• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/core/grappler/inputs/file_input_yielder.h"
17 
18 #include <memory>
19 #include <unordered_set>
20 #include <utility>
21 
22 #include "tensorflow/core/framework/node_def.pb.h"
23 #include "tensorflow/core/grappler/grappler_item.h"
24 #include "tensorflow/core/grappler/grappler_item_builder.h"
25 #include "tensorflow/core/grappler/utils.h"
26 #include "tensorflow/core/lib/strings/strcat.h"
27 #include "tensorflow/core/platform/env.h"
28 #include "tensorflow/core/platform/fingerprint.h"
29 #include "tensorflow/core/platform/types.h"
30 #include "tensorflow/core/protobuf/meta_graph.pb.h"
31 
32 namespace tensorflow {
33 namespace grappler {
34 
FileInputYielder(const std::vector<string> & filenames,size_t max_iterations)35 FileInputYielder::FileInputYielder(const std::vector<string>& filenames,
36                                    size_t max_iterations)
37     : filenames_(filenames),
38       current_file_(0),
39       current_iteration_(0),
40       max_iterations_(max_iterations),
41       bad_inputs_(0) {
42   CHECK_GT(filenames.size(), 0) << "List of filenames is empty.";
43 }
44 
NextItem(GrapplerItem * item)45 bool FileInputYielder::NextItem(GrapplerItem* item) {
46   if (filenames_.size() == bad_inputs_) {
47     // All the input files are bad, give up.
48     return false;
49   }
50 
51   if (current_file_ >= filenames_.size()) {
52     if (current_iteration_ >= max_iterations_) {
53       return false;
54     } else {
55       ++current_iteration_;
56       current_file_ = 0;
57       bad_inputs_ = 0;
58     }
59   }
60 
61   const string& filename = filenames_[current_file_];
62   ++current_file_;
63 
64   if (!Env::Default()->FileExists(filename).ok()) {
65     LOG(WARNING) << "Skipping non existent file " << filename;
66     // Attempt to process the next item on the list
67     bad_inputs_ += 1;
68     return NextItem(item);
69   }
70 
71   LOG(INFO) << "Loading model from " << filename;
72 
73   MetaGraphDef metagraph;
74   Status s = ReadBinaryProto(Env::Default(), filename, &metagraph);
75   if (!s.ok()) {
76     s = ReadTextProto(Env::Default(), filename, &metagraph);
77   }
78   if (!s.ok()) {
79     LOG(WARNING) << "Failed to read MetaGraphDef from " << filename << ": "
80                  << s.ToString();
81     // Attempt to process the next item on the list
82     bad_inputs_ += 1;
83     return NextItem(item);
84   }
85 
86   if (metagraph.collection_def().count("train_op") == 0 ||
87       !metagraph.collection_def().at("train_op").has_node_list() ||
88       metagraph.collection_def().at("train_op").node_list().value_size() == 0) {
89     LOG(ERROR) << "No train op specified";
90     bad_inputs_ += 1;
91     metagraph = MetaGraphDef();
92     return NextItem(item);
93   } else {
94     std::unordered_set<string> train_ops;
95     for (const string& val :
96          metagraph.collection_def().at("train_op").node_list().value()) {
97       train_ops.insert(NodeName(val));
98     }
99     std::unordered_set<string> train_ops_found;
100     for (auto& node : metagraph.graph_def().node()) {
101       if (train_ops.find(node.name()) != train_ops.end()) {
102         train_ops_found.insert(node.name());
103       }
104     }
105     if (train_ops_found.size() != train_ops.size()) {
106       for (const auto& train_op : train_ops) {
107         if (train_ops_found.find(train_op) != train_ops_found.end()) {
108           LOG(ERROR) << "Non existent train op specified: " << train_op;
109         }
110       }
111       bad_inputs_ += 1;
112       metagraph = MetaGraphDef();
113       return NextItem(item);
114     }
115   }
116 
117   const string id =
118       strings::StrCat(Fingerprint64(metagraph.SerializeAsString()));
119 
120   ItemConfig cfg;
121   std::unique_ptr<GrapplerItem> new_item =
122       GrapplerItemFromMetaGraphDef(id, metagraph, cfg);
123   if (new_item == nullptr) {
124     bad_inputs_ += 1;
125     metagraph = MetaGraphDef();
126     return NextItem(item);
127   }
128 
129   *item = std::move(*new_item);
130   return true;
131 }
132 
133 }  // end namespace grappler
134 }  // end namespace tensorflow
135