1 // Copyright (c) 2010, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 // linux_dumper.cc: Implement google_breakpad::LinuxDumper.
31 // See linux_dumper.h for details.
32
33 // This code deals with the mechanics of getting information about a crashed
34 // process. Since this code may run in a compromised address space, the same
35 // rules apply as detailed at the top of minidump_writer.h: no libc calls and
36 // use the alternative allocator.
37
38 #include "client/linux/minidump_writer/linux_dumper.h"
39
40 #include <assert.h>
41 #include <elf.h>
42 #include <fcntl.h>
43 #include <limits.h>
44 #include <stddef.h>
45 #include <string.h>
46
47 #include "client/linux/minidump_writer/line_reader.h"
48 #include "common/linux/elfutils.h"
49 #include "common/linux/file_id.h"
50 #include "common/linux/linux_libc_support.h"
51 #include "common/linux/memory_mapped_file.h"
52 #include "common/linux/safe_readlink.h"
53 #include "google_breakpad/common/minidump_exception_linux.h"
54 #include "third_party/lss/linux_syscall_support.h"
55
56 #if defined(__ANDROID__)
57
58 // Android packed relocations definitions are not yet available from the
59 // NDK header files, so we have to provide them manually here.
60 #ifndef DT_LOOS
61 #define DT_LOOS 0x6000000d
62 #endif
63 #ifndef DT_ANDROID_REL
64 static const int DT_ANDROID_REL = DT_LOOS + 2;
65 #endif
66 #ifndef DT_ANDROID_RELA
67 static const int DT_ANDROID_RELA = DT_LOOS + 4;
68 #endif
69
70 #endif // __ANDROID __
71
72 static const char kMappedFileUnsafePrefix[] = "/dev/";
73 static const char kDeletedSuffix[] = " (deleted)";
74
IsMappedFileOpenUnsafe(const google_breakpad::MappingInfo & mapping)75 inline static bool IsMappedFileOpenUnsafe(
76 const google_breakpad::MappingInfo& mapping) {
77 // It is unsafe to attempt to open a mapped file that lives under /dev,
78 // because the semantics of the open may be driver-specific so we'd risk
79 // hanging the crash dumper. And a file in /dev/ almost certainly has no
80 // ELF file identifier anyways.
81 return my_strncmp(mapping.name,
82 kMappedFileUnsafePrefix,
83 sizeof(kMappedFileUnsafePrefix) - 1) == 0;
84 }
85
86 namespace google_breakpad {
87
88 namespace {
89
MappingContainsAddress(const MappingInfo & mapping,uintptr_t address)90 bool MappingContainsAddress(const MappingInfo& mapping, uintptr_t address) {
91 return mapping.system_mapping_info.start_addr <= address &&
92 address < mapping.system_mapping_info.end_addr;
93 }
94
95 #if defined(__CHROMEOS__)
96
97 // Recover memory mappings before writing dump on ChromeOS
98 //
99 // On Linux, breakpad relies on /proc/[pid]/maps to associate symbols from
100 // addresses. ChromeOS' hugepage implementation replaces some segments with
101 // anonymous private pages, which is a restriction of current implementation
102 // in Linux kernel at the time of writing. Thus, breakpad can no longer
103 // symbolize addresses from those text segments replaced with hugepages.
104 //
105 // This postprocess tries to recover the mappings. Because hugepages are always
106 // inserted in between some .text sections, it tries to infer the names and
107 // offsets of the segments, by looking at segments immediately precede and
108 // succeed them.
109 //
110 // For example, a text segment before hugepage optimization
111 // 02001000-03002000 r-xp /opt/google/chrome/chrome
112 //
113 // can be broken into
114 // 02001000-02200000 r-xp /opt/google/chrome/chrome
115 // 02200000-03000000 r-xp
116 // 03000000-03002000 r-xp /opt/google/chrome/chrome
117 //
118 // For more details, see:
119 // crbug.com/628040 ChromeOS' use of hugepages confuses crash symbolization
120
121 // Copied from CrOS' hugepage implementation, which is unlikely to change.
122 // The hugepage size is 2M.
123 const unsigned int kHpageShift = 21;
124 const size_t kHpageSize = (1 << kHpageShift);
125 const size_t kHpageMask = (~(kHpageSize - 1));
126
127 // Find and merge anonymous r-xp segments with surrounding named segments.
128 // There are two cases:
129
130 // Case 1: curr, next
131 // curr is anonymous
132 // curr is r-xp
133 // curr.size >= 2M
134 // curr.size is a multiple of 2M.
135 // next is backed by some file.
136 // curr and next are contiguous.
137 // offset(next) == sizeof(curr)
TryRecoverMappings(MappingInfo * curr,MappingInfo * next)138 void TryRecoverMappings(MappingInfo *curr, MappingInfo *next) {
139 // Merged segments are marked with size = 0.
140 if (curr->size == 0 || next->size == 0)
141 return;
142
143 if (curr->size >= kHpageSize &&
144 curr->exec &&
145 (curr->size & kHpageMask) == curr->size &&
146 (curr->start_addr & kHpageMask) == curr->start_addr &&
147 curr->name[0] == '\0' &&
148 next->name[0] != '\0' &&
149 curr->start_addr + curr->size == next->start_addr &&
150 curr->size == next->offset) {
151
152 // matched
153 my_strlcpy(curr->name, next->name, NAME_MAX);
154 if (next->exec) {
155 // (curr, next)
156 curr->size += next->size;
157 next->size = 0;
158 }
159 }
160 }
161
162 // Case 2: prev, curr, next
163 // curr is anonymous
164 // curr is r-xp
165 // curr.size >= 2M
166 // curr.size is a multiple of 2M.
167 // next and prev are backed by the same file.
168 // prev, curr and next are contiguous.
169 // offset(next) == offset(prev) + sizeof(prev) + sizeof(curr)
TryRecoverMappings(MappingInfo * prev,MappingInfo * curr,MappingInfo * next)170 void TryRecoverMappings(MappingInfo *prev, MappingInfo *curr,
171 MappingInfo *next) {
172 // Merged segments are marked with size = 0.
173 if (prev->size == 0 || curr->size == 0 || next->size == 0)
174 return;
175
176 if (curr->size >= kHpageSize &&
177 curr->exec &&
178 (curr->size & kHpageMask) == curr->size &&
179 (curr->start_addr & kHpageMask) == curr->start_addr &&
180 curr->name[0] == '\0' &&
181 next->name[0] != '\0' &&
182 curr->start_addr + curr->size == next->start_addr &&
183 prev->start_addr + prev->size == curr->start_addr &&
184 my_strncmp(prev->name, next->name, NAME_MAX) == 0 &&
185 next->offset == prev->offset + prev->size + curr->size) {
186
187 // matched
188 my_strlcpy(curr->name, prev->name, NAME_MAX);
189 if (prev->exec) {
190 curr->offset = prev->offset;
191 curr->start_addr = prev->start_addr;
192 if (next->exec) {
193 // (prev, curr, next)
194 curr->size += prev->size + next->size;
195 prev->size = 0;
196 next->size = 0;
197 } else {
198 // (prev, curr), next
199 curr->size += prev->size;
200 prev->size = 0;
201 }
202 } else {
203 curr->offset = prev->offset + prev->size;
204 if (next->exec) {
205 // prev, (curr, next)
206 curr->size += next->size;
207 next->size = 0;
208 } else {
209 // prev, curr, next
210 }
211 }
212 }
213 }
214
215 // mappings_ is sorted excepted for the first entry.
216 // This function tries to merge segemnts into the first entry,
217 // then check for other sorted entries.
218 // See LinuxDumper::EnumerateMappings().
CrOSPostProcessMappings(wasteful_vector<MappingInfo * > & mappings)219 void CrOSPostProcessMappings(wasteful_vector<MappingInfo*>& mappings) {
220 // Find the candidate "next" to first segment, which is the only one that
221 // could be out-of-order.
222 size_t l = 1;
223 size_t r = mappings.size();
224 size_t next = mappings.size();
225 while (l < r) {
226 int m = (l + r) / 2;
227 if (mappings[m]->start_addr > mappings[0]->start_addr)
228 r = next = m;
229 else
230 l = m + 1;
231 }
232
233 // Shows the range that contains the entry point is
234 // [first_start_addr, first_end_addr)
235 size_t first_start_addr = mappings[0]->start_addr;
236 size_t first_end_addr = mappings[0]->start_addr + mappings[0]->size;
237
238 // Put the out-of-order segment in order.
239 std::rotate(mappings.begin(), mappings.begin() + 1, mappings.begin() + next);
240
241 // Iterate through normal, sorted cases.
242 // Normal case 1.
243 for (size_t i = 0; i < mappings.size() - 1; i++)
244 TryRecoverMappings(mappings[i], mappings[i + 1]);
245
246 // Normal case 2.
247 for (size_t i = 0; i < mappings.size() - 2; i++)
248 TryRecoverMappings(mappings[i], mappings[i + 1], mappings[i + 2]);
249
250 // Collect merged (size == 0) segments.
251 size_t f, e;
252 for (f = e = 0; e < mappings.size(); e++)
253 if (mappings[e]->size > 0)
254 mappings[f++] = mappings[e];
255 mappings.resize(f);
256
257 // The entry point is in the first mapping. We want to find the location
258 // of the entry point after merging segment. To do this, we want to find
259 // the mapping that covers the first mapping from the original mapping list.
260 // If the mapping is not in the beginning, we move it to the begining via
261 // a right rotate by using reverse iterators.
262 for (l = 0; l < mappings.size(); l++) {
263 if (mappings[l]->start_addr <= first_start_addr
264 && (mappings[l]->start_addr + mappings[l]->size >= first_end_addr))
265 break;
266 }
267 if (l > 0) {
268 r = mappings.size();
269 std::rotate(mappings.rbegin() + r - l - 1, mappings.rbegin() + r - l,
270 mappings.rend());
271 }
272 }
273
274 #endif // __CHROMEOS__
275
276 } // namespace
277
278 // All interesting auvx entry types are below AT_SYSINFO_EHDR
279 #define AT_MAX AT_SYSINFO_EHDR
280
LinuxDumper(pid_t pid,const char * root_prefix)281 LinuxDumper::LinuxDumper(pid_t pid, const char* root_prefix)
282 : pid_(pid),
283 root_prefix_(root_prefix),
284 crash_address_(0),
285 crash_signal_(0),
286 crash_signal_code_(0),
287 crash_thread_(pid),
288 threads_(&allocator_, 8),
289 mappings_(&allocator_),
290 auxv_(&allocator_, AT_MAX + 1) {
291 assert(root_prefix_ && my_strlen(root_prefix_) < PATH_MAX);
292 // The passed-in size to the constructor (above) is only a hint.
293 // Must call .resize() to do actual initialization of the elements.
294 auxv_.resize(AT_MAX + 1);
295 }
296
~LinuxDumper()297 LinuxDumper::~LinuxDumper() {
298 }
299
Init()300 bool LinuxDumper::Init() {
301 return ReadAuxv() && EnumerateThreads() && EnumerateMappings();
302 }
303
LateInit()304 bool LinuxDumper::LateInit() {
305 #if defined(__ANDROID__)
306 LatePostprocessMappings();
307 #endif
308
309 #if defined(__CHROMEOS__)
310 CrOSPostProcessMappings(mappings_);
311 #endif
312
313 return true;
314 }
315
316 bool
ElfFileIdentifierForMapping(const MappingInfo & mapping,bool member,unsigned int mapping_id,wasteful_vector<uint8_t> & identifier)317 LinuxDumper::ElfFileIdentifierForMapping(const MappingInfo& mapping,
318 bool member,
319 unsigned int mapping_id,
320 wasteful_vector<uint8_t>& identifier) {
321 assert(!member || mapping_id < mappings_.size());
322 if (IsMappedFileOpenUnsafe(mapping))
323 return false;
324
325 // Special-case linux-gate because it's not a real file.
326 if (my_strcmp(mapping.name, kLinuxGateLibraryName) == 0) {
327 void* linux_gate = NULL;
328 if (pid_ == sys_getpid()) {
329 linux_gate = reinterpret_cast<void*>(mapping.start_addr);
330 } else {
331 linux_gate = allocator_.Alloc(mapping.size);
332 CopyFromProcess(linux_gate, pid_,
333 reinterpret_cast<const void*>(mapping.start_addr),
334 mapping.size);
335 }
336 return FileID::ElfFileIdentifierFromMappedFile(linux_gate, identifier);
337 }
338
339 char filename[PATH_MAX];
340 if (!GetMappingAbsolutePath(mapping, filename))
341 return false;
342 bool filename_modified = HandleDeletedFileInMapping(filename);
343
344 MemoryMappedFile mapped_file(filename, mapping.offset);
345 if (!mapped_file.data() || mapped_file.size() < SELFMAG)
346 return false;
347
348 bool success =
349 FileID::ElfFileIdentifierFromMappedFile(mapped_file.data(), identifier);
350 if (success && member && filename_modified) {
351 mappings_[mapping_id]->name[my_strlen(mapping.name) -
352 sizeof(kDeletedSuffix) + 1] = '\0';
353 }
354
355 return success;
356 }
357
SetCrashInfoFromSigInfo(const siginfo_t & siginfo)358 void LinuxDumper::SetCrashInfoFromSigInfo(const siginfo_t& siginfo) {
359 set_crash_address(reinterpret_cast<uintptr_t>(siginfo.si_addr));
360 set_crash_signal(siginfo.si_signo);
361 set_crash_signal_code(siginfo.si_code);
362 }
363
GetCrashSignalString() const364 const char* LinuxDumper::GetCrashSignalString() const {
365 switch (static_cast<unsigned int>(crash_signal_)) {
366 case MD_EXCEPTION_CODE_LIN_SIGHUP:
367 return "SIGHUP";
368 case MD_EXCEPTION_CODE_LIN_SIGINT:
369 return "SIGINT";
370 case MD_EXCEPTION_CODE_LIN_SIGQUIT:
371 return "SIGQUIT";
372 case MD_EXCEPTION_CODE_LIN_SIGILL:
373 return "SIGILL";
374 case MD_EXCEPTION_CODE_LIN_SIGTRAP:
375 return "SIGTRAP";
376 case MD_EXCEPTION_CODE_LIN_SIGABRT:
377 return "SIGABRT";
378 case MD_EXCEPTION_CODE_LIN_SIGBUS:
379 return "SIGBUS";
380 case MD_EXCEPTION_CODE_LIN_SIGFPE:
381 return "SIGFPE";
382 case MD_EXCEPTION_CODE_LIN_SIGKILL:
383 return "SIGKILL";
384 case MD_EXCEPTION_CODE_LIN_SIGUSR1:
385 return "SIGUSR1";
386 case MD_EXCEPTION_CODE_LIN_SIGSEGV:
387 return "SIGSEGV";
388 case MD_EXCEPTION_CODE_LIN_SIGUSR2:
389 return "SIGUSR2";
390 case MD_EXCEPTION_CODE_LIN_SIGPIPE:
391 return "SIGPIPE";
392 case MD_EXCEPTION_CODE_LIN_SIGALRM:
393 return "SIGALRM";
394 case MD_EXCEPTION_CODE_LIN_SIGTERM:
395 return "SIGTERM";
396 case MD_EXCEPTION_CODE_LIN_SIGSTKFLT:
397 return "SIGSTKFLT";
398 case MD_EXCEPTION_CODE_LIN_SIGCHLD:
399 return "SIGCHLD";
400 case MD_EXCEPTION_CODE_LIN_SIGCONT:
401 return "SIGCONT";
402 case MD_EXCEPTION_CODE_LIN_SIGSTOP:
403 return "SIGSTOP";
404 case MD_EXCEPTION_CODE_LIN_SIGTSTP:
405 return "SIGTSTP";
406 case MD_EXCEPTION_CODE_LIN_SIGTTIN:
407 return "SIGTTIN";
408 case MD_EXCEPTION_CODE_LIN_SIGTTOU:
409 return "SIGTTOU";
410 case MD_EXCEPTION_CODE_LIN_SIGURG:
411 return "SIGURG";
412 case MD_EXCEPTION_CODE_LIN_SIGXCPU:
413 return "SIGXCPU";
414 case MD_EXCEPTION_CODE_LIN_SIGXFSZ:
415 return "SIGXFSZ";
416 case MD_EXCEPTION_CODE_LIN_SIGVTALRM:
417 return "SIGVTALRM";
418 case MD_EXCEPTION_CODE_LIN_SIGPROF:
419 return "SIGPROF";
420 case MD_EXCEPTION_CODE_LIN_SIGWINCH:
421 return "SIGWINCH";
422 case MD_EXCEPTION_CODE_LIN_SIGIO:
423 return "SIGIO";
424 case MD_EXCEPTION_CODE_LIN_SIGPWR:
425 return "SIGPWR";
426 case MD_EXCEPTION_CODE_LIN_SIGSYS:
427 return "SIGSYS";
428 case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED:
429 return "DUMP_REQUESTED";
430 default:
431 return "UNKNOWN";
432 }
433 }
434
GetMappingAbsolutePath(const MappingInfo & mapping,char path[PATH_MAX]) const435 bool LinuxDumper::GetMappingAbsolutePath(const MappingInfo& mapping,
436 char path[PATH_MAX]) const {
437 return my_strlcpy(path, root_prefix_, PATH_MAX) < PATH_MAX &&
438 my_strlcat(path, mapping.name, PATH_MAX) < PATH_MAX;
439 }
440
441 namespace {
442 // Find the shared object name (SONAME) by examining the ELF information
443 // for |mapping|. If the SONAME is found copy it into the passed buffer
444 // |soname| and return true. The size of the buffer is |soname_size|.
445 // The SONAME will be truncated if it is too long to fit in the buffer.
ElfFileSoName(const LinuxDumper & dumper,const MappingInfo & mapping,char * soname,size_t soname_size)446 bool ElfFileSoName(const LinuxDumper& dumper,
447 const MappingInfo& mapping, char* soname, size_t soname_size) {
448 if (IsMappedFileOpenUnsafe(mapping)) {
449 // Not safe
450 return false;
451 }
452
453 char filename[PATH_MAX];
454 if (!dumper.GetMappingAbsolutePath(mapping, filename))
455 return false;
456
457 MemoryMappedFile mapped_file(filename, mapping.offset);
458 if (!mapped_file.data() || mapped_file.size() < SELFMAG) {
459 // mmap failed
460 return false;
461 }
462
463 return ElfFileSoNameFromMappedFile(mapped_file.data(), soname, soname_size);
464 }
465
466 } // namespace
467
468
GetMappingEffectiveNameAndPath(const MappingInfo & mapping,char * file_path,size_t file_path_size,char * file_name,size_t file_name_size)469 void LinuxDumper::GetMappingEffectiveNameAndPath(const MappingInfo& mapping,
470 char* file_path,
471 size_t file_path_size,
472 char* file_name,
473 size_t file_name_size) {
474 my_strlcpy(file_path, mapping.name, file_path_size);
475
476 // Tools such as minidump_stackwalk use the name of the module to look up
477 // symbols produced by dump_syms. dump_syms will prefer to use a module's
478 // DT_SONAME as the module name, if one exists, and will fall back to the
479 // filesystem name of the module.
480
481 // Just use the filesystem name if no SONAME is present.
482 if (!ElfFileSoName(*this, mapping, file_name, file_name_size)) {
483 // file_path := /path/to/libname.so
484 // file_name := libname.so
485 const char* basename = my_strrchr(file_path, '/');
486 basename = basename == NULL ? file_path : (basename + 1);
487 my_strlcpy(file_name, basename, file_name_size);
488 return;
489 }
490
491 if (mapping.exec && mapping.offset != 0) {
492 // If an executable is mapped from a non-zero offset, this is likely because
493 // the executable was loaded directly from inside an archive file (e.g., an
494 // apk on Android).
495 // In this case, we append the file_name to the mapped archive path:
496 // file_name := libname.so
497 // file_path := /path/to/ARCHIVE.APK/libname.so
498 if (my_strlen(file_path) + 1 + my_strlen(file_name) < file_path_size) {
499 my_strlcat(file_path, "/", file_path_size);
500 my_strlcat(file_path, file_name, file_path_size);
501 }
502 } else {
503 // Otherwise, replace the basename with the SONAME.
504 char* basename = const_cast<char*>(my_strrchr(file_path, '/'));
505 if (basename) {
506 my_strlcpy(basename + 1, file_name,
507 file_path_size - my_strlen(file_path) +
508 my_strlen(basename + 1));
509 } else {
510 my_strlcpy(file_path, file_name, file_path_size);
511 }
512 }
513 }
514
ReadAuxv()515 bool LinuxDumper::ReadAuxv() {
516 char auxv_path[NAME_MAX];
517 if (!BuildProcPath(auxv_path, pid_, "auxv")) {
518 return false;
519 }
520
521 int fd = sys_open(auxv_path, O_RDONLY, 0);
522 if (fd < 0) {
523 return false;
524 }
525
526 elf_aux_entry one_aux_entry;
527 bool res = false;
528 while (sys_read(fd,
529 &one_aux_entry,
530 sizeof(elf_aux_entry)) == sizeof(elf_aux_entry) &&
531 one_aux_entry.a_type != AT_NULL) {
532 if (one_aux_entry.a_type <= AT_MAX) {
533 auxv_[one_aux_entry.a_type] = one_aux_entry.a_un.a_val;
534 res = true;
535 }
536 }
537 sys_close(fd);
538 return res;
539 }
540
EnumerateMappings()541 bool LinuxDumper::EnumerateMappings() {
542 char maps_path[NAME_MAX];
543 if (!BuildProcPath(maps_path, pid_, "maps"))
544 return false;
545
546 // linux_gate_loc is the beginning of the kernel's mapping of
547 // linux-gate.so in the process. It doesn't actually show up in the
548 // maps list as a filename, but it can be found using the AT_SYSINFO_EHDR
549 // aux vector entry, which gives the information necessary to special
550 // case its entry when creating the list of mappings.
551 // See http://www.trilithium.com/johan/2005/08/linux-gate/ for more
552 // information.
553 const void* linux_gate_loc =
554 reinterpret_cast<void *>(auxv_[AT_SYSINFO_EHDR]);
555 // Although the initial executable is usually the first mapping, it's not
556 // guaranteed (see http://crosbug.com/25355); therefore, try to use the
557 // actual entry point to find the mapping.
558 const void* entry_point_loc = reinterpret_cast<void *>(auxv_[AT_ENTRY]);
559
560 const int fd = sys_open(maps_path, O_RDONLY, 0);
561 if (fd < 0)
562 return false;
563 LineReader* const line_reader = new(allocator_) LineReader(fd);
564
565 const char* line;
566 unsigned line_len;
567 while (line_reader->GetNextLine(&line, &line_len)) {
568 uintptr_t start_addr, end_addr, offset;
569
570 const char* i1 = my_read_hex_ptr(&start_addr, line);
571 if (*i1 == '-') {
572 const char* i2 = my_read_hex_ptr(&end_addr, i1 + 1);
573 if (*i2 == ' ') {
574 bool exec = (*(i2 + 3) == 'x');
575 const char* i3 = my_read_hex_ptr(&offset, i2 + 6 /* skip ' rwxp ' */);
576 if (*i3 == ' ') {
577 const char* name = NULL;
578 // Only copy name if the name is a valid path name, or if
579 // it's the VDSO image.
580 if (((name = my_strchr(line, '/')) == NULL) &&
581 linux_gate_loc &&
582 reinterpret_cast<void*>(start_addr) == linux_gate_loc) {
583 name = kLinuxGateLibraryName;
584 offset = 0;
585 }
586 // Merge adjacent mappings into one module, assuming they're a single
587 // library mapped by the dynamic linker. Do this only if their name
588 // matches and either they have the same +x protection flag, or if the
589 // previous mapping is not executable and the new one is, to handle
590 // lld's output (see crbug.com/716484).
591 if (name && !mappings_.empty()) {
592 MappingInfo* module = mappings_.back();
593 if ((start_addr == module->start_addr + module->size) &&
594 (my_strlen(name) == my_strlen(module->name)) &&
595 (my_strncmp(name, module->name, my_strlen(name)) == 0) &&
596 ((exec == module->exec) || (!module->exec && exec))) {
597 module->system_mapping_info.end_addr = end_addr;
598 module->size = end_addr - module->start_addr;
599 module->exec |= exec;
600 line_reader->PopLine(line_len);
601 continue;
602 }
603 }
604 MappingInfo* const module = new(allocator_) MappingInfo;
605 mappings_.push_back(module);
606 my_memset(module, 0, sizeof(MappingInfo));
607 module->system_mapping_info.start_addr = start_addr;
608 module->system_mapping_info.end_addr = end_addr;
609 module->start_addr = start_addr;
610 module->size = end_addr - start_addr;
611 module->offset = offset;
612 module->exec = exec;
613 if (name != NULL) {
614 const unsigned l = my_strlen(name);
615 if (l < sizeof(module->name))
616 my_memcpy(module->name, name, l);
617 }
618 }
619 }
620 }
621 line_reader->PopLine(line_len);
622 }
623
624 if (entry_point_loc) {
625 for (size_t i = 0; i < mappings_.size(); ++i) {
626 MappingInfo* module = mappings_[i];
627
628 // If this module contains the entry-point, and it's not already the first
629 // one, then we need to make it be first. This is because the minidump
630 // format assumes the first module is the one that corresponds to the main
631 // executable (as codified in
632 // processor/minidump.cc:MinidumpModuleList::GetMainModule()).
633 if ((entry_point_loc >= reinterpret_cast<void*>(module->start_addr)) &&
634 (entry_point_loc <
635 reinterpret_cast<void*>(module->start_addr + module->size))) {
636 for (size_t j = i; j > 0; j--)
637 mappings_[j] = mappings_[j - 1];
638 mappings_[0] = module;
639 break;
640 }
641 }
642 }
643
644 sys_close(fd);
645
646 return !mappings_.empty();
647 }
648
649 #if defined(__ANDROID__)
650
GetLoadedElfHeader(uintptr_t start_addr,ElfW (Ehdr)* ehdr)651 bool LinuxDumper::GetLoadedElfHeader(uintptr_t start_addr, ElfW(Ehdr)* ehdr) {
652 CopyFromProcess(ehdr, pid_,
653 reinterpret_cast<const void*>(start_addr),
654 sizeof(*ehdr));
655 return my_memcmp(&ehdr->e_ident, ELFMAG, SELFMAG) == 0;
656 }
657
ParseLoadedElfProgramHeaders(ElfW (Ehdr)* ehdr,uintptr_t start_addr,uintptr_t * min_vaddr_ptr,uintptr_t * dyn_vaddr_ptr,size_t * dyn_count_ptr)658 void LinuxDumper::ParseLoadedElfProgramHeaders(ElfW(Ehdr)* ehdr,
659 uintptr_t start_addr,
660 uintptr_t* min_vaddr_ptr,
661 uintptr_t* dyn_vaddr_ptr,
662 size_t* dyn_count_ptr) {
663 uintptr_t phdr_addr = start_addr + ehdr->e_phoff;
664
665 const uintptr_t max_addr = UINTPTR_MAX;
666 uintptr_t min_vaddr = max_addr;
667 uintptr_t dyn_vaddr = 0;
668 size_t dyn_count = 0;
669
670 for (size_t i = 0; i < ehdr->e_phnum; ++i) {
671 ElfW(Phdr) phdr;
672 CopyFromProcess(&phdr, pid_,
673 reinterpret_cast<const void*>(phdr_addr),
674 sizeof(phdr));
675 if (phdr.p_type == PT_LOAD && phdr.p_vaddr < min_vaddr) {
676 min_vaddr = phdr.p_vaddr;
677 }
678 if (phdr.p_type == PT_DYNAMIC) {
679 dyn_vaddr = phdr.p_vaddr;
680 dyn_count = phdr.p_memsz / sizeof(ElfW(Dyn));
681 }
682 phdr_addr += sizeof(phdr);
683 }
684
685 *min_vaddr_ptr = min_vaddr;
686 *dyn_vaddr_ptr = dyn_vaddr;
687 *dyn_count_ptr = dyn_count;
688 }
689
HasAndroidPackedRelocations(uintptr_t load_bias,uintptr_t dyn_vaddr,size_t dyn_count)690 bool LinuxDumper::HasAndroidPackedRelocations(uintptr_t load_bias,
691 uintptr_t dyn_vaddr,
692 size_t dyn_count) {
693 uintptr_t dyn_addr = load_bias + dyn_vaddr;
694 for (size_t i = 0; i < dyn_count; ++i) {
695 ElfW(Dyn) dyn;
696 CopyFromProcess(&dyn, pid_,
697 reinterpret_cast<const void*>(dyn_addr),
698 sizeof(dyn));
699 if (dyn.d_tag == DT_ANDROID_REL || dyn.d_tag == DT_ANDROID_RELA) {
700 return true;
701 }
702 dyn_addr += sizeof(dyn);
703 }
704 return false;
705 }
706
GetEffectiveLoadBias(ElfW (Ehdr)* ehdr,uintptr_t start_addr)707 uintptr_t LinuxDumper::GetEffectiveLoadBias(ElfW(Ehdr)* ehdr,
708 uintptr_t start_addr) {
709 uintptr_t min_vaddr = 0;
710 uintptr_t dyn_vaddr = 0;
711 size_t dyn_count = 0;
712 ParseLoadedElfProgramHeaders(ehdr, start_addr,
713 &min_vaddr, &dyn_vaddr, &dyn_count);
714 // If |min_vaddr| is non-zero and we find Android packed relocation tags,
715 // return the effective load bias.
716 if (min_vaddr != 0) {
717 const uintptr_t load_bias = start_addr - min_vaddr;
718 if (HasAndroidPackedRelocations(load_bias, dyn_vaddr, dyn_count)) {
719 return load_bias;
720 }
721 }
722 // Either |min_vaddr| is zero, or it is non-zero but we did not find the
723 // expected Android packed relocations tags.
724 return start_addr;
725 }
726
LatePostprocessMappings()727 void LinuxDumper::LatePostprocessMappings() {
728 for (size_t i = 0; i < mappings_.size(); ++i) {
729 // Only consider exec mappings that indicate a file path was mapped, and
730 // where the ELF header indicates a mapped shared library.
731 MappingInfo* mapping = mappings_[i];
732 if (!(mapping->exec && mapping->name[0] == '/')) {
733 continue;
734 }
735 ElfW(Ehdr) ehdr;
736 if (!GetLoadedElfHeader(mapping->start_addr, &ehdr)) {
737 continue;
738 }
739 if (ehdr.e_type == ET_DYN) {
740 // Compute the effective load bias for this mapped library, and update
741 // the mapping to hold that rather than |start_addr|, at the same time
742 // adjusting |size| to account for the change in |start_addr|. Where
743 // the library does not contain Android packed relocations,
744 // GetEffectiveLoadBias() returns |start_addr| and the mapping entry
745 // is not changed.
746 const uintptr_t load_bias = GetEffectiveLoadBias(&ehdr,
747 mapping->start_addr);
748 mapping->size += mapping->start_addr - load_bias;
749 mapping->start_addr = load_bias;
750 }
751 }
752 }
753
754 #endif // __ANDROID__
755
756 // Get information about the stack, given the stack pointer. We don't try to
757 // walk the stack since we might not have all the information needed to do
758 // unwind. So we just grab, up to, 32k of stack.
GetStackInfo(const void ** stack,size_t * stack_len,uintptr_t int_stack_pointer)759 bool LinuxDumper::GetStackInfo(const void** stack, size_t* stack_len,
760 uintptr_t int_stack_pointer) {
761 // Move the stack pointer to the bottom of the page that it's in.
762 const uintptr_t page_size = getpagesize();
763
764 uint8_t* const stack_pointer =
765 reinterpret_cast<uint8_t*>(int_stack_pointer & ~(page_size - 1));
766
767 // The number of bytes of stack which we try to capture.
768 static const ptrdiff_t kStackToCapture = 32 * 1024;
769
770 const MappingInfo* mapping = FindMapping(stack_pointer);
771 if (!mapping)
772 return false;
773 const ptrdiff_t offset = stack_pointer -
774 reinterpret_cast<uint8_t*>(mapping->start_addr);
775 const ptrdiff_t distance_to_end =
776 static_cast<ptrdiff_t>(mapping->size) - offset;
777 *stack_len = distance_to_end > kStackToCapture ?
778 kStackToCapture : distance_to_end;
779 *stack = stack_pointer;
780 return true;
781 }
782
SanitizeStackCopy(uint8_t * stack_copy,size_t stack_len,uintptr_t stack_pointer,uintptr_t sp_offset)783 void LinuxDumper::SanitizeStackCopy(uint8_t* stack_copy, size_t stack_len,
784 uintptr_t stack_pointer,
785 uintptr_t sp_offset) {
786 // We optimize the search for containing mappings in three ways:
787 // 1) We expect that pointers into the stack mapping will be common, so
788 // we cache that address range.
789 // 2) The last referenced mapping is a reasonable predictor for the next
790 // referenced mapping, so we test that first.
791 // 3) We precompute a bitfield based upon bits 32:32-n of the start and
792 // stop addresses, and use that to short circuit any values that can
793 // not be pointers. (n=11)
794 const uintptr_t defaced =
795 #if defined(__LP64__)
796 0x0defaced0defaced;
797 #else
798 0x0defaced;
799 #endif
800 // the bitfield length is 2^test_bits long.
801 const unsigned int test_bits = 11;
802 // byte length of the corresponding array.
803 const unsigned int array_size = 1 << (test_bits - 3);
804 const unsigned int array_mask = array_size - 1;
805 // The amount to right shift pointers by. This captures the top bits
806 // on 32 bit architectures. On 64 bit architectures this would be
807 // uninformative so we take the same range of bits.
808 const unsigned int shift = 32 - 11;
809 const MappingInfo* last_hit_mapping = nullptr;
810 const MappingInfo* hit_mapping = nullptr;
811 const MappingInfo* stack_mapping = FindMappingNoBias(stack_pointer);
812 // The magnitude below which integers are considered to be to be
813 // 'small', and not constitute a PII risk. These are included to
814 // avoid eliding useful register values.
815 const ssize_t small_int_magnitude = 4096;
816
817 char could_hit_mapping[array_size];
818 my_memset(could_hit_mapping, 0, array_size);
819
820 // Initialize the bitfield such that if the (pointer >> shift)'th
821 // bit, modulo the bitfield size, is not set then there does not
822 // exist a mapping in mappings_ that would contain that pointer.
823 for (size_t i = 0; i < mappings_.size(); ++i) {
824 if (!mappings_[i]->exec) continue;
825 // For each mapping, work out the (unmodulo'ed) range of bits to
826 // set.
827 uintptr_t start = mappings_[i]->start_addr;
828 uintptr_t end = start + mappings_[i]->size;
829 start >>= shift;
830 end >>= shift;
831 for (size_t bit = start; bit <= end; ++bit) {
832 // Set each bit in the range, applying the modulus.
833 could_hit_mapping[(bit >> 3) & array_mask] |= 1 << (bit & 7);
834 }
835 }
836
837 // Zero memory that is below the current stack pointer.
838 const uintptr_t offset =
839 (sp_offset + sizeof(uintptr_t) - 1) & ~(sizeof(uintptr_t) - 1);
840 if (offset) {
841 my_memset(stack_copy, 0, offset);
842 }
843
844 // Apply sanitization to each complete pointer-aligned word in the
845 // stack.
846 uint8_t* sp;
847 for (sp = stack_copy + offset;
848 sp <= stack_copy + stack_len - sizeof(uintptr_t);
849 sp += sizeof(uintptr_t)) {
850 uintptr_t addr;
851 my_memcpy(&addr, sp, sizeof(uintptr_t));
852 if (static_cast<intptr_t>(addr) <= small_int_magnitude &&
853 static_cast<intptr_t>(addr) >= -small_int_magnitude) {
854 continue;
855 }
856 if (stack_mapping && MappingContainsAddress(*stack_mapping, addr)) {
857 continue;
858 }
859 if (last_hit_mapping && MappingContainsAddress(*last_hit_mapping, addr)) {
860 continue;
861 }
862 uintptr_t test = addr >> shift;
863 if (could_hit_mapping[(test >> 3) & array_mask] & (1 << (test & 7)) &&
864 (hit_mapping = FindMappingNoBias(addr)) != nullptr &&
865 hit_mapping->exec) {
866 last_hit_mapping = hit_mapping;
867 continue;
868 }
869 my_memcpy(sp, &defaced, sizeof(uintptr_t));
870 }
871 // Zero any partial word at the top of the stack, if alignment is
872 // such that that is required.
873 if (sp < stack_copy + stack_len) {
874 my_memset(sp, 0, stack_copy + stack_len - sp);
875 }
876 }
877
StackHasPointerToMapping(const uint8_t * stack_copy,size_t stack_len,uintptr_t sp_offset,const MappingInfo & mapping)878 bool LinuxDumper::StackHasPointerToMapping(const uint8_t* stack_copy,
879 size_t stack_len,
880 uintptr_t sp_offset,
881 const MappingInfo& mapping) {
882 // Loop over all stack words that would have been on the stack in
883 // the target process (i.e. are word aligned, and at addresses >=
884 // the stack pointer). Regardless of the alignment of |stack_copy|,
885 // the memory starting at |stack_copy| + |offset| represents an
886 // aligned word in the target process.
887 const uintptr_t low_addr = mapping.system_mapping_info.start_addr;
888 const uintptr_t high_addr = mapping.system_mapping_info.end_addr;
889 const uintptr_t offset =
890 (sp_offset + sizeof(uintptr_t) - 1) & ~(sizeof(uintptr_t) - 1);
891
892 for (const uint8_t* sp = stack_copy + offset;
893 sp <= stack_copy + stack_len - sizeof(uintptr_t);
894 sp += sizeof(uintptr_t)) {
895 uintptr_t addr;
896 my_memcpy(&addr, sp, sizeof(uintptr_t));
897 if (low_addr <= addr && addr <= high_addr)
898 return true;
899 }
900 return false;
901 }
902
903 // Find the mapping which the given memory address falls in.
FindMapping(const void * address) const904 const MappingInfo* LinuxDumper::FindMapping(const void* address) const {
905 const uintptr_t addr = (uintptr_t) address;
906
907 for (size_t i = 0; i < mappings_.size(); ++i) {
908 const uintptr_t start = static_cast<uintptr_t>(mappings_[i]->start_addr);
909 if (addr >= start && addr - start < mappings_[i]->size)
910 return mappings_[i];
911 }
912
913 return NULL;
914 }
915
916 // Find the mapping which the given memory address falls in. Uses the
917 // unadjusted mapping address range from the kernel, rather than the
918 // biased range.
FindMappingNoBias(uintptr_t address) const919 const MappingInfo* LinuxDumper::FindMappingNoBias(uintptr_t address) const {
920 for (size_t i = 0; i < mappings_.size(); ++i) {
921 if (address >= mappings_[i]->system_mapping_info.start_addr &&
922 address < mappings_[i]->system_mapping_info.end_addr) {
923 return mappings_[i];
924 }
925 }
926 return NULL;
927 }
928
HandleDeletedFileInMapping(char * path) const929 bool LinuxDumper::HandleDeletedFileInMapping(char* path) const {
930 static const size_t kDeletedSuffixLen = sizeof(kDeletedSuffix) - 1;
931
932 // Check for ' (deleted)' in |path|.
933 // |path| has to be at least as long as "/x (deleted)".
934 const size_t path_len = my_strlen(path);
935 if (path_len < kDeletedSuffixLen + 2)
936 return false;
937 if (my_strncmp(path + path_len - kDeletedSuffixLen, kDeletedSuffix,
938 kDeletedSuffixLen) != 0) {
939 return false;
940 }
941
942 // Check |path| against the /proc/pid/exe 'symlink'.
943 char exe_link[NAME_MAX];
944 if (!BuildProcPath(exe_link, pid_, "exe"))
945 return false;
946 MappingInfo new_mapping = {};
947 if (!SafeReadLink(exe_link, new_mapping.name))
948 return false;
949 char new_path[PATH_MAX];
950 if (!GetMappingAbsolutePath(new_mapping, new_path))
951 return false;
952 if (my_strcmp(path, new_path) != 0)
953 return false;
954
955 // Check to see if someone actually named their executable 'foo (deleted)'.
956 struct kernel_stat exe_stat;
957 struct kernel_stat new_path_stat;
958 if (sys_stat(exe_link, &exe_stat) == 0 &&
959 sys_stat(new_path, &new_path_stat) == 0 &&
960 exe_stat.st_dev == new_path_stat.st_dev &&
961 exe_stat.st_ino == new_path_stat.st_ino) {
962 return false;
963 }
964
965 my_memcpy(path, exe_link, NAME_MAX);
966 return true;
967 }
968
969 } // namespace google_breakpad
970