• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "mutex.h"
18 
19 #include <errno.h>
20 #include <sys/time.h>
21 
22 #include <sstream>
23 
24 #include "android-base/stringprintf.h"
25 
26 #include "base/atomic.h"
27 #include "base/logging.h"
28 #include "base/systrace.h"
29 #include "base/time_utils.h"
30 #include "base/value_object.h"
31 #include "mutex-inl.h"
32 #include "scoped_thread_state_change-inl.h"
33 #include "thread-inl.h"
34 #include "thread.h"
35 #include "thread_list.h"
36 
37 namespace art {
38 
39 using android::base::StringPrintf;
40 
41 static constexpr uint64_t kIntervalMillis = 50;
42 static constexpr int kMonitorTimeoutTryMax = 5;
43 
44 static const char* kLastDumpStackTime = "LastDumpStackTime";
45 
46 struct AllMutexData {
47   // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
48   Atomic<const BaseMutex*> all_mutexes_guard;
49   // All created mutexes guarded by all_mutexes_guard_.
50   std::set<BaseMutex*>* all_mutexes;
AllMutexDataart::AllMutexData51   AllMutexData() : all_mutexes(nullptr) {}
52 };
53 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
54 
55 struct DumpStackLastTimeTLSData : public art::TLSData {
DumpStackLastTimeTLSDataart::DumpStackLastTimeTLSData56   explicit DumpStackLastTimeTLSData(uint64_t last_dump_time_ms) {
57     last_dump_time_ms_ = last_dump_time_ms;
58   }
59   uint64_t last_dump_time_ms_;
60 };
61 
62 #if ART_USE_FUTEXES
ComputeRelativeTimeSpec(timespec * result_ts,const timespec & lhs,const timespec & rhs)63 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
64   const int32_t one_sec = 1000 * 1000 * 1000;  // one second in nanoseconds.
65   result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
66   result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
67   if (result_ts->tv_nsec < 0) {
68     result_ts->tv_sec--;
69     result_ts->tv_nsec += one_sec;
70   } else if (result_ts->tv_nsec > one_sec) {
71     result_ts->tv_sec++;
72     result_ts->tv_nsec -= one_sec;
73   }
74   return result_ts->tv_sec < 0;
75 }
76 #endif
77 
78 #if ART_USE_FUTEXES
79 // If we wake up from a futex wake, and the runtime disappeared while we were asleep,
80 // it's important to stop in our tracks before we touch deallocated memory.
SleepIfRuntimeDeleted(Thread * self)81 static inline void SleepIfRuntimeDeleted(Thread* self) {
82   if (self != nullptr) {
83     JNIEnvExt* const env = self->GetJniEnv();
84     if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
85       DCHECK(self->IsDaemon());
86       // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
87       // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
88       // --host and --gdb.
89       // After we wake up, the runtime may have been shutdown, which means that this condition may
90       // have been deleted. It is not safe to retry the wait.
91       SleepForever();
92     }
93   }
94 }
95 #else
96 // We should be doing this for pthreads to, but it seems to be impossible for something
97 // like a condition variable wait. Thus we don't bother trying.
98 #endif
99 
100 // Wait for an amount of time that roughly increases in the argument i.
101 // Spin for small arguments and yield/sleep for longer ones.
BackOff(uint32_t i)102 static void BackOff(uint32_t i) {
103   static constexpr uint32_t kSpinMax = 10;
104   static constexpr uint32_t kYieldMax = 20;
105   if (i <= kSpinMax) {
106     // TODO: Esp. in very latency-sensitive cases, consider replacing this with an explicit
107     // test-and-test-and-set loop in the caller.  Possibly skip entirely on a uniprocessor.
108     volatile uint32_t x = 0;
109     const uint32_t spin_count = 10 * i;
110     for (uint32_t spin = 0; spin < spin_count; ++spin) {
111       ++x;  // Volatile; hence should not be optimized away.
112     }
113     // TODO: Consider adding x86 PAUSE and/or ARM YIELD here.
114   } else if (i <= kYieldMax) {
115     sched_yield();
116   } else {
117     NanoSleep(1000ull * (i - kYieldMax));
118   }
119 }
120 
121 // Wait until pred(testLoc->load(std::memory_order_relaxed)) holds, or until a
122 // short time interval, on the order of kernel context-switch time, passes.
123 // Return true if the predicate test succeeded, false if we timed out.
124 template<typename Pred>
WaitBrieflyFor(AtomicInteger * testLoc,Thread * self,Pred pred)125 static inline bool WaitBrieflyFor(AtomicInteger* testLoc, Thread* self, Pred pred) {
126   // TODO: Tune these parameters correctly. BackOff(3) should take on the order of 100 cycles. So
127   // this should result in retrying <= 10 times, usually waiting around 100 cycles each. The
128   // maximum delay should be significantly less than the expected futex() context switch time, so
129   // there should be little danger of this worsening things appreciably. If the lock was only
130   // held briefly by a running thread, this should help immensely.
131   static constexpr uint32_t kMaxBackOff = 3;  // Should probably be <= kSpinMax above.
132   static constexpr uint32_t kMaxIters = 50;
133   JNIEnvExt* const env = self == nullptr ? nullptr : self->GetJniEnv();
134   for (uint32_t i = 1; i <= kMaxIters; ++i) {
135     BackOff(std::min(i, kMaxBackOff));
136     if (pred(testLoc->load(std::memory_order_relaxed))) {
137       return true;
138     }
139     if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
140       // This returns true once we've started shutting down. We then try to reach a quiescent
141       // state as soon as possible to avoid touching data that may be deallocated by the shutdown
142       // process. It currently relies on a timeout.
143       return false;
144     }
145   }
146   return false;
147 }
148 
149 class ScopedAllMutexesLock final {
150  public:
ScopedAllMutexesLock(const BaseMutex * mutex)151   explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
152     for (uint32_t i = 0;
153          !gAllMutexData->all_mutexes_guard.CompareAndSetWeakAcquire(nullptr, mutex);
154          ++i) {
155       BackOff(i);
156     }
157   }
158 
~ScopedAllMutexesLock()159   ~ScopedAllMutexesLock() {
160     DCHECK_EQ(gAllMutexData->all_mutexes_guard.load(std::memory_order_relaxed), mutex_);
161     gAllMutexData->all_mutexes_guard.store(nullptr, std::memory_order_release);
162   }
163 
164  private:
165   const BaseMutex* const mutex_;
166 };
167 
168 // Scoped class that generates events at the beginning and end of lock contention.
169 class ScopedContentionRecorder final : public ValueObject {
170  public:
ScopedContentionRecorder(BaseMutex * mutex,uint64_t blocked_tid,uint64_t owner_tid)171   ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
172       : mutex_(kLogLockContentions ? mutex : nullptr),
173         blocked_tid_(kLogLockContentions ? blocked_tid : 0),
174         owner_tid_(kLogLockContentions ? owner_tid : 0),
175         start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
176     if (ATraceEnabled()) {
177       std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
178                                      mutex->GetName(), owner_tid);
179       ATraceBegin(msg.c_str());
180     }
181   }
182 
~ScopedContentionRecorder()183   ~ScopedContentionRecorder() {
184     ATraceEnd();
185     if (kLogLockContentions) {
186       uint64_t end_nano_time = NanoTime();
187       mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
188     }
189   }
190 
191  private:
192   BaseMutex* const mutex_;
193   const uint64_t blocked_tid_;
194   const uint64_t owner_tid_;
195   const uint64_t start_nano_time_;
196 };
197 
BaseMutex(const char * name,LockLevel level)198 BaseMutex::BaseMutex(const char* name, LockLevel level)
199     : name_(name),
200       level_(level),
201       should_respond_to_empty_checkpoint_request_(false) {
202   if (kLogLockContentions) {
203     ScopedAllMutexesLock mu(this);
204     std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
205     if (*all_mutexes_ptr == nullptr) {
206       // We leak the global set of all mutexes to avoid ordering issues in global variable
207       // construction/destruction.
208       *all_mutexes_ptr = new std::set<BaseMutex*>();
209     }
210     (*all_mutexes_ptr)->insert(this);
211   }
212 }
213 
~BaseMutex()214 BaseMutex::~BaseMutex() {
215   if (kLogLockContentions) {
216     ScopedAllMutexesLock mu(this);
217     gAllMutexData->all_mutexes->erase(this);
218   }
219 }
220 
DumpAll(std::ostream & os)221 void BaseMutex::DumpAll(std::ostream& os) {
222   if (kLogLockContentions) {
223     os << "Mutex logging:\n";
224     ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
225     std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
226     if (all_mutexes == nullptr) {
227       // No mutexes have been created yet during at startup.
228       return;
229     }
230     os << "(Contended)\n";
231     for (const BaseMutex* mutex : *all_mutexes) {
232       if (mutex->HasEverContended()) {
233         mutex->Dump(os);
234         os << "\n";
235       }
236     }
237     os << "(Never contented)\n";
238     for (const BaseMutex* mutex : *all_mutexes) {
239       if (!mutex->HasEverContended()) {
240         mutex->Dump(os);
241         os << "\n";
242       }
243     }
244   }
245 }
246 
CheckSafeToWait(Thread * self)247 void BaseMutex::CheckSafeToWait(Thread* self) {
248   if (self == nullptr) {
249     CheckUnattachedThread(level_);
250     return;
251   }
252   if (kDebugLocking) {
253     CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
254         << "Waiting on unacquired mutex: " << name_;
255     bool bad_mutexes_held = false;
256     std::string error_msg;
257     for (int i = kLockLevelCount - 1; i >= 0; --i) {
258       if (i != level_) {
259         BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
260         // We allow the thread to wait even if the user_code_suspension_lock_ is held so long. This
261         // just means that gc or some other internal process is suspending the thread while it is
262         // trying to suspend some other thread. So long as the current thread is not being suspended
263         // by a SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear)
264         // this is fine. This is needed due to user_code_suspension_lock_ being the way untrusted
265         // code interacts with suspension. One holds the lock to prevent user-code-suspension from
266         // occurring. Since this is only initiated from user-supplied native-code this is safe.
267         if (held_mutex == Locks::user_code_suspension_lock_) {
268           // No thread safety analysis is fine since we have both the user_code_suspension_lock_
269           // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
270           // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
271           auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
272             return self->GetUserCodeSuspendCount() != 0;
273           };
274           if (is_suspending_for_user_code()) {
275             std::ostringstream oss;
276             oss << "Holding \"" << held_mutex->name_ << "\" "
277                 << "(level " << LockLevel(i) << ") while performing wait on "
278                 << "\"" << name_ << "\" (level " << level_ << ") "
279                 << "with SuspendReason::kForUserCode pending suspensions";
280             error_msg = oss.str();
281             LOG(ERROR) << error_msg;
282             bad_mutexes_held = true;
283           }
284         } else if (held_mutex != nullptr) {
285           std::ostringstream oss;
286           oss << "Holding \"" << held_mutex->name_ << "\" "
287               << "(level " << LockLevel(i) << ") while performing wait on "
288               << "\"" << name_ << "\" (level " << level_ << ")";
289           error_msg = oss.str();
290           LOG(ERROR) << error_msg;
291           bad_mutexes_held = true;
292         }
293       }
294     }
295     if (gAborting == 0) {  // Avoid recursive aborts.
296       CHECK(!bad_mutexes_held) << error_msg;
297     }
298   }
299 }
300 
AddToWaitTime(uint64_t value)301 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
302   if (kLogLockContentions) {
303     // Atomically add value to wait_time.
304     wait_time.fetch_add(value, std::memory_order_seq_cst);
305   }
306 }
307 
RecordContention(uint64_t blocked_tid,uint64_t owner_tid,uint64_t nano_time_blocked)308 void BaseMutex::RecordContention(uint64_t blocked_tid,
309                                  uint64_t owner_tid,
310                                  uint64_t nano_time_blocked) {
311   if (kLogLockContentions) {
312     ContentionLogData* data = contention_log_data_;
313     ++(data->contention_count);
314     data->AddToWaitTime(nano_time_blocked);
315     ContentionLogEntry* log = data->contention_log;
316     // This code is intentionally racy as it is only used for diagnostics.
317     int32_t slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
318     if (log[slot].blocked_tid == blocked_tid &&
319         log[slot].owner_tid == blocked_tid) {
320       ++log[slot].count;
321     } else {
322       uint32_t new_slot;
323       do {
324         slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
325         new_slot = (slot + 1) % kContentionLogSize;
326       } while (!data->cur_content_log_entry.CompareAndSetWeakRelaxed(slot, new_slot));
327       log[new_slot].blocked_tid = blocked_tid;
328       log[new_slot].owner_tid = owner_tid;
329       log[new_slot].count.store(1, std::memory_order_relaxed);
330     }
331   }
332 }
333 
DumpContention(std::ostream & os) const334 void BaseMutex::DumpContention(std::ostream& os) const {
335   if (kLogLockContentions) {
336     const ContentionLogData* data = contention_log_data_;
337     const ContentionLogEntry* log = data->contention_log;
338     uint64_t wait_time = data->wait_time.load(std::memory_order_relaxed);
339     uint32_t contention_count = data->contention_count.load(std::memory_order_relaxed);
340     if (contention_count == 0) {
341       os << "never contended";
342     } else {
343       os << "contended " << contention_count
344          << " total wait of contender " << PrettyDuration(wait_time)
345          << " average " << PrettyDuration(wait_time / contention_count);
346       SafeMap<uint64_t, size_t> most_common_blocker;
347       SafeMap<uint64_t, size_t> most_common_blocked;
348       for (size_t i = 0; i < kContentionLogSize; ++i) {
349         uint64_t blocked_tid = log[i].blocked_tid;
350         uint64_t owner_tid = log[i].owner_tid;
351         uint32_t count = log[i].count.load(std::memory_order_relaxed);
352         if (count > 0) {
353           auto it = most_common_blocked.find(blocked_tid);
354           if (it != most_common_blocked.end()) {
355             most_common_blocked.Overwrite(blocked_tid, it->second + count);
356           } else {
357             most_common_blocked.Put(blocked_tid, count);
358           }
359           it = most_common_blocker.find(owner_tid);
360           if (it != most_common_blocker.end()) {
361             most_common_blocker.Overwrite(owner_tid, it->second + count);
362           } else {
363             most_common_blocker.Put(owner_tid, count);
364           }
365         }
366       }
367       uint64_t max_tid = 0;
368       size_t max_tid_count = 0;
369       for (const auto& pair : most_common_blocked) {
370         if (pair.second > max_tid_count) {
371           max_tid = pair.first;
372           max_tid_count = pair.second;
373         }
374       }
375       if (max_tid != 0) {
376         os << " sample shows most blocked tid=" << max_tid;
377       }
378       max_tid = 0;
379       max_tid_count = 0;
380       for (const auto& pair : most_common_blocker) {
381         if (pair.second > max_tid_count) {
382           max_tid = pair.first;
383           max_tid_count = pair.second;
384         }
385       }
386       if (max_tid != 0) {
387         os << " sample shows tid=" << max_tid << " owning during this time";
388       }
389     }
390   }
391 }
392 
393 
Mutex(const char * name,LockLevel level,bool recursive)394 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
395     : BaseMutex(name, level), exclusive_owner_(0), recursion_count_(0), recursive_(recursive) {
396 #if ART_USE_FUTEXES
397   DCHECK_EQ(0, state_and_contenders_.load(std::memory_order_relaxed));
398 #else
399   CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
400 #endif
401 }
402 
403 // Helper to allow checking shutdown while locking for thread safety.
IsSafeToCallAbortSafe()404 static bool IsSafeToCallAbortSafe() {
405   MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
406   return Locks::IsSafeToCallAbortRacy();
407 }
408 
~Mutex()409 Mutex::~Mutex() {
410   bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
411 #if ART_USE_FUTEXES
412   if (state_and_contenders_.load(std::memory_order_relaxed) != 0) {
413     LOG(safe_to_call_abort ? FATAL : WARNING)
414         << "destroying mutex with owner or contenders. Owner:" << GetExclusiveOwnerTid();
415   } else {
416     if (GetExclusiveOwnerTid() != 0) {
417       LOG(safe_to_call_abort ? FATAL : WARNING)
418           << "unexpectedly found an owner on unlocked mutex " << name_;
419     }
420   }
421 #else
422   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
423   // may still be using locks.
424   int rc = pthread_mutex_destroy(&mutex_);
425   if (rc != 0) {
426     errno = rc;
427     PLOG(safe_to_call_abort ? FATAL : WARNING)
428         << "pthread_mutex_destroy failed for " << name_;
429   }
430 #endif
431 }
432 
ExclusiveLock(Thread * self)433 void Mutex::ExclusiveLock(Thread* self) {
434   DCHECK(self == nullptr || self == Thread::Current());
435   if (kDebugLocking && !recursive_) {
436     AssertNotHeld(self);
437   }
438   if (!recursive_ || !IsExclusiveHeld(self)) {
439 #if ART_USE_FUTEXES
440     bool done = false;
441     do {
442       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
443       if (LIKELY((cur_state & kHeldMask) == 0) /* lock not held */) {
444         done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
445       } else {
446         // Failed to acquire, hang up.
447         ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
448         // Empirically, it appears important to spin again each time through the loop; if we
449         // bother to go to sleep and wake up, we should be fairly persistent in trying for the
450         // lock.
451         if (!WaitBrieflyFor(&state_and_contenders_, self,
452                             [](int32_t v) { return (v & kHeldMask) == 0; })) {
453           // Increment contender count. We can't create enough threads for this to overflow.
454           increment_contenders();
455           // Make cur_state again reflect the expected value of state_and_contenders.
456           cur_state += kContenderIncrement;
457           if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
458             self->CheckEmptyCheckpointFromMutex();
459           }
460 
461           uint64_t wait_start_ms = enable_monitor_timeout_ ? MilliTime() : 0;
462           uint64_t try_times = 0;
463           do {
464             timespec timeout_ts;
465             timeout_ts.tv_sec = 0;
466             timeout_ts.tv_nsec = Runtime::Current()->GetMonitorTimeoutNs();
467             if (futex(state_and_contenders_.Address(), FUTEX_WAIT_PRIVATE, cur_state,
468                       enable_monitor_timeout_ ? &timeout_ts : nullptr , nullptr, 0) != 0) {
469               // We only went to sleep after incrementing and contenders and checking that the
470               // lock is still held by someone else.  EAGAIN and EINTR both indicate a spurious
471               // failure, try again from the beginning.  We don't use TEMP_FAILURE_RETRY so we can
472               // intentionally retry to acquire the lock.
473               if ((errno != EAGAIN) && (errno != EINTR)) {
474                 if (errno == ETIMEDOUT) {
475                   try_times++;
476                   if (try_times <= kMonitorTimeoutTryMax) {
477                     DumpStack(self, wait_start_ms, try_times);
478                   }
479                 } else {
480                   PLOG(FATAL) << "futex wait failed for " << name_;
481                 }
482               }
483             }
484             SleepIfRuntimeDeleted(self);
485             // Retry until not held. In heavy contention situations we otherwise get redundant
486             // futex wakeups as a result of repeatedly decrementing and incrementing contenders.
487             cur_state = state_and_contenders_.load(std::memory_order_relaxed);
488           } while ((cur_state & kHeldMask) != 0);
489           decrement_contenders();
490         }
491       }
492     } while (!done);
493     // Confirm that lock is now held.
494     DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
495 #else
496     CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
497 #endif
498     DCHECK_EQ(GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self)
499                                          << " recursive_ = " << recursive_;
500     exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
501     RegisterAsLocked(self);
502   }
503   recursion_count_++;
504   if (kDebugLocking) {
505     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
506         << name_ << " " << recursion_count_;
507     AssertHeld(self);
508   }
509 }
510 
DumpStack(Thread * self,uint64_t wait_start_ms,uint64_t try_times)511 void Mutex::DumpStack(Thread* self, uint64_t wait_start_ms, uint64_t try_times) {
512   ScopedObjectAccess soa(self);
513   Locks::thread_list_lock_->ExclusiveLock(self);
514   std::string owner_stack_dump;
515   pid_t owner_tid = GetExclusiveOwnerTid();
516   Thread *owner = Runtime::Current()->GetThreadList()->FindThreadByTid(owner_tid);
517   if (owner != nullptr) {
518     if (IsDumpFrequent(owner, try_times)) {
519       Locks::thread_list_lock_->ExclusiveUnlock(self);
520       LOG(WARNING) << "Contention with tid " << owner_tid << ", monitor id " << monitor_id_;
521       return;
522     }
523     struct CollectStackTrace : public Closure {
524       void Run(art::Thread* thread) override
525         REQUIRES_SHARED(art::Locks::mutator_lock_) {
526         if (IsDumpFrequent(thread)) {
527           return;
528         }
529         thread->SetCustomTLS(kLastDumpStackTime, new DumpStackLastTimeTLSData(MilliTime()));
530         thread->DumpJavaStack(oss);
531       }
532       std::ostringstream oss;
533     };
534     CollectStackTrace owner_trace;
535     owner->RequestSynchronousCheckpoint(&owner_trace);
536     owner_stack_dump = owner_trace.oss.str();
537     uint64_t wait_ms = MilliTime() - wait_start_ms;
538     LOG(WARNING) << "Monitor contention with tid " << owner_tid << ", wait time: " << wait_ms
539                  << "ms, monitor id: " << monitor_id_
540                  << "\nPerfMonitor owner thread(" << owner_tid << ") stack is:\n"
541                  << owner_stack_dump;
542   } else {
543     Locks::thread_list_lock_->ExclusiveUnlock(self);
544   }
545 }
546 
IsDumpFrequent(Thread * thread,uint64_t try_times)547 bool Mutex::IsDumpFrequent(Thread* thread, uint64_t try_times) {
548   uint64_t last_dump_time_ms = 0;
549   DumpStackLastTimeTLSData* tls_data =
550       reinterpret_cast<DumpStackLastTimeTLSData*>(thread->GetCustomTLS(kLastDumpStackTime));
551   if (tls_data != nullptr) {
552      last_dump_time_ms = tls_data->last_dump_time_ms_;
553   }
554   uint64_t interval = MilliTime() - last_dump_time_ms;
555   if (interval < kIntervalMillis * try_times) {
556     return true;
557   } else {
558     return false;
559   }
560 }
561 
ExclusiveTryLock(Thread * self)562 bool Mutex::ExclusiveTryLock(Thread* self) {
563   DCHECK(self == nullptr || self == Thread::Current());
564   if (kDebugLocking && !recursive_) {
565     AssertNotHeld(self);
566   }
567   if (!recursive_ || !IsExclusiveHeld(self)) {
568 #if ART_USE_FUTEXES
569     bool done = false;
570     do {
571       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
572       if ((cur_state & kHeldMask) == 0) {
573         // Change state to held and impose load/store ordering appropriate for lock acquisition.
574         done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
575       } else {
576         return false;
577       }
578     } while (!done);
579     DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
580 #else
581     int result = pthread_mutex_trylock(&mutex_);
582     if (result == EBUSY) {
583       return false;
584     }
585     if (result != 0) {
586       errno = result;
587       PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
588     }
589 #endif
590     DCHECK_EQ(GetExclusiveOwnerTid(), 0);
591     exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
592     RegisterAsLocked(self);
593   }
594   recursion_count_++;
595   if (kDebugLocking) {
596     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
597         << name_ << " " << recursion_count_;
598     AssertHeld(self);
599   }
600   return true;
601 }
602 
ExclusiveTryLockWithSpinning(Thread * self)603 bool Mutex::ExclusiveTryLockWithSpinning(Thread* self) {
604   // Spin a small number of times, since this affects our ability to respond to suspension
605   // requests. We spin repeatedly only if the mutex repeatedly becomes available and unavailable
606   // in rapid succession, and then we will typically not spin for the maximal period.
607   const int kMaxSpins = 5;
608   for (int i = 0; i < kMaxSpins; ++i) {
609     if (ExclusiveTryLock(self)) {
610       return true;
611     }
612 #if ART_USE_FUTEXES
613     if (!WaitBrieflyFor(&state_and_contenders_, self,
614             [](int32_t v) { return (v & kHeldMask) == 0; })) {
615       return false;
616     }
617 #endif
618   }
619   return ExclusiveTryLock(self);
620 }
621 
622 #if ART_USE_FUTEXES
ExclusiveLockUncontendedFor(Thread * new_owner)623 void Mutex::ExclusiveLockUncontendedFor(Thread* new_owner) {
624   DCHECK_EQ(level_, kMonitorLock);
625   DCHECK(!recursive_);
626   state_and_contenders_.store(kHeldMask, std::memory_order_relaxed);
627   recursion_count_ = 1;
628   exclusive_owner_.store(SafeGetTid(new_owner), std::memory_order_relaxed);
629   // Don't call RegisterAsLocked(). It wouldn't register anything anyway.  And
630   // this happens as we're inflating a monitor, which doesn't logically affect
631   // held "locks"; it effectively just converts a thin lock to a mutex.  By doing
632   // this while the lock is already held, we're delaying the acquisition of a
633   // logically held mutex, which can introduce bogus lock order violations.
634 }
635 
ExclusiveUnlockUncontended()636 void Mutex::ExclusiveUnlockUncontended() {
637   DCHECK_EQ(level_, kMonitorLock);
638   state_and_contenders_.store(0, std::memory_order_relaxed);
639   recursion_count_ = 0;
640   exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
641   // Skip RegisterAsUnlocked(), which wouldn't do anything anyway.
642 }
643 #endif  // ART_USE_FUTEXES
644 
ExclusiveUnlock(Thread * self)645 void Mutex::ExclusiveUnlock(Thread* self) {
646   if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
647     std::string name1 = "<null>";
648     std::string name2 = "<null>";
649     if (self != nullptr) {
650       self->GetThreadName(name1);
651     }
652     if (Thread::Current() != nullptr) {
653       Thread::Current()->GetThreadName(name2);
654     }
655     LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
656                << " Thread::Current()=" << name2;
657   }
658   AssertHeld(self);
659   DCHECK_NE(GetExclusiveOwnerTid(), 0);
660   recursion_count_--;
661   if (!recursive_ || recursion_count_ == 0) {
662     if (kDebugLocking) {
663       CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
664           << name_ << " " << recursion_count_;
665     }
666     RegisterAsUnlocked(self);
667 #if ART_USE_FUTEXES
668     bool done = false;
669     do {
670       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
671       if (LIKELY((cur_state & kHeldMask) != 0)) {
672         // We're no longer the owner.
673         exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
674         // Change state to not held and impose load/store ordering appropriate for lock release.
675         uint32_t new_state = cur_state & ~kHeldMask;  // Same number of contenders.
676         done = state_and_contenders_.CompareAndSetWeakRelease(cur_state, new_state);
677         if (LIKELY(done)) {  // Spurious fail or waiters changed ?
678           if (UNLIKELY(new_state != 0) /* have contenders */) {
679             futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeOne,
680                   nullptr, nullptr, 0);
681           }
682           // We only do a futex wait after incrementing contenders and verifying the lock was
683           // still held. If we didn't see waiters, then there couldn't have been any futexes
684           // waiting on this lock when we did the CAS. New arrivals after that cannot wait for us,
685           // since the futex wait call would see the lock available and immediately return.
686         }
687       } else {
688         // Logging acquires the logging lock, avoid infinite recursion in that case.
689         if (this != Locks::logging_lock_) {
690           LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
691         } else {
692           LogHelper::LogLineLowStack(__FILE__,
693                                      __LINE__,
694                                      ::android::base::FATAL_WITHOUT_ABORT,
695                                      StringPrintf("Unexpected state_ %d in unlock for %s",
696                                                   cur_state, name_).c_str());
697           _exit(1);
698         }
699       }
700     } while (!done);
701 #else
702     exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
703     CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
704 #endif
705   }
706 }
707 
Dump(std::ostream & os) const708 void Mutex::Dump(std::ostream& os) const {
709   os << (recursive_ ? "recursive " : "non-recursive ")
710       << name_
711       << " level=" << static_cast<int>(level_)
712       << " rec=" << recursion_count_
713       << " owner=" << GetExclusiveOwnerTid() << " ";
714   DumpContention(os);
715 }
716 
operator <<(std::ostream & os,const Mutex & mu)717 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
718   mu.Dump(os);
719   return os;
720 }
721 
WakeupToRespondToEmptyCheckpoint()722 void Mutex::WakeupToRespondToEmptyCheckpoint() {
723 #if ART_USE_FUTEXES
724   // Wake up all the waiters so they will respond to the emtpy checkpoint.
725   DCHECK(should_respond_to_empty_checkpoint_request_);
726   if (UNLIKELY(get_contenders() != 0)) {
727     futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
728   }
729 #else
730   LOG(FATAL) << "Non futex case isn't supported.";
731 #endif
732 }
733 
ReaderWriterMutex(const char * name,LockLevel level)734 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
735     : BaseMutex(name, level)
736 #if ART_USE_FUTEXES
737     , state_(0), exclusive_owner_(0), num_contenders_(0)
738 #endif
739 {
740 #if !ART_USE_FUTEXES
741   CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
742 #endif
743 }
744 
~ReaderWriterMutex()745 ReaderWriterMutex::~ReaderWriterMutex() {
746 #if ART_USE_FUTEXES
747   CHECK_EQ(state_.load(std::memory_order_relaxed), 0);
748   CHECK_EQ(GetExclusiveOwnerTid(), 0);
749   CHECK_EQ(num_contenders_.load(std::memory_order_relaxed), 0);
750 #else
751   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
752   // may still be using locks.
753   int rc = pthread_rwlock_destroy(&rwlock_);
754   if (rc != 0) {
755     errno = rc;
756     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
757     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
758   }
759 #endif
760 }
761 
ExclusiveLock(Thread * self)762 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
763   DCHECK(self == nullptr || self == Thread::Current());
764   AssertNotExclusiveHeld(self);
765 #if ART_USE_FUTEXES
766   bool done = false;
767   do {
768     int32_t cur_state = state_.load(std::memory_order_relaxed);
769     if (LIKELY(cur_state == 0)) {
770       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
771       done = state_.CompareAndSetWeakAcquire(0 /* cur_state*/, -1 /* new state */);
772     } else {
773       // Failed to acquire, hang up.
774       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
775       if (!WaitBrieflyFor(&state_, self, [](int32_t v) { return v == 0; })) {
776         num_contenders_.fetch_add(1);
777         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
778           self->CheckEmptyCheckpointFromMutex();
779         }
780         if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
781           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
782           // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
783           if ((errno != EAGAIN) && (errno != EINTR)) {
784             PLOG(FATAL) << "futex wait failed for " << name_;
785           }
786         }
787         SleepIfRuntimeDeleted(self);
788         num_contenders_.fetch_sub(1);
789       }
790     }
791   } while (!done);
792   DCHECK_EQ(state_.load(std::memory_order_relaxed), -1);
793 #else
794   CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
795 #endif
796   DCHECK_EQ(GetExclusiveOwnerTid(), 0);
797   exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
798   RegisterAsLocked(self);
799   AssertExclusiveHeld(self);
800 }
801 
ExclusiveUnlock(Thread * self)802 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
803   DCHECK(self == nullptr || self == Thread::Current());
804   AssertExclusiveHeld(self);
805   RegisterAsUnlocked(self);
806   DCHECK_NE(GetExclusiveOwnerTid(), 0);
807 #if ART_USE_FUTEXES
808   bool done = false;
809   do {
810     int32_t cur_state = state_.load(std::memory_order_relaxed);
811     if (LIKELY(cur_state == -1)) {
812       // We're no longer the owner.
813       exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
814       // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
815       // Note, the num_contenders_ load below musn't reorder before the CompareAndSet.
816       done = state_.CompareAndSetWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
817       if (LIKELY(done)) {  // Weak CAS may fail spuriously.
818         // Wake any waiters.
819         if (UNLIKELY(num_contenders_.load(std::memory_order_seq_cst) > 0)) {
820           futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
821         }
822       }
823     } else {
824       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
825     }
826   } while (!done);
827 #else
828   exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
829   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
830 #endif
831 }
832 
833 #if HAVE_TIMED_RWLOCK
ExclusiveLockWithTimeout(Thread * self,int64_t ms,int32_t ns)834 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
835   DCHECK(self == nullptr || self == Thread::Current());
836 #if ART_USE_FUTEXES
837   bool done = false;
838   timespec end_abs_ts;
839   InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
840   do {
841     int32_t cur_state = state_.load(std::memory_order_relaxed);
842     if (cur_state == 0) {
843       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
844       done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, -1 /* new state */);
845     } else {
846       // Failed to acquire, hang up.
847       timespec now_abs_ts;
848       InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
849       timespec rel_ts;
850       if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
851         return false;  // Timed out.
852       }
853       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
854       if (!WaitBrieflyFor(&state_, self, [](int32_t v) { return v == 0; })) {
855         num_contenders_.fetch_add(1);
856         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
857           self->CheckEmptyCheckpointFromMutex();
858         }
859         if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, &rel_ts, nullptr, 0) != 0) {
860           if (errno == ETIMEDOUT) {
861             num_contenders_.fetch_sub(1);
862             return false;  // Timed out.
863           } else if ((errno != EAGAIN) && (errno != EINTR)) {
864             // EAGAIN and EINTR both indicate a spurious failure,
865             // recompute the relative time out from now and try again.
866             // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
867             PLOG(FATAL) << "timed futex wait failed for " << name_;
868           }
869         }
870         SleepIfRuntimeDeleted(self);
871         num_contenders_.fetch_sub(1);
872       }
873     }
874   } while (!done);
875 #else
876   timespec ts;
877   InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
878   int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
879   if (result == ETIMEDOUT) {
880     return false;
881   }
882   if (result != 0) {
883     errno = result;
884     PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
885   }
886 #endif
887   exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
888   RegisterAsLocked(self);
889   AssertSharedHeld(self);
890   return true;
891 }
892 #endif
893 
894 #if ART_USE_FUTEXES
HandleSharedLockContention(Thread * self,int32_t cur_state)895 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
896   // Owner holds it exclusively, hang up.
897   ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
898   if (!WaitBrieflyFor(&state_, self, [](int32_t v) { return v >= 0; })) {
899     num_contenders_.fetch_add(1);
900     if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
901       self->CheckEmptyCheckpointFromMutex();
902     }
903     if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
904       if (errno != EAGAIN && errno != EINTR) {
905         PLOG(FATAL) << "futex wait failed for " << name_;
906       }
907     }
908     SleepIfRuntimeDeleted(self);
909     num_contenders_.fetch_sub(1);
910   }
911 }
912 #endif
913 
SharedTryLock(Thread * self)914 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
915   DCHECK(self == nullptr || self == Thread::Current());
916 #if ART_USE_FUTEXES
917   bool done = false;
918   do {
919     int32_t cur_state = state_.load(std::memory_order_relaxed);
920     if (cur_state >= 0) {
921       // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
922       done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
923     } else {
924       // Owner holds it exclusively.
925       return false;
926     }
927   } while (!done);
928 #else
929   int result = pthread_rwlock_tryrdlock(&rwlock_);
930   if (result == EBUSY) {
931     return false;
932   }
933   if (result != 0) {
934     errno = result;
935     PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
936   }
937 #endif
938   RegisterAsLocked(self);
939   AssertSharedHeld(self);
940   return true;
941 }
942 
IsSharedHeld(const Thread * self) const943 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
944   DCHECK(self == nullptr || self == Thread::Current());
945   bool result;
946   if (UNLIKELY(self == nullptr)) {  // Handle unattached threads.
947     result = IsExclusiveHeld(self);  // TODO: a better best effort here.
948   } else {
949     result = (self->GetHeldMutex(level_) == this);
950   }
951   return result;
952 }
953 
Dump(std::ostream & os) const954 void ReaderWriterMutex::Dump(std::ostream& os) const {
955   os << name_
956       << " level=" << static_cast<int>(level_)
957       << " owner=" << GetExclusiveOwnerTid()
958 #if ART_USE_FUTEXES
959       << " state=" << state_.load(std::memory_order_seq_cst)
960       << " num_contenders=" << num_contenders_.load(std::memory_order_seq_cst)
961 #endif
962       << " ";
963   DumpContention(os);
964 }
965 
operator <<(std::ostream & os,const ReaderWriterMutex & mu)966 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
967   mu.Dump(os);
968   return os;
969 }
970 
operator <<(std::ostream & os,const MutatorMutex & mu)971 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
972   mu.Dump(os);
973   return os;
974 }
975 
WakeupToRespondToEmptyCheckpoint()976 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
977 #if ART_USE_FUTEXES
978   // Wake up all the waiters so they will respond to the emtpy checkpoint.
979   DCHECK(should_respond_to_empty_checkpoint_request_);
980   if (UNLIKELY(num_contenders_.load(std::memory_order_relaxed) > 0)) {
981     futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
982   }
983 #else
984   LOG(FATAL) << "Non futex case isn't supported.";
985 #endif
986 }
987 
ConditionVariable(const char * name,Mutex & guard)988 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
989     : name_(name), guard_(guard) {
990 #if ART_USE_FUTEXES
991   DCHECK_EQ(0, sequence_.load(std::memory_order_relaxed));
992   num_waiters_ = 0;
993 #else
994   pthread_condattr_t cond_attrs;
995   CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
996 #if !defined(__APPLE__)
997   // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
998   CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
999 #endif
1000   CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
1001 #endif
1002 }
1003 
~ConditionVariable()1004 ConditionVariable::~ConditionVariable() {
1005 #if ART_USE_FUTEXES
1006   if (num_waiters_!= 0) {
1007     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
1008     LOG(is_safe_to_call_abort ? FATAL : WARNING)
1009         << "ConditionVariable::~ConditionVariable for " << name_
1010         << " called with " << num_waiters_ << " waiters.";
1011   }
1012 #else
1013   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
1014   // may still be using condition variables.
1015   int rc = pthread_cond_destroy(&cond_);
1016   if (rc != 0) {
1017     errno = rc;
1018     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
1019     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
1020   }
1021 #endif
1022 }
1023 
Broadcast(Thread * self)1024 void ConditionVariable::Broadcast(Thread* self) {
1025   DCHECK(self == nullptr || self == Thread::Current());
1026   // TODO: enable below, there's a race in thread creation that causes false failures currently.
1027   // guard_.AssertExclusiveHeld(self);
1028   DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
1029 #if ART_USE_FUTEXES
1030   RequeueWaiters(std::numeric_limits<int32_t>::max());
1031 #else
1032   CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
1033 #endif
1034 }
1035 
1036 #if ART_USE_FUTEXES
RequeueWaiters(int32_t count)1037 void ConditionVariable::RequeueWaiters(int32_t count) {
1038   if (num_waiters_ > 0) {
1039     sequence_++;  // Indicate a signal occurred.
1040     // Move waiters from the condition variable's futex to the guard's futex,
1041     // so that they will be woken up when the mutex is released.
1042     bool done = futex(sequence_.Address(),
1043                       FUTEX_REQUEUE_PRIVATE,
1044                       /* Threads to wake */ 0,
1045                       /* Threads to requeue*/ reinterpret_cast<const timespec*>(count),
1046                       guard_.state_and_contenders_.Address(),
1047                       0) != -1;
1048     if (!done && errno != EAGAIN && errno != EINTR) {
1049       PLOG(FATAL) << "futex requeue failed for " << name_;
1050     }
1051   }
1052 }
1053 #endif
1054 
1055 
Signal(Thread * self)1056 void ConditionVariable::Signal(Thread* self) {
1057   DCHECK(self == nullptr || self == Thread::Current());
1058   guard_.AssertExclusiveHeld(self);
1059 #if ART_USE_FUTEXES
1060   RequeueWaiters(1);
1061 #else
1062   CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
1063 #endif
1064 }
1065 
Wait(Thread * self)1066 void ConditionVariable::Wait(Thread* self) {
1067   guard_.CheckSafeToWait(self);
1068   WaitHoldingLocks(self);
1069 }
1070 
WaitHoldingLocks(Thread * self)1071 void ConditionVariable::WaitHoldingLocks(Thread* self) {
1072   DCHECK(self == nullptr || self == Thread::Current());
1073   guard_.AssertExclusiveHeld(self);
1074   unsigned int old_recursion_count = guard_.recursion_count_;
1075 #if ART_USE_FUTEXES
1076   num_waiters_++;
1077   // Ensure the Mutex is contended so that requeued threads are awoken.
1078   guard_.increment_contenders();
1079   guard_.recursion_count_ = 1;
1080   int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
1081   guard_.ExclusiveUnlock(self);
1082   if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, nullptr, nullptr, 0) != 0) {
1083     // Futex failed, check it is an expected error.
1084     // EAGAIN == EWOULDBLK, so we let the caller try again.
1085     // EINTR implies a signal was sent to this thread.
1086     if ((errno != EINTR) && (errno != EAGAIN)) {
1087       PLOG(FATAL) << "futex wait failed for " << name_;
1088     }
1089   }
1090   SleepIfRuntimeDeleted(self);
1091   guard_.ExclusiveLock(self);
1092   CHECK_GT(num_waiters_, 0);
1093   num_waiters_--;
1094   // We awoke and so no longer require awakes from the guard_'s unlock.
1095   CHECK_GT(guard_.get_contenders(), 0);
1096   guard_.decrement_contenders();
1097 #else
1098   pid_t old_owner = guard_.GetExclusiveOwnerTid();
1099   guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
1100   guard_.recursion_count_ = 0;
1101   CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
1102   guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
1103 #endif
1104   guard_.recursion_count_ = old_recursion_count;
1105 }
1106 
TimedWait(Thread * self,int64_t ms,int32_t ns)1107 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
1108   DCHECK(self == nullptr || self == Thread::Current());
1109   bool timed_out = false;
1110   guard_.AssertExclusiveHeld(self);
1111   guard_.CheckSafeToWait(self);
1112   unsigned int old_recursion_count = guard_.recursion_count_;
1113 #if ART_USE_FUTEXES
1114   timespec rel_ts;
1115   InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
1116   num_waiters_++;
1117   // Ensure the Mutex is contended so that requeued threads are awoken.
1118   guard_.increment_contenders();
1119   guard_.recursion_count_ = 1;
1120   int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
1121   guard_.ExclusiveUnlock(self);
1122   if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, &rel_ts, nullptr, 0) != 0) {
1123     if (errno == ETIMEDOUT) {
1124       // Timed out we're done.
1125       timed_out = true;
1126     } else if ((errno == EAGAIN) || (errno == EINTR)) {
1127       // A signal or ConditionVariable::Signal/Broadcast has come in.
1128     } else {
1129       PLOG(FATAL) << "timed futex wait failed for " << name_;
1130     }
1131   }
1132   SleepIfRuntimeDeleted(self);
1133   guard_.ExclusiveLock(self);
1134   CHECK_GT(num_waiters_, 0);
1135   num_waiters_--;
1136   // We awoke and so no longer require awakes from the guard_'s unlock.
1137   CHECK_GT(guard_.get_contenders(), 0);
1138   guard_.decrement_contenders();
1139 #else
1140 #if !defined(__APPLE__)
1141   int clock = CLOCK_MONOTONIC;
1142 #else
1143   int clock = CLOCK_REALTIME;
1144 #endif
1145   pid_t old_owner = guard_.GetExclusiveOwnerTid();
1146   guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
1147   guard_.recursion_count_ = 0;
1148   timespec ts;
1149   InitTimeSpec(true, clock, ms, ns, &ts);
1150   int rc;
1151   while ((rc = pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts)) == EINTR) {
1152     continue;
1153   }
1154 
1155   if (rc == ETIMEDOUT) {
1156     timed_out = true;
1157   } else if (rc != 0) {
1158     errno = rc;
1159     PLOG(FATAL) << "TimedWait failed for " << name_;
1160   }
1161   guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
1162 #endif
1163   guard_.recursion_count_ = old_recursion_count;
1164   return timed_out;
1165 }
1166 
1167 }  // namespace art
1168