1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/audio_processing/aec3/aec_state.h"
12
13 #include <math.h>
14
15 #include <algorithm>
16 #include <numeric>
17 #include <vector>
18
19 #include "absl/types/optional.h"
20 #include "api/array_view.h"
21 #include "modules/audio_processing/aec3/aec3_common.h"
22 #include "modules/audio_processing/logging/apm_data_dumper.h"
23 #include "rtc_base/atomic_ops.h"
24 #include "rtc_base/checks.h"
25 #include "system_wrappers/include/field_trial.h"
26
27 namespace webrtc {
28 namespace {
29
30 constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
31 constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
32
DeactivateTransparentMode()33 bool DeactivateTransparentMode() {
34 return field_trial::IsEnabled("WebRTC-Aec3TransparentModeKillSwitch");
35 }
36
DeactivateInitialStateResetAtEchoPathChange()37 bool DeactivateInitialStateResetAtEchoPathChange() {
38 return field_trial::IsEnabled(
39 "WebRTC-Aec3DeactivateInitialStateResetKillSwitch");
40 }
41
FullResetAtEchoPathChange()42 bool FullResetAtEchoPathChange() {
43 return !field_trial::IsEnabled("WebRTC-Aec3AecStateFullResetKillSwitch");
44 }
45
SubtractorAnalyzerResetAtEchoPathChange()46 bool SubtractorAnalyzerResetAtEchoPathChange() {
47 return !field_trial::IsEnabled(
48 "WebRTC-Aec3AecStateSubtractorAnalyzerResetKillSwitch");
49 }
50
ComputeAvgRenderReverb(const SpectrumBuffer & spectrum_buffer,int delay_blocks,float reverb_decay,ReverbModel * reverb_model,rtc::ArrayView<float,kFftLengthBy2Plus1> reverb_power_spectrum)51 void ComputeAvgRenderReverb(
52 const SpectrumBuffer& spectrum_buffer,
53 int delay_blocks,
54 float reverb_decay,
55 ReverbModel* reverb_model,
56 rtc::ArrayView<float, kFftLengthBy2Plus1> reverb_power_spectrum) {
57 RTC_DCHECK(reverb_model);
58 const size_t num_render_channels = spectrum_buffer.buffer[0].size();
59 int idx_at_delay =
60 spectrum_buffer.OffsetIndex(spectrum_buffer.read, delay_blocks);
61 int idx_past = spectrum_buffer.IncIndex(idx_at_delay);
62
63 std::array<float, kFftLengthBy2Plus1> X2_data;
64 rtc::ArrayView<const float> X2;
65 if (num_render_channels > 1) {
66 auto average_channels =
67 [](size_t num_render_channels,
68 rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
69 spectrum_band_0,
70 rtc::ArrayView<float, kFftLengthBy2Plus1> render_power) {
71 std::fill(render_power.begin(), render_power.end(), 0.f);
72 for (size_t ch = 0; ch < num_render_channels; ++ch) {
73 for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
74 render_power[k] += spectrum_band_0[ch][k];
75 }
76 }
77 const float normalizer = 1.f / num_render_channels;
78 for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
79 render_power[k] *= normalizer;
80 }
81 };
82 average_channels(num_render_channels, spectrum_buffer.buffer[idx_past],
83 X2_data);
84 reverb_model->UpdateReverbNoFreqShaping(
85 X2_data, /*power_spectrum_scaling=*/1.0f, reverb_decay);
86
87 average_channels(num_render_channels, spectrum_buffer.buffer[idx_at_delay],
88 X2_data);
89 X2 = X2_data;
90 } else {
91 reverb_model->UpdateReverbNoFreqShaping(
92 spectrum_buffer.buffer[idx_past][/*channel=*/0],
93 /*power_spectrum_scaling=*/1.0f, reverb_decay);
94
95 X2 = spectrum_buffer.buffer[idx_at_delay][/*channel=*/0];
96 }
97
98 rtc::ArrayView<const float, kFftLengthBy2Plus1> reverb_power =
99 reverb_model->reverb();
100 for (size_t k = 0; k < X2.size(); ++k) {
101 reverb_power_spectrum[k] = X2[k] + reverb_power[k];
102 }
103 }
104
105 } // namespace
106
107 int AecState::instance_count_ = 0;
108
GetResidualEchoScaling(rtc::ArrayView<float> residual_scaling) const109 void AecState::GetResidualEchoScaling(
110 rtc::ArrayView<float> residual_scaling) const {
111 bool filter_has_had_time_to_converge;
112 if (config_.filter.conservative_initial_phase) {
113 filter_has_had_time_to_converge =
114 strong_not_saturated_render_blocks_ >= 1.5f * kNumBlocksPerSecond;
115 } else {
116 filter_has_had_time_to_converge =
117 strong_not_saturated_render_blocks_ >= 0.8f * kNumBlocksPerSecond;
118 }
119 echo_audibility_.GetResidualEchoScaling(filter_has_had_time_to_converge,
120 residual_scaling);
121 }
122
ErleUncertainty() const123 absl::optional<float> AecState::ErleUncertainty() const {
124 if (SaturatedEcho()) {
125 return 1.f;
126 }
127
128 return absl::nullopt;
129 }
130
AecState(const EchoCanceller3Config & config,size_t num_capture_channels)131 AecState::AecState(const EchoCanceller3Config& config,
132 size_t num_capture_channels)
133 : data_dumper_(
134 new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
135 config_(config),
136 num_capture_channels_(num_capture_channels),
137 transparent_mode_activated_(!DeactivateTransparentMode()),
138 deactivate_initial_state_reset_at_echo_path_change_(
139 DeactivateInitialStateResetAtEchoPathChange()),
140 full_reset_at_echo_path_change_(FullResetAtEchoPathChange()),
141 subtractor_analyzer_reset_at_echo_path_change_(
142 SubtractorAnalyzerResetAtEchoPathChange()),
143 initial_state_(config_),
144 delay_state_(config_, num_capture_channels_),
145 transparent_state_(config_),
146 filter_quality_state_(config_, num_capture_channels_),
147 erl_estimator_(2 * kNumBlocksPerSecond),
148 erle_estimator_(2 * kNumBlocksPerSecond, config_, num_capture_channels_),
149 filter_analyzer_(config_, num_capture_channels_),
150 echo_audibility_(
151 config_.echo_audibility.use_stationarity_properties_at_init),
152 reverb_model_estimator_(config_, num_capture_channels_),
153 subtractor_output_analyzer_(num_capture_channels_) {}
154
155 AecState::~AecState() = default;
156
HandleEchoPathChange(const EchoPathVariability & echo_path_variability)157 void AecState::HandleEchoPathChange(
158 const EchoPathVariability& echo_path_variability) {
159 const auto full_reset = [&]() {
160 filter_analyzer_.Reset();
161 capture_signal_saturation_ = false;
162 strong_not_saturated_render_blocks_ = 0;
163 blocks_with_active_render_ = 0;
164 if (!deactivate_initial_state_reset_at_echo_path_change_) {
165 initial_state_.Reset();
166 }
167 transparent_state_.Reset();
168 erle_estimator_.Reset(true);
169 erl_estimator_.Reset();
170 filter_quality_state_.Reset();
171 };
172
173 // TODO(peah): Refine the reset scheme according to the type of gain and
174 // delay adjustment.
175
176 if (full_reset_at_echo_path_change_ &&
177 echo_path_variability.delay_change !=
178 EchoPathVariability::DelayAdjustment::kNone) {
179 full_reset();
180 } else if (echo_path_variability.gain_change) {
181 erle_estimator_.Reset(false);
182 }
183 if (subtractor_analyzer_reset_at_echo_path_change_) {
184 subtractor_output_analyzer_.HandleEchoPathChange();
185 }
186 }
187
Update(const absl::optional<DelayEstimate> & external_delay,rtc::ArrayView<const std::vector<std::array<float,kFftLengthBy2Plus1>>> adaptive_filter_frequency_responses,rtc::ArrayView<const std::vector<float>> adaptive_filter_impulse_responses,const RenderBuffer & render_buffer,rtc::ArrayView<const std::array<float,kFftLengthBy2Plus1>> E2_refined,rtc::ArrayView<const std::array<float,kFftLengthBy2Plus1>> Y2,rtc::ArrayView<const SubtractorOutput> subtractor_output)188 void AecState::Update(
189 const absl::optional<DelayEstimate>& external_delay,
190 rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
191 adaptive_filter_frequency_responses,
192 rtc::ArrayView<const std::vector<float>> adaptive_filter_impulse_responses,
193 const RenderBuffer& render_buffer,
194 rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2_refined,
195 rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
196 rtc::ArrayView<const SubtractorOutput> subtractor_output) {
197 RTC_DCHECK_EQ(num_capture_channels_, Y2.size());
198 RTC_DCHECK_EQ(num_capture_channels_, subtractor_output.size());
199 RTC_DCHECK_EQ(num_capture_channels_,
200 adaptive_filter_frequency_responses.size());
201 RTC_DCHECK_EQ(num_capture_channels_,
202 adaptive_filter_impulse_responses.size());
203
204 // Analyze the filter outputs and filters.
205 bool any_filter_converged;
206 bool all_filters_diverged;
207 subtractor_output_analyzer_.Update(subtractor_output, &any_filter_converged,
208 &all_filters_diverged);
209
210 bool any_filter_consistent;
211 float max_echo_path_gain;
212 filter_analyzer_.Update(adaptive_filter_impulse_responses, render_buffer,
213 &any_filter_consistent, &max_echo_path_gain);
214
215 // Estimate the direct path delay of the filter.
216 if (config_.filter.use_linear_filter) {
217 delay_state_.Update(filter_analyzer_.FilterDelaysBlocks(), external_delay,
218 strong_not_saturated_render_blocks_);
219 }
220
221 const std::vector<std::vector<float>>& aligned_render_block =
222 render_buffer.Block(-delay_state_.MinDirectPathFilterDelay())[0];
223
224 // Update render counters.
225 bool active_render = false;
226 for (size_t ch = 0; ch < aligned_render_block.size(); ++ch) {
227 const float render_energy = std::inner_product(
228 aligned_render_block[ch].begin(), aligned_render_block[ch].end(),
229 aligned_render_block[ch].begin(), 0.f);
230 if (render_energy > (config_.render_levels.active_render_limit *
231 config_.render_levels.active_render_limit) *
232 kFftLengthBy2) {
233 active_render = true;
234 break;
235 }
236 }
237 blocks_with_active_render_ += active_render ? 1 : 0;
238 strong_not_saturated_render_blocks_ +=
239 active_render && !SaturatedCapture() ? 1 : 0;
240
241 std::array<float, kFftLengthBy2Plus1> avg_render_spectrum_with_reverb;
242
243 ComputeAvgRenderReverb(render_buffer.GetSpectrumBuffer(),
244 delay_state_.MinDirectPathFilterDelay(), ReverbDecay(),
245 &avg_render_reverb_, avg_render_spectrum_with_reverb);
246
247 if (config_.echo_audibility.use_stationarity_properties) {
248 // Update the echo audibility evaluator.
249 echo_audibility_.Update(render_buffer, avg_render_reverb_.reverb(),
250 delay_state_.MinDirectPathFilterDelay(),
251 delay_state_.ExternalDelayReported());
252 }
253
254 // Update the ERL and ERLE measures.
255 if (initial_state_.TransitionTriggered()) {
256 erle_estimator_.Reset(false);
257 }
258
259 erle_estimator_.Update(render_buffer, adaptive_filter_frequency_responses,
260 avg_render_spectrum_with_reverb, Y2, E2_refined,
261 subtractor_output_analyzer_.ConvergedFilters());
262
263 erl_estimator_.Update(
264 subtractor_output_analyzer_.ConvergedFilters(),
265 render_buffer.Spectrum(delay_state_.MinDirectPathFilterDelay()), Y2);
266
267 // Detect and flag echo saturation.
268 if (config_.ep_strength.echo_can_saturate) {
269 saturation_detector_.Update(aligned_render_block, SaturatedCapture(),
270 UsableLinearEstimate(), subtractor_output,
271 max_echo_path_gain);
272 } else {
273 RTC_DCHECK(!saturation_detector_.SaturatedEcho());
274 }
275
276 // Update the decision on whether to use the initial state parameter set.
277 initial_state_.Update(active_render, SaturatedCapture());
278
279 // Detect whether the transparent mode should be activated.
280 transparent_state_.Update(delay_state_.MinDirectPathFilterDelay(),
281 any_filter_consistent, any_filter_converged,
282 all_filters_diverged, active_render,
283 SaturatedCapture());
284
285 // Analyze the quality of the filter.
286 filter_quality_state_.Update(active_render, TransparentMode(),
287 SaturatedCapture(), external_delay,
288 any_filter_converged);
289
290 // Update the reverb estimate.
291 const bool stationary_block =
292 config_.echo_audibility.use_stationarity_properties &&
293 echo_audibility_.IsBlockStationary();
294
295 reverb_model_estimator_.Update(
296 filter_analyzer_.GetAdjustedFilters(),
297 adaptive_filter_frequency_responses,
298 erle_estimator_.GetInstLinearQualityEstimates(),
299 delay_state_.DirectPathFilterDelays(),
300 filter_quality_state_.UsableLinearFilterOutputs(), stationary_block);
301
302 erle_estimator_.Dump(data_dumper_);
303 reverb_model_estimator_.Dump(data_dumper_.get());
304 data_dumper_->DumpRaw("aec3_erl", Erl());
305 data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
306 data_dumper_->DumpRaw("aec3_erle", Erle()[0]);
307 data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
308 data_dumper_->DumpRaw("aec3_transparent_mode", TransparentMode());
309 data_dumper_->DumpRaw("aec3_filter_delay",
310 filter_analyzer_.MinFilterDelayBlocks());
311
312 data_dumper_->DumpRaw("aec3_any_filter_consistent", any_filter_consistent);
313 data_dumper_->DumpRaw("aec3_initial_state",
314 initial_state_.InitialStateActive());
315 data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
316 data_dumper_->DumpRaw("aec3_echo_saturation", SaturatedEcho());
317 data_dumper_->DumpRaw("aec3_any_filter_converged", any_filter_converged);
318 data_dumper_->DumpRaw("aec3_all_filters_diverged", all_filters_diverged);
319
320 data_dumper_->DumpRaw("aec3_external_delay_avaliable",
321 external_delay ? 1 : 0);
322 data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
323 GetReverbFrequencyResponse());
324 }
325
InitialState(const EchoCanceller3Config & config)326 AecState::InitialState::InitialState(const EchoCanceller3Config& config)
327 : conservative_initial_phase_(config.filter.conservative_initial_phase),
328 initial_state_seconds_(config.filter.initial_state_seconds) {
329 Reset();
330 }
Reset()331 void AecState::InitialState::InitialState::Reset() {
332 initial_state_ = true;
333 strong_not_saturated_render_blocks_ = 0;
334 }
Update(bool active_render,bool saturated_capture)335 void AecState::InitialState::InitialState::Update(bool active_render,
336 bool saturated_capture) {
337 strong_not_saturated_render_blocks_ +=
338 active_render && !saturated_capture ? 1 : 0;
339
340 // Flag whether the initial state is still active.
341 bool prev_initial_state = initial_state_;
342 if (conservative_initial_phase_) {
343 initial_state_ =
344 strong_not_saturated_render_blocks_ < 5 * kNumBlocksPerSecond;
345 } else {
346 initial_state_ = strong_not_saturated_render_blocks_ <
347 initial_state_seconds_ * kNumBlocksPerSecond;
348 }
349
350 // Flag whether the transition from the initial state has started.
351 transition_triggered_ = !initial_state_ && prev_initial_state;
352 }
353
FilterDelay(const EchoCanceller3Config & config,size_t num_capture_channels)354 AecState::FilterDelay::FilterDelay(const EchoCanceller3Config& config,
355 size_t num_capture_channels)
356 : delay_headroom_samples_(config.delay.delay_headroom_samples),
357 filter_delays_blocks_(num_capture_channels, 0) {}
358
Update(rtc::ArrayView<const int> analyzer_filter_delay_estimates_blocks,const absl::optional<DelayEstimate> & external_delay,size_t blocks_with_proper_filter_adaptation)359 void AecState::FilterDelay::Update(
360 rtc::ArrayView<const int> analyzer_filter_delay_estimates_blocks,
361 const absl::optional<DelayEstimate>& external_delay,
362 size_t blocks_with_proper_filter_adaptation) {
363 // Update the delay based on the external delay.
364 if (external_delay &&
365 (!external_delay_ || external_delay_->delay != external_delay->delay)) {
366 external_delay_ = external_delay;
367 external_delay_reported_ = true;
368 }
369
370 // Override the estimated delay if it is not certain that the filter has had
371 // time to converge.
372 const bool delay_estimator_may_not_have_converged =
373 blocks_with_proper_filter_adaptation < 2 * kNumBlocksPerSecond;
374 if (delay_estimator_may_not_have_converged && external_delay_) {
375 int delay_guess = delay_headroom_samples_ / kBlockSize;
376 std::fill(filter_delays_blocks_.begin(), filter_delays_blocks_.end(),
377 delay_guess);
378 } else {
379 RTC_DCHECK_EQ(filter_delays_blocks_.size(),
380 analyzer_filter_delay_estimates_blocks.size());
381 std::copy(analyzer_filter_delay_estimates_blocks.begin(),
382 analyzer_filter_delay_estimates_blocks.end(),
383 filter_delays_blocks_.begin());
384 }
385
386 min_filter_delay_ = *std::min_element(filter_delays_blocks_.begin(),
387 filter_delays_blocks_.end());
388 }
389
TransparentMode(const EchoCanceller3Config & config)390 AecState::TransparentMode::TransparentMode(const EchoCanceller3Config& config)
391 : bounded_erl_(config.ep_strength.bounded_erl),
392 linear_and_stable_echo_path_(
393 config.echo_removal_control.linear_and_stable_echo_path),
394 active_blocks_since_sane_filter_(kBlocksSinceConsistentEstimateInit),
395 non_converged_sequence_size_(kBlocksSinceConvergencedFilterInit) {}
396
Reset()397 void AecState::TransparentMode::Reset() {
398 non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
399 diverged_sequence_size_ = 0;
400 strong_not_saturated_render_blocks_ = 0;
401 if (linear_and_stable_echo_path_) {
402 recent_convergence_during_activity_ = false;
403 }
404 }
405
Update(int filter_delay_blocks,bool any_filter_consistent,bool any_filter_converged,bool all_filters_diverged,bool active_render,bool saturated_capture)406 void AecState::TransparentMode::Update(int filter_delay_blocks,
407 bool any_filter_consistent,
408 bool any_filter_converged,
409 bool all_filters_diverged,
410 bool active_render,
411 bool saturated_capture) {
412 ++capture_block_counter_;
413 strong_not_saturated_render_blocks_ +=
414 active_render && !saturated_capture ? 1 : 0;
415
416 if (any_filter_consistent && filter_delay_blocks < 5) {
417 sane_filter_observed_ = true;
418 active_blocks_since_sane_filter_ = 0;
419 } else if (active_render) {
420 ++active_blocks_since_sane_filter_;
421 }
422
423 bool sane_filter_recently_seen;
424 if (!sane_filter_observed_) {
425 sane_filter_recently_seen =
426 capture_block_counter_ <= 5 * kNumBlocksPerSecond;
427 } else {
428 sane_filter_recently_seen =
429 active_blocks_since_sane_filter_ <= 30 * kNumBlocksPerSecond;
430 }
431
432 if (any_filter_converged) {
433 recent_convergence_during_activity_ = true;
434 active_non_converged_sequence_size_ = 0;
435 non_converged_sequence_size_ = 0;
436 ++num_converged_blocks_;
437 } else {
438 if (++non_converged_sequence_size_ > 20 * kNumBlocksPerSecond) {
439 num_converged_blocks_ = 0;
440 }
441
442 if (active_render &&
443 ++active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
444 recent_convergence_during_activity_ = false;
445 }
446 }
447
448 if (!all_filters_diverged) {
449 diverged_sequence_size_ = 0;
450 } else if (++diverged_sequence_size_ >= 60) {
451 // TODO(peah): Change these lines to ensure proper triggering of usable
452 // filter.
453 non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
454 }
455
456 if (active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
457 finite_erl_recently_detected_ = false;
458 }
459 if (num_converged_blocks_ > 50) {
460 finite_erl_recently_detected_ = true;
461 }
462
463 if (bounded_erl_) {
464 transparency_activated_ = false;
465 } else if (finite_erl_recently_detected_) {
466 transparency_activated_ = false;
467 } else if (sane_filter_recently_seen && recent_convergence_during_activity_) {
468 transparency_activated_ = false;
469 } else {
470 const bool filter_should_have_converged =
471 strong_not_saturated_render_blocks_ > 6 * kNumBlocksPerSecond;
472 transparency_activated_ = filter_should_have_converged;
473 }
474 }
475
FilteringQualityAnalyzer(const EchoCanceller3Config & config,size_t num_capture_channels)476 AecState::FilteringQualityAnalyzer::FilteringQualityAnalyzer(
477 const EchoCanceller3Config& config,
478 size_t num_capture_channels)
479 : use_linear_filter_(config.filter.use_linear_filter),
480 usable_linear_filter_estimates_(num_capture_channels, false) {}
481
Reset()482 void AecState::FilteringQualityAnalyzer::Reset() {
483 std::fill(usable_linear_filter_estimates_.begin(),
484 usable_linear_filter_estimates_.end(), false);
485 overall_usable_linear_estimates_ = false;
486 filter_update_blocks_since_reset_ = 0;
487 }
488
Update(bool active_render,bool transparent_mode,bool saturated_capture,const absl::optional<DelayEstimate> & external_delay,bool any_filter_converged)489 void AecState::FilteringQualityAnalyzer::Update(
490 bool active_render,
491 bool transparent_mode,
492 bool saturated_capture,
493 const absl::optional<DelayEstimate>& external_delay,
494 bool any_filter_converged) {
495 // Update blocks counter.
496 const bool filter_update = active_render && !saturated_capture;
497 filter_update_blocks_since_reset_ += filter_update ? 1 : 0;
498 filter_update_blocks_since_start_ += filter_update ? 1 : 0;
499
500 // Store convergence flag when observed.
501 convergence_seen_ = convergence_seen_ || any_filter_converged;
502
503 // Verify requirements for achieving a decent filter. The requirements for
504 // filter adaptation at call startup are more restrictive than after an
505 // in-call reset.
506 const bool sufficient_data_to_converge_at_startup =
507 filter_update_blocks_since_start_ > kNumBlocksPerSecond * 0.4f;
508 const bool sufficient_data_to_converge_at_reset =
509 sufficient_data_to_converge_at_startup &&
510 filter_update_blocks_since_reset_ > kNumBlocksPerSecond * 0.2f;
511
512 // The linear filter can only be used if it has had time to converge.
513 overall_usable_linear_estimates_ = sufficient_data_to_converge_at_startup &&
514 sufficient_data_to_converge_at_reset;
515
516 // The linear filter can only be used if an external delay or convergence have
517 // been identified
518 overall_usable_linear_estimates_ =
519 overall_usable_linear_estimates_ && (external_delay || convergence_seen_);
520
521 // If transparent mode is on, deactivate usign the linear filter.
522 overall_usable_linear_estimates_ =
523 overall_usable_linear_estimates_ && !transparent_mode;
524
525 if (use_linear_filter_) {
526 std::fill(usable_linear_filter_estimates_.begin(),
527 usable_linear_filter_estimates_.end(),
528 overall_usable_linear_estimates_);
529 }
530 }
531
Update(rtc::ArrayView<const std::vector<float>> x,bool saturated_capture,bool usable_linear_estimate,rtc::ArrayView<const SubtractorOutput> subtractor_output,float echo_path_gain)532 void AecState::SaturationDetector::Update(
533 rtc::ArrayView<const std::vector<float>> x,
534 bool saturated_capture,
535 bool usable_linear_estimate,
536 rtc::ArrayView<const SubtractorOutput> subtractor_output,
537 float echo_path_gain) {
538 saturated_echo_ = false;
539 if (!saturated_capture) {
540 return;
541 }
542
543 if (usable_linear_estimate) {
544 constexpr float kSaturationThreshold = 20000.f;
545 for (size_t ch = 0; ch < subtractor_output.size(); ++ch) {
546 saturated_echo_ =
547 saturated_echo_ ||
548 (subtractor_output[ch].s_refined_max_abs > kSaturationThreshold ||
549 subtractor_output[ch].s_coarse_max_abs > kSaturationThreshold);
550 }
551 } else {
552 float max_sample = 0.f;
553 for (auto& channel : x) {
554 for (float sample : channel) {
555 max_sample = std::max(max_sample, fabsf(sample));
556 }
557 }
558
559 const float kMargin = 10.f;
560 float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
561 saturated_echo_ = saturated_echo_ || peak_echo_amplitude > 32000;
562 }
563 }
564
565 } // namespace webrtc
566