uint32_t>(output_size_samples_);
1035 }
1036 // Set the timestamp in the audio frame to zero before the first packet has
1037 // been inserted. Otherwise, subtract the frame size in samples to get the
1038 // timestamp of the first sample in the frame (playout_timestamp_ is the
1039 // last + 1).
1040 audio_frame->timestamp_ =
1041 first_packet_
1042 ? 0
1043 : timestamp_scaler_->ToExternal(playout_timestamp_) -
1044 static_cast<uint32_t>(audio_frame->samples_per_channel_);
1045
1046 if (!(last_mode_ == Mode::kRfc3389Cng ||
1047 last_mode_ == Mode::kCodecInternalCng || last_mode_ == Mode::kExpand ||
1048 last_mode_ == Mode::kCodecPlc)) {
1049 generated_noise_stopwatch_.reset();
1050 }
1051
1052 if (decode_return_value)
1053 return decode_return_value;
1054 return return_value;
1055 }
1056
GetDecision(Operation * operation,PacketList * packet_list,DtmfEvent * dtmf_event,bool * play_dtmf,absl::optional<Operation> action_override)1057 int NetEqImpl::GetDecision(Operation* operation,
1058 PacketList* packet_list,
1059 DtmfEvent* dtmf_event,
1060 bool* play_dtmf,
1061 absl::optional<Operation> action_override) {
1062 // Initialize output variables.
1063 *play_dtmf = false;
1064 *operation = Operation::kUndefined;
1065
1066 assert(sync_buffer_.get());
1067 uint32_t end_timestamp = sync_buffer_->end_timestamp();
1068 if (!new_codec_) {
1069 const uint32_t five_seconds_samples = 5 * fs_hz_;
1070 packet_buffer_->DiscardOldPackets(end_timestamp, five_seconds_samples,
1071 stats_.get());
1072 }
1073 const Packet* packet = packet_buffer_->PeekNextPacket();
1074
1075 RTC_DCHECK(!generated_noise_stopwatch_ ||
1076 generated_noise_stopwatch_->ElapsedTicks() >= 1);
1077 uint64_t generated_noise_samples =
1078 generated_noise_stopwatch_ ? (generated_noise_stopwatch_->ElapsedTicks() -
1079 1) * output_size_samples_ +
1080 controller_->noise_fast_forward()
1081 : 0;
1082
1083 if (controller_->CngRfc3389On() || last_mode_ == Mode::kRfc3389Cng) {
1084 // Because of timestamp peculiarities, we have to "manually" disallow using
1085 // a CNG packet with the same timestamp as the one that was last played.
1086 // This can happen when using redundancy and will cause the timing to shift.
1087 while (packet && decoder_database_->IsComfortNoise(packet->payload_type) &&
1088 (end_timestamp >= packet->timestamp ||
1089 end_timestamp + generated_noise_samples > packet->timestamp)) {
1090 // Don't use this packet, discard it.
1091 if (packet_buffer_->DiscardNextPacket(stats_.get()) !=
1092 PacketBuffer::kOK) {
1093 assert(false); // Must be ok by design.
1094 }
1095 // Check buffer again.
1096 if (!new_codec_) {
1097 packet_buffer_->DiscardOldPackets(end_timestamp, 5 * fs_hz_,
1098 stats_.get());
1099 }
1100 packet = packet_buffer_->PeekNextPacket();
1101 }
1102 }
1103
1104 assert(expand_.get());
1105 const int samples_left = static_cast<int>(sync_buffer_->FutureLength() -
1106 expand_->overlap_length());
1107 if (last_mode_ == Mode::kAccelerateSuccess ||
1108 last_mode_ == Mode::kAccelerateLowEnergy ||
1109 last_mode_ == Mode::kPreemptiveExpandSuccess ||
1110 last_mode_ == Mode::kPreemptiveExpandLowEnergy) {
1111 // Subtract (samples_left + output_size_samples_) from sampleMemory.
1112 controller_->AddSampleMemory(
1113 -(samples_left + rtc::dchecked_cast<int>(output_size_samples_)));
1114 }
1115
1116 // Check if it is time to play a DTMF event.
1117 if (dtmf_buffer_->GetEvent(
1118 static_cast<uint32_t>(end_timestamp + generated_noise_samples),
1119 dtmf_event)) {
1120 *play_dtmf = true;
1121 }
1122
1123 // Get instruction.
1124 assert(sync_buffer_.get());
1125 assert(expand_.get());
1126 generated_noise_samples =
1127 generated_noise_stopwatch_
1128 ? generated_noise_stopwatch_->ElapsedTicks() * output_size_samples_ +
1129 controller_->noise_fast_forward()
1130 : 0;
1131 NetEqController::NetEqStatus status;
1132 status.packet_buffer_info.dtx_or_cng =
1133 packet_buffer_->ContainsDtxOrCngPacket(decoder_database_.get());
1134 status.packet_buffer_info.num_samples =
1135 packet_buffer_->NumSamplesInBuffer(decoder_frame_length_);
1136 status.packet_buffer_info.span_samples = packet_buffer_->GetSpanSamples(
1137 decoder_frame_length_, last_output_sample_rate_hz_, true);
1138 status.packet_buffer_info.span_samples_no_dtx =
1139 packet_buffer_->GetSpanSamples(decoder_frame_length_,
1140 last_output_sample_rate_hz_, false);
1141 status.packet_buffer_info.num_packets = packet_buffer_->NumPacketsInBuffer();
1142 status.target_timestamp = sync_buffer_->end_timestamp();
1143 status.expand_mutefactor = expand_->MuteFactor(0);
1144 status.last_packet_samples = decoder_frame_length_;
1145 status.last_mode = last_mode_;
1146 status.play_dtmf = *play_dtmf;
1147 status.generated_noise_samples = generated_noise_samples;
1148 status.sync_buffer_samples = sync_buffer_->FutureLength();
1149 if (packet) {
1150 status.next_packet = {
1151 packet->timestamp, packet->frame && packet->frame->IsDtxPacket(),
1152 decoder_database_->IsComfortNoise(packet->payload_type)};
1153 }
1154 *operation = controller_->GetDecision(status, &reset_decoder_);
1155
1156 // Disallow time stretching if this packet is DTX, because such a decision may
1157 // be based on earlier buffer level estimate, as we do not update buffer level
1158 // during DTX. When we have a better way to update buffer level during DTX,
1159 // this can be discarded.
1160 if (packet && packet->frame && packet->frame->IsDtxPacket() &&
1161 (*operation == Operation::kMerge ||
1162 *operation == Operation::kAccelerate ||
1163 *operation == Operation::kFastAccelerate ||
1164 *operation == Operation::kPreemptiveExpand)) {
1165 *operation = Operation::kNormal;
1166 }
1167
1168 if (action_override) {
1169 // Use the provided action instead of the decision NetEq decided on.
1170 *operation = *action_override;
1171 }
1172 // Check if we already have enough samples in the |sync_buffer_|. If so,
1173 // change decision to normal, unless the decision was merge, accelerate, or
1174 // preemptive expand.
1175 if (samples_left >= rtc::dchecked_cast<int>(output_size_samples_) &&
1176 *operation != Operation::kMerge && *operation != Operation::kAccelerate &&
1177 *operation != Operation::kFastAccelerate &&
1178 *operation != Operation::kPreemptiveExpand) {
1179 *operation = Operation::kNormal;
1180 return 0;
1181 }
1182
1183 controller_->ExpandDecision(*operation);
1184
1185 // Check conditions for reset.
1186 if (new_codec_ || *operation == Operation::kUndefined) {
1187 // The only valid reason to get kUndefined is that new_codec_ is set.
1188 assert(new_codec_);
1189 if (*play_dtmf && !packet) {
1190 timestamp_ = dtmf_event->timestamp;
1191 } else {
1192 if (!packet) {
1193 RTC_LOG(LS_ERROR) << "Packet missing where it shouldn't.";
1194 return -1;
1195 }
1196 timestamp_ = packet->timestamp;
1197 if (*operation == Operation::kRfc3389CngNoPacket &&
1198 decoder_database_->IsComfortNoise(packet->payload_type)) {
1199 // Change decision to CNG packet, since we do have a CNG packet, but it
1200 // was considered too early to use. Now, use it anyway.
1201 *operation = Operation::kRfc3389Cng;
1202 } else if (*operation != Operation::kRfc3389Cng) {
1203 *operation = Operation::kNormal;
1204 }
1205 }
1206 // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the
1207 // new value.
1208 sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp);
1209 end_timestamp = timestamp_;
1210 new_codec_ = false;
1211 controller_->SoftReset();
1212 stats_->ResetMcu();
1213 }
1214
1215 size_t required_samples = output_size_samples_;
1216 const size_t samples_10_ms = static_cast<size_t>(80 * fs_mult_);
1217 const size_t samples_20_ms = 2 * samples_10_ms;
1218 const size_t samples_30_ms = 3 * samples_10_ms;
1219
1220 switch (*operation) {
1221 case Operation::kExpand: {
1222 timestamp_ = end_timestamp;
1223 return 0;
1224 }
1225 case Operation::kRfc3389CngNoPacket:
1226 case Operation::kCodecInternalCng: {
1227 return 0;
1228 }
1229 case Operation::kDtmf: {
1230 // TODO(hlundin): Write test for this.
1231 // Update timestamp.
1232 timestamp_ = end_timestamp;
1233 const uint64_t generated_noise_samples =
1234 generated_noise_stopwatch_
1235 ? generated_noise_stopwatch_->ElapsedTicks() *
1236 output_size_samples_ +
1237 controller_->noise_fast_forward()
1238 : 0;
1239 if (generated_noise_samples > 0 && last_mode_ != Mode::kDtmf) {
1240 // Make a jump in timestamp due to the recently played comfort noise.
1241 uint32_t timestamp_jump =
1242 static_cast<uint32_t>(generated_noise_samples);
1243 sync_buffer_->IncreaseEndTimestamp(timestamp_jump);
1244 timestamp_ += timestamp_jump;
1245 }
1246 return 0;
1247 }
1248 case Operation::kAccelerate:
1249 case Operation::kFastAccelerate: {
1250 // In order to do an accelerate we need at least 30 ms of audio data.
1251 if (samples_left >= static_cast<int>(samples_30_ms)) {
1252 // Already have enough data, so we do not need to extract any more.
1253 controller_->set_sample_memory(samples_left);
1254 controller_->set_prev_time_scale(true);
1255 return 0;
1256 } else if (samples_left >= static_cast<int>(samples_10_ms) &&
1257 decoder_frame_length_ >= samples_30_ms) {
1258 // Avoid decoding more data as it might overflow the playout buffer.
1259 *operation = Operation::kNormal;
1260 return 0;
1261 } else if (samples_left < static_cast<int>(samples_20_ms) &&
1262 decoder_frame_length_ < samples_30_ms) {
1263 // Build up decoded data by decoding at least 20 ms of audio data. Do
1264 // not perform accelerate yet, but wait until we only need to do one
1265 // decoding.
1266 required_samples = 2 * output_size_samples_;
1267 *operation = Operation::kNormal;
1268 }
1269 // If none of the above is true, we have one of two possible situations:
1270 // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or
1271 // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms.
1272 // In either case, we move on with the accelerate decision, and decode one
1273 // frame now.
1274 break;
1275 }
1276 case Operation::kPreemptiveExpand: {
1277 // In order to do a preemptive expand we need at least 30 ms of decoded
1278 // audio data.
1279 if ((samples_left >= static_cast<int>(samples_30_ms)) ||
1280 (samples_left >= static_cast<int>(samples_10_ms) &&
1281 decoder_frame_length_ >= samples_30_ms)) {
1282 // Already have enough data, so we do not need to extract any more.
1283 // Or, avoid decoding more data as it might overflow the playout buffer.
1284 // Still try preemptive expand, though.
1285 controller_->set_sample_memory(samples_left);
1286 controller_->set_prev_time_scale(true);
1287 return 0;
1288 }
1289 if (samples_left < static_cast<int>(samples_20_ms) &&
1290 decoder_frame_length_ < samples_30_ms) {
1291 // Build up decoded data by decoding at least 20 ms of audio data.
1292 // Still try to perform preemptive expand.
1293 required_samples = 2 * output_size_samples_;
1294 }
1295 // Move on with the preemptive expand decision.
1296 break;
1297 }
1298 case Operation::kMerge: {
1299 required_samples =
1300 std::max(merge_->RequiredFutureSamples(), required_samples);
1301 break;
1302 }
1303 default: {
1304 // Do nothing.
1305 }
1306 }
1307
1308 // Get packets from buffer.
1309 int extracted_samples = 0;
1310 if (packet) {
1311 sync_buffer_->IncreaseEndTimestamp(packet->timestamp - end_timestamp);
1312 if (controller_->CngOff()) {
1313 // Adjustment of timestamp only corresponds to an actual packet loss
1314 // if comfort noise is not played. If comfort noise was just played,
1315 // this adjustment of timestamp is only done to get back in sync with the
1316 // stream timestamp; no loss to report.
1317 stats_->LostSamples(packet->timestamp - end_timestamp);
1318 }
1319
1320 if (*operation != Operation::kRfc3389Cng) {
1321 // We are about to decode and use a non-CNG packet.
1322 controller_->SetCngOff();
1323 }
1324
1325 extracted_samples = ExtractPackets(required_samples, packet_list);
1326 if (extracted_samples < 0) {
1327 return kPacketBufferCorruption;
1328 }
1329 }
1330
1331 if (*operation == Operation::kAccelerate ||
1332 *operation == Operation::kFastAccelerate ||
1333 *operation == Operation::kPreemptiveExpand) {
1334 controller_->set_sample_memory(samples_left + extracted_samples);
1335 controller_->set_prev_time_scale(true);
1336 }
1337
1338 if (*operation == Operation::kAccelerate ||
1339 *operation == Operation::kFastAccelerate) {
1340 // Check that we have enough data (30ms) to do accelerate.
1341 if (extracted_samples + samples_left < static_cast<int>(samples_30_ms)) {
1342 // TODO(hlundin): Write test for this.
1343 // Not enough, do normal operation instead.
1344 *operation = Operation::kNormal;
1345 }
1346 }
1347
1348 timestamp_ = end_timestamp;
1349 return 0;
1350 }
1351
Decode(PacketList * packet_list,Operation * operation,int * decoded_length,AudioDecoder::SpeechType * speech_type)1352 int NetEqImpl::Decode(PacketList* packet_list,
1353 Operation* operation,
1354 int* decoded_length,
1355 AudioDecoder::SpeechType* speech_type) {
1356 *speech_type = AudioDecoder::kSpeech;
1357
1358 // When packet_list is empty, we may be in kCodecInternalCng mode, and for
1359 // that we use current active decoder.
1360 AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1361
1362 if (!packet_list->empty()) {
1363 const Packet& packet = packet_list->front();
1364 uint8_t payload_type = packet.payload_type;
1365 if (!decoder_database_->IsComfortNoise(payload_type)) {
1366 decoder = decoder_database_->GetDecoder(payload_type);
1367 assert(decoder);
1368 if (!decoder) {
1369 RTC_LOG(LS_WARNING)
1370 << "Unknown payload type " << static_cast<int>(payload_type);
1371 packet_list->clear();
1372 return kDecoderNotFound;
1373 }
1374 bool decoder_changed;
1375 decoder_database_->SetActiveDecoder(payload_type, &decoder_changed);
1376 if (decoder_changed) {
1377 // We have a new decoder. Re-init some values.
1378 const DecoderDatabase::DecoderInfo* decoder_info =
1379 decoder_database_->GetDecoderInfo(payload_type);
1380 assert(decoder_info);
1381 if (!decoder_info) {
1382 RTC_LOG(LS_WARNING)
1383 << "Unknown payload type " << static_cast<int>(payload_type);
1384 packet_list->clear();
1385 return kDecoderNotFound;
1386 }
1387 // If sampling rate or number of channels has changed, we need to make
1388 // a reset.
1389 if (decoder_info->SampleRateHz() != fs_hz_ ||
1390 decoder->Channels() != algorithm_buffer_->Channels()) {
1391 // TODO(tlegrand): Add unittest to cover this event.
1392 SetSampleRateAndChannels(decoder_info->SampleRateHz(),
1393 decoder->Channels());
1394 }
1395 sync_buffer_->set_end_timestamp(timestamp_);
1396 playout_timestamp_ = timestamp_;
1397 }
1398 }
1399 }
1400
1401 if (reset_decoder_) {
1402 // TODO(hlundin): Write test for this.
1403 if (decoder)
1404 decoder->Reset();
1405
1406 // Reset comfort noise decoder.
1407 ComfortNoiseDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1408 if (cng_decoder)
1409 cng_decoder->Reset();
1410
1411 reset_decoder_ = false;
1412 }
1413
1414 *decoded_length = 0;
1415 // Update codec-internal PLC state.
1416 if ((*operation == Operation::kMerge) && decoder && decoder->HasDecodePlc()) {
1417 decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]);
1418 }
1419
1420 int return_value;
1421 if (*operation == Operation::kCodecInternalCng) {
1422 RTC_DCHECK(packet_list->empty());
1423 return_value = DecodeCng(decoder, decoded_length, speech_type);
1424 } else {
1425 return_value = DecodeLoop(packet_list, *operation, decoder, decoded_length,
1426 speech_type);
1427 }
1428
1429 if (*decoded_length < 0) {
1430 // Error returned from the decoder.
1431 *decoded_length = 0;
1432 sync_buffer_->IncreaseEndTimestamp(
1433 static_cast<uint32_t>(decoder_frame_length_));
1434 int error_code = 0;
1435 if (decoder)
1436 error_code = decoder->ErrorCode();
1437 if (error_code != 0) {
1438 // Got some error code from the decoder.
1439 return_value = kDecoderErrorCode;
1440 RTC_LOG(LS_WARNING) << "Decoder returned error code: " << error_code;
1441 } else {
1442 // Decoder does not implement error codes. Return generic error.
1443 return_value = kOtherDecoderError;
1444 RTC_LOG(LS_WARNING) << "Decoder error (no error code)";
1445 }
1446 *operation = Operation::kExpand; // Do expansion to get data instead.
1447 }
1448 if (*speech_type != AudioDecoder::kComfortNoise) {
1449 // Don't increment timestamp if codec returned CNG speech type
1450 // since in this case, the we will increment the CNGplayedTS counter.
1451 // Increase with number of samples per channel.
1452 assert(*decoded_length == 0 ||
1453 (decoder && decoder->Channels() == sync_buffer_->Channels()));
1454 sync_buffer_->IncreaseEndTimestamp(
1455 *decoded_length / static_cast<int>(sync_buffer_->Channels()));
1456 }
1457 return return_value;
1458 }
1459
DecodeCng(AudioDecoder * decoder,int * decoded_length,AudioDecoder::SpeechType * speech_type)1460 int NetEqImpl::DecodeCng(AudioDecoder* decoder,
1461 int* decoded_length,
1462 AudioDecoder::SpeechType* speech_type) {
1463 if (!decoder) {
1464 // This happens when active decoder is not defined.
1465 *decoded_length = -1;
1466 return 0;
1467 }
1468
1469 while (*decoded_length < rtc::dchecked_cast<int>(output_size_samples_)) {
1470 const int length = decoder->Decode(
1471 nullptr, 0, fs_hz_,
1472 (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1473 &decoded_buffer_[*decoded_length], speech_type);
1474 if (length > 0) {
1475 *decoded_length += length;
1476 } else {
1477 // Error.
1478 RTC_LOG(LS_WARNING) << "Failed to decode CNG";
1479 *decoded_length = -1;
1480 break;
1481 }
1482 if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
1483 // Guard against overflow.
1484 RTC_LOG(LS_WARNING) << "Decoded too much CNG.";
1485 return kDecodedTooMuch;
1486 }
1487 }
1488 return 0;
1489 }
1490
DecodeLoop(PacketList * packet_list,const Operation & operation,AudioDecoder * decoder,int * decoded_length,AudioDecoder::SpeechType * speech_type)1491 int NetEqImpl::DecodeLoop(PacketList* packet_list,
1492 const Operation& operation,
1493 AudioDecoder* decoder,
1494 int* decoded_length,
1495 AudioDecoder::SpeechType* speech_type) {
1496 RTC_DCHECK(last_decoded_timestamps_.empty());
1497 RTC_DCHECK(last_decoded_packet_infos_.empty());
1498
1499 // Do decoding.
1500 while (!packet_list->empty() && !decoder_database_->IsComfortNoise(
1501 packet_list->front().payload_type)) {
1502 assert(decoder); // At this point, we must have a decoder object.
1503 // The number of channels in the |sync_buffer_| should be the same as the
1504 // number decoder channels.
1505 assert(sync_buffer_->Channels() == decoder->Channels());
1506 assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->Channels());
1507 assert(operation == Operation::kNormal ||
1508 operation == Operation::kAccelerate ||
1509 operation == Operation::kFastAccelerate ||
1510 operation == Operation::kMerge ||
1511 operation == Operation::kPreemptiveExpand);
1512
1513 auto opt_result = packet_list->front().frame->Decode(
1514 rtc::ArrayView<int16_t>(&decoded_buffer_[*decoded_length],
1515 decoded_buffer_length_ - *decoded_length));
1516 last_decoded_timestamps_.push_back(packet_list->front().timestamp);
1517 last_decoded_packet_infos_.push_back(
1518 std::move(packet_list->front().packet_info));
1519 packet_list->pop_front();
1520 if (opt_result) {
1521 const auto& result = *opt_result;
1522 *speech_type = result.speech_type;
1523 if (result.num_decoded_samples > 0) {
1524 *decoded_length += rtc::dchecked_cast<int>(result.num_decoded_samples);
1525 // Update |decoder_frame_length_| with number of samples per channel.
1526 decoder_frame_length_ =
1527 result.num_decoded_samples / decoder->Channels();
1528 }
1529 } else {
1530 // Error.
1531 // TODO(ossu): What to put here?
1532 RTC_LOG(LS_WARNING) << "Decode error";
1533 *decoded_length = -1;
1534 last_decoded_packet_infos_.clear();
1535 packet_list->clear();
1536 break;
1537 }
1538 if (*decoded_length > rtc::dchecked_cast<int>(decoded_buffer_length_)) {
1539 // Guard against overflow.
1540 RTC_LOG(LS_WARNING) << "Decoded too much.";
1541 packet_list->clear();
1542 return kDecodedTooMuch;
1543 }
1544 } // End of decode loop.
1545
1546 // If the list is not empty at this point, either a decoding error terminated
1547 // the while-loop, or list must hold exactly one CNG packet.
1548 assert(packet_list->empty() || *decoded_length < 0 ||
1549 (packet_list->size() == 1 && decoder_database_->IsComfortNoise(
1550 packet_list->front().payload_type)));
1551 return 0;
1552 }
1553
DoNormal(const int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf)1554 void NetEqImpl::DoNormal(const int16_t* decoded_buffer,
1555 size_t decoded_length,
1556 AudioDecoder::SpeechType speech_type,
1557 bool play_dtmf) {
1558 assert(normal_.get());
1559 normal_->Process(decoded_buffer, decoded_length, last_mode_,
1560 algorithm_buffer_.get());
1561 if (decoded_length != 0) {
1562 last_mode_ = Mode::kNormal;
1563 }
1564
1565 // If last packet was decoded as an inband CNG, set mode to CNG instead.
1566 if ((speech_type == AudioDecoder::kComfortNoise) ||
1567 ((last_mode_ == Mode::kCodecInternalCng) && (decoded_length == 0))) {
1568 // TODO(hlundin): Remove second part of || statement above.
1569 last_mode_ = Mode::kCodecInternalCng;
1570 }
1571
1572 if (!play_dtmf) {
1573 dtmf_tone_generator_->Reset();
1574 }
1575 }
1576
DoMerge(int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf)1577 void NetEqImpl::DoMerge(int16_t* decoded_buffer,
1578 size_t decoded_length,
1579 AudioDecoder::SpeechType speech_type,
1580 bool play_dtmf) {
1581 assert(merge_.get());
1582 size_t new_length =
1583 merge_->Process(decoded_buffer, decoded_length, algorithm_buffer_.get());
1584 // Correction can be negative.
1585 int expand_length_correction =
1586 rtc::dchecked_cast<int>(new_length) -
1587 rtc::dchecked_cast<int>(decoded_length / algorithm_buffer_->Channels());
1588
1589 // Update in-call and post-call statistics.
1590 if (expand_->MuteFactor(0) == 0) {
1591 // Expand generates only noise.
1592 stats_->ExpandedNoiseSamplesCorrection(expand_length_correction);
1593 } else {
1594 // Expansion generates more than only noise.
1595 stats_->ExpandedVoiceSamplesCorrection(expand_length_correction);
1596 }
1597
1598 last_mode_ = Mode::kMerge;
1599 // If last packet was decoded as an inband CNG, set mode to CNG instead.
1600 if (speech_type == AudioDecoder::kComfortNoise) {
1601 last_mode_ = Mode::kCodecInternalCng;
1602 }
1603 expand_->Reset();
1604 if (!play_dtmf) {
1605 dtmf_tone_generator_->Reset();
1606 }
1607 }
1608
DoCodecPlc()1609 bool NetEqImpl::DoCodecPlc() {
1610 AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1611 if (!decoder) {
1612 return false;
1613 }
1614 const size_t channels = algorithm_buffer_->Channels();
1615 const size_t requested_samples_per_channel =
1616 output_size_samples_ -
1617 (sync_buffer_->FutureLength() - expand_->overlap_length());
1618 concealment_audio_.Clear();
1619 decoder->GeneratePlc(requested_samples_per_channel, &concealment_audio_);
1620 if (concealment_audio_.empty()) {
1621 // Nothing produced. Resort to regular expand.
1622 return false;
1623 }
1624 RTC_CHECK_GE(concealment_audio_.size(),
1625 requested_samples_per_channel * channels);
1626 sync_buffer_->PushBackInterleaved(concealment_audio_);
1627 RTC_DCHECK_NE(algorithm_buffer_->Channels(), 0);
1628 const size_t concealed_samples_per_channel =
1629 concealment_audio_.size() / channels;
1630
1631 // Update in-call and post-call statistics.
1632 const bool is_new_concealment_event = (last_mode_ != Mode::kCodecPlc);
1633 if (std::all_of(concealment_audio_.cbegin(), concealment_audio_.cend(),
1634 [](int16_t i) { return i == 0; })) {
1635 // Expand operation generates only noise.
1636 stats_->ExpandedNoiseSamples(concealed_samples_per_channel,
1637 is_new_concealment_event);
1638 } else {
1639 // Expand operation generates more than only noise.
1640 stats_->ExpandedVoiceSamples(concealed_samples_per_channel,
1641 is_new_concealment_event);
1642 }
1643 last_mode_ = Mode::kCodecPlc;
1644 if (!generated_noise_stopwatch_) {
1645 // Start a new stopwatch since we may be covering for a lost CNG packet.
1646 generated_noise_stopwatch_ = tick_timer_->GetNewStopwatch();
1647 }
1648 return true;
1649 }
1650
DoExpand(bool play_dtmf)1651 int NetEqImpl::DoExpand(bool play_dtmf) {
1652 while ((sync_buffer_->FutureLength() - expand_->overlap_length()) <
1653 output_size_samples_) {
1654 algorithm_buffer_->Clear();
1655 int return_value = expand_->Process(algorithm_buffer_.get());
1656 size_t length = algorithm_buffer_->Size();
1657 bool is_new_concealment_event = (last_mode_ != Mode::kExpand);
1658
1659 // Update in-call and post-call statistics.
1660 if (expand_->MuteFactor(0) == 0) {
1661 // Expand operation generates only noise.
1662 stats_->ExpandedNoiseSamples(length, is_new_concealment_event);
1663 } else {
1664 // Expand operation generates more than only noise.
1665 stats_->ExpandedVoiceSamples(length, is_new_concealment_event);
1666 }
1667
1668 last_mode_ = Mode::kExpand;
1669
1670 if (return_value < 0) {
1671 return return_value;
1672 }
1673
1674 sync_buffer_->PushBack(*algorithm_buffer_);
1675 algorithm_buffer_->Clear();
1676 }
1677 if (!play_dtmf) {
1678 dtmf_tone_generator_->Reset();
1679 }
1680
1681 if (!generated_noise_stopwatch_) {
1682 // Start a new stopwatch since we may be covering for a lost CNG packet.
1683 generated_noise_stopwatch_ = tick_timer_->GetNewStopwatch();
1684 }
1685
1686 return 0;
1687 }
1688
DoAccelerate(int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf,bool fast_accelerate)1689 int NetEqImpl::DoAccelerate(int16_t* decoded_buffer,
1690 size_t decoded_length,
1691 AudioDecoder::SpeechType speech_type,
1692 bool play_dtmf,
1693 bool fast_accelerate) {
1694 const size_t required_samples =
1695 static_cast<size_t>(240 * fs_mult_); // Must have 30 ms.
1696 size_t borrowed_samples_per_channel = 0;
1697 size_t num_channels = algorithm_buffer_->Channels();
1698 size_t decoded_length_per_channel = decoded_length / num_channels;
1699 if (decoded_length_per_channel < required_samples) {
1700 // Must move data from the |sync_buffer_| in order to get 30 ms.
1701 borrowed_samples_per_channel =
1702 static_cast<int>(required_samples - decoded_length_per_channel);
1703 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1704 decoded_buffer, sizeof(int16_t) * decoded_length);
1705 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1706 decoded_buffer);
1707 decoded_length = required_samples * num_channels;
1708 }
1709
1710 size_t samples_removed;
1711 Accelerate::ReturnCodes return_code =
1712 accelerate_->Process(decoded_buffer, decoded_length, fast_accelerate,
1713 algorithm_buffer_.get(), &samples_removed);
1714 stats_->AcceleratedSamples(samples_removed);
1715 switch (return_code) {
1716 case Accelerate::kSuccess:
1717 last_mode_ = Mode::kAccelerateSuccess;
1718 break;
1719 case Accelerate::kSuccessLowEnergy:
1720 last_mode_ = Mode::kAccelerateLowEnergy;
1721 break;
1722 case Accelerate::kNoStretch:
1723 last_mode_ = Mode::kAccelerateFail;
1724 break;
1725 case Accelerate::kError:
1726 // TODO(hlundin): Map to Modes::kError instead?
1727 last_mode_ = Mode::kAccelerateFail;
1728 return kAccelerateError;
1729 }
1730
1731 if (borrowed_samples_per_channel > 0) {
1732 // Copy borrowed samples back to the |sync_buffer_|.
1733 size_t length = algorithm_buffer_->Size();
1734 if (length < borrowed_samples_per_channel) {
1735 // This destroys the beginning of the buffer, but will not cause any
1736 // problems.
1737 sync_buffer_->ReplaceAtIndex(
1738 *algorithm_buffer_,
1739 sync_buffer_->Size() - borrowed_samples_per_channel);
1740 sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length);
1741 algorithm_buffer_->PopFront(length);
1742 assert(algorithm_buffer_->Empty());
1743 } else {
1744 sync_buffer_->ReplaceAtIndex(
1745 *algorithm_buffer_, borrowed_samples_per_channel,
1746 sync_buffer_->Size() - borrowed_samples_per_channel);
1747 algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1748 }
1749 }
1750
1751 // If last packet was decoded as an inband CNG, set mode to CNG instead.
1752 if (speech_type == AudioDecoder::kComfortNoise) {
1753 last_mode_ = Mode::kCodecInternalCng;
1754 }
1755 if (!play_dtmf) {
1756 dtmf_tone_generator_->Reset();
1757 }
1758 expand_->Reset();
1759 return 0;
1760 }
1761
DoPreemptiveExpand(int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf)1762 int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer,
1763 size_t decoded_length,
1764 AudioDecoder::SpeechType speech_type,
1765 bool play_dtmf) {
1766 const size_t required_samples =
1767 static_cast<size_t>(240 * fs_mult_); // Must have 30 ms.
1768 size_t num_channels = algorithm_buffer_->Channels();
1769 size_t borrowed_samples_per_channel = 0;
1770 size_t old_borrowed_samples_per_channel = 0;
1771 size_t decoded_length_per_channel = decoded_length / num_channels;
1772 if (decoded_length_per_channel < required_samples) {
1773 // Must move data from the |sync_buffer_| in order to get 30 ms.
1774 borrowed_samples_per_channel =
1775 required_samples - decoded_length_per_channel;
1776 // Calculate how many of these were already played out.
1777 old_borrowed_samples_per_channel =
1778 (borrowed_samples_per_channel > sync_buffer_->FutureLength())
1779 ? (borrowed_samples_per_channel - sync_buffer_->FutureLength())
1780 : 0;
1781 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1782 decoded_buffer, sizeof(int16_t) * decoded_length);
1783 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1784 decoded_buffer);
1785 decoded_length = required_samples * num_channels;
1786 }
1787
1788 size_t samples_added;
1789 PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process(
1790 decoded_buffer, decoded_length, old_borrowed_samples_per_channel,
1791 algorithm_buffer_.get(), &samples_added);
1792 stats_->PreemptiveExpandedSamples(samples_added);
1793 switch (return_code) {
1794 case PreemptiveExpand::kSuccess:
1795 last_mode_ = Mode::kPreemptiveExpandSuccess;
1796 break;
1797 case PreemptiveExpand::kSuccessLowEnergy:
1798 last_mode_ = Mode::kPreemptiveExpandLowEnergy;
1799 break;
1800 case PreemptiveExpand::kNoStretch:
1801 last_mode_ = Mode::kPreemptiveExpandFail;
1802 break;
1803 case PreemptiveExpand::kError:
1804 // TODO(hlundin): Map to Modes::kError instead?
1805 last_mode_ = Mode::kPreemptiveExpandFail;
1806 return kPreemptiveExpandError;
1807 }
1808
1809 if (borrowed_samples_per_channel > 0) {
1810 // Copy borrowed samples back to the |sync_buffer_|.
1811 sync_buffer_->ReplaceAtIndex(
1812 *algorithm_buffer_, borrowed_samples_per_channel,
1813 sync_buffer_->Size() - borrowed_samples_per_channel);
1814 algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1815 }
1816
1817 // If last packet was decoded as an inband CNG, set mode to CNG instead.
1818 if (speech_type == AudioDecoder::kComfortNoise) {
1819 last_mode_ = Mode::kCodecInternalCng;
1820 }
1821 if (!play_dtmf) {
1822 dtmf_tone_generator_->Reset();
1823 }
1824 expand_->Reset();
1825 return 0;
1826 }
1827
DoRfc3389Cng(PacketList * packet_list,bool play_dtmf)1828 int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) {
1829 if (!packet_list->empty()) {
1830 // Must have exactly one SID frame at this point.
1831 assert(packet_list->size() == 1);
1832 const Packet& packet = packet_list->front();
1833 if (!decoder_database_->IsComfortNoise(packet.payload_type)) {
1834 RTC_LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG.";
1835 return kOtherError;
1836 }
1837 if (comfort_noise_->UpdateParameters(packet) ==
1838 ComfortNoise::kInternalError) {
1839 algorithm_buffer_->Zeros(output_size_samples_);
1840 return -comfort_noise_->internal_error_code();
1841 }
1842 }
1843 int cn_return =
1844 comfort_noise_->Generate(output_size_samples_, algorithm_buffer_.get());
1845 expand_->Reset();
1846 last_mode_ = Mode::kRfc3389Cng;
1847 if (!play_dtmf) {
1848 dtmf_tone_generator_->Reset();
1849 }
1850 if (cn_return == ComfortNoise::kInternalError) {
1851 RTC_LOG(LS_WARNING) << "Comfort noise generator returned error code: "
1852 << comfort_noise_->internal_error_code();
1853 return kComfortNoiseErrorCode;
1854 } else if (cn_return == ComfortNoise::kUnknownPayloadType) {
1855 return kUnknownRtpPayloadType;
1856 }
1857 return 0;
1858 }
1859
DoCodecInternalCng(const int16_t * decoded_buffer,size_t decoded_length)1860 void NetEqImpl::DoCodecInternalCng(const int16_t* decoded_buffer,
1861 size_t decoded_length) {
1862 RTC_DCHECK(normal_.get());
1863 normal_->Process(decoded_buffer, decoded_length, last_mode_,
1864 algorithm_buffer_.get());
1865 last_mode_ = Mode::kCodecInternalCng;
1866 expand_->Reset();
1867 }
1868
DoDtmf(const DtmfEvent & dtmf_event,bool * play_dtmf)1869 int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) {
1870 // This block of the code and the block further down, handling |dtmf_switch|
1871 // are commented out. Otherwise playing out-of-band DTMF would fail in VoE
1872 // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is
1873 // equivalent to |dtmf_switch| always be false.
1874 //
1875 // See http://webrtc-codereview.appspot.com/1195004/ for discussion
1876 // On this issue. This change might cause some glitches at the point of
1877 // switch from audio to DTMF. Issue 1545 is filed to track this.
1878 //
1879 // bool dtmf_switch = false;
1880 // if ((last_mode_ != Modes::kDtmf) &&
1881 // dtmf_tone_generator_->initialized()) {
1882 // // Special case; see below.
1883 // // We must catch this before calling Generate, since |initialized| is
1884 // // modified in that call.
1885 // dtmf_switch = true;
1886 // }
1887
1888 int dtmf_return_value = 0;
1889 if (!dtmf_tone_generator_->initialized()) {
1890 // Initialize if not already done.
1891 dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1892 dtmf_event.volume);
1893 }
1894
1895 if (dtmf_return_value == 0) {
1896 // Generate DTMF signal.
1897 dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_,
1898 algorithm_buffer_.get());
1899 }
1900
1901 if (dtmf_return_value < 0) {
1902 algorithm_buffer_->Zeros(output_size_samples_);
1903 return dtmf_return_value;
1904 }
1905
1906 // if (dtmf_switch) {
1907 // // This is the special case where the previous operation was DTMF
1908 // // overdub, but the current instruction is "regular" DTMF. We must make
1909 // // sure that the DTMF does not have any discontinuities. The first DTMF
1910 // // sample that we generate now must be played out immediately, therefore
1911 // // it must be copied to the speech buffer.
1912 // // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and
1913 // // verify correct operation.
1914 // assert(false);
1915 // // Must generate enough data to replace all of the |sync_buffer_|
1916 // // "future".
1917 // int required_length = sync_buffer_->FutureLength();
1918 // assert(dtmf_tone_generator_->initialized());
1919 // dtmf_return_value = dtmf_tone_generator_->Generate(required_length,
1920 // algorithm_buffer_);
1921 // assert((size_t) required_length == algorithm_buffer_->Size());
1922 // if (dtmf_return_value < 0) {
1923 // algorithm_buffer_->Zeros(output_size_samples_);
1924 // return dtmf_return_value;
1925 // }
1926 //
1927 // // Overwrite the "future" part of the speech buffer with the new DTMF
1928 // // data.
1929 // // TODO(hlundin): It seems that this overwriting has gone lost.
1930 // // Not adapted for multi-channel yet.
1931 // assert(algorithm_buffer_->Channels() == 1);
1932 // if (algorithm_buffer_->Channels() != 1) {
1933 // RTC_LOG(LS_WARNING) << "DTMF not supported for more than one channel";
1934 // return kStereoNotSupported;
1935 // }
1936 // // Shuffle the remaining data to the beginning of algorithm buffer.
1937 // algorithm_buffer_->PopFront(sync_buffer_->FutureLength());
1938 // }
1939
1940 sync_buffer_->IncreaseEndTimestamp(
1941 static_cast<uint32_t>(output_size_samples_));
1942 expand_->Reset();
1943 last_mode_ = Mode::kDtmf;
1944
1945 // Set to false because the DTMF is already in the algorithm buffer.
1946 *play_dtmf = false;
1947 return 0;
1948 }
1949
DtmfOverdub(const DtmfEvent & dtmf_event,size_t num_channels,int16_t * output) const1950 int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event,
1951 size_t num_channels,
1952 int16_t* output) const {
1953 size_t out_index = 0;
1954 size_t overdub_length = output_size_samples_; // Default value.
1955
1956 if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) {
1957 // Special operation for transition from "DTMF only" to "DTMF overdub".
1958 out_index =
1959 std::min(sync_buffer_->dtmf_index() - sync_buffer_->next_index(),
1960 output_size_samples_);
1961 overdub_length = output_size_samples_ - out_index;
1962 }
1963
1964 AudioMultiVector dtmf_output(num_channels);
1965 int dtmf_return_value = 0;
1966 if (!dtmf_tone_generator_->initialized()) {
1967 dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1968 dtmf_event.volume);
1969 }
1970 if (dtmf_return_value == 0) {
1971 dtmf_return_value =
1972 dtmf_tone_generator_->Generate(overdub_length, &dtmf_output);
1973 assert(overdub_length == dtmf_output.Size());
1974 }
1975 dtmf_output.ReadInterleaved(overdub_length, &output[out_index]);
1976 return dtmf_return_value < 0 ? dtmf_return_value : 0;
1977 }
1978
ExtractPackets(size_t required_samples,PacketList * packet_list)1979 int NetEqImpl::ExtractPackets(size_t required_samples,
1980 PacketList* packet_list) {
1981 bool first_packet = true;
1982 uint8_t prev_payload_type = 0;
1983 uint32_t prev_timestamp = 0;
1984 uint16_t prev_sequence_number = 0;
1985 bool next_packet_available = false;
1986
1987 const Packet* next_packet = packet_buffer_->PeekNextPacket();
1988 RTC_DCHECK(next_packet);
1989 if (!next_packet) {
1990 RTC_LOG(LS_ERROR) << "Packet buffer unexpectedly empty.";
1991 return -1;
1992 }
1993 uint32_t first_timestamp = next_packet->timestamp;
1994 size_t extracted_samples = 0;
1995
1996 // Packet extraction loop.
1997 do {
1998 timestamp_ = next_packet->timestamp;
1999 absl::optional<Packet> packet = packet_buffer_->GetNextPacket();
2000 // |next_packet| may be invalid after the |packet_buffer_| operation.
2001 next_packet = nullptr;
2002 if (!packet) {
2003 RTC_LOG(LS_ERROR) << "Should always be able to extract a packet here";
2004 assert(false); // Should always be able to extract a packet here.
2005 return -1;
2006 }
2007 const uint64_t waiting_time_ms = packet->waiting_time->ElapsedMs();
2008 stats_->StoreWaitingTime(waiting_time_ms);
2009 RTC_DCHECK(!packet->empty());
2010
2011 if (first_packet) {
2012 first_packet = false;
2013 if (nack_enabled_) {
2014 RTC_DCHECK(nack_);
2015 // TODO(henrik.lundin): Should we update this for all decoded packets?
2016 nack_->UpdateLastDecodedPacket(packet->sequence_number,
2017 packet->timestamp);
2018 }
2019 prev_sequence_number = packet->sequence_number;
2020 prev_timestamp = packet->timestamp;
2021 prev_payload_type = packet->payload_type;
2022 }
2023
2024 const bool has_cng_packet =
2025 decoder_database_->IsComfortNoise(packet->payload_type);
2026 // Store number of extracted samples.
2027 size_t packet_duration = 0;
2028 if (packet->frame) {
2029 packet_duration = packet->frame->Duration();
2030 // TODO(ossu): Is this the correct way to track Opus FEC packets?
2031 if (packet->priority.codec_level > 0) {
2032 stats_->SecondaryDecodedSamples(
2033 rtc::dchecked_cast<int>(packet_duration));
2034 }
2035 } else if (!has_cng_packet) {
2036 RTC_LOG(LS_WARNING) << "Unknown payload type "
2037 << static_cast<int>(packet->payload_type);
2038 RTC_NOTREACHED();
2039 }
2040
2041 if (packet_duration == 0) {
2042 // Decoder did not return a packet duration. Assume that the packet
2043 // contains the same number of samples as the previous one.
2044 packet_duration = decoder_frame_length_;
2045 }
2046 extracted_samples = packet->timestamp - first_timestamp + packet_duration;
2047
2048 RTC_DCHECK(controller_);
2049 stats_->JitterBufferDelay(
2050 packet_duration, waiting_time_ms + output_delay_chain_ms_,
2051 controller_->TargetLevelMs() + output_delay_chain_ms_);
2052
2053 packet_list->push_back(std::move(*packet)); // Store packet in list.
2054 packet = absl::nullopt; // Ensure it's never used after the move.
2055
2056 // Check what packet is available next.
2057 next_packet = packet_buffer_->PeekNextPacket();
2058 next_packet_available = false;
2059 if (next_packet && prev_payload_type == next_packet->payload_type &&
2060 !has_cng_packet) {
2061 int16_t seq_no_diff = next_packet->sequence_number - prev_sequence_number;
2062 size_t ts_diff = next_packet->timestamp - prev_timestamp;
2063 if ((seq_no_diff == 1 || seq_no_diff == 0) &&
2064 ts_diff <= packet_duration) {
2065 // The next sequence number is available, or the next part of a packet
2066 // that was split into pieces upon insertion.
2067 next_packet_available = true;
2068 }
2069 prev_sequence_number = next_packet->sequence_number;
2070 prev_timestamp = next_packet->timestamp;
2071 }
2072 } while (extracted_samples < required_samples && next_packet_available);
2073
2074 if (extracted_samples > 0) {
2075 // Delete old packets only when we are going to decode something. Otherwise,
2076 // we could end up in the situation where we never decode anything, since
2077 // all incoming packets are considered too old but the buffer will also
2078 // never be flooded and flushed.
2079 packet_buffer_->DiscardAllOldPackets(timestamp_, stats_.get());
2080 }
2081
2082 return rtc::dchecked_cast<int>(extracted_samples);
2083 }
2084
UpdatePlcComponents(int fs_hz,size_t channels)2085 void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) {
2086 // Delete objects and create new ones.
2087 expand_.reset(expand_factory_->Create(background_noise_.get(),
2088 sync_buffer_.get(), &random_vector_,
2089 stats_.get(), fs_hz, channels));
2090 merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get()));
2091 }
2092
SetSampleRateAndChannels(int fs_hz,size_t channels)2093 void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) {
2094 RTC_LOG(LS_VERBOSE) << "SetSampleRateAndChannels " << fs_hz << " "
2095 << channels;
2096 // TODO(hlundin): Change to an enumerator and skip assert.
2097 assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 || fs_hz == 48000);
2098 assert(channels > 0);
2099
2100 // Before changing the sample rate, end and report any ongoing expand event.
2101 stats_->EndExpandEvent(fs_hz_);
2102 fs_hz_ = fs_hz;
2103 fs_mult_ = fs_hz / 8000;
2104 output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
2105 decoder_frame_length_ = 3 * output_size_samples_; // Initialize to 30ms.
2106
2107 last_mode_ = Mode::kNormal;
2108
2109 ComfortNoiseDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
2110 if (cng_decoder)
2111 cng_decoder->Reset();
2112
2113 // Reinit post-decode VAD with new sample rate.
2114 assert(vad_.get()); // Cannot be NULL here.
2115 vad_->Init();
2116
2117 // Delete algorithm buffer and create a new one.
2118 algorithm_buffer_.reset(new AudioMultiVector(channels));
2119
2120 // Delete sync buffer and create a new one.
2121 sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_));
2122
2123 // Delete BackgroundNoise object and create a new one.
2124 background_noise_.reset(new BackgroundNoise(channels));
2125
2126 // Reset random vector.
2127 random_vector_.Reset();
2128
2129 UpdatePlcComponents(fs_hz, channels);
2130
2131 // Move index so that we create a small set of future samples (all 0).
2132 sync_buffer_->set_next_index(sync_buffer_->next_index() -
2133 expand_->overlap_length());
2134
2135 normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_,
2136 expand_.get()));
2137 accelerate_.reset(
2138 accelerate_factory_->Create(fs_hz, channels, *background_noise_));
2139 preemptive_expand_.reset(preemptive_expand_factory_->Create(
2140 fs_hz, channels, *background_noise_, expand_->overlap_length()));
2141
2142 // Delete ComfortNoise object and create a new one.
2143 comfort_noise_.reset(
2144 new ComfortNoise(fs_hz, decoder_database_.get(), sync_buffer_.get()));
2145
2146 // Verify that |decoded_buffer_| is long enough.
2147 if (decoded_buffer_length_ < kMaxFrameSize * channels) {
2148 // Reallocate to larger size.
2149 decoded_buffer_length_ = kMaxFrameSize * channels;
2150 decoded_buffer_.reset(new int16_t[decoded_buffer_length_]);
2151 }
2152 RTC_CHECK(controller_) << "Unexpectedly found no NetEqController";
2153 controller_->SetSampleRate(fs_hz_, output_size_samples_);
2154 }
2155
LastOutputType()2156 NetEqImpl::OutputType NetEqImpl::LastOutputType() {
2157 assert(vad_.get());
2158 assert(expand_.get());
2159 if (last_mode_ == Mode::kCodecInternalCng ||
2160 last_mode_ == Mode::kRfc3389Cng) {
2161 return OutputType::kCNG;
2162 } else if (last_mode_ == Mode::kExpand && expand_->MuteFactor(0) == 0) {
2163 // Expand mode has faded down to background noise only (very long expand).
2164 return OutputType::kPLCCNG;
2165 } else if (last_mode_ == Mode::kExpand) {
2166 return OutputType::kPLC;
2167 } else if (vad_->running() && !vad_->active_speech()) {
2168 return OutputType::kVadPassive;
2169 } else if (last_mode_ == Mode::kCodecPlc) {
2170 return OutputType::kCodecPLC;
2171 } else {
2172 return OutputType::kNormalSpeech;
2173 }
2174 }
2175 } // namespace webrtc
2176