1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations. Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 // - Pointers that point to two completely different objects in memory never
27 // alias, regardless of the value of the Size component.
28 // - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 // is two pointers to constant memory. Even if they are equal, constant
30 // memory is never stored to, so there will never be any dependencies.
31 // In this and other situations, the pointers may be both NoAlias and
32 // MustAlias at the same time. The current API can only return one result,
33 // though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/Pass.h"
49 #include <cstdint>
50 #include <functional>
51 #include <memory>
52 #include <vector>
53
54 namespace llvm {
55
56 class AnalysisUsage;
57 class BasicAAResult;
58 class BasicBlock;
59 class DominatorTree;
60 class Function;
61 class Value;
62
63 /// The possible results of an alias query.
64 ///
65 /// These results are always computed between two MemoryLocation objects as
66 /// a query to some alias analysis.
67 ///
68 /// Note that these are unscoped enumerations because we would like to support
69 /// implicitly testing a result for the existence of any possible aliasing with
70 /// a conversion to bool, but an "enum class" doesn't support this. The
71 /// canonical names from the literature are suffixed and unique anyways, and so
72 /// they serve as global constants in LLVM for these results.
73 ///
74 /// See docs/AliasAnalysis.html for more information on the specific meanings
75 /// of these values.
76 enum AliasResult : uint8_t {
77 /// The two locations do not alias at all.
78 ///
79 /// This value is arranged to convert to false, while all other values
80 /// convert to true. This allows a boolean context to convert the result to
81 /// a binary flag indicating whether there is the possibility of aliasing.
82 NoAlias = 0,
83 /// The two locations may or may not alias. This is the least precise result.
84 MayAlias,
85 /// The two locations alias, but only due to a partial overlap.
86 PartialAlias,
87 /// The two locations precisely alias each other.
88 MustAlias,
89 };
90
91 /// << operator for AliasResult.
92 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
93
94 /// Flags indicating whether a memory access modifies or references memory.
95 ///
96 /// This is no access at all, a modification, a reference, or both
97 /// a modification and a reference. These are specifically structured such that
98 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
99 /// work with any of the possible values.
100 enum class ModRefInfo : uint8_t {
101 /// Must is provided for completeness, but no routines will return only
102 /// Must today. See definition of Must below.
103 Must = 0,
104 /// The access may reference the value stored in memory,
105 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
106 MustRef = 1,
107 /// The access may modify the value stored in memory,
108 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
109 MustMod = 2,
110 /// The access may reference, modify or both the value stored in memory,
111 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
112 MustModRef = MustRef | MustMod,
113 /// The access neither references nor modifies the value stored in memory.
114 NoModRef = 4,
115 /// The access may reference the value stored in memory.
116 Ref = NoModRef | MustRef,
117 /// The access may modify the value stored in memory.
118 Mod = NoModRef | MustMod,
119 /// The access may reference and may modify the value stored in memory.
120 ModRef = Ref | Mod,
121
122 /// About Must:
123 /// Must is set in a best effort manner.
124 /// We usually do not try our best to infer Must, instead it is merely
125 /// another piece of "free" information that is presented when available.
126 /// Must set means there was certainly a MustAlias found. For calls,
127 /// where multiple arguments are checked (argmemonly), this translates to
128 /// only MustAlias or NoAlias was found.
129 /// Must is not set for RAR accesses, even if the two locations must
130 /// alias. The reason is that two read accesses translate to an early return
131 /// of NoModRef. An additional alias check to set Must may be
132 /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
133 /// We refer to Must being *set* when the most significant bit is *cleared*.
134 /// Conversely we *clear* Must information by *setting* the Must bit to 1.
135 };
136
isNoModRef(const ModRefInfo MRI)137 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
138 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
139 static_cast<int>(ModRefInfo::Must);
140 }
isModOrRefSet(const ModRefInfo MRI)141 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
142 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
143 }
isModAndRefSet(const ModRefInfo MRI)144 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
145 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
146 static_cast<int>(ModRefInfo::MustModRef);
147 }
isModSet(const ModRefInfo MRI)148 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
149 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
150 }
isRefSet(const ModRefInfo MRI)151 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
152 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
153 }
isMustSet(const ModRefInfo MRI)154 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
155 return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
156 }
157
setMod(const ModRefInfo MRI)158 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
159 return ModRefInfo(static_cast<int>(MRI) |
160 static_cast<int>(ModRefInfo::MustMod));
161 }
setRef(const ModRefInfo MRI)162 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
163 return ModRefInfo(static_cast<int>(MRI) |
164 static_cast<int>(ModRefInfo::MustRef));
165 }
setMust(const ModRefInfo MRI)166 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
167 return ModRefInfo(static_cast<int>(MRI) &
168 static_cast<int>(ModRefInfo::MustModRef));
169 }
setModAndRef(const ModRefInfo MRI)170 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
171 return ModRefInfo(static_cast<int>(MRI) |
172 static_cast<int>(ModRefInfo::MustModRef));
173 }
clearMod(const ModRefInfo MRI)174 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
175 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
176 }
clearRef(const ModRefInfo MRI)177 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
178 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
179 }
clearMust(const ModRefInfo MRI)180 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
181 return ModRefInfo(static_cast<int>(MRI) |
182 static_cast<int>(ModRefInfo::NoModRef));
183 }
unionModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)184 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
185 const ModRefInfo MRI2) {
186 return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
187 }
intersectModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)188 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
189 const ModRefInfo MRI2) {
190 return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
191 }
192
193 /// The locations at which a function might access memory.
194 ///
195 /// These are primarily used in conjunction with the \c AccessKind bits to
196 /// describe both the nature of access and the locations of access for a
197 /// function call.
198 enum FunctionModRefLocation {
199 /// Base case is no access to memory.
200 FMRL_Nowhere = 0,
201 /// Access to memory via argument pointers.
202 FMRL_ArgumentPointees = 8,
203 /// Memory that is inaccessible via LLVM IR.
204 FMRL_InaccessibleMem = 16,
205 /// Access to any memory.
206 FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
207 };
208
209 /// Summary of how a function affects memory in the program.
210 ///
211 /// Loads from constant globals are not considered memory accesses for this
212 /// interface. Also, functions may freely modify stack space local to their
213 /// invocation without having to report it through these interfaces.
214 enum FunctionModRefBehavior {
215 /// This function does not perform any non-local loads or stores to memory.
216 ///
217 /// This property corresponds to the GCC 'const' attribute.
218 /// This property corresponds to the LLVM IR 'readnone' attribute.
219 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
220 FMRB_DoesNotAccessMemory =
221 FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
222
223 /// The only memory references in this function (if it has any) are
224 /// non-volatile loads from objects pointed to by its pointer-typed
225 /// arguments, with arbitrary offsets.
226 ///
227 /// This property corresponds to the combination of the IntrReadMem
228 /// and IntrArgMemOnly LLVM intrinsic flags.
229 FMRB_OnlyReadsArgumentPointees =
230 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
231
232 /// The only memory references in this function (if it has any) are
233 /// non-volatile stores from objects pointed to by its pointer-typed
234 /// arguments, with arbitrary offsets.
235 ///
236 /// This property corresponds to the combination of the IntrWriteMem
237 /// and IntrArgMemOnly LLVM intrinsic flags.
238 FMRB_OnlyWritesArgumentPointees =
239 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Mod),
240
241 /// The only memory references in this function (if it has any) are
242 /// non-volatile loads and stores from objects pointed to by its
243 /// pointer-typed arguments, with arbitrary offsets.
244 ///
245 /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
246 FMRB_OnlyAccessesArgumentPointees =
247 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
248
249 /// The only memory references in this function (if it has any) are
250 /// reads of memory that is otherwise inaccessible via LLVM IR.
251 ///
252 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
253 FMRB_OnlyReadsInaccessibleMem =
254 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Ref),
255
256 /// The only memory references in this function (if it has any) are
257 /// writes to memory that is otherwise inaccessible via LLVM IR.
258 ///
259 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
260 FMRB_OnlyWritesInaccessibleMem =
261 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Mod),
262
263 /// The only memory references in this function (if it has any) are
264 /// references of memory that is otherwise inaccessible via LLVM IR.
265 ///
266 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
267 FMRB_OnlyAccessesInaccessibleMem =
268 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
269
270 /// The function may perform non-volatile loads from objects pointed
271 /// to by its pointer-typed arguments, with arbitrary offsets, and
272 /// it may also perform loads of memory that is otherwise
273 /// inaccessible via LLVM IR.
274 ///
275 /// This property corresponds to the LLVM IR
276 /// inaccessiblemem_or_argmemonly attribute.
277 FMRB_OnlyReadsInaccessibleOrArgMem = FMRL_InaccessibleMem |
278 FMRL_ArgumentPointees |
279 static_cast<int>(ModRefInfo::Ref),
280
281 /// The function may perform non-volatile stores to objects pointed
282 /// to by its pointer-typed arguments, with arbitrary offsets, and
283 /// it may also perform stores of memory that is otherwise
284 /// inaccessible via LLVM IR.
285 ///
286 /// This property corresponds to the LLVM IR
287 /// inaccessiblemem_or_argmemonly attribute.
288 FMRB_OnlyWritesInaccessibleOrArgMem = FMRL_InaccessibleMem |
289 FMRL_ArgumentPointees |
290 static_cast<int>(ModRefInfo::Mod),
291
292 /// The function may perform non-volatile loads and stores of objects
293 /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
294 /// it may also perform loads and stores of memory that is otherwise
295 /// inaccessible via LLVM IR.
296 ///
297 /// This property corresponds to the LLVM IR
298 /// inaccessiblemem_or_argmemonly attribute.
299 FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
300 FMRL_ArgumentPointees |
301 static_cast<int>(ModRefInfo::ModRef),
302
303 /// This function does not perform any non-local stores or volatile loads,
304 /// but may read from any memory location.
305 ///
306 /// This property corresponds to the GCC 'pure' attribute.
307 /// This property corresponds to the LLVM IR 'readonly' attribute.
308 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
309 FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
310
311 // This function does not read from memory anywhere, but may write to any
312 // memory location.
313 //
314 // This property corresponds to the LLVM IR 'writeonly' attribute.
315 // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
316 FMRB_OnlyWritesMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
317
318 /// This indicates that the function could not be classified into one of the
319 /// behaviors above.
320 FMRB_UnknownModRefBehavior =
321 FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
322 };
323
324 // Wrapper method strips bits significant only in FunctionModRefBehavior,
325 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
326 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
327 // entry with all bits set to 1.
328 LLVM_NODISCARD inline ModRefInfo
createModRefInfo(const FunctionModRefBehavior FMRB)329 createModRefInfo(const FunctionModRefBehavior FMRB) {
330 return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
331 }
332
333 /// This class stores info we want to provide to or retain within an alias
334 /// query. By default, the root query is stateless and starts with a freshly
335 /// constructed info object. Specific alias analyses can use this query info to
336 /// store per-query state that is important for recursive or nested queries to
337 /// avoid recomputing. To enable preserving this state across multiple queries
338 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
339 /// The information stored in an `AAQueryInfo` is currently limitted to the
340 /// caches used by BasicAA, but can further be extended to fit other AA needs.
341 class AAQueryInfo {
342 public:
343 using LocPair = std::pair<MemoryLocation, MemoryLocation>;
344 using AliasCacheT = SmallDenseMap<LocPair, AliasResult, 8>;
345 AliasCacheT AliasCache;
346
347 using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
348 IsCapturedCacheT IsCapturedCache;
349
AAQueryInfo()350 AAQueryInfo() : AliasCache(), IsCapturedCache() {}
351
updateResult(const LocPair & Locs,AliasResult Result)352 AliasResult updateResult(const LocPair &Locs, AliasResult Result) {
353 auto It = AliasCache.find(Locs);
354 assert(It != AliasCache.end() && "Entry must have existed");
355 return It->second = Result;
356 }
357 };
358
359 class BatchAAResults;
360
361 class AAResults {
362 public:
363 // Make these results default constructable and movable. We have to spell
364 // these out because MSVC won't synthesize them.
AAResults(const TargetLibraryInfo & TLI)365 AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
366 AAResults(AAResults &&Arg);
367 ~AAResults();
368
369 /// Register a specific AA result.
addAAResult(AAResultT & AAResult)370 template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
371 // FIXME: We should use a much lighter weight system than the usual
372 // polymorphic pattern because we don't own AAResult. It should
373 // ideally involve two pointers and no separate allocation.
374 AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
375 }
376
377 /// Register a function analysis ID that the results aggregation depends on.
378 ///
379 /// This is used in the new pass manager to implement the invalidation logic
380 /// where we must invalidate the results aggregation if any of our component
381 /// analyses become invalid.
addAADependencyID(AnalysisKey * ID)382 void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
383
384 /// Handle invalidation events in the new pass manager.
385 ///
386 /// The aggregation is invalidated if any of the underlying analyses is
387 /// invalidated.
388 bool invalidate(Function &F, const PreservedAnalyses &PA,
389 FunctionAnalysisManager::Invalidator &Inv);
390
391 //===--------------------------------------------------------------------===//
392 /// \name Alias Queries
393 /// @{
394
395 /// The main low level interface to the alias analysis implementation.
396 /// Returns an AliasResult indicating whether the two pointers are aliased to
397 /// each other. This is the interface that must be implemented by specific
398 /// alias analysis implementations.
399 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
400
401 /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)402 AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
403 LocationSize V2Size) {
404 return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
405 }
406
407 /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,const Value * V2)408 AliasResult alias(const Value *V1, const Value *V2) {
409 return alias(MemoryLocation::getBeforeOrAfter(V1),
410 MemoryLocation::getBeforeOrAfter(V2));
411 }
412
413 /// A trivial helper function to check to see if the specified pointers are
414 /// no-alias.
isNoAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)415 bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
416 return alias(LocA, LocB) == NoAlias;
417 }
418
419 /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)420 bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
421 LocationSize V2Size) {
422 return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
423 }
424
425 /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,const Value * V2)426 bool isNoAlias(const Value *V1, const Value *V2) {
427 return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
428 MemoryLocation::getBeforeOrAfter(V2));
429 }
430
431 /// A trivial helper function to check to see if the specified pointers are
432 /// must-alias.
isMustAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)433 bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
434 return alias(LocA, LocB) == MustAlias;
435 }
436
437 /// A convenience wrapper around the \c isMustAlias helper interface.
isMustAlias(const Value * V1,const Value * V2)438 bool isMustAlias(const Value *V1, const Value *V2) {
439 return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
440 MustAlias;
441 }
442
443 /// Checks whether the given location points to constant memory, or if
444 /// \p OrLocal is true whether it points to a local alloca.
445 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
446
447 /// A convenience wrapper around the primary \c pointsToConstantMemory
448 /// interface.
449 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
450 return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
451 }
452
453 /// @}
454 //===--------------------------------------------------------------------===//
455 /// \name Simple mod/ref information
456 /// @{
457
458 /// Get the ModRef info associated with a pointer argument of a call. The
459 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
460 /// that these bits do not necessarily account for the overall behavior of
461 /// the function, but rather only provide additional per-argument
462 /// information. This never sets ModRefInfo::Must.
463 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
464
465 /// Return the behavior of the given call site.
466 FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
467
468 /// Return the behavior when calling the given function.
469 FunctionModRefBehavior getModRefBehavior(const Function *F);
470
471 /// Checks if the specified call is known to never read or write memory.
472 ///
473 /// Note that if the call only reads from known-constant memory, it is also
474 /// legal to return true. Also, calls that unwind the stack are legal for
475 /// this predicate.
476 ///
477 /// Many optimizations (such as CSE and LICM) can be performed on such calls
478 /// without worrying about aliasing properties, and many calls have this
479 /// property (e.g. calls to 'sin' and 'cos').
480 ///
481 /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const CallBase * Call)482 bool doesNotAccessMemory(const CallBase *Call) {
483 return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
484 }
485
486 /// Checks if the specified function is known to never read or write memory.
487 ///
488 /// Note that if the function only reads from known-constant memory, it is
489 /// also legal to return true. Also, function that unwind the stack are legal
490 /// for this predicate.
491 ///
492 /// Many optimizations (such as CSE and LICM) can be performed on such calls
493 /// to such functions without worrying about aliasing properties, and many
494 /// functions have this property (e.g. 'sin' and 'cos').
495 ///
496 /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const Function * F)497 bool doesNotAccessMemory(const Function *F) {
498 return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
499 }
500
501 /// Checks if the specified call is known to only read from non-volatile
502 /// memory (or not access memory at all).
503 ///
504 /// Calls that unwind the stack are legal for this predicate.
505 ///
506 /// This property allows many common optimizations to be performed in the
507 /// absence of interfering store instructions, such as CSE of strlen calls.
508 ///
509 /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const CallBase * Call)510 bool onlyReadsMemory(const CallBase *Call) {
511 return onlyReadsMemory(getModRefBehavior(Call));
512 }
513
514 /// Checks if the specified function is known to only read from non-volatile
515 /// memory (or not access memory at all).
516 ///
517 /// Functions that unwind the stack are legal for this predicate.
518 ///
519 /// This property allows many common optimizations to be performed in the
520 /// absence of interfering store instructions, such as CSE of strlen calls.
521 ///
522 /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const Function * F)523 bool onlyReadsMemory(const Function *F) {
524 return onlyReadsMemory(getModRefBehavior(F));
525 }
526
527 /// Checks if functions with the specified behavior are known to only read
528 /// from non-volatile memory (or not access memory at all).
onlyReadsMemory(FunctionModRefBehavior MRB)529 static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
530 return !isModSet(createModRefInfo(MRB));
531 }
532
533 /// Checks if functions with the specified behavior are known to only write
534 /// memory (or not access memory at all).
doesNotReadMemory(FunctionModRefBehavior MRB)535 static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
536 return !isRefSet(createModRefInfo(MRB));
537 }
538
539 /// Checks if functions with the specified behavior are known to read and
540 /// write at most from objects pointed to by their pointer-typed arguments
541 /// (with arbitrary offsets).
onlyAccessesArgPointees(FunctionModRefBehavior MRB)542 static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
543 return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
544 }
545
546 /// Checks if functions with the specified behavior are known to potentially
547 /// read or write from objects pointed to be their pointer-typed arguments
548 /// (with arbitrary offsets).
doesAccessArgPointees(FunctionModRefBehavior MRB)549 static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
550 return isModOrRefSet(createModRefInfo(MRB)) &&
551 (MRB & FMRL_ArgumentPointees);
552 }
553
554 /// Checks if functions with the specified behavior are known to read and
555 /// write at most from memory that is inaccessible from LLVM IR.
onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB)556 static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
557 return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
558 }
559
560 /// Checks if functions with the specified behavior are known to potentially
561 /// read or write from memory that is inaccessible from LLVM IR.
doesAccessInaccessibleMem(FunctionModRefBehavior MRB)562 static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
563 return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem);
564 }
565
566 /// Checks if functions with the specified behavior are known to read and
567 /// write at most from memory that is inaccessible from LLVM IR or objects
568 /// pointed to by their pointer-typed arguments (with arbitrary offsets).
onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB)569 static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
570 return !(MRB & FMRL_Anywhere &
571 ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
572 }
573
574 /// getModRefInfo (for call sites) - Return information about whether
575 /// a particular call site modifies or reads the specified memory location.
576 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
577
578 /// getModRefInfo (for call sites) - A convenience wrapper.
getModRefInfo(const CallBase * Call,const Value * P,LocationSize Size)579 ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
580 LocationSize Size) {
581 return getModRefInfo(Call, MemoryLocation(P, Size));
582 }
583
584 /// getModRefInfo (for loads) - Return information about whether
585 /// a particular load modifies or reads the specified memory location.
586 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
587
588 /// getModRefInfo (for loads) - A convenience wrapper.
getModRefInfo(const LoadInst * L,const Value * P,LocationSize Size)589 ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
590 LocationSize Size) {
591 return getModRefInfo(L, MemoryLocation(P, Size));
592 }
593
594 /// getModRefInfo (for stores) - Return information about whether
595 /// a particular store modifies or reads the specified memory location.
596 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
597
598 /// getModRefInfo (for stores) - A convenience wrapper.
getModRefInfo(const StoreInst * S,const Value * P,LocationSize Size)599 ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
600 LocationSize Size) {
601 return getModRefInfo(S, MemoryLocation(P, Size));
602 }
603
604 /// getModRefInfo (for fences) - Return information about whether
605 /// a particular store modifies or reads the specified memory location.
606 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
607
608 /// getModRefInfo (for fences) - A convenience wrapper.
getModRefInfo(const FenceInst * S,const Value * P,LocationSize Size)609 ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
610 LocationSize Size) {
611 return getModRefInfo(S, MemoryLocation(P, Size));
612 }
613
614 /// getModRefInfo (for cmpxchges) - Return information about whether
615 /// a particular cmpxchg modifies or reads the specified memory location.
616 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
617 const MemoryLocation &Loc);
618
619 /// getModRefInfo (for cmpxchges) - A convenience wrapper.
getModRefInfo(const AtomicCmpXchgInst * CX,const Value * P,LocationSize Size)620 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
621 LocationSize Size) {
622 return getModRefInfo(CX, MemoryLocation(P, Size));
623 }
624
625 /// getModRefInfo (for atomicrmws) - Return information about whether
626 /// a particular atomicrmw modifies or reads the specified memory location.
627 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
628
629 /// getModRefInfo (for atomicrmws) - A convenience wrapper.
getModRefInfo(const AtomicRMWInst * RMW,const Value * P,LocationSize Size)630 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
631 LocationSize Size) {
632 return getModRefInfo(RMW, MemoryLocation(P, Size));
633 }
634
635 /// getModRefInfo (for va_args) - Return information about whether
636 /// a particular va_arg modifies or reads the specified memory location.
637 ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
638
639 /// getModRefInfo (for va_args) - A convenience wrapper.
getModRefInfo(const VAArgInst * I,const Value * P,LocationSize Size)640 ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
641 LocationSize Size) {
642 return getModRefInfo(I, MemoryLocation(P, Size));
643 }
644
645 /// getModRefInfo (for catchpads) - Return information about whether
646 /// a particular catchpad modifies or reads the specified memory location.
647 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
648
649 /// getModRefInfo (for catchpads) - A convenience wrapper.
getModRefInfo(const CatchPadInst * I,const Value * P,LocationSize Size)650 ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
651 LocationSize Size) {
652 return getModRefInfo(I, MemoryLocation(P, Size));
653 }
654
655 /// getModRefInfo (for catchrets) - Return information about whether
656 /// a particular catchret modifies or reads the specified memory location.
657 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
658
659 /// getModRefInfo (for catchrets) - A convenience wrapper.
getModRefInfo(const CatchReturnInst * I,const Value * P,LocationSize Size)660 ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
661 LocationSize Size) {
662 return getModRefInfo(I, MemoryLocation(P, Size));
663 }
664
665 /// Check whether or not an instruction may read or write the optionally
666 /// specified memory location.
667 ///
668 ///
669 /// An instruction that doesn't read or write memory may be trivially LICM'd
670 /// for example.
671 ///
672 /// For function calls, this delegates to the alias-analysis specific
673 /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
674 /// helpers above.
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc)675 ModRefInfo getModRefInfo(const Instruction *I,
676 const Optional<MemoryLocation> &OptLoc) {
677 AAQueryInfo AAQIP;
678 return getModRefInfo(I, OptLoc, AAQIP);
679 }
680
681 /// A convenience wrapper for constructing the memory location.
getModRefInfo(const Instruction * I,const Value * P,LocationSize Size)682 ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
683 LocationSize Size) {
684 return getModRefInfo(I, MemoryLocation(P, Size));
685 }
686
687 /// Return information about whether a call and an instruction may refer to
688 /// the same memory locations.
689 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
690
691 /// Return information about whether two call sites may refer to the same set
692 /// of memory locations. See the AA documentation for details:
693 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
694 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
695
696 /// Return information about whether a particular call site modifies
697 /// or reads the specified memory location \p MemLoc before instruction \p I
698 /// in a BasicBlock.
699 /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
700 /// set.
701 ModRefInfo callCapturesBefore(const Instruction *I,
702 const MemoryLocation &MemLoc, DominatorTree *DT);
703
704 /// A convenience wrapper to synthesize a memory location.
callCapturesBefore(const Instruction * I,const Value * P,LocationSize Size,DominatorTree * DT)705 ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
706 LocationSize Size, DominatorTree *DT) {
707 return callCapturesBefore(I, MemoryLocation(P, Size), DT);
708 }
709
710 /// @}
711 //===--------------------------------------------------------------------===//
712 /// \name Higher level methods for querying mod/ref information.
713 /// @{
714
715 /// Check if it is possible for execution of the specified basic block to
716 /// modify the location Loc.
717 bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
718
719 /// A convenience wrapper synthesizing a memory location.
canBasicBlockModify(const BasicBlock & BB,const Value * P,LocationSize Size)720 bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
721 LocationSize Size) {
722 return canBasicBlockModify(BB, MemoryLocation(P, Size));
723 }
724
725 /// Check if it is possible for the execution of the specified instructions
726 /// to mod\ref (according to the mode) the location Loc.
727 ///
728 /// The instructions to consider are all of the instructions in the range of
729 /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
730 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
731 const MemoryLocation &Loc,
732 const ModRefInfo Mode);
733
734 /// A convenience wrapper synthesizing a memory location.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const Value * Ptr,LocationSize Size,const ModRefInfo Mode)735 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
736 const Value *Ptr, LocationSize Size,
737 const ModRefInfo Mode) {
738 return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
739 }
740
741 private:
742 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
743 AAQueryInfo &AAQI);
744 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
745 bool OrLocal = false);
746 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
747 AAQueryInfo &AAQIP);
748 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
749 AAQueryInfo &AAQI);
750 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
751 AAQueryInfo &AAQI);
752 ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
753 AAQueryInfo &AAQI);
754 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
755 AAQueryInfo &AAQI);
756 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
757 AAQueryInfo &AAQI);
758 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
759 AAQueryInfo &AAQI);
760 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
761 const MemoryLocation &Loc, AAQueryInfo &AAQI);
762 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
763 AAQueryInfo &AAQI);
764 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
765 AAQueryInfo &AAQI);
766 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
767 AAQueryInfo &AAQI);
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc,AAQueryInfo & AAQIP)768 ModRefInfo getModRefInfo(const Instruction *I,
769 const Optional<MemoryLocation> &OptLoc,
770 AAQueryInfo &AAQIP) {
771 if (OptLoc == None) {
772 if (const auto *Call = dyn_cast<CallBase>(I)) {
773 return createModRefInfo(getModRefBehavior(Call));
774 }
775 }
776
777 const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
778
779 switch (I->getOpcode()) {
780 case Instruction::VAArg:
781 return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
782 case Instruction::Load:
783 return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
784 case Instruction::Store:
785 return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
786 case Instruction::Fence:
787 return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
788 case Instruction::AtomicCmpXchg:
789 return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
790 case Instruction::AtomicRMW:
791 return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
792 case Instruction::Call:
793 return getModRefInfo((const CallInst *)I, Loc, AAQIP);
794 case Instruction::Invoke:
795 return getModRefInfo((const InvokeInst *)I, Loc, AAQIP);
796 case Instruction::CatchPad:
797 return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
798 case Instruction::CatchRet:
799 return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
800 default:
801 return ModRefInfo::NoModRef;
802 }
803 }
804
805 class Concept;
806
807 template <typename T> class Model;
808
809 template <typename T> friend class AAResultBase;
810
811 const TargetLibraryInfo &TLI;
812
813 std::vector<std::unique_ptr<Concept>> AAs;
814
815 std::vector<AnalysisKey *> AADeps;
816
817 /// Query depth used to distinguish recursive queries.
818 unsigned Depth = 0;
819
820 friend class BatchAAResults;
821 };
822
823 /// This class is a wrapper over an AAResults, and it is intended to be used
824 /// only when there are no IR changes inbetween queries. BatchAAResults is
825 /// reusing the same `AAQueryInfo` to preserve the state across queries,
826 /// esentially making AA work in "batch mode". The internal state cannot be
827 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
828 /// or create a new BatchAAResults.
829 class BatchAAResults {
830 AAResults &AA;
831 AAQueryInfo AAQI;
832
833 public:
BatchAAResults(AAResults & AAR)834 BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)835 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
836 return AA.alias(LocA, LocB, AAQI);
837 }
838 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
839 return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
840 }
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc)841 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
842 return AA.getModRefInfo(Call, Loc, AAQI);
843 }
getModRefInfo(const CallBase * Call1,const CallBase * Call2)844 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
845 return AA.getModRefInfo(Call1, Call2, AAQI);
846 }
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc)847 ModRefInfo getModRefInfo(const Instruction *I,
848 const Optional<MemoryLocation> &OptLoc) {
849 return AA.getModRefInfo(I, OptLoc, AAQI);
850 }
getModRefInfo(Instruction * I,const CallBase * Call2)851 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
852 return AA.getModRefInfo(I, Call2, AAQI);
853 }
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)854 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
855 return AA.getArgModRefInfo(Call, ArgIdx);
856 }
getModRefBehavior(const CallBase * Call)857 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
858 return AA.getModRefBehavior(Call);
859 }
isMustAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)860 bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
861 return alias(LocA, LocB) == MustAlias;
862 }
isMustAlias(const Value * V1,const Value * V2)863 bool isMustAlias(const Value *V1, const Value *V2) {
864 return alias(MemoryLocation(V1, LocationSize::precise(1)),
865 MemoryLocation(V2, LocationSize::precise(1))) == MustAlias;
866 }
867 };
868
869 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
870 /// pointer or reference.
871 using AliasAnalysis = AAResults;
872
873 /// A private abstract base class describing the concept of an individual alias
874 /// analysis implementation.
875 ///
876 /// This interface is implemented by any \c Model instantiation. It is also the
877 /// interface which a type used to instantiate the model must provide.
878 ///
879 /// All of these methods model methods by the same name in the \c
880 /// AAResults class. Only differences and specifics to how the
881 /// implementations are called are documented here.
882 class AAResults::Concept {
883 public:
884 virtual ~Concept() = 0;
885
886 /// An update API used internally by the AAResults to provide
887 /// a handle back to the top level aggregation.
888 virtual void setAAResults(AAResults *NewAAR) = 0;
889
890 //===--------------------------------------------------------------------===//
891 /// \name Alias Queries
892 /// @{
893
894 /// The main low level interface to the alias analysis implementation.
895 /// Returns an AliasResult indicating whether the two pointers are aliased to
896 /// each other. This is the interface that must be implemented by specific
897 /// alias analysis implementations.
898 virtual AliasResult alias(const MemoryLocation &LocA,
899 const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
900
901 /// Checks whether the given location points to constant memory, or if
902 /// \p OrLocal is true whether it points to a local alloca.
903 virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
904 AAQueryInfo &AAQI, bool OrLocal) = 0;
905
906 /// @}
907 //===--------------------------------------------------------------------===//
908 /// \name Simple mod/ref information
909 /// @{
910
911 /// Get the ModRef info associated with a pointer argument of a callsite. The
912 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
913 /// that these bits do not necessarily account for the overall behavior of
914 /// the function, but rather only provide additional per-argument
915 /// information.
916 virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
917 unsigned ArgIdx) = 0;
918
919 /// Return the behavior of the given call site.
920 virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
921
922 /// Return the behavior when calling the given function.
923 virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
924
925 /// getModRefInfo (for call sites) - Return information about whether
926 /// a particular call site modifies or reads the specified memory location.
927 virtual ModRefInfo getModRefInfo(const CallBase *Call,
928 const MemoryLocation &Loc,
929 AAQueryInfo &AAQI) = 0;
930
931 /// Return information about whether two call sites may refer to the same set
932 /// of memory locations. See the AA documentation for details:
933 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
934 virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
935 AAQueryInfo &AAQI) = 0;
936
937 /// @}
938 };
939
940 /// A private class template which derives from \c Concept and wraps some other
941 /// type.
942 ///
943 /// This models the concept by directly forwarding each interface point to the
944 /// wrapped type which must implement a compatible interface. This provides
945 /// a type erased binding.
946 template <typename AAResultT> class AAResults::Model final : public Concept {
947 AAResultT &Result;
948
949 public:
Model(AAResultT & Result,AAResults & AAR)950 explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
951 Result.setAAResults(&AAR);
952 }
953 ~Model() override = default;
954
setAAResults(AAResults * NewAAR)955 void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
956
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)957 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
958 AAQueryInfo &AAQI) override {
959 return Result.alias(LocA, LocB, AAQI);
960 }
961
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)962 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
963 bool OrLocal) override {
964 return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
965 }
966
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)967 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
968 return Result.getArgModRefInfo(Call, ArgIdx);
969 }
970
getModRefBehavior(const CallBase * Call)971 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
972 return Result.getModRefBehavior(Call);
973 }
974
getModRefBehavior(const Function * F)975 FunctionModRefBehavior getModRefBehavior(const Function *F) override {
976 return Result.getModRefBehavior(F);
977 }
978
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)979 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
980 AAQueryInfo &AAQI) override {
981 return Result.getModRefInfo(Call, Loc, AAQI);
982 }
983
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)984 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
985 AAQueryInfo &AAQI) override {
986 return Result.getModRefInfo(Call1, Call2, AAQI);
987 }
988 };
989
990 /// A CRTP-driven "mixin" base class to help implement the function alias
991 /// analysis results concept.
992 ///
993 /// Because of the nature of many alias analysis implementations, they often
994 /// only implement a subset of the interface. This base class will attempt to
995 /// implement the remaining portions of the interface in terms of simpler forms
996 /// of the interface where possible, and otherwise provide conservatively
997 /// correct fallback implementations.
998 ///
999 /// Implementors of an alias analysis should derive from this CRTP, and then
1000 /// override specific methods that they wish to customize. There is no need to
1001 /// use virtual anywhere, the CRTP base class does static dispatch to the
1002 /// derived type passed into it.
1003 template <typename DerivedT> class AAResultBase {
1004 // Expose some parts of the interface only to the AAResults::Model
1005 // for wrapping. Specifically, this allows the model to call our
1006 // setAAResults method without exposing it as a fully public API.
1007 friend class AAResults::Model<DerivedT>;
1008
1009 /// A pointer to the AAResults object that this AAResult is
1010 /// aggregated within. May be null if not aggregated.
1011 AAResults *AAR = nullptr;
1012
1013 /// Helper to dispatch calls back through the derived type.
derived()1014 DerivedT &derived() { return static_cast<DerivedT &>(*this); }
1015
1016 /// A setter for the AAResults pointer, which is used to satisfy the
1017 /// AAResults::Model contract.
setAAResults(AAResults * NewAAR)1018 void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
1019
1020 protected:
1021 /// This proxy class models a common pattern where we delegate to either the
1022 /// top-level \c AAResults aggregation if one is registered, or to the
1023 /// current result if none are registered.
1024 class AAResultsProxy {
1025 AAResults *AAR;
1026 DerivedT &CurrentResult;
1027
1028 public:
AAResultsProxy(AAResults * AAR,DerivedT & CurrentResult)1029 AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
1030 : AAR(AAR), CurrentResult(CurrentResult) {}
1031
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)1032 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1033 AAQueryInfo &AAQI) {
1034 return AAR ? AAR->alias(LocA, LocB, AAQI)
1035 : CurrentResult.alias(LocA, LocB, AAQI);
1036 }
1037
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)1038 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1039 bool OrLocal) {
1040 return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
1041 : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
1042 }
1043
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)1044 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1045 return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
1046 : CurrentResult.getArgModRefInfo(Call, ArgIdx);
1047 }
1048
getModRefBehavior(const CallBase * Call)1049 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1050 return AAR ? AAR->getModRefBehavior(Call)
1051 : CurrentResult.getModRefBehavior(Call);
1052 }
1053
getModRefBehavior(const Function * F)1054 FunctionModRefBehavior getModRefBehavior(const Function *F) {
1055 return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
1056 }
1057
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)1058 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1059 AAQueryInfo &AAQI) {
1060 return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1061 : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1062 }
1063
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)1064 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1065 AAQueryInfo &AAQI) {
1066 return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1067 : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1068 }
1069 };
1070
1071 explicit AAResultBase() = default;
1072
1073 // Provide all the copy and move constructors so that derived types aren't
1074 // constrained.
AAResultBase(const AAResultBase & Arg)1075 AAResultBase(const AAResultBase &Arg) {}
AAResultBase(AAResultBase && Arg)1076 AAResultBase(AAResultBase &&Arg) {}
1077
1078 /// Get a proxy for the best AA result set to query at this time.
1079 ///
1080 /// When this result is part of a larger aggregation, this will proxy to that
1081 /// aggregation. When this result is used in isolation, it will just delegate
1082 /// back to the derived class's implementation.
1083 ///
1084 /// Note that callers of this need to take considerable care to not cause
1085 /// performance problems when they use this routine, in the case of a large
1086 /// number of alias analyses being aggregated, it can be expensive to walk
1087 /// back across the chain.
getBestAAResults()1088 AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1089
1090 public:
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)1091 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1092 AAQueryInfo &AAQI) {
1093 return MayAlias;
1094 }
1095
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)1096 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1097 bool OrLocal) {
1098 return false;
1099 }
1100
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)1101 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1102 return ModRefInfo::ModRef;
1103 }
1104
getModRefBehavior(const CallBase * Call)1105 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1106 return FMRB_UnknownModRefBehavior;
1107 }
1108
getModRefBehavior(const Function * F)1109 FunctionModRefBehavior getModRefBehavior(const Function *F) {
1110 return FMRB_UnknownModRefBehavior;
1111 }
1112
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)1113 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1114 AAQueryInfo &AAQI) {
1115 return ModRefInfo::ModRef;
1116 }
1117
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)1118 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1119 AAQueryInfo &AAQI) {
1120 return ModRefInfo::ModRef;
1121 }
1122 };
1123
1124 /// Return true if this pointer is returned by a noalias function.
1125 bool isNoAliasCall(const Value *V);
1126
1127 /// Return true if this is an argument with the noalias attribute.
1128 bool isNoAliasArgument(const Value *V);
1129
1130 /// Return true if this pointer refers to a distinct and identifiable object.
1131 /// This returns true for:
1132 /// Global Variables and Functions (but not Global Aliases)
1133 /// Allocas
1134 /// ByVal and NoAlias Arguments
1135 /// NoAlias returns (e.g. calls to malloc)
1136 ///
1137 bool isIdentifiedObject(const Value *V);
1138
1139 /// Return true if V is umabigously identified at the function-level.
1140 /// Different IdentifiedFunctionLocals can't alias.
1141 /// Further, an IdentifiedFunctionLocal can not alias with any function
1142 /// arguments other than itself, which is not necessarily true for
1143 /// IdentifiedObjects.
1144 bool isIdentifiedFunctionLocal(const Value *V);
1145
1146 /// A manager for alias analyses.
1147 ///
1148 /// This class can have analyses registered with it and when run, it will run
1149 /// all of them and aggregate their results into single AA results interface
1150 /// that dispatches across all of the alias analysis results available.
1151 ///
1152 /// Note that the order in which analyses are registered is very significant.
1153 /// That is the order in which the results will be aggregated and queried.
1154 ///
1155 /// This manager effectively wraps the AnalysisManager for registering alias
1156 /// analyses. When you register your alias analysis with this manager, it will
1157 /// ensure the analysis itself is registered with its AnalysisManager.
1158 ///
1159 /// The result of this analysis is only invalidated if one of the particular
1160 /// aggregated AA results end up being invalidated. This removes the need to
1161 /// explicitly preserve the results of `AAManager`. Note that analyses should no
1162 /// longer be registered once the `AAManager` is run.
1163 class AAManager : public AnalysisInfoMixin<AAManager> {
1164 public:
1165 using Result = AAResults;
1166
1167 /// Register a specific AA result.
registerFunctionAnalysis()1168 template <typename AnalysisT> void registerFunctionAnalysis() {
1169 ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1170 }
1171
1172 /// Register a specific AA result.
registerModuleAnalysis()1173 template <typename AnalysisT> void registerModuleAnalysis() {
1174 ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1175 }
1176
1177 Result run(Function &F, FunctionAnalysisManager &AM);
1178
1179 private:
1180 friend AnalysisInfoMixin<AAManager>;
1181
1182 static AnalysisKey Key;
1183
1184 SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1185 AAResults &AAResults),
1186 4> ResultGetters;
1187
1188 template <typename AnalysisT>
getFunctionAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1189 static void getFunctionAAResultImpl(Function &F,
1190 FunctionAnalysisManager &AM,
1191 AAResults &AAResults) {
1192 AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1193 AAResults.addAADependencyID(AnalysisT::ID());
1194 }
1195
1196 template <typename AnalysisT>
getModuleAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1197 static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1198 AAResults &AAResults) {
1199 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1200 if (auto *R =
1201 MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
1202 AAResults.addAAResult(*R);
1203 MAMProxy
1204 .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1205 }
1206 }
1207 };
1208
1209 /// A wrapper pass to provide the legacy pass manager access to a suitably
1210 /// prepared AAResults object.
1211 class AAResultsWrapperPass : public FunctionPass {
1212 std::unique_ptr<AAResults> AAR;
1213
1214 public:
1215 static char ID;
1216
1217 AAResultsWrapperPass();
1218
getAAResults()1219 AAResults &getAAResults() { return *AAR; }
getAAResults()1220 const AAResults &getAAResults() const { return *AAR; }
1221
1222 bool runOnFunction(Function &F) override;
1223
1224 void getAnalysisUsage(AnalysisUsage &AU) const override;
1225 };
1226
1227 /// A wrapper pass for external alias analyses. This just squirrels away the
1228 /// callback used to run any analyses and register their results.
1229 struct ExternalAAWrapperPass : ImmutablePass {
1230 using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1231
1232 CallbackT CB;
1233
1234 static char ID;
1235
1236 ExternalAAWrapperPass();
1237
1238 explicit ExternalAAWrapperPass(CallbackT CB);
1239
getAnalysisUsageExternalAAWrapperPass1240 void getAnalysisUsage(AnalysisUsage &AU) const override {
1241 AU.setPreservesAll();
1242 }
1243 };
1244
1245 FunctionPass *createAAResultsWrapperPass();
1246
1247 /// A wrapper pass around a callback which can be used to populate the
1248 /// AAResults in the AAResultsWrapperPass from an external AA.
1249 ///
1250 /// The callback provided here will be used each time we prepare an AAResults
1251 /// object, and will receive a reference to the function wrapper pass, the
1252 /// function, and the AAResults object to populate. This should be used when
1253 /// setting up a custom pass pipeline to inject a hook into the AA results.
1254 ImmutablePass *createExternalAAWrapperPass(
1255 std::function<void(Pass &, Function &, AAResults &)> Callback);
1256
1257 /// A helper for the legacy pass manager to create a \c AAResults
1258 /// object populated to the best of our ability for a particular function when
1259 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1260 ///
1261 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1262 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1263 /// getAnalysisUsage.
1264 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1265
1266 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1267 /// sure the analyses required by \p createLegacyPMAAResults are available.
1268 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1269
1270 } // end namespace llvm
1271
1272 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1273