1 //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Implements a lazy call graph analysis and related passes for the new pass
12 /// manager.
13 ///
14 /// NB: This is *not* a traditional call graph! It is a graph which models both
15 /// the current calls and potential calls. As a consequence there are many
16 /// edges in this call graph that do not correspond to a 'call' or 'invoke'
17 /// instruction.
18 ///
19 /// The primary use cases of this graph analysis is to facilitate iterating
20 /// across the functions of a module in ways that ensure all callees are
21 /// visited prior to a caller (given any SCC constraints), or vice versa. As
22 /// such is it particularly well suited to organizing CGSCC optimizations such
23 /// as inlining, outlining, argument promotion, etc. That is its primary use
24 /// case and motivates the design. It may not be appropriate for other
25 /// purposes. The use graph of functions or some other conservative analysis of
26 /// call instructions may be interesting for optimizations and subsequent
27 /// analyses which don't work in the context of an overly specified
28 /// potential-call-edge graph.
29 ///
30 /// To understand the specific rules and nature of this call graph analysis,
31 /// see the documentation of the \c LazyCallGraph below.
32 ///
33 //===----------------------------------------------------------------------===//
34
35 #ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
36 #define LLVM_ANALYSIS_LAZYCALLGRAPH_H
37
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/PointerUnion.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SetVector.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/iterator.h"
45 #include "llvm/ADT/iterator_range.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <iterator>
53 #include <utility>
54
55 namespace llvm {
56 class PreservedAnalyses;
57 class raw_ostream;
58
59 /// A lazily constructed view of the call graph of a module.
60 ///
61 /// With the edges of this graph, the motivating constraint that we are
62 /// attempting to maintain is that function-local optimization, CGSCC-local
63 /// optimizations, and optimizations transforming a pair of functions connected
64 /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
65 /// DAG. That is, no optimizations will delete, remove, or add an edge such
66 /// that functions already visited in a bottom-up order of the SCC DAG are no
67 /// longer valid to have visited, or such that functions not yet visited in
68 /// a bottom-up order of the SCC DAG are not required to have already been
69 /// visited.
70 ///
71 /// Within this constraint, the desire is to minimize the merge points of the
72 /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
73 /// in the SCC DAG, the more independence there is in optimizing within it.
74 /// There is a strong desire to enable parallelization of optimizations over
75 /// the call graph, and both limited fanout and merge points will (artificially
76 /// in some cases) limit the scaling of such an effort.
77 ///
78 /// To this end, graph represents both direct and any potential resolution to
79 /// an indirect call edge. Another way to think about it is that it represents
80 /// both the direct call edges and any direct call edges that might be formed
81 /// through static optimizations. Specifically, it considers taking the address
82 /// of a function to be an edge in the call graph because this might be
83 /// forwarded to become a direct call by some subsequent function-local
84 /// optimization. The result is that the graph closely follows the use-def
85 /// edges for functions. Walking "up" the graph can be done by looking at all
86 /// of the uses of a function.
87 ///
88 /// The roots of the call graph are the external functions and functions
89 /// escaped into global variables. Those functions can be called from outside
90 /// of the module or via unknowable means in the IR -- we may not be able to
91 /// form even a potential call edge from a function body which may dynamically
92 /// load the function and call it.
93 ///
94 /// This analysis still requires updates to remain valid after optimizations
95 /// which could potentially change the set of potential callees. The
96 /// constraints it operates under only make the traversal order remain valid.
97 ///
98 /// The entire analysis must be re-computed if full interprocedural
99 /// optimizations run at any point. For example, globalopt completely
100 /// invalidates the information in this analysis.
101 ///
102 /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
103 /// it from the existing CallGraph. At some point, it is expected that this
104 /// will be the only call graph and it will be renamed accordingly.
105 class LazyCallGraph {
106 public:
107 class Node;
108 class SCC;
109 class RefSCC;
110 class edge_iterator;
111 class call_edge_iterator;
112
113 /// A class used to represent edges in the call graph.
114 ///
115 /// The lazy call graph models both *call* edges and *reference* edges. Call
116 /// edges are much what you would expect, and exist when there is a 'call' or
117 /// 'invoke' instruction of some function. Reference edges are also tracked
118 /// along side these, and exist whenever any instruction (transitively
119 /// through its operands) references a function. All call edges are
120 /// inherently reference edges, and so the reference graph forms a superset
121 /// of the formal call graph.
122 ///
123 /// Furthermore, edges also may point to raw \c Function objects when those
124 /// functions have not been scanned and incorporated into the graph (yet).
125 /// This is one of the primary ways in which the graph can be lazy. When
126 /// functions are scanned and fully incorporated into the graph, all of the
127 /// edges referencing them are updated to point to the graph \c Node objects
128 /// instead of to the raw \c Function objects. This class even provides
129 /// methods to trigger this scan on-demand by attempting to get the target
130 /// node of the graph and providing a reference back to the graph in order to
131 /// lazily build it if necessary.
132 ///
133 /// All of these forms of edges are fundamentally represented as outgoing
134 /// edges. The edges are stored in the source node and point at the target
135 /// node. This allows the edge structure itself to be a very compact data
136 /// structure: essentially a tagged pointer.
137 class Edge {
138 public:
139 /// The kind of edge in the graph.
140 enum Kind : bool { Ref = false, Call = true };
141
142 Edge();
143 explicit Edge(Function &F, Kind K);
144 explicit Edge(Node &N, Kind K);
145
146 /// Test whether the edge is null.
147 ///
148 /// This happens when an edge has been deleted. We leave the edge objects
149 /// around but clear them.
150 operator bool() const;
151
152 /// Test whether the edge represents a direct call to a function.
153 ///
154 /// This requires that the edge is not null.
155 bool isCall() const;
156
157 /// Get the function referenced by this edge.
158 ///
159 /// This requires that the edge is not null, but will succeed whether we
160 /// have built a graph node for the function yet or not.
161 Function &getFunction() const;
162
163 /// Get the call graph node referenced by this edge if one exists.
164 ///
165 /// This requires that the edge is not null. If we have built a graph node
166 /// for the function this edge points to, this will return that node,
167 /// otherwise it will return null.
168 Node *getNode() const;
169
170 /// Get the call graph node for this edge, building it if necessary.
171 ///
172 /// This requires that the edge is not null. If we have not yet built
173 /// a graph node for the function this edge points to, this will first ask
174 /// the graph to build that node, inserting it into all the relevant
175 /// structures.
176 Node &getNode(LazyCallGraph &G);
177
178 private:
179 friend class LazyCallGraph::Node;
180
181 PointerIntPair<PointerUnion<Function *, Node *>, 1, Kind> Value;
182
setKind(Kind K)183 void setKind(Kind K) { Value.setInt(K); }
184 };
185
186 typedef SmallVector<Edge, 4> EdgeVectorT;
187 typedef SmallVectorImpl<Edge> EdgeVectorImplT;
188
189 /// A node in the call graph.
190 ///
191 /// This represents a single node. It's primary roles are to cache the list of
192 /// callees, de-duplicate and provide fast testing of whether a function is
193 /// a callee, and facilitate iteration of child nodes in the graph.
194 class Node {
195 friend class LazyCallGraph;
196 friend class LazyCallGraph::SCC;
197
198 LazyCallGraph *G;
199 Function &F;
200
201 // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
202 // stored directly within the node. These are both '-1' when nodes are part
203 // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
204 int DFSNumber;
205 int LowLink;
206
207 mutable EdgeVectorT Edges;
208 DenseMap<Function *, int> EdgeIndexMap;
209
210 /// Basic constructor implements the scanning of F into Edges and
211 /// EdgeIndexMap.
212 Node(LazyCallGraph &G, Function &F);
213
214 /// Internal helper to insert an edge to a function.
215 void insertEdgeInternal(Function &ChildF, Edge::Kind EK);
216
217 /// Internal helper to insert an edge to a node.
218 void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
219
220 /// Internal helper to change an edge kind.
221 void setEdgeKind(Function &ChildF, Edge::Kind EK);
222
223 /// Internal helper to remove the edge to the given function.
224 void removeEdgeInternal(Function &ChildF);
225
226 /// Print the name of this node's function.
227 friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
228 return OS << N.F.getName();
229 }
230
231 /// Dump the name of this node's function to stderr.
232 void dump() const;
233
234 public:
getGraph()235 LazyCallGraph &getGraph() const { return *G; }
236
getFunction()237 Function &getFunction() const { return F; }
238
begin()239 edge_iterator begin() const {
240 return edge_iterator(Edges.begin(), Edges.end());
241 }
end()242 edge_iterator end() const { return edge_iterator(Edges.end(), Edges.end()); }
243
244 const Edge &operator[](int i) const { return Edges[i]; }
245 const Edge &operator[](Function &F) const {
246 assert(EdgeIndexMap.find(&F) != EdgeIndexMap.end() && "No such edge!");
247 return Edges[EdgeIndexMap.find(&F)->second];
248 }
249 const Edge &operator[](Node &N) const { return (*this)[N.getFunction()]; }
250
call_begin()251 call_edge_iterator call_begin() const {
252 return call_edge_iterator(Edges.begin(), Edges.end());
253 }
call_end()254 call_edge_iterator call_end() const {
255 return call_edge_iterator(Edges.end(), Edges.end());
256 }
257
calls()258 iterator_range<call_edge_iterator> calls() const {
259 return make_range(call_begin(), call_end());
260 }
261
262 /// Equality is defined as address equality.
263 bool operator==(const Node &N) const { return this == &N; }
264 bool operator!=(const Node &N) const { return !operator==(N); }
265 };
266
267 /// A lazy iterator used for both the entry nodes and child nodes.
268 ///
269 /// When this iterator is dereferenced, if not yet available, a function will
270 /// be scanned for "calls" or uses of functions and its child information
271 /// will be constructed. All of these results are accumulated and cached in
272 /// the graph.
273 class edge_iterator
274 : public iterator_adaptor_base<edge_iterator, EdgeVectorImplT::iterator,
275 std::forward_iterator_tag> {
276 friend class LazyCallGraph;
277 friend class LazyCallGraph::Node;
278
279 EdgeVectorImplT::iterator E;
280
281 // Build the iterator for a specific position in the edge list.
edge_iterator(EdgeVectorImplT::iterator BaseI,EdgeVectorImplT::iterator E)282 edge_iterator(EdgeVectorImplT::iterator BaseI,
283 EdgeVectorImplT::iterator E)
284 : iterator_adaptor_base(BaseI), E(E) {
285 while (I != E && !*I)
286 ++I;
287 }
288
289 public:
edge_iterator()290 edge_iterator() {}
291
292 using iterator_adaptor_base::operator++;
293 edge_iterator &operator++() {
294 do {
295 ++I;
296 } while (I != E && !*I);
297 return *this;
298 }
299 };
300
301 /// A lazy iterator over specifically call edges.
302 ///
303 /// This has the same iteration properties as the \c edge_iterator, but
304 /// restricts itself to edges which represent actual calls.
305 class call_edge_iterator
306 : public iterator_adaptor_base<call_edge_iterator,
307 EdgeVectorImplT::iterator,
308 std::forward_iterator_tag> {
309 friend class LazyCallGraph;
310 friend class LazyCallGraph::Node;
311
312 EdgeVectorImplT::iterator E;
313
314 /// Advance the iterator to the next valid, call edge.
advanceToNextEdge()315 void advanceToNextEdge() {
316 while (I != E && (!*I || !I->isCall()))
317 ++I;
318 }
319
320 // Build the iterator for a specific position in the edge list.
call_edge_iterator(EdgeVectorImplT::iterator BaseI,EdgeVectorImplT::iterator E)321 call_edge_iterator(EdgeVectorImplT::iterator BaseI,
322 EdgeVectorImplT::iterator E)
323 : iterator_adaptor_base(BaseI), E(E) {
324 advanceToNextEdge();
325 }
326
327 public:
call_edge_iterator()328 call_edge_iterator() {}
329
330 using iterator_adaptor_base::operator++;
331 call_edge_iterator &operator++() {
332 ++I;
333 advanceToNextEdge();
334 return *this;
335 }
336 };
337
338 /// An SCC of the call graph.
339 ///
340 /// This represents a Strongly Connected Component of the direct call graph
341 /// -- ignoring indirect calls and function references. It stores this as
342 /// a collection of call graph nodes. While the order of nodes in the SCC is
343 /// stable, it is not any particular order.
344 ///
345 /// The SCCs are nested within a \c RefSCC, see below for details about that
346 /// outer structure. SCCs do not support mutation of the call graph, that
347 /// must be done through the containing \c RefSCC in order to fully reason
348 /// about the ordering and connections of the graph.
349 class SCC {
350 friend class LazyCallGraph;
351 friend class LazyCallGraph::Node;
352
353 RefSCC *OuterRefSCC;
354 SmallVector<Node *, 1> Nodes;
355
356 template <typename NodeRangeT>
SCC(RefSCC & OuterRefSCC,NodeRangeT && Nodes)357 SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
358 : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
359
clear()360 void clear() {
361 OuterRefSCC = nullptr;
362 Nodes.clear();
363 }
364
365 /// Print a short descrtiption useful for debugging or logging.
366 ///
367 /// We print the function names in the SCC wrapped in '()'s and skipping
368 /// the middle functions if there are a large number.
369 //
370 // Note: this is defined inline to dodge issues with GCC's interpretation
371 // of enclosing namespaces for friend function declarations.
372 friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
373 OS << '(';
374 int i = 0;
375 for (LazyCallGraph::Node &N : C) {
376 if (i > 0)
377 OS << ", ";
378 // Elide the inner elements if there are too many.
379 if (i > 8) {
380 OS << "..., " << *C.Nodes.back();
381 break;
382 }
383 OS << N;
384 ++i;
385 }
386 OS << ')';
387 return OS;
388 }
389
390 /// Dump a short description of this SCC to stderr.
391 void dump() const;
392
393 #ifndef NDEBUG
394 /// Verify invariants about the SCC.
395 ///
396 /// This will attempt to validate all of the basic invariants within an
397 /// SCC, but not that it is a strongly connected componet per-se. Primarily
398 /// useful while building and updating the graph to check that basic
399 /// properties are in place rather than having inexplicable crashes later.
400 void verify();
401 #endif
402
403 public:
404 typedef pointee_iterator<SmallVectorImpl<Node *>::const_iterator> iterator;
405
begin()406 iterator begin() const { return Nodes.begin(); }
end()407 iterator end() const { return Nodes.end(); }
408
size()409 int size() const { return Nodes.size(); }
410
getOuterRefSCC()411 RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
412
413 /// Provide a short name by printing this SCC to a std::string.
414 ///
415 /// This copes with the fact that we don't have a name per-se for an SCC
416 /// while still making the use of this in debugging and logging useful.
getName()417 std::string getName() const {
418 std::string Name;
419 raw_string_ostream OS(Name);
420 OS << *this;
421 OS.flush();
422 return Name;
423 }
424 };
425
426 /// A RefSCC of the call graph.
427 ///
428 /// This models a Strongly Connected Component of function reference edges in
429 /// the call graph. As opposed to actual SCCs, these can be used to scope
430 /// subgraphs of the module which are independent from other subgraphs of the
431 /// module because they do not reference it in any way. This is also the unit
432 /// where we do mutation of the graph in order to restrict mutations to those
433 /// which don't violate this independence.
434 ///
435 /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
436 /// are necessarily within some actual SCC that nests within it. Since
437 /// a direct call *is* a reference, there will always be at least one RefSCC
438 /// around any SCC.
439 class RefSCC {
440 friend class LazyCallGraph;
441 friend class LazyCallGraph::Node;
442
443 LazyCallGraph *G;
444 SmallPtrSet<RefSCC *, 1> Parents;
445
446 /// A postorder list of the inner SCCs.
447 SmallVector<SCC *, 4> SCCs;
448
449 /// A map from SCC to index in the postorder list.
450 SmallDenseMap<SCC *, int, 4> SCCIndices;
451
452 /// Fast-path constructor. RefSCCs should instead be constructed by calling
453 /// formRefSCCFast on the graph itself.
454 RefSCC(LazyCallGraph &G);
455
456 /// Print a short description useful for debugging or logging.
457 ///
458 /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
459 /// there are a large number.
460 //
461 // Note: this is defined inline to dodge issues with GCC's interpretation
462 // of enclosing namespaces for friend function declarations.
463 friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
464 OS << '[';
465 int i = 0;
466 for (LazyCallGraph::SCC &C : RC) {
467 if (i > 0)
468 OS << ", ";
469 // Elide the inner elements if there are too many.
470 if (i > 4) {
471 OS << "..., " << *RC.SCCs.back();
472 break;
473 }
474 OS << C;
475 ++i;
476 }
477 OS << ']';
478 return OS;
479 }
480
481 /// Dump a short description of this RefSCC to stderr.
482 void dump() const;
483
484 #ifndef NDEBUG
485 /// Verify invariants about the RefSCC and all its SCCs.
486 ///
487 /// This will attempt to validate all of the invariants *within* the
488 /// RefSCC, but not that it is a strongly connected component of the larger
489 /// graph. This makes it useful even when partially through an update.
490 ///
491 /// Invariants checked:
492 /// - SCCs and their indices match.
493 /// - The SCCs list is in fact in post-order.
494 void verify();
495 #endif
496
497 public:
498 typedef pointee_iterator<SmallVectorImpl<SCC *>::const_iterator> iterator;
499 typedef iterator_range<iterator> range;
500 typedef pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>
501 parent_iterator;
502
begin()503 iterator begin() const { return SCCs.begin(); }
end()504 iterator end() const { return SCCs.end(); }
505
size()506 ssize_t size() const { return SCCs.size(); }
507
508 SCC &operator[](int Idx) { return *SCCs[Idx]; }
509
find(SCC & C)510 iterator find(SCC &C) const {
511 return SCCs.begin() + SCCIndices.find(&C)->second;
512 }
513
parent_begin()514 parent_iterator parent_begin() const { return Parents.begin(); }
parent_end()515 parent_iterator parent_end() const { return Parents.end(); }
516
parents()517 iterator_range<parent_iterator> parents() const {
518 return make_range(parent_begin(), parent_end());
519 }
520
521 /// Test if this SCC is a parent of \a C.
isParentOf(const RefSCC & C)522 bool isParentOf(const RefSCC &C) const { return C.isChildOf(*this); }
523
524 /// Test if this RefSCC is an ancestor of \a C.
isAncestorOf(const RefSCC & C)525 bool isAncestorOf(const RefSCC &C) const { return C.isDescendantOf(*this); }
526
527 /// Test if this RefSCC is a child of \a C.
isChildOf(const RefSCC & C)528 bool isChildOf(const RefSCC &C) const {
529 return Parents.count(const_cast<RefSCC *>(&C));
530 }
531
532 /// Test if this RefSCC is a descendant of \a C.
533 bool isDescendantOf(const RefSCC &C) const;
534
535 /// Provide a short name by printing this SCC to a std::string.
536 ///
537 /// This copes with the fact that we don't have a name per-se for an SCC
538 /// while still making the use of this in debugging and logging useful.
getName()539 std::string getName() const {
540 std::string Name;
541 raw_string_ostream OS(Name);
542 OS << *this;
543 OS.flush();
544 return Name;
545 }
546
547 ///@{
548 /// \name Mutation API
549 ///
550 /// These methods provide the core API for updating the call graph in the
551 /// presence of a (potentially still in-flight) DFS-found SCCs.
552 ///
553 /// Note that these methods sometimes have complex runtimes, so be careful
554 /// how you call them.
555
556 /// Make an existing internal ref edge into a call edge.
557 ///
558 /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
559 /// If that happens, the deleted SCC pointers are returned. These SCCs are
560 /// not in a valid state any longer but the pointers will remain valid
561 /// until destruction of the parent graph instance for the purpose of
562 /// clearing cached information.
563 ///
564 /// After this operation, both SourceN's SCC and TargetN's SCC may move
565 /// position within this RefSCC's postorder list. Any SCCs merged are
566 /// merged into the TargetN's SCC in order to preserve reachability analyses
567 /// which took place on that SCC.
568 SmallVector<SCC *, 1> switchInternalEdgeToCall(Node &SourceN,
569 Node &TargetN);
570
571 /// Make an existing internal call edge into a ref edge.
572 ///
573 /// If SourceN and TargetN are part of a single SCC, it may be split up due
574 /// to breaking a cycle in the call edges that formed it. If that happens,
575 /// then this routine will insert new SCCs into the postorder list *before*
576 /// the SCC of TargetN (previously the SCC of both). This preserves
577 /// postorder as the TargetN can reach all of the other nodes by definition
578 /// of previously being in a single SCC formed by the cycle from SourceN to
579 /// TargetN. The newly added nodes are added *immediately* and contiguously
580 /// prior to the TargetN SCC and so they may be iterated starting from
581 /// there.
582 void switchInternalEdgeToRef(Node &SourceN, Node &TargetN);
583
584 /// Make an existing outgoing ref edge into a call edge.
585 ///
586 /// Note that this is trivial as there are no cyclic impacts and there
587 /// remains a reference edge.
588 void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
589
590 /// Make an existing outgoing call edge into a ref edge.
591 ///
592 /// This is trivial as there are no cyclic impacts and there remains
593 /// a reference edge.
594 void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
595
596 /// Insert a ref edge from one node in this RefSCC to another in this
597 /// RefSCC.
598 ///
599 /// This is always a trivial operation as it doesn't change any part of the
600 /// graph structure besides connecting the two nodes.
601 ///
602 /// Note that we don't support directly inserting internal *call* edges
603 /// because that could change the graph structure and requires returning
604 /// information about what became invalid. As a consequence, the pattern
605 /// should be to first insert the necessary ref edge, and then to switch it
606 /// to a call edge if needed and handle any invalidation that results. See
607 /// the \c switchInternalEdgeToCall routine for details.
608 void insertInternalRefEdge(Node &SourceN, Node &TargetN);
609
610 /// Insert an edge whose parent is in this RefSCC and child is in some
611 /// child RefSCC.
612 ///
613 /// There must be an existing path from the \p SourceN to the \p TargetN.
614 /// This operation is inexpensive and does not change the set of SCCs and
615 /// RefSCCs in the graph.
616 void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
617
618 /// Insert an edge whose source is in a descendant RefSCC and target is in
619 /// this RefSCC.
620 ///
621 /// There must be an existing path from the target to the source in this
622 /// case.
623 ///
624 /// NB! This is has the potential to be a very expensive function. It
625 /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
626 /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
627 /// participate in the cycle can in the worst case require traversing every
628 /// RefSCC in the graph. Every attempt is made to avoid that, but passes
629 /// must still exercise caution calling this routine repeatedly.
630 ///
631 /// Also note that this can only insert ref edges. In order to insert
632 /// a call edge, first insert a ref edge and then switch it to a call edge.
633 /// These are intentionally kept as separate interfaces because each step
634 /// of the operation invalidates a different set of data structures.
635 ///
636 /// This returns all the RefSCCs which were merged into the this RefSCC
637 /// (the target's). This allows callers to invalidate any cached
638 /// information.
639 ///
640 /// FIXME: We could possibly optimize this quite a bit for cases where the
641 /// caller and callee are very nearby in the graph. See comments in the
642 /// implementation for details, but that use case might impact users.
643 SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
644 Node &TargetN);
645
646 /// Remove an edge whose source is in this RefSCC and target is *not*.
647 ///
648 /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
649 /// from this SCC have been fully explored by any in-flight DFS graph
650 /// formation, so this is always safe to call once you have the source
651 /// RefSCC.
652 ///
653 /// This operation does not change the cyclic structure of the graph and so
654 /// is very inexpensive. It may change the connectivity graph of the SCCs
655 /// though, so be careful calling this while iterating over them.
656 void removeOutgoingEdge(Node &SourceN, Node &TargetN);
657
658 /// Remove a ref edge which is entirely within this RefSCC.
659 ///
660 /// Both the \a SourceN and the \a TargetN must be within this RefSCC.
661 /// Removing such an edge may break cycles that form this RefSCC and thus
662 /// this operation may change the RefSCC graph significantly. In
663 /// particular, this operation will re-form new RefSCCs based on the
664 /// remaining connectivity of the graph. The following invariants are
665 /// guaranteed to hold after calling this method:
666 ///
667 /// 1) This RefSCC is still a RefSCC in the graph.
668 /// 2) This RefSCC will be the parent of any new RefSCCs. Thus, this RefSCC
669 /// is preserved as the root of any new RefSCC DAG formed.
670 /// 3) No RefSCC other than this RefSCC has its member set changed (this is
671 /// inherent in the definition of removing such an edge).
672 /// 4) All of the parent links of the RefSCC graph will be updated to
673 /// reflect the new RefSCC structure.
674 /// 5) All RefSCCs formed out of this RefSCC, excluding this RefSCC, will
675 /// be returned in post-order.
676 /// 6) The order of the RefSCCs in the vector will be a valid postorder
677 /// traversal of the new RefSCCs.
678 ///
679 /// These invariants are very important to ensure that we can build
680 /// optimization pipelines on top of the CGSCC pass manager which
681 /// intelligently update the RefSCC graph without invalidating other parts
682 /// of the RefSCC graph.
683 ///
684 /// Note that we provide no routine to remove a *call* edge. Instead, you
685 /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
686 /// This split API is intentional as each of these two steps can invalidate
687 /// a different aspect of the graph structure and needs to have the
688 /// invalidation handled independently.
689 ///
690 /// The runtime complexity of this method is, in the worst case, O(V+E)
691 /// where V is the number of nodes in this RefSCC and E is the number of
692 /// edges leaving the nodes in this RefSCC. Note that E includes both edges
693 /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
694 /// effort has been made to minimize the overhead of common cases such as
695 /// self-edges and edge removals which result in a spanning tree with no
696 /// more cycles. There are also detailed comments within the implementation
697 /// on techniques which could substantially improve this routine's
698 /// efficiency.
699 SmallVector<RefSCC *, 1> removeInternalRefEdge(Node &SourceN,
700 Node &TargetN);
701
702 ///@}
703 };
704
705 /// A post-order depth-first SCC iterator over the call graph.
706 ///
707 /// This iterator triggers the Tarjan DFS-based formation of the SCC DAG for
708 /// the call graph, walking it lazily in depth-first post-order. That is, it
709 /// always visits SCCs for a callee prior to visiting the SCC for a caller
710 /// (when they are in different SCCs).
711 class postorder_ref_scc_iterator
712 : public iterator_facade_base<postorder_ref_scc_iterator,
713 std::forward_iterator_tag, RefSCC> {
714 friend class LazyCallGraph;
715 friend class LazyCallGraph::Node;
716
717 /// Nonce type to select the constructor for the end iterator.
718 struct IsAtEndT {};
719
720 LazyCallGraph *G;
721 RefSCC *C;
722
723 // Build the begin iterator for a node.
postorder_ref_scc_iterator(LazyCallGraph & G)724 postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G) {
725 C = G.getNextRefSCCInPostOrder();
726 }
727
728 // Build the end iterator for a node. This is selected purely by overload.
postorder_ref_scc_iterator(LazyCallGraph & G,IsAtEndT)729 postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/)
730 : G(&G), C(nullptr) {}
731
732 public:
733 bool operator==(const postorder_ref_scc_iterator &Arg) const {
734 return G == Arg.G && C == Arg.C;
735 }
736
737 reference operator*() const { return *C; }
738
739 using iterator_facade_base::operator++;
740 postorder_ref_scc_iterator &operator++() {
741 C = G->getNextRefSCCInPostOrder();
742 return *this;
743 }
744 };
745
746 /// Construct a graph for the given module.
747 ///
748 /// This sets up the graph and computes all of the entry points of the graph.
749 /// No function definitions are scanned until their nodes in the graph are
750 /// requested during traversal.
751 LazyCallGraph(Module &M);
752
753 LazyCallGraph(LazyCallGraph &&G);
754 LazyCallGraph &operator=(LazyCallGraph &&RHS);
755
begin()756 edge_iterator begin() {
757 return edge_iterator(EntryEdges.begin(), EntryEdges.end());
758 }
end()759 edge_iterator end() {
760 return edge_iterator(EntryEdges.end(), EntryEdges.end());
761 }
762
postorder_ref_scc_begin()763 postorder_ref_scc_iterator postorder_ref_scc_begin() {
764 return postorder_ref_scc_iterator(*this);
765 }
postorder_ref_scc_end()766 postorder_ref_scc_iterator postorder_ref_scc_end() {
767 return postorder_ref_scc_iterator(*this,
768 postorder_ref_scc_iterator::IsAtEndT());
769 }
770
postorder_ref_sccs()771 iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
772 return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
773 }
774
775 /// Lookup a function in the graph which has already been scanned and added.
lookup(const Function & F)776 Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
777
778 /// Lookup a function's SCC in the graph.
779 ///
780 /// \returns null if the function hasn't been assigned an SCC via the SCC
781 /// iterator walk.
lookupSCC(Node & N)782 SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
783
784 /// Lookup a function's RefSCC in the graph.
785 ///
786 /// \returns null if the function hasn't been assigned a RefSCC via the
787 /// RefSCC iterator walk.
lookupRefSCC(Node & N)788 RefSCC *lookupRefSCC(Node &N) const {
789 if (SCC *C = lookupSCC(N))
790 return &C->getOuterRefSCC();
791
792 return nullptr;
793 }
794
795 /// Get a graph node for a given function, scanning it to populate the graph
796 /// data as necessary.
get(Function & F)797 Node &get(Function &F) {
798 Node *&N = NodeMap[&F];
799 if (N)
800 return *N;
801
802 return insertInto(F, N);
803 }
804
805 ///@{
806 /// \name Pre-SCC Mutation API
807 ///
808 /// These methods are only valid to call prior to forming any SCCs for this
809 /// call graph. They can be used to update the core node-graph during
810 /// a node-based inorder traversal that precedes any SCC-based traversal.
811 ///
812 /// Once you begin manipulating a call graph's SCCs, you must perform all
813 /// mutation of the graph via the SCC methods.
814
815 /// Update the call graph after inserting a new edge.
816 void insertEdge(Node &Caller, Function &Callee, Edge::Kind EK);
817
818 /// Update the call graph after inserting a new edge.
insertEdge(Function & Caller,Function & Callee,Edge::Kind EK)819 void insertEdge(Function &Caller, Function &Callee, Edge::Kind EK) {
820 return insertEdge(get(Caller), Callee, EK);
821 }
822
823 /// Update the call graph after deleting an edge.
824 void removeEdge(Node &Caller, Function &Callee);
825
826 /// Update the call graph after deleting an edge.
removeEdge(Function & Caller,Function & Callee)827 void removeEdge(Function &Caller, Function &Callee) {
828 return removeEdge(get(Caller), Callee);
829 }
830
831 ///@}
832
833 private:
834 typedef SmallVectorImpl<Node *>::reverse_iterator node_stack_iterator;
835 typedef iterator_range<node_stack_iterator> node_stack_range;
836
837 /// Allocator that holds all the call graph nodes.
838 SpecificBumpPtrAllocator<Node> BPA;
839
840 /// Maps function->node for fast lookup.
841 DenseMap<const Function *, Node *> NodeMap;
842
843 /// The entry nodes to the graph.
844 ///
845 /// These nodes are reachable through "external" means. Put another way, they
846 /// escape at the module scope.
847 EdgeVectorT EntryEdges;
848
849 /// Map of the entry nodes in the graph to their indices in \c EntryEdges.
850 DenseMap<Function *, int> EntryIndexMap;
851
852 /// Allocator that holds all the call graph SCCs.
853 SpecificBumpPtrAllocator<SCC> SCCBPA;
854
855 /// Maps Function -> SCC for fast lookup.
856 DenseMap<Node *, SCC *> SCCMap;
857
858 /// Allocator that holds all the call graph RefSCCs.
859 SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
860
861 /// The leaf RefSCCs of the graph.
862 ///
863 /// These are all of the RefSCCs which have no children.
864 SmallVector<RefSCC *, 4> LeafRefSCCs;
865
866 /// Stack of nodes in the DFS walk.
867 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
868
869 /// Set of entry nodes not-yet-processed into RefSCCs.
870 SmallVector<Function *, 4> RefSCCEntryNodes;
871
872 /// Stack of nodes the DFS has walked but not yet put into a SCC.
873 SmallVector<Node *, 4> PendingRefSCCStack;
874
875 /// Counter for the next DFS number to assign.
876 int NextDFSNumber;
877
878 /// Helper to insert a new function, with an already looked-up entry in
879 /// the NodeMap.
880 Node &insertInto(Function &F, Node *&MappedN);
881
882 /// Helper to update pointers back to the graph object during moves.
883 void updateGraphPtrs();
884
885 /// Allocates an SCC and constructs it using the graph allocator.
886 ///
887 /// The arguments are forwarded to the constructor.
createSCC(Ts &&...Args)888 template <typename... Ts> SCC *createSCC(Ts &&... Args) {
889 return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
890 }
891
892 /// Allocates a RefSCC and constructs it using the graph allocator.
893 ///
894 /// The arguments are forwarded to the constructor.
createRefSCC(Ts &&...Args)895 template <typename... Ts> RefSCC *createRefSCC(Ts &&... Args) {
896 return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
897 }
898
899 /// Build the SCCs for a RefSCC out of a list of nodes.
900 void buildSCCs(RefSCC &RC, node_stack_range Nodes);
901
902 /// Connect a RefSCC into the larger graph.
903 ///
904 /// This walks the edges to connect the RefSCC to its children's parent set,
905 /// and updates the root leaf list.
906 void connectRefSCC(RefSCC &RC);
907
908 /// Retrieve the next node in the post-order RefSCC walk of the call graph.
909 RefSCC *getNextRefSCCInPostOrder();
910 };
911
Edge()912 inline LazyCallGraph::Edge::Edge() : Value() {}
Edge(Function & F,Kind K)913 inline LazyCallGraph::Edge::Edge(Function &F, Kind K) : Value(&F, K) {}
Edge(Node & N,Kind K)914 inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
915
916 inline LazyCallGraph::Edge::operator bool() const {
917 return !Value.getPointer().isNull();
918 }
919
isCall()920 inline bool LazyCallGraph::Edge::isCall() const {
921 assert(*this && "Queried a null edge!");
922 return Value.getInt() == Call;
923 }
924
getFunction()925 inline Function &LazyCallGraph::Edge::getFunction() const {
926 assert(*this && "Queried a null edge!");
927 auto P = Value.getPointer();
928 if (auto *F = P.dyn_cast<Function *>())
929 return *F;
930
931 return P.get<Node *>()->getFunction();
932 }
933
getNode()934 inline LazyCallGraph::Node *LazyCallGraph::Edge::getNode() const {
935 assert(*this && "Queried a null edge!");
936 auto P = Value.getPointer();
937 if (auto *N = P.dyn_cast<Node *>())
938 return N;
939
940 return nullptr;
941 }
942
getNode(LazyCallGraph & G)943 inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode(LazyCallGraph &G) {
944 assert(*this && "Queried a null edge!");
945 auto P = Value.getPointer();
946 if (auto *N = P.dyn_cast<Node *>())
947 return *N;
948
949 Node &N = G.get(*P.get<Function *>());
950 Value.setPointer(&N);
951 return N;
952 }
953
954 // Provide GraphTraits specializations for call graphs.
955 template <> struct GraphTraits<LazyCallGraph::Node *> {
956 typedef LazyCallGraph::Node NodeType;
957 typedef LazyCallGraph::edge_iterator ChildIteratorType;
958
959 static NodeType *getEntryNode(NodeType *N) { return N; }
960 static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
961 static ChildIteratorType child_end(NodeType *N) { return N->end(); }
962 };
963 template <> struct GraphTraits<LazyCallGraph *> {
964 typedef LazyCallGraph::Node NodeType;
965 typedef LazyCallGraph::edge_iterator ChildIteratorType;
966
967 static NodeType *getEntryNode(NodeType *N) { return N; }
968 static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
969 static ChildIteratorType child_end(NodeType *N) { return N->end(); }
970 };
971
972 /// An analysis pass which computes the call graph for a module.
973 class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
974 friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
975 static char PassID;
976
977 public:
978 /// Inform generic clients of the result type.
979 typedef LazyCallGraph Result;
980
981 /// Compute the \c LazyCallGraph for the module \c M.
982 ///
983 /// This just builds the set of entry points to the call graph. The rest is
984 /// built lazily as it is walked.
985 LazyCallGraph run(Module &M, ModuleAnalysisManager &) {
986 return LazyCallGraph(M);
987 }
988 };
989
990 /// A pass which prints the call graph to a \c raw_ostream.
991 ///
992 /// This is primarily useful for testing the analysis.
993 class LazyCallGraphPrinterPass
994 : public PassInfoMixin<LazyCallGraphPrinterPass> {
995 raw_ostream &OS;
996
997 public:
998 explicit LazyCallGraphPrinterPass(raw_ostream &OS);
999
1000 PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1001 };
1002
1003 /// A pass which prints the call graph as a DOT file to a \c raw_ostream.
1004 ///
1005 /// This is primarily useful for visualization purposes.
1006 class LazyCallGraphDOTPrinterPass
1007 : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
1008 raw_ostream &OS;
1009
1010 public:
1011 explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
1012
1013 PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1014 };
1015 }
1016
1017 #endif
1018