1 // Copyright 2020 The Pigweed Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
4 // use this file except in compliance with the License. You may obtain a copy of
5 // the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
11 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
12 // License for the specific language governing permissions and limitations under
13 // the License.
14
15 #define PW_LOG_MODULE_NAME "KVS"
16 #define PW_LOG_LEVEL PW_KVS_LOG_LEVEL
17
18 #include "pw_kvs/key_value_store.h"
19
20 #include <algorithm>
21 #include <cinttypes>
22 #include <cstring>
23 #include <type_traits>
24
25 #include "pw_assert/assert.h"
26 #include "pw_kvs_private/config.h"
27 #include "pw_log/shorter.h"
28 #include "pw_status/try.h"
29
30 namespace pw::kvs {
31 namespace {
32
33 using std::byte;
34
InvalidKey(Key key)35 constexpr bool InvalidKey(Key key) {
36 return key.empty() || (key.size() > internal::Entry::kMaxKeyLength);
37 }
38
39 } // namespace
40
KeyValueStore(FlashPartition * partition,std::span<const EntryFormat> formats,const Options & options,size_t redundancy,Vector<SectorDescriptor> & sector_descriptor_list,const SectorDescriptor ** temp_sectors_to_skip,Vector<KeyDescriptor> & key_descriptor_list,Address * addresses)41 KeyValueStore::KeyValueStore(FlashPartition* partition,
42 std::span<const EntryFormat> formats,
43 const Options& options,
44 size_t redundancy,
45 Vector<SectorDescriptor>& sector_descriptor_list,
46 const SectorDescriptor** temp_sectors_to_skip,
47 Vector<KeyDescriptor>& key_descriptor_list,
48 Address* addresses)
49 : partition_(*partition),
50 formats_(formats),
51 sectors_(sector_descriptor_list, *partition, temp_sectors_to_skip),
52 entry_cache_(key_descriptor_list, addresses, redundancy),
53 options_(options),
54 initialized_(InitializationState::kNotInitialized),
55 error_detected_(false),
56 internal_stats_({}),
57 last_transaction_id_(0) {}
58
Init()59 Status KeyValueStore::Init() {
60 initialized_ = InitializationState::kNotInitialized;
61 error_detected_ = false;
62 last_transaction_id_ = 0;
63
64 INF("Initializing key value store");
65 if (partition_.sector_count() > sectors_.max_size()) {
66 ERR("KVS init failed: kMaxUsableSectors (=%u) must be at least as "
67 "large as the number of sectors in the flash partition (=%u)",
68 unsigned(sectors_.max_size()),
69 unsigned(partition_.sector_count()));
70 return Status::FailedPrecondition();
71 }
72
73 if (partition_.sector_count() < 2) {
74 ERR("KVS init failed: FlashParition sector count (=%u) must be at 2. KVS "
75 "requires at least 1 working sector + 1 free/reserved sector",
76 unsigned(partition_.sector_count()));
77 return Status::FailedPrecondition();
78 }
79
80 const size_t sector_size_bytes = partition_.sector_size_bytes();
81
82 // TODO: investigate doing this as a static assert/compile-time check.
83 if (sector_size_bytes > SectorDescriptor::max_sector_size()) {
84 ERR("KVS init failed: sector_size_bytes (=%u) is greater than maximum "
85 "allowed sector size (=%u)",
86 unsigned(sector_size_bytes),
87 unsigned(SectorDescriptor::max_sector_size()));
88 return Status::FailedPrecondition();
89 }
90
91 Status metadata_result = InitializeMetadata();
92
93 if (!error_detected_) {
94 initialized_ = InitializationState::kReady;
95 } else {
96 initialized_ = InitializationState::kNeedsMaintenance;
97
98 if (options_.recovery != ErrorRecovery::kManual) {
99 size_t pre_fix_redundancy_errors =
100 internal_stats_.missing_redundant_entries_recovered;
101 Status recovery_status = FixErrors();
102
103 if (recovery_status.ok()) {
104 if (metadata_result.IsOutOfRange()) {
105 internal_stats_.missing_redundant_entries_recovered =
106 pre_fix_redundancy_errors;
107 INF("KVS init: Redundancy level successfully updated");
108 } else {
109 WRN("KVS init: Corruption detected and fully repaired");
110 }
111 initialized_ = InitializationState::kReady;
112 } else if (recovery_status.IsResourceExhausted()) {
113 WRN("KVS init: Unable to maintain required free sector");
114 } else {
115 WRN("KVS init: Corruption detected and unable repair");
116 }
117 } else {
118 WRN("KVS init: Corruption detected, no repair attempted due to options");
119 }
120 }
121
122 INF("KeyValueStore init complete: active keys %u, deleted keys %u, sectors "
123 "%u, logical sector size %u bytes",
124 unsigned(size()),
125 unsigned(entry_cache_.total_entries() - size()),
126 unsigned(sectors_.size()),
127 unsigned(partition_.sector_size_bytes()));
128
129 // Report any corruption was not repaired.
130 if (error_detected_) {
131 WRN("KVS init: Corruption found but not repaired, KVS unavailable until "
132 "successful maintenance.");
133 return Status::DataLoss();
134 }
135
136 return OkStatus();
137 }
138
InitializeMetadata()139 Status KeyValueStore::InitializeMetadata() {
140 const size_t sector_size_bytes = partition_.sector_size_bytes();
141
142 sectors_.Reset();
143 entry_cache_.Reset();
144
145 DBG("First pass: Read all entries from all sectors");
146 Address sector_address = 0;
147
148 size_t total_corrupt_bytes = 0;
149 size_t corrupt_entries = 0;
150 bool empty_sector_found = false;
151 size_t entry_copies_missing = 0;
152
153 for (SectorDescriptor& sector : sectors_) {
154 Address entry_address = sector_address;
155
156 size_t sector_corrupt_bytes = 0;
157
158 for (int num_entries_in_sector = 0; true; num_entries_in_sector++) {
159 DBG("Load entry: sector=%u, entry#=%d, address=%u",
160 unsigned(sector_address),
161 num_entries_in_sector,
162 unsigned(entry_address));
163
164 if (!sectors_.AddressInSector(sector, entry_address)) {
165 DBG("Fell off end of sector; moving to the next sector");
166 break;
167 }
168
169 Address next_entry_address;
170 Status status = LoadEntry(entry_address, &next_entry_address);
171 if (status.IsNotFound()) {
172 DBG("Hit un-written data in sector; moving to the next sector");
173 break;
174 } else if (!status.ok()) {
175 // The entry could not be read, indicating likely data corruption within
176 // the sector. Try to scan the remainder of the sector for other
177 // entries.
178
179 error_detected_ = true;
180 corrupt_entries++;
181
182 status = ScanForEntry(sector,
183 entry_address + Entry::kMinAlignmentBytes,
184 &next_entry_address);
185 if (!status.ok()) {
186 // No further entries in this sector. Mark the remaining bytes in the
187 // sector as corrupt (since we can't reliably know the size of the
188 // corrupt entry).
189 sector_corrupt_bytes +=
190 sector_size_bytes - (entry_address - sector_address);
191 break;
192 }
193
194 sector_corrupt_bytes += next_entry_address - entry_address;
195 }
196
197 // Entry loaded successfully; so get ready to load the next one.
198 entry_address = next_entry_address;
199
200 // Update of the number of writable bytes in this sector.
201 sector.set_writable_bytes(sector_size_bytes -
202 (entry_address - sector_address));
203 }
204
205 if (sector_corrupt_bytes > 0) {
206 // If the sector contains corrupt data, prevent any further entries from
207 // being written to it by indicating that it has no space. This should
208 // also make it a decent GC candidate. Valid keys in the sector are still
209 // readable as normal.
210 sector.mark_corrupt();
211 error_detected_ = true;
212
213 WRN("Sector %u contains %uB of corrupt data",
214 sectors_.Index(sector),
215 unsigned(sector_corrupt_bytes));
216 }
217
218 if (sector.Empty(sector_size_bytes)) {
219 empty_sector_found = true;
220 }
221 sector_address += sector_size_bytes;
222 total_corrupt_bytes += sector_corrupt_bytes;
223 }
224
225 DBG("Second pass: Count valid bytes in each sector");
226 Address newest_key = 0;
227
228 // For every valid entry, for each address, count the valid bytes in that
229 // sector. If the address fails to read, remove the address and mark the
230 // sector as corrupt. Track which entry has the newest transaction ID for
231 // initializing last_new_sector_.
232 for (EntryMetadata& metadata : entry_cache_) {
233 if (metadata.addresses().size() < redundancy()) {
234 DBG("Key 0x%08x missing copies, has %u, needs %u",
235 unsigned(metadata.hash()),
236 unsigned(metadata.addresses().size()),
237 unsigned(redundancy()));
238 entry_copies_missing++;
239 }
240 size_t index = 0;
241 while (index < metadata.addresses().size()) {
242 Address address = metadata.addresses()[index];
243 Entry entry;
244
245 Status read_result = Entry::Read(partition_, address, formats_, &entry);
246
247 SectorDescriptor& sector = sectors_.FromAddress(address);
248
249 if (read_result.ok()) {
250 sector.AddValidBytes(entry.size());
251 index++;
252 } else {
253 corrupt_entries++;
254 total_corrupt_bytes += sector.writable_bytes();
255 error_detected_ = true;
256 sector.mark_corrupt();
257
258 // Remove the bad address and stay at this index. The removal
259 // replaces out the removed address with the back address so
260 // this index needs to be rechecked with the new address.
261 metadata.RemoveAddress(address);
262 }
263 }
264
265 if (metadata.IsNewerThan(last_transaction_id_)) {
266 last_transaction_id_ = metadata.transaction_id();
267 newest_key = metadata.addresses().back();
268 }
269 }
270
271 sectors_.set_last_new_sector(newest_key);
272
273 if (!empty_sector_found) {
274 DBG("No empty sector found");
275 error_detected_ = true;
276 }
277
278 if (entry_copies_missing > 0) {
279 bool other_errors = error_detected_;
280 error_detected_ = true;
281
282 if (!other_errors && entry_copies_missing == entry_cache_.total_entries()) {
283 INF("KVS configuration changed to redundancy of %u total copies per key",
284 unsigned(redundancy()));
285 return Status::OutOfRange();
286 }
287 }
288
289 if (error_detected_) {
290 WRN("Corruption detected. Found %u corrupt bytes, %u corrupt entries, "
291 "and %u keys missing redundant copies.",
292 unsigned(total_corrupt_bytes),
293 unsigned(corrupt_entries),
294 unsigned(entry_copies_missing));
295 return Status::FailedPrecondition();
296 }
297 return OkStatus();
298 }
299
GetStorageStats() const300 KeyValueStore::StorageStats KeyValueStore::GetStorageStats() const {
301 StorageStats stats{};
302 const size_t sector_size = partition_.sector_size_bytes();
303 bool found_empty_sector = false;
304 stats.sector_erase_count = internal_stats_.sector_erase_count;
305 stats.corrupt_sectors_recovered = internal_stats_.corrupt_sectors_recovered;
306 stats.missing_redundant_entries_recovered =
307 internal_stats_.missing_redundant_entries_recovered;
308
309 for (const SectorDescriptor& sector : sectors_) {
310 stats.in_use_bytes += sector.valid_bytes();
311 stats.reclaimable_bytes += sector.RecoverableBytes(sector_size);
312
313 if (!found_empty_sector && sector.Empty(sector_size)) {
314 // The KVS tries to always keep an empty sector for GC, so don't count
315 // the first empty sector seen as writable space. However, a free sector
316 // cannot always be assumed to exist; if a GC operation fails, all sectors
317 // may be partially written, in which case the space reported might be
318 // inaccurate.
319 found_empty_sector = true;
320 continue;
321 }
322
323 stats.writable_bytes += sector.writable_bytes();
324 }
325
326 return stats;
327 }
328
329 // Check KVS for any error conditions. Primarily intended for test and
330 // internal use.
CheckForErrors()331 bool KeyValueStore::CheckForErrors() {
332 // Check for corrupted sectors
333 for (SectorDescriptor& sector : sectors_) {
334 if (sector.corrupt()) {
335 error_detected_ = true;
336 return error_detected();
337 }
338 }
339
340 // Check for missing redundancy.
341 if (redundancy() > 1) {
342 for (const EntryMetadata& metadata : entry_cache_) {
343 if (metadata.addresses().size() < redundancy()) {
344 error_detected_ = true;
345 return error_detected();
346 }
347 }
348 }
349
350 return error_detected();
351 }
352
LoadEntry(Address entry_address,Address * next_entry_address)353 Status KeyValueStore::LoadEntry(Address entry_address,
354 Address* next_entry_address) {
355 Entry entry;
356 PW_TRY(Entry::Read(partition_, entry_address, formats_, &entry));
357
358 // Read the key from flash & validate the entry (which reads the value).
359 Entry::KeyBuffer key_buffer;
360 PW_TRY_ASSIGN(size_t key_length, entry.ReadKey(key_buffer));
361 const Key key(key_buffer.data(), key_length);
362
363 PW_TRY(entry.VerifyChecksumInFlash());
364
365 // A valid entry was found, so update the next entry address before doing any
366 // of the checks that happen in AddNewOrUpdateExisting.
367 *next_entry_address = entry.next_address();
368 return entry_cache_.AddNewOrUpdateExisting(
369 entry.descriptor(key), entry.address(), partition_.sector_size_bytes());
370 }
371
372 // Scans flash memory within a sector to find a KVS entry magic.
ScanForEntry(const SectorDescriptor & sector,Address start_address,Address * next_entry_address)373 Status KeyValueStore::ScanForEntry(const SectorDescriptor& sector,
374 Address start_address,
375 Address* next_entry_address) {
376 DBG("Scanning sector %u for entries starting from address %u",
377 sectors_.Index(sector),
378 unsigned(start_address));
379
380 // Entries must start at addresses which are aligned on a multiple of
381 // Entry::kMinAlignmentBytes. However, that multiple can vary between entries.
382 // When scanning, we don't have an entry to tell us what the current alignment
383 // is, so the minimum alignment is used to be exhaustive.
384 for (Address address = AlignUp(start_address, Entry::kMinAlignmentBytes);
385 sectors_.AddressInSector(sector, address);
386 address += Entry::kMinAlignmentBytes) {
387 uint32_t magic;
388 StatusWithSize read_result =
389 partition_.Read(address, std::as_writable_bytes(std::span(&magic, 1)));
390 if (!read_result.ok()) {
391 continue;
392 }
393 if (formats_.KnownMagic(magic)) {
394 DBG("Found entry magic at address %u", unsigned(address));
395 *next_entry_address = address;
396 return OkStatus();
397 }
398 }
399
400 return Status::NotFound();
401 }
402
Get(Key key,std::span<byte> value_buffer,size_t offset_bytes) const403 StatusWithSize KeyValueStore::Get(Key key,
404 std::span<byte> value_buffer,
405 size_t offset_bytes) const {
406 PW_TRY_WITH_SIZE(CheckReadOperation(key));
407
408 EntryMetadata metadata;
409 PW_TRY_WITH_SIZE(FindExisting(key, &metadata));
410
411 return Get(key, metadata, value_buffer, offset_bytes);
412 }
413
PutBytes(Key key,std::span<const byte> value)414 Status KeyValueStore::PutBytes(Key key, std::span<const byte> value) {
415 PW_TRY(CheckWriteOperation(key));
416 DBG("Writing key/value; key length=%u, value length=%u",
417 unsigned(key.size()),
418 unsigned(value.size()));
419
420 if (Entry::size(partition_, key, value) > partition_.sector_size_bytes()) {
421 DBG("%u B value with %u B key cannot fit in one sector",
422 unsigned(value.size()),
423 unsigned(key.size()));
424 return Status::InvalidArgument();
425 }
426
427 EntryMetadata metadata;
428 Status status = FindEntry(key, &metadata);
429
430 if (status.ok()) {
431 // TODO: figure out logging how to support multiple addresses.
432 DBG("Overwriting entry for key 0x%08x in %u sectors including %u",
433 unsigned(metadata.hash()),
434 unsigned(metadata.addresses().size()),
435 sectors_.Index(metadata.first_address()));
436 return WriteEntryForExistingKey(metadata, EntryState::kValid, key, value);
437 }
438
439 if (status.IsNotFound()) {
440 return WriteEntryForNewKey(key, value);
441 }
442
443 return status;
444 }
445
Delete(Key key)446 Status KeyValueStore::Delete(Key key) {
447 PW_TRY(CheckWriteOperation(key));
448
449 EntryMetadata metadata;
450 PW_TRY(FindExisting(key, &metadata));
451
452 // TODO: figure out logging how to support multiple addresses.
453 DBG("Writing tombstone for key 0x%08x in %u sectors including %u",
454 unsigned(metadata.hash()),
455 unsigned(metadata.addresses().size()),
456 sectors_.Index(metadata.first_address()));
457 return WriteEntryForExistingKey(metadata, EntryState::kDeleted, key, {});
458 }
459
ReadKey()460 void KeyValueStore::Item::ReadKey() {
461 key_buffer_.fill('\0');
462
463 Entry entry;
464 if (kvs_.ReadEntry(*iterator_, entry).ok()) {
465 entry.ReadKey(key_buffer_);
466 }
467 }
468
operator ++()469 KeyValueStore::iterator& KeyValueStore::iterator::operator++() {
470 // Skip to the next entry that is valid (not deleted).
471 while (++item_.iterator_ != item_.kvs_.entry_cache_.end() &&
472 item_.iterator_->state() != EntryState::kValid) {
473 }
474 return *this;
475 }
476
begin() const477 KeyValueStore::iterator KeyValueStore::begin() const {
478 internal::EntryCache::const_iterator cache_iterator = entry_cache_.begin();
479 // Skip over any deleted entries at the start of the descriptor list.
480 while (cache_iterator != entry_cache_.end() &&
481 cache_iterator->state() != EntryState::kValid) {
482 ++cache_iterator;
483 }
484 return iterator(*this, cache_iterator);
485 }
486
ValueSize(Key key) const487 StatusWithSize KeyValueStore::ValueSize(Key key) const {
488 PW_TRY_WITH_SIZE(CheckReadOperation(key));
489
490 EntryMetadata metadata;
491 PW_TRY_WITH_SIZE(FindExisting(key, &metadata));
492
493 return ValueSize(metadata);
494 }
495
ReadEntry(const EntryMetadata & metadata,Entry & entry) const496 Status KeyValueStore::ReadEntry(const EntryMetadata& metadata,
497 Entry& entry) const {
498 // Try to read an entry
499 Status read_result = Status::DataLoss();
500 for (Address address : metadata.addresses()) {
501 read_result = Entry::Read(partition_, address, formats_, &entry);
502 if (read_result.ok()) {
503 return read_result;
504 }
505
506 // Found a bad address. Set the sector as corrupt.
507 error_detected_ = true;
508 sectors_.FromAddress(address).mark_corrupt();
509 }
510
511 ERR("No valid entries for key. Data has been lost!");
512 return read_result;
513 }
514
FindEntry(Key key,EntryMetadata * found_entry) const515 Status KeyValueStore::FindEntry(Key key, EntryMetadata* found_entry) const {
516 StatusWithSize find_result =
517 entry_cache_.Find(partition_, sectors_, formats_, key, found_entry);
518
519 if (find_result.size() > 0u) {
520 error_detected_ = true;
521 }
522 return find_result.status();
523 }
524
FindExisting(Key key,EntryMetadata * metadata) const525 Status KeyValueStore::FindExisting(Key key, EntryMetadata* metadata) const {
526 Status status = FindEntry(key, metadata);
527
528 // If the key's hash collides with an existing key or if the key is deleted,
529 // treat it as if it is not in the KVS.
530 if (status.IsAlreadyExists() ||
531 (status.ok() && metadata->state() == EntryState::kDeleted)) {
532 return Status::NotFound();
533 }
534 return status;
535 }
536
Get(Key key,const EntryMetadata & metadata,std::span<std::byte> value_buffer,size_t offset_bytes) const537 StatusWithSize KeyValueStore::Get(Key key,
538 const EntryMetadata& metadata,
539 std::span<std::byte> value_buffer,
540 size_t offset_bytes) const {
541 Entry entry;
542
543 PW_TRY_WITH_SIZE(ReadEntry(metadata, entry));
544
545 StatusWithSize result = entry.ReadValue(value_buffer, offset_bytes);
546 if (result.ok() && options_.verify_on_read && offset_bytes == 0u) {
547 Status verify_result =
548 entry.VerifyChecksum(key, value_buffer.first(result.size()));
549 if (!verify_result.ok()) {
550 std::memset(value_buffer.data(), 0, result.size());
551 return StatusWithSize(verify_result, 0);
552 }
553
554 return StatusWithSize(verify_result, result.size());
555 }
556 return result;
557 }
558
FixedSizeGet(Key key,void * value,size_t size_bytes) const559 Status KeyValueStore::FixedSizeGet(Key key,
560 void* value,
561 size_t size_bytes) const {
562 PW_TRY(CheckWriteOperation(key));
563
564 EntryMetadata metadata;
565 PW_TRY(FindExisting(key, &metadata));
566
567 return FixedSizeGet(key, metadata, value, size_bytes);
568 }
569
FixedSizeGet(Key key,const EntryMetadata & metadata,void * value,size_t size_bytes) const570 Status KeyValueStore::FixedSizeGet(Key key,
571 const EntryMetadata& metadata,
572 void* value,
573 size_t size_bytes) const {
574 // Ensure that the size of the stored value matches the size of the type.
575 // Otherwise, report error. This check avoids potential memory corruption.
576 PW_TRY_ASSIGN(const size_t actual_size, ValueSize(metadata));
577
578 if (actual_size != size_bytes) {
579 DBG("Requested %u B read, but value is %u B",
580 unsigned(size_bytes),
581 unsigned(actual_size));
582 return Status::InvalidArgument();
583 }
584
585 StatusWithSize result =
586 Get(key, metadata, std::span(static_cast<byte*>(value), size_bytes), 0);
587
588 return result.status();
589 }
590
ValueSize(const EntryMetadata & metadata) const591 StatusWithSize KeyValueStore::ValueSize(const EntryMetadata& metadata) const {
592 Entry entry;
593 PW_TRY_WITH_SIZE(ReadEntry(metadata, entry));
594
595 return StatusWithSize(entry.value_size());
596 }
597
CheckWriteOperation(Key key) const598 Status KeyValueStore::CheckWriteOperation(Key key) const {
599 if (InvalidKey(key)) {
600 return Status::InvalidArgument();
601 }
602
603 // For normal write operation the KVS must be fully ready.
604 if (!initialized()) {
605 return Status::FailedPrecondition();
606 }
607 return OkStatus();
608 }
609
CheckReadOperation(Key key) const610 Status KeyValueStore::CheckReadOperation(Key key) const {
611 if (InvalidKey(key)) {
612 return Status::InvalidArgument();
613 }
614
615 // Operations that are explicitly read-only can be done after init() has been
616 // called but not fully ready (when needing maintenance).
617 if (initialized_ == InitializationState::kNotInitialized) {
618 return Status::FailedPrecondition();
619 }
620 return OkStatus();
621 }
622
WriteEntryForExistingKey(EntryMetadata & metadata,EntryState new_state,Key key,std::span<const byte> value)623 Status KeyValueStore::WriteEntryForExistingKey(EntryMetadata& metadata,
624 EntryState new_state,
625 Key key,
626 std::span<const byte> value) {
627 // Read the original entry to get the size for sector accounting purposes.
628 Entry entry;
629 PW_TRY(ReadEntry(metadata, entry));
630
631 return WriteEntry(key, value, new_state, &metadata, &entry);
632 }
633
WriteEntryForNewKey(Key key,std::span<const byte> value)634 Status KeyValueStore::WriteEntryForNewKey(Key key,
635 std::span<const byte> value) {
636 if (entry_cache_.full()) {
637 WRN("KVS full: trying to store a new entry, but can't. Have %u entries",
638 unsigned(entry_cache_.total_entries()));
639 return Status::ResourceExhausted();
640 }
641
642 return WriteEntry(key, value, EntryState::kValid);
643 }
644
WriteEntry(Key key,std::span<const byte> value,EntryState new_state,EntryMetadata * prior_metadata,const Entry * prior_entry)645 Status KeyValueStore::WriteEntry(Key key,
646 std::span<const byte> value,
647 EntryState new_state,
648 EntryMetadata* prior_metadata,
649 const Entry* prior_entry) {
650 // If new entry and prior entry have matching value size, state, and checksum,
651 // check if the values match. Directly compare the prior and new values
652 // because the checksum can not be depended on to establish equality, it can
653 // only be depended on to establish inequality.
654 if (prior_entry != nullptr && prior_entry->value_size() == value.size() &&
655 prior_metadata->state() == new_state &&
656 prior_entry->ValueMatches(value).ok()) {
657 // The new value matches the prior value, don't need to write anything. Just
658 // keep the existing entry.
659 DBG("Write for key 0x%08x with matching value skipped",
660 unsigned(prior_metadata->hash()));
661 return OkStatus();
662 }
663
664 // List of addresses for sectors with space for this entry.
665 Address* reserved_addresses = entry_cache_.TempReservedAddressesForWrite();
666
667 // Find addresses to write the entry to. This may involve garbage collecting
668 // one or more sectors.
669 const size_t entry_size = Entry::size(partition_, key, value);
670 PW_TRY(GetAddressesForWrite(reserved_addresses, entry_size));
671
672 // Write the entry at the first address that was found.
673 Entry entry = CreateEntry(reserved_addresses[0], key, value, new_state);
674 PW_TRY(AppendEntry(entry, key, value));
675
676 // After writing the first entry successfully, update the key descriptors.
677 // Once a single new the entry is written, the old entries are invalidated.
678 size_t prior_size = prior_entry != nullptr ? prior_entry->size() : 0;
679 EntryMetadata new_metadata =
680 CreateOrUpdateKeyDescriptor(entry, key, prior_metadata, prior_size);
681
682 // Write the additional copies of the entry, if redundancy is greater than 1.
683 for (size_t i = 1; i < redundancy(); ++i) {
684 entry.set_address(reserved_addresses[i]);
685 PW_TRY(AppendEntry(entry, key, value));
686 new_metadata.AddNewAddress(reserved_addresses[i]);
687 }
688 return OkStatus();
689 }
690
CreateOrUpdateKeyDescriptor(const Entry & entry,Key key,EntryMetadata * prior_metadata,size_t prior_size)691 KeyValueStore::EntryMetadata KeyValueStore::CreateOrUpdateKeyDescriptor(
692 const Entry& entry,
693 Key key,
694 EntryMetadata* prior_metadata,
695 size_t prior_size) {
696 // If there is no prior descriptor, create a new one.
697 if (prior_metadata == nullptr) {
698 return entry_cache_.AddNew(entry.descriptor(key), entry.address());
699 }
700
701 return UpdateKeyDescriptor(
702 entry, entry.address(), prior_metadata, prior_size);
703 }
704
UpdateKeyDescriptor(const Entry & entry,Address new_address,EntryMetadata * prior_metadata,size_t prior_size)705 KeyValueStore::EntryMetadata KeyValueStore::UpdateKeyDescriptor(
706 const Entry& entry,
707 Address new_address,
708 EntryMetadata* prior_metadata,
709 size_t prior_size) {
710 // Remove valid bytes for the old entry and its copies, which are now stale.
711 for (Address address : prior_metadata->addresses()) {
712 sectors_.FromAddress(address).RemoveValidBytes(prior_size);
713 }
714
715 prior_metadata->Reset(entry.descriptor(prior_metadata->hash()), new_address);
716 return *prior_metadata;
717 }
718
GetAddressesForWrite(Address * write_addresses,size_t write_size)719 Status KeyValueStore::GetAddressesForWrite(Address* write_addresses,
720 size_t write_size) {
721 for (size_t i = 0; i < redundancy(); i++) {
722 SectorDescriptor* sector;
723 PW_TRY(
724 GetSectorForWrite(§or, write_size, std::span(write_addresses, i)));
725 write_addresses[i] = sectors_.NextWritableAddress(*sector);
726
727 DBG("Found space for entry in sector %u at address %u",
728 sectors_.Index(sector),
729 unsigned(write_addresses[i]));
730 }
731
732 return OkStatus();
733 }
734
735 // Finds a sector to use for writing a new entry to. Does automatic garbage
736 // collection if needed and allowed.
737 //
738 // OK: Sector found with needed space.
739 // RESOURCE_EXHAUSTED: No sector available with the needed space.
GetSectorForWrite(SectorDescriptor ** sector,size_t entry_size,std::span<const Address> reserved)740 Status KeyValueStore::GetSectorForWrite(SectorDescriptor** sector,
741 size_t entry_size,
742 std::span<const Address> reserved) {
743 Status result = sectors_.FindSpace(sector, entry_size, reserved);
744
745 size_t gc_sector_count = 0;
746 bool do_auto_gc = options_.gc_on_write != GargbageCollectOnWrite::kDisabled;
747
748 // Do garbage collection as needed, so long as policy allows.
749 while (result.IsResourceExhausted() && do_auto_gc) {
750 if (options_.gc_on_write == GargbageCollectOnWrite::kOneSector) {
751 // If GC config option is kOneSector clear the flag to not do any more
752 // GC after this try.
753 do_auto_gc = false;
754 }
755 // Garbage collect and then try again to find the best sector.
756 Status gc_status = GarbageCollect(reserved);
757 if (!gc_status.ok()) {
758 if (gc_status.IsNotFound()) {
759 // Not enough space, and no reclaimable bytes, this KVS is full!
760 return Status::ResourceExhausted();
761 }
762 return gc_status;
763 }
764
765 result = sectors_.FindSpace(sector, entry_size, reserved);
766
767 gc_sector_count++;
768 // Allow total sectors + 2 number of GC cycles so that once reclaimable
769 // bytes in all the sectors have been reclaimed can try and free up space by
770 // moving entries for keys other than the one being worked on in to sectors
771 // that have copies of the key trying to be written.
772 if (gc_sector_count > (partition_.sector_count() + 2)) {
773 ERR("Did more GC sectors than total sectors!!!!");
774 return Status::ResourceExhausted();
775 }
776 }
777
778 if (!result.ok()) {
779 WRN("Unable to find sector to write %u B", unsigned(entry_size));
780 }
781 return result;
782 }
783
MarkSectorCorruptIfNotOk(Status status,SectorDescriptor * sector)784 Status KeyValueStore::MarkSectorCorruptIfNotOk(Status status,
785 SectorDescriptor* sector) {
786 if (!status.ok()) {
787 DBG(" Sector %u corrupt", sectors_.Index(sector));
788 sector->mark_corrupt();
789 error_detected_ = true;
790 }
791 return status;
792 }
793
AppendEntry(const Entry & entry,Key key,std::span<const byte> value)794 Status KeyValueStore::AppendEntry(const Entry& entry,
795 Key key,
796 std::span<const byte> value) {
797 const StatusWithSize result = entry.Write(key, value);
798
799 SectorDescriptor& sector = sectors_.FromAddress(entry.address());
800
801 if (!result.ok()) {
802 ERR("Failed to write %u bytes at %#x. %u actually written",
803 unsigned(entry.size()),
804 unsigned(entry.address()),
805 unsigned(result.size()));
806 PW_TRY(MarkSectorCorruptIfNotOk(result.status(), §or));
807 }
808
809 if (options_.verify_on_write) {
810 PW_TRY(MarkSectorCorruptIfNotOk(entry.VerifyChecksumInFlash(), §or));
811 }
812
813 sector.RemoveWritableBytes(result.size());
814 sector.AddValidBytes(result.size());
815 return OkStatus();
816 }
817
CopyEntryToSector(Entry & entry,SectorDescriptor * new_sector,Address new_address)818 StatusWithSize KeyValueStore::CopyEntryToSector(Entry& entry,
819 SectorDescriptor* new_sector,
820 Address new_address) {
821 const StatusWithSize result = entry.Copy(new_address);
822
823 PW_TRY_WITH_SIZE(MarkSectorCorruptIfNotOk(result.status(), new_sector));
824
825 if (options_.verify_on_write) {
826 Entry new_entry;
827 PW_TRY_WITH_SIZE(MarkSectorCorruptIfNotOk(
828 Entry::Read(partition_, new_address, formats_, &new_entry),
829 new_sector));
830 // TODO: add test that catches doing the verify on the old entry.
831 PW_TRY_WITH_SIZE(MarkSectorCorruptIfNotOk(new_entry.VerifyChecksumInFlash(),
832 new_sector));
833 }
834 // Entry was written successfully; update descriptor's address and the sector
835 // descriptors to reflect the new entry.
836 new_sector->RemoveWritableBytes(result.size());
837 new_sector->AddValidBytes(result.size());
838
839 return result;
840 }
841
RelocateEntry(const EntryMetadata & metadata,KeyValueStore::Address & address,std::span<const Address> reserved_addresses)842 Status KeyValueStore::RelocateEntry(
843 const EntryMetadata& metadata,
844 KeyValueStore::Address& address,
845 std::span<const Address> reserved_addresses) {
846 Entry entry;
847 PW_TRY(ReadEntry(metadata, entry));
848
849 // Find a new sector for the entry and write it to the new location. For
850 // relocation the find should not not be a sector already containing the key
851 // but can be the always empty sector, since this is part of the GC process
852 // that will result in a new empty sector. Also find a sector that does not
853 // have reclaimable space (mostly for the full GC, where that would result in
854 // an immediate extra relocation).
855 SectorDescriptor* new_sector;
856
857 PW_TRY(sectors_.FindSpaceDuringGarbageCollection(
858 &new_sector, entry.size(), metadata.addresses(), reserved_addresses));
859
860 Address new_address = sectors_.NextWritableAddress(*new_sector);
861 PW_TRY_ASSIGN(const size_t result_size,
862 CopyEntryToSector(entry, new_sector, new_address));
863 sectors_.FromAddress(address).RemoveValidBytes(result_size);
864 address = new_address;
865
866 return OkStatus();
867 }
868
FullMaintenanceHelper(MaintenanceType maintenance_type)869 Status KeyValueStore::FullMaintenanceHelper(MaintenanceType maintenance_type) {
870 if (initialized_ == InitializationState::kNotInitialized) {
871 return Status::FailedPrecondition();
872 }
873
874 // Full maintenance can be a potentially heavy operation, and should be
875 // relatively infrequent, so log start/end at INFO level.
876 INF("Beginning full maintenance");
877 CheckForErrors();
878
879 if (error_detected_) {
880 PW_TRY(Repair());
881 }
882 StatusWithSize update_status = UpdateEntriesToPrimaryFormat();
883 Status overall_status = update_status.status();
884
885 // Make sure all the entries are on the primary format.
886 if (!overall_status.ok()) {
887 ERR("Failed to update all entries to the primary format");
888 }
889
890 SectorDescriptor* sector = sectors_.last_new();
891
892 // Calculate number of bytes for the threshold.
893 size_t threshold_bytes =
894 (partition_.size_bytes() * kGcUsageThresholdPercentage) / 100;
895
896 // Is bytes in use over the threshold.
897 StorageStats stats = GetStorageStats();
898 bool over_usage_threshold = stats.in_use_bytes > threshold_bytes;
899 bool heavy = (maintenance_type == MaintenanceType::kHeavy);
900 bool force_gc = heavy || over_usage_threshold || (update_status.size() > 0);
901
902 // TODO: look in to making an iterator method for cycling through sectors
903 // starting from last_new_sector_.
904 Status gc_status;
905 for (size_t j = 0; j < sectors_.size(); j++) {
906 sector += 1;
907 if (sector == sectors_.end()) {
908 sector = sectors_.begin();
909 }
910
911 if (sector->RecoverableBytes(partition_.sector_size_bytes()) > 0 &&
912 (force_gc || sector->valid_bytes() == 0)) {
913 gc_status = GarbageCollectSector(*sector, {});
914 if (!gc_status.ok()) {
915 ERR("Failed to garbage collect all sectors");
916 break;
917 }
918 }
919 }
920 if (overall_status.ok()) {
921 overall_status = gc_status;
922 }
923
924 if (overall_status.ok()) {
925 INF("Full maintenance complete");
926 } else {
927 ERR("Full maintenance finished with some errors");
928 }
929 return overall_status;
930 }
931
PartialMaintenance()932 Status KeyValueStore::PartialMaintenance() {
933 if (initialized_ == InitializationState::kNotInitialized) {
934 return Status::FailedPrecondition();
935 }
936
937 CheckForErrors();
938 // Do automatic repair, if KVS options allow for it.
939 if (error_detected_ && options_.recovery != ErrorRecovery::kManual) {
940 PW_TRY(Repair());
941 }
942 return GarbageCollect(std::span<const Address>());
943 }
944
GarbageCollect(std::span<const Address> reserved_addresses)945 Status KeyValueStore::GarbageCollect(
946 std::span<const Address> reserved_addresses) {
947 DBG("Garbage Collect a single sector");
948 for ([[maybe_unused]] Address address : reserved_addresses) {
949 DBG(" Avoid address %u", unsigned(address));
950 }
951
952 // Step 1: Find the sector to garbage collect
953 SectorDescriptor* sector_to_gc =
954 sectors_.FindSectorToGarbageCollect(reserved_addresses);
955
956 if (sector_to_gc == nullptr) {
957 // Nothing to GC.
958 return Status::NotFound();
959 }
960
961 // Step 2: Garbage collect the selected sector.
962 return GarbageCollectSector(*sector_to_gc, reserved_addresses);
963 }
964
RelocateKeyAddressesInSector(SectorDescriptor & sector_to_gc,const EntryMetadata & metadata,std::span<const Address> reserved_addresses)965 Status KeyValueStore::RelocateKeyAddressesInSector(
966 SectorDescriptor& sector_to_gc,
967 const EntryMetadata& metadata,
968 std::span<const Address> reserved_addresses) {
969 for (FlashPartition::Address& address : metadata.addresses()) {
970 if (sectors_.AddressInSector(sector_to_gc, address)) {
971 DBG(" Relocate entry for Key 0x%08" PRIx32 ", sector %u",
972 metadata.hash(),
973 sectors_.Index(sectors_.FromAddress(address)));
974 PW_TRY(RelocateEntry(metadata, address, reserved_addresses));
975 }
976 }
977
978 return OkStatus();
979 };
980
GarbageCollectSector(SectorDescriptor & sector_to_gc,std::span<const Address> reserved_addresses)981 Status KeyValueStore::GarbageCollectSector(
982 SectorDescriptor& sector_to_gc,
983 std::span<const Address> reserved_addresses) {
984 DBG(" Garbage Collect sector %u", sectors_.Index(sector_to_gc));
985
986 // Step 1: Move any valid entries in the GC sector to other sectors
987 if (sector_to_gc.valid_bytes() != 0) {
988 for (EntryMetadata& metadata : entry_cache_) {
989 PW_TRY(RelocateKeyAddressesInSector(
990 sector_to_gc, metadata, reserved_addresses));
991 }
992 }
993
994 if (sector_to_gc.valid_bytes() != 0) {
995 ERR(" Failed to relocate valid entries from sector being garbage "
996 "collected, %u valid bytes remain",
997 unsigned(sector_to_gc.valid_bytes()));
998 return Status::Internal();
999 }
1000
1001 // Step 2: Reinitialize the sector
1002 if (!sector_to_gc.Empty(partition_.sector_size_bytes())) {
1003 sector_to_gc.mark_corrupt();
1004 internal_stats_.sector_erase_count++;
1005 PW_TRY(partition_.Erase(sectors_.BaseAddress(sector_to_gc), 1));
1006 sector_to_gc.set_writable_bytes(partition_.sector_size_bytes());
1007 }
1008
1009 DBG(" Garbage Collect sector %u complete", sectors_.Index(sector_to_gc));
1010 return OkStatus();
1011 }
1012
UpdateEntriesToPrimaryFormat()1013 StatusWithSize KeyValueStore::UpdateEntriesToPrimaryFormat() {
1014 size_t entries_updated = 0;
1015 for (EntryMetadata& prior_metadata : entry_cache_) {
1016 Entry entry;
1017 PW_TRY_WITH_SIZE(ReadEntry(prior_metadata, entry));
1018 if (formats_.primary().magic == entry.magic()) {
1019 // Ignore entries that are already on the primary format.
1020 continue;
1021 }
1022
1023 DBG("Updating entry 0x%08x from old format [0x%08x] to new format "
1024 "[0x%08x]",
1025 unsigned(prior_metadata.hash()),
1026 unsigned(entry.magic()),
1027 unsigned(formats_.primary().magic));
1028
1029 entries_updated++;
1030
1031 last_transaction_id_ += 1;
1032 PW_TRY_WITH_SIZE(entry.Update(formats_.primary(), last_transaction_id_));
1033
1034 // List of addresses for sectors with space for this entry.
1035 Address* reserved_addresses = entry_cache_.TempReservedAddressesForWrite();
1036
1037 // Find addresses to write the entry to. This may involve garbage collecting
1038 // one or more sectors.
1039 PW_TRY_WITH_SIZE(GetAddressesForWrite(reserved_addresses, entry.size()));
1040
1041 PW_TRY_WITH_SIZE(
1042 CopyEntryToSector(entry,
1043 §ors_.FromAddress(reserved_addresses[0]),
1044 reserved_addresses[0]));
1045
1046 // After writing the first entry successfully, update the key descriptors.
1047 // Once a single new the entry is written, the old entries are invalidated.
1048 EntryMetadata new_metadata = UpdateKeyDescriptor(
1049 entry, reserved_addresses[0], &prior_metadata, entry.size());
1050
1051 // Write the additional copies of the entry, if redundancy is greater
1052 // than 1.
1053 for (size_t i = 1; i < redundancy(); ++i) {
1054 PW_TRY_WITH_SIZE(
1055 CopyEntryToSector(entry,
1056 §ors_.FromAddress(reserved_addresses[i]),
1057 reserved_addresses[i]));
1058 new_metadata.AddNewAddress(reserved_addresses[i]);
1059 }
1060 }
1061
1062 return StatusWithSize(entries_updated);
1063 }
1064
1065 // Add any missing redundant entries/copies for a key.
AddRedundantEntries(EntryMetadata & metadata)1066 Status KeyValueStore::AddRedundantEntries(EntryMetadata& metadata) {
1067 Entry entry;
1068 PW_TRY(ReadEntry(metadata, entry));
1069 PW_TRY(entry.VerifyChecksumInFlash());
1070
1071 while (metadata.addresses().size() < redundancy()) {
1072 SectorDescriptor* new_sector;
1073 PW_TRY(GetSectorForWrite(&new_sector, entry.size(), metadata.addresses()));
1074
1075 Address new_address = sectors_.NextWritableAddress(*new_sector);
1076 PW_TRY(CopyEntryToSector(entry, new_sector, new_address));
1077
1078 metadata.AddNewAddress(new_address);
1079 }
1080 return OkStatus();
1081 }
1082
RepairCorruptSectors()1083 Status KeyValueStore::RepairCorruptSectors() {
1084 // Try to GC each corrupt sector, even if previous sectors fail. If GC of a
1085 // sector failed on the first pass, then do a second pass, since a later
1086 // sector might have cleared up space or otherwise unblocked the earlier
1087 // failed sector.
1088 Status repair_status = OkStatus();
1089
1090 size_t loop_count = 0;
1091 do {
1092 loop_count++;
1093 // Error of RESOURCE_EXHAUSTED indicates no space found for relocation.
1094 // Reset back to OK for the next pass.
1095 if (repair_status.IsResourceExhausted()) {
1096 repair_status = OkStatus();
1097 }
1098
1099 DBG(" Pass %u", unsigned(loop_count));
1100 for (SectorDescriptor& sector : sectors_) {
1101 if (sector.corrupt()) {
1102 DBG(" Found sector %u with corruption", sectors_.Index(sector));
1103 Status sector_status = GarbageCollectSector(sector, {});
1104 if (sector_status.ok()) {
1105 internal_stats_.corrupt_sectors_recovered += 1;
1106 } else if (repair_status.ok() || repair_status.IsResourceExhausted()) {
1107 repair_status = sector_status;
1108 }
1109 }
1110 }
1111 DBG(" Pass %u complete", unsigned(loop_count));
1112 } while (!repair_status.ok() && loop_count < 2);
1113
1114 return repair_status;
1115 }
1116
EnsureFreeSectorExists()1117 Status KeyValueStore::EnsureFreeSectorExists() {
1118 Status repair_status = OkStatus();
1119 bool empty_sector_found = false;
1120
1121 DBG(" Find empty sector");
1122 for (SectorDescriptor& sector : sectors_) {
1123 if (sector.Empty(partition_.sector_size_bytes())) {
1124 empty_sector_found = true;
1125 DBG(" Empty sector found");
1126 break;
1127 }
1128 }
1129 if (empty_sector_found == false) {
1130 DBG(" No empty sector found, attempting to GC a free sector");
1131 Status sector_status = GarbageCollect(std::span<const Address, 0>());
1132 if (repair_status.ok() && !sector_status.ok()) {
1133 DBG(" Unable to free an empty sector");
1134 repair_status = sector_status;
1135 }
1136 }
1137
1138 return repair_status;
1139 }
1140
EnsureEntryRedundancy()1141 Status KeyValueStore::EnsureEntryRedundancy() {
1142 Status repair_status = OkStatus();
1143
1144 if (redundancy() == 1) {
1145 DBG(" Redundancy not in use, nothting to check");
1146 return OkStatus();
1147 }
1148
1149 DBG(" Write any needed additional duplicate copies of keys to fulfill %u"
1150 " redundancy",
1151 unsigned(redundancy()));
1152 for (EntryMetadata& metadata : entry_cache_) {
1153 if (metadata.addresses().size() >= redundancy()) {
1154 continue;
1155 }
1156
1157 DBG(" Key with %u of %u copies found, adding missing copies",
1158 unsigned(metadata.addresses().size()),
1159 unsigned(redundancy()));
1160 Status fill_status = AddRedundantEntries(metadata);
1161 if (fill_status.ok()) {
1162 internal_stats_.missing_redundant_entries_recovered += 1;
1163 DBG(" Key missing copies added");
1164 } else {
1165 DBG(" Failed to add key missing copies");
1166 if (repair_status.ok()) {
1167 repair_status = fill_status;
1168 }
1169 }
1170 }
1171
1172 return repair_status;
1173 }
1174
FixErrors()1175 Status KeyValueStore::FixErrors() {
1176 DBG("Fixing KVS errors");
1177
1178 // Step 1: Garbage collect any sectors marked as corrupt.
1179 Status overall_status = RepairCorruptSectors();
1180
1181 // Step 2: Make sure there is at least 1 empty sector. This needs to be a
1182 // seperate check of sectors from step 1, because a found empty sector might
1183 // get written to by a later GC that fails and does not result in a free
1184 // sector.
1185 Status repair_status = EnsureFreeSectorExists();
1186 if (overall_status.ok()) {
1187 overall_status = repair_status;
1188 }
1189
1190 // Step 3: Make sure each stored key has the full number of redundant
1191 // entries.
1192 repair_status = EnsureEntryRedundancy();
1193 if (overall_status.ok()) {
1194 overall_status = repair_status;
1195 }
1196
1197 if (overall_status.ok()) {
1198 error_detected_ = false;
1199 initialized_ = InitializationState::kReady;
1200 }
1201 return overall_status;
1202 }
1203
Repair()1204 Status KeyValueStore::Repair() {
1205 // If errors have been detected, just reinit the KVS metadata. This does a
1206 // full deep error check and any needed repairs. Then repair any errors.
1207 INF("Starting KVS repair");
1208
1209 DBG("Reinitialize KVS metadata");
1210 InitializeMetadata();
1211
1212 return FixErrors();
1213 }
1214
CreateEntry(Address address,Key key,std::span<const byte> value,EntryState state)1215 KeyValueStore::Entry KeyValueStore::CreateEntry(Address address,
1216 Key key,
1217 std::span<const byte> value,
1218 EntryState state) {
1219 // Always bump the transaction ID when creating a new entry.
1220 //
1221 // Burning transaction IDs prevents inconsistencies between flash and memory
1222 // that which could happen if a write succeeds, but for some reason the read
1223 // and verify step fails. Here's how this would happen:
1224 //
1225 // 1. The entry is written but for some reason the flash reports failure OR
1226 // The write succeeds, but the read / verify operation fails.
1227 // 2. The transaction ID is NOT incremented, because of the failure
1228 // 3. (later) A new entry is written, re-using the transaction ID (oops)
1229 //
1230 // By always burning transaction IDs, the above problem can't happen.
1231 last_transaction_id_ += 1;
1232
1233 if (state == EntryState::kDeleted) {
1234 return Entry::Tombstone(
1235 partition_, address, formats_.primary(), key, last_transaction_id_);
1236 }
1237 return Entry::Valid(partition_,
1238 address,
1239 formats_.primary(),
1240 key,
1241 value,
1242 last_transaction_id_);
1243 }
1244
LogDebugInfo() const1245 void KeyValueStore::LogDebugInfo() const {
1246 const size_t sector_size_bytes = partition_.sector_size_bytes();
1247 DBG("====================== KEY VALUE STORE DUMP =========================");
1248 DBG(" ");
1249 DBG("Flash partition:");
1250 DBG(" Sector count = %u", unsigned(partition_.sector_count()));
1251 DBG(" Sector max count = %u", unsigned(sectors_.max_size()));
1252 DBG(" Sectors in use = %u", unsigned(sectors_.size()));
1253 DBG(" Sector size = %u", unsigned(sector_size_bytes));
1254 DBG(" Total size = %u", unsigned(partition_.size_bytes()));
1255 DBG(" Alignment = %u", unsigned(partition_.alignment_bytes()));
1256 DBG(" ");
1257 DBG("Key descriptors:");
1258 DBG(" Entry count = %u", unsigned(entry_cache_.total_entries()));
1259 DBG(" Max entry count = %u", unsigned(entry_cache_.max_entries()));
1260 DBG(" ");
1261 DBG(" # hash version address address (hex)");
1262 size_t count = 0;
1263 for (const EntryMetadata& metadata : entry_cache_) {
1264 DBG(" |%3zu: | %8zx |%8zu | %8zu | %8zx",
1265 count++,
1266 size_t(metadata.hash()),
1267 size_t(metadata.transaction_id()),
1268 size_t(metadata.first_address()),
1269 size_t(metadata.first_address()));
1270 }
1271 DBG(" ");
1272
1273 DBG("Sector descriptors:");
1274 DBG(" # tail free valid has_space");
1275 for (const SectorDescriptor& sd : sectors_) {
1276 DBG(" |%3u: | %8zu |%8zu | %s",
1277 sectors_.Index(sd),
1278 size_t(sd.writable_bytes()),
1279 sd.valid_bytes(),
1280 sd.writable_bytes() ? "YES" : "");
1281 }
1282 DBG(" ");
1283
1284 // TODO: This should stop logging after some threshold.
1285 // size_t dumped_bytes = 0;
1286 DBG("Sector raw data:");
1287 for (size_t sector_id = 0; sector_id < sectors_.size(); ++sector_id) {
1288 // Read sector data. Yes, this will blow the stack on embedded.
1289 std::array<byte, 500> raw_sector_data; // TODO!!!
1290 [[maybe_unused]] StatusWithSize sws =
1291 partition_.Read(sector_id * sector_size_bytes, raw_sector_data);
1292 DBG("Read: %u bytes", unsigned(sws.size()));
1293
1294 DBG(" base addr offs 0 1 2 3 4 5 6 7");
1295 for (size_t i = 0; i < sector_size_bytes; i += 8) {
1296 DBG(" %3zu %8zx %5zu | %02x %02x %02x %02x %02x %02x %02x %02x",
1297 sector_id,
1298 (sector_id * sector_size_bytes) + i,
1299 i,
1300 static_cast<unsigned int>(raw_sector_data[i + 0]),
1301 static_cast<unsigned int>(raw_sector_data[i + 1]),
1302 static_cast<unsigned int>(raw_sector_data[i + 2]),
1303 static_cast<unsigned int>(raw_sector_data[i + 3]),
1304 static_cast<unsigned int>(raw_sector_data[i + 4]),
1305 static_cast<unsigned int>(raw_sector_data[i + 5]),
1306 static_cast<unsigned int>(raw_sector_data[i + 6]),
1307 static_cast<unsigned int>(raw_sector_data[i + 7]));
1308
1309 // TODO: Fix exit condition.
1310 if (i > 128) {
1311 break;
1312 }
1313 }
1314 DBG(" ");
1315 }
1316
1317 DBG("////////////////////// KEY VALUE STORE DUMP END /////////////////////");
1318 }
1319
LogSectors() const1320 void KeyValueStore::LogSectors() const {
1321 DBG("Sector descriptors: count %u", unsigned(sectors_.size()));
1322 for (auto& sector : sectors_) {
1323 DBG(" - Sector %u: valid %u, recoverable %u, free %u",
1324 sectors_.Index(sector),
1325 unsigned(sector.valid_bytes()),
1326 unsigned(sector.RecoverableBytes(partition_.sector_size_bytes())),
1327 unsigned(sector.writable_bytes()));
1328 }
1329 }
1330
LogKeyDescriptor() const1331 void KeyValueStore::LogKeyDescriptor() const {
1332 DBG("Key descriptors: count %u", unsigned(entry_cache_.total_entries()));
1333 for (const EntryMetadata& metadata : entry_cache_) {
1334 DBG(" - Key: %s, hash %#x, transaction ID %u, first address %#x",
1335 metadata.state() == EntryState::kDeleted ? "Deleted" : "Valid",
1336 unsigned(metadata.hash()),
1337 unsigned(metadata.transaction_id()),
1338 unsigned(metadata.first_address()));
1339 }
1340 }
1341
1342 } // namespace pw::kvs
1343