1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4 © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6
7 1. INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33
34 2. COPYRIGHT LICENSE
35
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60
61 3. NO PATENT LICENSE
62
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70
71 4. DISCLAIMER
72
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83
84 5. CONTACT INFORMATION
85
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94
95 /**************************** SBR encoder library ******************************
96
97 Author(s):
98
99 Description:
100
101 *******************************************************************************/
102
103 #include "invf_est.h"
104 #include "sbr_misc.h"
105
106 #include "genericStds.h"
107
108 #define MAX_NUM_REGIONS 10
109 #define SCALE_FAC_QUO 512.0f
110 #define SCALE_FAC_NRG 256.0f
111
112 #ifndef min
113 #define min(a, b) (a < b ? a : b)
114 #endif
115
116 #ifndef max
117 #define max(a, b) (a > b ? a : b)
118 #endif
119
120 static const FIXP_DBL quantStepsSbr[4] = {
121 0x00400000, 0x02800000, 0x03800000,
122 0x04c00000}; /* table scaled with SCALE_FAC_QUO */
123 static const FIXP_DBL quantStepsOrig[4] = {
124 0x00000000, 0x00c00000, 0x01c00000,
125 0x02800000}; /* table scaled with SCALE_FAC_QUO */
126 static const FIXP_DBL nrgBorders[4] = {
127 0x0c800000, 0x0f000000, 0x11800000,
128 0x14000000}; /* table scaled with SCALE_FAC_NRG */
129
130 static const DETECTOR_PARAMETERS detectorParamsAAC = {
131 quantStepsSbr,
132 quantStepsOrig,
133 nrgBorders,
134 4, /* Number of borders SBR. */
135 4, /* Number of borders orig. */
136 4, /* Number of borders Nrg. */
137 {
138 /* Region space. */
139 {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF,
140 INVF_OFF}, /* | */
141 {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF,
142 INVF_OFF}, /* | */
143 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
144 INVF_OFF}, /* regionSbr */
145 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
146 INVF_OFF}, /* | */
147 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
148 INVF_OFF} /* | */
149 }, /*------------------------ regionOrig ---------------------------------*/
150 {
151 /* Region space transient. */
152 {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
153 INVF_OFF}, /* | */
154 {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
155 INVF_OFF}, /* | */
156 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF,
157 INVF_OFF}, /* regionSbr */
158 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
159 INVF_OFF}, /* | */
160 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
161 INVF_OFF} /* | */
162 }, /*------------------------ regionOrig ---------------------------------*/
163 {-4, -3, -2, -1,
164 0} /* Reduction factor of the inverse filtering for low energies.*/
165 };
166
167 static const FIXP_DBL hysteresis =
168 0x00400000; /* Delta value for hysteresis. scaled with SCALE_FAC_QUO */
169
170 /*
171 * AAC+SBR PARAMETERS for Speech
172 *********************************/
173 static const DETECTOR_PARAMETERS detectorParamsAACSpeech = {
174 quantStepsSbr,
175 quantStepsOrig,
176 nrgBorders,
177 4, /* Number of borders SBR. */
178 4, /* Number of borders orig. */
179 4, /* Number of borders Nrg. */
180 {
181 /* Region space. */
182 {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
183 INVF_OFF}, /* | */
184 {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
185 INVF_OFF}, /* | */
186 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF,
187 INVF_OFF}, /* regionSbr */
188 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
189 INVF_OFF}, /* | */
190 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
191 INVF_OFF} /* | */
192 }, /*------------------------ regionOrig ---------------------------------*/
193 {
194 /* Region space transient. */
195 {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
196 INVF_OFF}, /* | */
197 {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
198 INVF_OFF}, /* | */
199 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF,
200 INVF_OFF}, /* regionSbr */
201 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
202 INVF_OFF}, /* | */
203 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
204 INVF_OFF} /* | */
205 }, /*------------------------ regionOrig ---------------------------------*/
206 {-4, -3, -2, -1,
207 0} /* Reduction factor of the inverse filtering for low energies.*/
208 };
209
210 /*
211 * Smoothing filters.
212 ************************/
213 typedef const FIXP_DBL FIR_FILTER[5];
214
215 static const FIR_FILTER fir_0 = {0x7fffffff, 0x00000000, 0x00000000, 0x00000000,
216 0x00000000};
217 static const FIR_FILTER fir_1 = {0x2aaaaa80, 0x555554ff, 0x00000000, 0x00000000,
218 0x00000000};
219 static const FIR_FILTER fir_2 = {0x10000000, 0x30000000, 0x40000000, 0x00000000,
220 0x00000000};
221 static const FIR_FILTER fir_3 = {0x077f80e8, 0x199999a0, 0x2bb3b240, 0x33333340,
222 0x00000000};
223 static const FIR_FILTER fir_4 = {0x04130598, 0x0ebdb000, 0x1becfa60, 0x2697a4c0,
224 0x2aaaaa80};
225
226 static const FIR_FILTER *const fir_table[5] = {&fir_0, &fir_1, &fir_2, &fir_3,
227 &fir_4};
228
229 /**************************************************************************/
230 /*!
231 \brief Calculates the values used for the detector.
232
233
234 \return none
235
236 */
237 /**************************************************************************/
calculateDetectorValues(FIXP_DBL ** quotaMatrixOrig,SCHAR * indexVector,FIXP_DBL * nrgVector,DETECTOR_VALUES * detectorValues,INT startChannel,INT stopChannel,INT startIndex,INT stopIndex,INT numberOfStrongest)238 static void calculateDetectorValues(
239 FIXP_DBL **quotaMatrixOrig, /*!< Matrix holding the tonality values of the
240 original. */
241 SCHAR *indexVector, /*!< Index vector to obtain the patched data. */
242 FIXP_DBL *nrgVector, /*!< Energy vector. */
243 DETECTOR_VALUES *detectorValues, /*!< pointer to DETECTOR_VALUES struct. */
244 INT startChannel, /*!< Start channel. */
245 INT stopChannel, /*!< Stop channel. */
246 INT startIndex, /*!< Start index. */
247 INT stopIndex, /*!< Stop index. */
248 INT numberOfStrongest /*!< The number of sorted tonal components to be
249 considered. */
250 ) {
251 INT i, temp, j;
252
253 const FIXP_DBL *filter = *fir_table[INVF_SMOOTHING_LENGTH];
254 FIXP_DBL origQuotaMeanStrongest, sbrQuotaMeanStrongest;
255 FIXP_DBL origQuota, sbrQuota;
256 FIXP_DBL invIndex, invChannel, invTemp;
257 FIXP_DBL quotaVecOrig[64], quotaVecSbr[64];
258
259 FDKmemclear(quotaVecOrig, 64 * sizeof(FIXP_DBL));
260 FDKmemclear(quotaVecSbr, 64 * sizeof(FIXP_DBL));
261
262 invIndex = GetInvInt(stopIndex - startIndex);
263 invChannel = GetInvInt(stopChannel - startChannel);
264
265 /*
266 Calculate the mean value, over the current time segment, for the original,
267 the HFR and the difference, over all channels in the current frequency range.
268 NOTE: the averaging is done on the values quota/(1 - quota + RELAXATION).
269 */
270
271 /* The original, the sbr signal and the total energy */
272 detectorValues->avgNrg = FL2FXCONST_DBL(0.0f);
273 for (j = startIndex; j < stopIndex; j++) {
274 for (i = startChannel; i < stopChannel; i++) {
275 quotaVecOrig[i] += fMult(quotaMatrixOrig[j][i], invIndex);
276
277 if (indexVector[i] != -1)
278 quotaVecSbr[i] += fMult(quotaMatrixOrig[j][indexVector[i]], invIndex);
279 }
280 detectorValues->avgNrg += fMult(nrgVector[j], invIndex);
281 }
282
283 /*
284 Calculate the mean value, over the current frequency range, for the original,
285 the HFR and the difference. Also calculate the same mean values for the three
286 vectors, but only includeing the x strongest copmponents.
287 */
288
289 origQuota = FL2FXCONST_DBL(0.0f);
290 sbrQuota = FL2FXCONST_DBL(0.0f);
291 for (i = startChannel; i < stopChannel; i++) {
292 origQuota += fMultDiv2(quotaVecOrig[i], invChannel);
293 sbrQuota += fMultDiv2(quotaVecSbr[i], invChannel);
294 }
295
296 /*
297 Calculate the mean value for the x strongest components
298 */
299 FDKsbrEnc_Shellsort_fract(quotaVecOrig + startChannel,
300 stopChannel - startChannel);
301 FDKsbrEnc_Shellsort_fract(quotaVecSbr + startChannel,
302 stopChannel - startChannel);
303
304 origQuotaMeanStrongest = FL2FXCONST_DBL(0.0f);
305 sbrQuotaMeanStrongest = FL2FXCONST_DBL(0.0f);
306
307 temp = min(stopChannel - startChannel, numberOfStrongest);
308 invTemp = GetInvInt(temp);
309
310 for (i = 0; i < temp; i++) {
311 origQuotaMeanStrongest +=
312 fMultDiv2(quotaVecOrig[i + stopChannel - temp], invTemp);
313 sbrQuotaMeanStrongest +=
314 fMultDiv2(quotaVecSbr[i + stopChannel - temp], invTemp);
315 }
316
317 /*
318 The value for the strongest component
319 */
320 detectorValues->origQuotaMax = quotaVecOrig[stopChannel - 1];
321 detectorValues->sbrQuotaMax = quotaVecSbr[stopChannel - 1];
322
323 /*
324 Buffer values
325 */
326 FDKmemmove(detectorValues->origQuotaMean, detectorValues->origQuotaMean + 1,
327 INVF_SMOOTHING_LENGTH * sizeof(FIXP_DBL));
328 FDKmemmove(detectorValues->sbrQuotaMean, detectorValues->sbrQuotaMean + 1,
329 INVF_SMOOTHING_LENGTH * sizeof(FIXP_DBL));
330 FDKmemmove(detectorValues->origQuotaMeanStrongest,
331 detectorValues->origQuotaMeanStrongest + 1,
332 INVF_SMOOTHING_LENGTH * sizeof(FIXP_DBL));
333 FDKmemmove(detectorValues->sbrQuotaMeanStrongest,
334 detectorValues->sbrQuotaMeanStrongest + 1,
335 INVF_SMOOTHING_LENGTH * sizeof(FIXP_DBL));
336
337 detectorValues->origQuotaMean[INVF_SMOOTHING_LENGTH] = origQuota << 1;
338 detectorValues->sbrQuotaMean[INVF_SMOOTHING_LENGTH] = sbrQuota << 1;
339 detectorValues->origQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] =
340 origQuotaMeanStrongest << 1;
341 detectorValues->sbrQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] =
342 sbrQuotaMeanStrongest << 1;
343
344 /*
345 Filter values
346 */
347 detectorValues->origQuotaMeanFilt = FL2FXCONST_DBL(0.0f);
348 detectorValues->sbrQuotaMeanFilt = FL2FXCONST_DBL(0.0f);
349 detectorValues->origQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f);
350 detectorValues->sbrQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f);
351
352 for (i = 0; i < INVF_SMOOTHING_LENGTH + 1; i++) {
353 detectorValues->origQuotaMeanFilt +=
354 fMult(detectorValues->origQuotaMean[i], filter[i]);
355 detectorValues->sbrQuotaMeanFilt +=
356 fMult(detectorValues->sbrQuotaMean[i], filter[i]);
357 detectorValues->origQuotaMeanStrongestFilt +=
358 fMult(detectorValues->origQuotaMeanStrongest[i], filter[i]);
359 detectorValues->sbrQuotaMeanStrongestFilt +=
360 fMult(detectorValues->sbrQuotaMeanStrongest[i], filter[i]);
361 }
362 }
363
364 /**************************************************************************/
365 /*!
366 \brief Returns the region in which the input value belongs.
367
368
369
370 \return region.
371
372 */
373 /**************************************************************************/
findRegion(FIXP_DBL currVal,const FIXP_DBL * borders,const INT numBorders)374 static INT findRegion(
375 FIXP_DBL currVal, /*!< The current value. */
376 const FIXP_DBL *borders, /*!< The border of the regions. */
377 const INT numBorders /*!< The number of borders. */
378 ) {
379 INT i;
380
381 if (currVal < borders[0]) {
382 return 0;
383 }
384
385 for (i = 1; i < numBorders; i++) {
386 if (currVal >= borders[i - 1] && currVal < borders[i]) {
387 return i;
388 }
389 }
390
391 if (currVal >= borders[numBorders - 1]) {
392 return numBorders;
393 }
394
395 return 0; /* We never get here, it's just to avoid compiler warnings.*/
396 }
397
398 /**************************************************************************/
399 /*!
400 \brief Makes a clever decision based on the quota vector.
401
402
403 \return decision on which invf mode to use
404
405 */
406 /**************************************************************************/
decisionAlgorithm(const DETECTOR_PARAMETERS * detectorParams,DETECTOR_VALUES * detectorValues,INT transientFlag,INT * prevRegionSbr,INT * prevRegionOrig)407 static INVF_MODE decisionAlgorithm(
408 const DETECTOR_PARAMETERS
409 *detectorParams, /*!< Struct with the detector parameters. */
410 DETECTOR_VALUES *detectorValues, /*!< Struct with the detector values. */
411 INT transientFlag, /*!< Flag indicating if there is a transient present.*/
412 INT *prevRegionSbr, /*!< The previous region in which the Sbr value was. */
413 INT *prevRegionOrig /*!< The previous region in which the Orig value was. */
414 ) {
415 INT invFiltLevel, regionSbr, regionOrig, regionNrg;
416
417 /*
418 Current thresholds.
419 */
420 const INT numRegionsSbr = detectorParams->numRegionsSbr;
421 const INT numRegionsOrig = detectorParams->numRegionsOrig;
422 const INT numRegionsNrg = detectorParams->numRegionsNrg;
423
424 FIXP_DBL quantStepsSbrTmp[MAX_NUM_REGIONS];
425 FIXP_DBL quantStepsOrigTmp[MAX_NUM_REGIONS];
426
427 /*
428 Current detector values.
429 */
430 FIXP_DBL origQuotaMeanFilt;
431 FIXP_DBL sbrQuotaMeanFilt;
432 FIXP_DBL nrg;
433
434 /* 0.375 = 3.0 / 8.0; 0.31143075889 = log2(RELAXATION)/64.0; 0.625 =
435 * log(16)/64.0; 0.6875 = 44/64.0 */
436 origQuotaMeanFilt =
437 (fMultDiv2(FL2FXCONST_DBL(2.f * 0.375f),
438 (FIXP_DBL)(CalcLdData(max(detectorValues->origQuotaMeanFilt,
439 (FIXP_DBL)1)) +
440 FL2FXCONST_DBL(0.31143075889f))))
441 << 0; /* scaled by 1/2^9 */
442 sbrQuotaMeanFilt =
443 (fMultDiv2(FL2FXCONST_DBL(2.f * 0.375f),
444 (FIXP_DBL)(CalcLdData(max(detectorValues->sbrQuotaMeanFilt,
445 (FIXP_DBL)1)) +
446 FL2FXCONST_DBL(0.31143075889f))))
447 << 0; /* scaled by 1/2^9 */
448 /* If energy is zero then we will get different results for different word
449 * lengths. */
450 nrg =
451 (fMultDiv2(FL2FXCONST_DBL(2.f * 0.375f),
452 (FIXP_DBL)(CalcLdData(detectorValues->avgNrg + (FIXP_DBL)1) +
453 FL2FXCONST_DBL(0.0625f) + FL2FXCONST_DBL(0.6875f))))
454 << 0; /* scaled by 1/2^8; 2^44 -> qmf energy scale */
455
456 FDKmemcpy(quantStepsSbrTmp, detectorParams->quantStepsSbr,
457 numRegionsSbr * sizeof(FIXP_DBL));
458 FDKmemcpy(quantStepsOrigTmp, detectorParams->quantStepsOrig,
459 numRegionsOrig * sizeof(FIXP_DBL));
460
461 if (*prevRegionSbr < numRegionsSbr)
462 quantStepsSbrTmp[*prevRegionSbr] =
463 detectorParams->quantStepsSbr[*prevRegionSbr] + hysteresis;
464 if (*prevRegionSbr > 0)
465 quantStepsSbrTmp[*prevRegionSbr - 1] =
466 detectorParams->quantStepsSbr[*prevRegionSbr - 1] - hysteresis;
467
468 if (*prevRegionOrig < numRegionsOrig)
469 quantStepsOrigTmp[*prevRegionOrig] =
470 detectorParams->quantStepsOrig[*prevRegionOrig] + hysteresis;
471 if (*prevRegionOrig > 0)
472 quantStepsOrigTmp[*prevRegionOrig - 1] =
473 detectorParams->quantStepsOrig[*prevRegionOrig - 1] - hysteresis;
474
475 regionSbr = findRegion(sbrQuotaMeanFilt, quantStepsSbrTmp, numRegionsSbr);
476 regionOrig = findRegion(origQuotaMeanFilt, quantStepsOrigTmp, numRegionsOrig);
477 regionNrg = findRegion(nrg, detectorParams->nrgBorders, numRegionsNrg);
478
479 *prevRegionSbr = regionSbr;
480 *prevRegionOrig = regionOrig;
481
482 /* Use different settings if a transient is present*/
483 invFiltLevel =
484 (transientFlag == 1)
485 ? detectorParams->regionSpaceTransient[regionSbr][regionOrig]
486 : detectorParams->regionSpace[regionSbr][regionOrig];
487
488 /* Compensate for low energy.*/
489 invFiltLevel =
490 max(invFiltLevel + detectorParams->EnergyCompFactor[regionNrg], 0);
491
492 return (INVF_MODE)(invFiltLevel);
493 }
494
495 /**************************************************************************/
496 /*!
497 \brief Estiamtion of the inverse filtering level required
498 in the decoder.
499
500 A second order LPC is calculated for every filterbank channel, using
501 the covariance method. THe ratio between the energy of the predicted
502 signal and the energy of the non-predictable signal is calcualted.
503
504 \return none.
505
506 */
507 /**************************************************************************/
FDKsbrEnc_qmfInverseFilteringDetector(HANDLE_SBR_INV_FILT_EST hInvFilt,FIXP_DBL ** quotaMatrix,FIXP_DBL * nrgVector,SCHAR * indexVector,INT startIndex,INT stopIndex,INT transientFlag,INVF_MODE * infVec)508 void FDKsbrEnc_qmfInverseFilteringDetector(
509 HANDLE_SBR_INV_FILT_EST
510 hInvFilt, /*!< Handle to the SBR_INV_FILT_EST struct. */
511 FIXP_DBL **quotaMatrix, /*!< The matrix holding the tonality values of the
512 original. */
513 FIXP_DBL *nrgVector, /*!< The energy vector. */
514 SCHAR *indexVector, /*!< Index vector to obtain the patched data. */
515 INT startIndex, /*!< Start index. */
516 INT stopIndex, /*!< Stop index. */
517 INT transientFlag, /*!< Flag indicating if a transient is present or not.*/
518 INVF_MODE *infVec /*!< Vector holding the inverse filtering levels. */
519 ) {
520 INT band;
521
522 /*
523 * Do the inverse filtering level estimation.
524 *****************************************************/
525 for (band = 0; band < hInvFilt->noDetectorBands; band++) {
526 INT startChannel = hInvFilt->freqBandTableInvFilt[band];
527 INT stopChannel = hInvFilt->freqBandTableInvFilt[band + 1];
528
529 calculateDetectorValues(quotaMatrix, indexVector, nrgVector,
530 &hInvFilt->detectorValues[band], startChannel,
531 stopChannel, startIndex, stopIndex,
532 hInvFilt->numberOfStrongest);
533
534 infVec[band] = decisionAlgorithm(
535 hInvFilt->detectorParams, &hInvFilt->detectorValues[band],
536 transientFlag, &hInvFilt->prevRegionSbr[band],
537 &hInvFilt->prevRegionOrig[band]);
538 }
539 }
540
541 /**************************************************************************/
542 /*!
543 \brief Initialize an instance of the inverse filtering level estimator.
544
545
546 \return errorCode, noError if successful.
547
548 */
549 /**************************************************************************/
FDKsbrEnc_initInvFiltDetector(HANDLE_SBR_INV_FILT_EST hInvFilt,INT * freqBandTableDetector,INT numDetectorBands,UINT useSpeechConfig)550 INT FDKsbrEnc_initInvFiltDetector(
551 HANDLE_SBR_INV_FILT_EST
552 hInvFilt, /*!< Pointer to a handle to the SBR_INV_FILT_EST struct. */
553 INT *freqBandTableDetector, /*!< Frequency band table for the inverse
554 filtering. */
555 INT numDetectorBands, /*!< Number of inverse filtering bands. */
556 UINT
557 useSpeechConfig /*!< Flag: adapt tuning parameters according to speech*/
558 ) {
559 INT i;
560
561 FDKmemclear(hInvFilt, sizeof(SBR_INV_FILT_EST));
562
563 hInvFilt->detectorParams =
564 (useSpeechConfig) ? &detectorParamsAACSpeech : &detectorParamsAAC;
565
566 hInvFilt->noDetectorBandsMax = numDetectorBands;
567
568 /*
569 Memory initialisation
570 */
571 for (i = 0; i < hInvFilt->noDetectorBandsMax; i++) {
572 FDKmemclear(&hInvFilt->detectorValues[i], sizeof(DETECTOR_VALUES));
573 hInvFilt->prevInvfMode[i] = INVF_OFF;
574 hInvFilt->prevRegionOrig[i] = 0;
575 hInvFilt->prevRegionSbr[i] = 0;
576 }
577
578 /*
579 Reset the inverse fltering detector.
580 */
581 FDKsbrEnc_resetInvFiltDetector(hInvFilt, freqBandTableDetector,
582 hInvFilt->noDetectorBandsMax);
583
584 return (0);
585 }
586
587 /**************************************************************************/
588 /*!
589 \brief resets sbr inverse filtering structure.
590
591
592
593 \return errorCode, noError if successful.
594
595 */
596 /**************************************************************************/
FDKsbrEnc_resetInvFiltDetector(HANDLE_SBR_INV_FILT_EST hInvFilt,INT * freqBandTableDetector,INT numDetectorBands)597 INT FDKsbrEnc_resetInvFiltDetector(
598 HANDLE_SBR_INV_FILT_EST
599 hInvFilt, /*!< Handle to the SBR_INV_FILT_EST struct. */
600 INT *freqBandTableDetector, /*!< Frequency band table for the inverse
601 filtering. */
602 INT numDetectorBands) /*!< Number of inverse filtering bands. */
603 {
604 hInvFilt->numberOfStrongest = 1;
605 FDKmemcpy(hInvFilt->freqBandTableInvFilt, freqBandTableDetector,
606 (numDetectorBands + 1) * sizeof(INT));
607 hInvFilt->noDetectorBands = numDetectorBands;
608
609 return (0);
610 }
611