1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread_list.h"
18
19 #include <dirent.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <sstream>
24 #include <vector>
25
26 #include "android-base/stringprintf.h"
27 #include "backtrace/BacktraceMap.h"
28 #include "nativehelper/scoped_local_ref.h"
29 #include "nativehelper/scoped_utf_chars.h"
30
31 #include "base/aborting.h"
32 #include "base/histogram-inl.h"
33 #include "base/mutex-inl.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "base/timing_logger.h"
37 #include "debugger.h"
38 #include "gc/collector/concurrent_copying.h"
39 #include "gc/gc_pause_listener.h"
40 #include "gc/heap.h"
41 #include "gc/reference_processor.h"
42 #include "gc_root.h"
43 #include "jni/jni_internal.h"
44 #include "lock_word.h"
45 #include "monitor.h"
46 #include "native_stack_dump.h"
47 #include "scoped_thread_state_change-inl.h"
48 #include "thread.h"
49 #include "trace.h"
50 #include "well_known_classes.h"
51
52 #if ART_USE_FUTEXES
53 #include "linux/futex.h"
54 #include "sys/syscall.h"
55 #ifndef SYS_futex
56 #define SYS_futex __NR_futex
57 #endif
58 #endif // ART_USE_FUTEXES
59
60 namespace art {
61
62 using android::base::StringPrintf;
63
64 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
65 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
66 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
67 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
68 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
69
70 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
71 // some history.
72 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
73
ThreadList(uint64_t thread_suspend_timeout_ns)74 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
75 : suspend_all_count_(0),
76 unregistering_count_(0),
77 suspend_all_historam_("suspend all histogram", 16, 64),
78 long_suspend_(false),
79 shut_down_(false),
80 thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
81 empty_checkpoint_barrier_(new Barrier(0)) {
82 CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
83 }
84
~ThreadList()85 ThreadList::~ThreadList() {
86 CHECK(shut_down_);
87 }
88
ShutDown()89 void ThreadList::ShutDown() {
90 ScopedTrace trace(__PRETTY_FUNCTION__);
91 // Detach the current thread if necessary. If we failed to start, there might not be any threads.
92 // We need to detach the current thread here in case there's another thread waiting to join with
93 // us.
94 bool contains = false;
95 Thread* self = Thread::Current();
96 {
97 MutexLock mu(self, *Locks::thread_list_lock_);
98 contains = Contains(self);
99 }
100 if (contains) {
101 Runtime::Current()->DetachCurrentThread();
102 }
103 WaitForOtherNonDaemonThreadsToExit();
104 // Disable GC and wait for GC to complete in case there are still daemon threads doing
105 // allocations.
106 gc::Heap* const heap = Runtime::Current()->GetHeap();
107 heap->DisableGCForShutdown();
108 // In case a GC is in progress, wait for it to finish.
109 heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
110 // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
111 // Thread::Init.
112 SuspendAllDaemonThreadsForShutdown();
113
114 shut_down_ = true;
115 }
116
Contains(Thread * thread)117 bool ThreadList::Contains(Thread* thread) {
118 return find(list_.begin(), list_.end(), thread) != list_.end();
119 }
120
GetLockOwner()121 pid_t ThreadList::GetLockOwner() {
122 return Locks::thread_list_lock_->GetExclusiveOwnerTid();
123 }
124
DumpNativeStacks(std::ostream & os)125 void ThreadList::DumpNativeStacks(std::ostream& os) {
126 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
127 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
128 for (const auto& thread : list_) {
129 os << "DUMPING THREAD " << thread->GetTid() << "\n";
130 DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
131 os << "\n";
132 }
133 }
134
DumpForSigQuit(std::ostream & os)135 void ThreadList::DumpForSigQuit(std::ostream& os) {
136 {
137 ScopedObjectAccess soa(Thread::Current());
138 // Only print if we have samples.
139 if (suspend_all_historam_.SampleSize() > 0) {
140 Histogram<uint64_t>::CumulativeData data;
141 suspend_all_historam_.CreateHistogram(&data);
142 suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend.
143 }
144 }
145 bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
146 Dump(os, dump_native_stack);
147 DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
148 }
149
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)150 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
151 NO_THREAD_SAFETY_ANALYSIS {
152 // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
153 // refactor DumpState to avoid skipping analysis.
154 Thread::DumpState(os, nullptr, tid);
155 if (dump_native_stack) {
156 DumpNativeStack(os, tid, nullptr, " native: ");
157 }
158 os << std::endl;
159 }
160
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)161 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
162 DIR* d = opendir("/proc/self/task");
163 if (!d) {
164 return;
165 }
166
167 Thread* self = Thread::Current();
168 dirent* e;
169 while ((e = readdir(d)) != nullptr) {
170 char* end;
171 pid_t tid = strtol(e->d_name, &end, 10);
172 if (!*end) {
173 Thread* thread;
174 {
175 MutexLock mu(self, *Locks::thread_list_lock_);
176 thread = FindThreadByTid(tid);
177 }
178 if (thread == nullptr) {
179 DumpUnattachedThread(os, tid, dump_native_stack);
180 }
181 }
182 }
183 closedir(d);
184 }
185
186 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
187 // overloaded with ANR dumps.
188 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
189
190 // A closure used by Thread::Dump.
191 class DumpCheckpoint final : public Closure {
192 public:
DumpCheckpoint(std::ostream * os,bool dump_native_stack)193 DumpCheckpoint(std::ostream* os, bool dump_native_stack)
194 : os_(os),
195 // Avoid verifying count in case a thread doesn't end up passing through the barrier.
196 // This avoids a SIGABRT that would otherwise happen in the destructor.
197 barrier_(0, /*verify_count_on_shutdown=*/false),
198 backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
199 dump_native_stack_(dump_native_stack) {
200 if (backtrace_map_ != nullptr) {
201 backtrace_map_->SetSuffixesToIgnore(std::vector<std::string> { "oat", "odex" });
202 }
203 }
204
Run(Thread * thread)205 void Run(Thread* thread) override {
206 // Note thread and self may not be equal if thread was already suspended at the point of the
207 // request.
208 Thread* self = Thread::Current();
209 CHECK(self != nullptr);
210 std::ostringstream local_os;
211 {
212 ScopedObjectAccess soa(self);
213 thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
214 }
215 {
216 // Use the logging lock to ensure serialization when writing to the common ostream.
217 MutexLock mu(self, *Locks::logging_lock_);
218 *os_ << local_os.str() << std::endl;
219 }
220 barrier_.Pass(self);
221 }
222
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)223 void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
224 Thread* self = Thread::Current();
225 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
226 bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
227 if (timed_out) {
228 // Avoid a recursive abort.
229 LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
230 << "Unexpected time out during dump checkpoint.";
231 }
232 }
233
234 private:
235 // The common stream that will accumulate all the dumps.
236 std::ostream* const os_;
237 // The barrier to be passed through and for the requestor to wait upon.
238 Barrier barrier_;
239 // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
240 std::unique_ptr<BacktraceMap> backtrace_map_;
241 // Whether we should dump the native stack.
242 const bool dump_native_stack_;
243 };
244
Dump(std::ostream & os,bool dump_native_stack)245 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
246 Thread* self = Thread::Current();
247 {
248 MutexLock mu(self, *Locks::thread_list_lock_);
249 os << "DALVIK THREADS (" << list_.size() << "):\n";
250 }
251 if (self != nullptr) {
252 DumpCheckpoint checkpoint(&os, dump_native_stack);
253 size_t threads_running_checkpoint;
254 {
255 // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
256 ScopedObjectAccess soa(self);
257 threads_running_checkpoint = RunCheckpoint(&checkpoint);
258 }
259 if (threads_running_checkpoint != 0) {
260 checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
261 }
262 } else {
263 DumpUnattachedThreads(os, dump_native_stack);
264 }
265 }
266
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)267 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
268 MutexLock mu(self, *Locks::thread_list_lock_);
269 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
270 for (const auto& thread : list_) {
271 if (thread != ignore1 && thread != ignore2) {
272 CHECK(thread->IsSuspended())
273 << "\nUnsuspended thread: <<" << *thread << "\n"
274 << "self: <<" << *Thread::Current();
275 }
276 }
277 }
278
279 #if HAVE_TIMED_RWLOCK
280 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()281 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
282 // Increment gAborting before doing the thread list dump since we don't want any failures from
283 // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
284 // See b/69044468.
285 ++gAborting;
286 Runtime* runtime = Runtime::Current();
287 std::ostringstream ss;
288 ss << "Thread suspend timeout\n";
289 Locks::mutator_lock_->Dump(ss);
290 ss << "\n";
291 runtime->GetThreadList()->Dump(ss);
292 --gAborting;
293 LOG(FATAL) << ss.str();
294 exit(0);
295 }
296 #endif
297
298 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
299 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
300 // we use sched_yield instead of calling usleep.
301 // Although there is the possibility, here and elsewhere, that usleep could return -1 and
302 // errno = EINTR, there should be no problem if interrupted, so we do not check.
ThreadSuspendSleep(useconds_t delay_us)303 static void ThreadSuspendSleep(useconds_t delay_us) {
304 if (delay_us == 0) {
305 sched_yield();
306 } else {
307 usleep(delay_us);
308 }
309 }
310
RunCheckpoint(Closure * checkpoint_function,Closure * callback)311 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
312 Thread* self = Thread::Current();
313 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
314 Locks::thread_list_lock_->AssertNotHeld(self);
315 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
316
317 std::vector<Thread*> suspended_count_modified_threads;
318 size_t count = 0;
319 {
320 // Call a checkpoint function for each thread, threads which are suspended get their checkpoint
321 // manually called.
322 MutexLock mu(self, *Locks::thread_list_lock_);
323 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
324 count = list_.size();
325 for (const auto& thread : list_) {
326 if (thread != self) {
327 bool requested_suspend = false;
328 while (true) {
329 if (thread->RequestCheckpoint(checkpoint_function)) {
330 // This thread will run its checkpoint some time in the near future.
331 if (requested_suspend) {
332 // The suspend request is now unnecessary.
333 bool updated =
334 thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
335 DCHECK(updated);
336 requested_suspend = false;
337 }
338 break;
339 } else {
340 // The thread is probably suspended, try to make sure that it stays suspended.
341 if (thread->GetState() == kRunnable) {
342 // Spurious fail, try again.
343 continue;
344 }
345 if (!requested_suspend) {
346 bool updated =
347 thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
348 DCHECK(updated);
349 requested_suspend = true;
350 if (thread->IsSuspended()) {
351 break;
352 }
353 // The thread raced us to become Runnable. Try to RequestCheckpoint() again.
354 } else {
355 // The thread previously raced our suspend request to become Runnable but
356 // since it is suspended again, it must honor that suspend request now.
357 DCHECK(thread->IsSuspended());
358 break;
359 }
360 }
361 }
362 if (requested_suspend) {
363 suspended_count_modified_threads.push_back(thread);
364 }
365 }
366 }
367 // Run the callback to be called inside this critical section.
368 if (callback != nullptr) {
369 callback->Run(self);
370 }
371 }
372
373 // Run the checkpoint on ourself while we wait for threads to suspend.
374 checkpoint_function->Run(self);
375
376 // Run the checkpoint on the suspended threads.
377 for (const auto& thread : suspended_count_modified_threads) {
378 // We know for sure that the thread is suspended at this point.
379 DCHECK(thread->IsSuspended());
380 checkpoint_function->Run(thread);
381 {
382 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
383 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
384 DCHECK(updated);
385 }
386 }
387
388 {
389 // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
390 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
391 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
392 Thread::resume_cond_->Broadcast(self);
393 }
394
395 return count;
396 }
397
RunEmptyCheckpoint()398 void ThreadList::RunEmptyCheckpoint() {
399 Thread* self = Thread::Current();
400 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
401 Locks::thread_list_lock_->AssertNotHeld(self);
402 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
403 std::vector<uint32_t> runnable_thread_ids;
404 size_t count = 0;
405 Barrier* barrier = empty_checkpoint_barrier_.get();
406 barrier->Init(self, 0);
407 {
408 MutexLock mu(self, *Locks::thread_list_lock_);
409 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
410 for (Thread* thread : list_) {
411 if (thread != self) {
412 while (true) {
413 if (thread->RequestEmptyCheckpoint()) {
414 // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
415 // some time in the near future.
416 ++count;
417 if (kIsDebugBuild) {
418 runnable_thread_ids.push_back(thread->GetThreadId());
419 }
420 break;
421 }
422 if (thread->GetState() != kRunnable) {
423 // It's seen suspended, we are done because it must not be in the middle of a mutator
424 // heap access.
425 break;
426 }
427 }
428 }
429 }
430 }
431
432 // Wake up the threads blocking for weak ref access so that they will respond to the empty
433 // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
434 Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
435 Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true);
436 {
437 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
438 uint64_t total_wait_time = 0;
439 bool first_iter = true;
440 while (true) {
441 // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
442 // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
443 // and a mutex.) This needs to be done periodically because the thread may be preempted
444 // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
445 // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
446 // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
447 // handled in the first iteration.
448 for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
449 mutex->WakeupToRespondToEmptyCheckpoint();
450 }
451 static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100; // 100ms
452 static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000; // 10 minutes.
453 size_t barrier_count = first_iter ? count : 0;
454 first_iter = false; // Don't add to the barrier count from the second iteration on.
455 bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
456 if (!timed_out) {
457 break; // Success
458 }
459 // This is a very rare case.
460 total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
461 if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
462 std::ostringstream ss;
463 ss << "Empty checkpoint timeout\n";
464 ss << "Barrier count " << barrier->GetCount(self) << "\n";
465 ss << "Runnable thread IDs";
466 for (uint32_t tid : runnable_thread_ids) {
467 ss << " " << tid;
468 }
469 ss << "\n";
470 Locks::mutator_lock_->Dump(ss);
471 ss << "\n";
472 LOG(FATAL_WITHOUT_ABORT) << ss.str();
473 // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
474 // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
475 {
476 ScopedObjectAccess soa(self);
477 MutexLock mu1(self, *Locks::thread_list_lock_);
478 for (Thread* thread : GetList()) {
479 uint32_t tid = thread->GetThreadId();
480 bool is_in_runnable_thread_ids =
481 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
482 runnable_thread_ids.end();
483 if (is_in_runnable_thread_ids &&
484 thread->ReadFlag(kEmptyCheckpointRequest)) {
485 // Found a runnable thread that hasn't responded to the empty checkpoint request.
486 // Assume it's stuck and safe to dump its stack.
487 thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
488 /*dump_native_stack=*/ true,
489 /*backtrace_map=*/ nullptr,
490 /*force_dump_stack=*/ true);
491 }
492 }
493 }
494 LOG(FATAL_WITHOUT_ABORT)
495 << "Dumped runnable threads that haven't responded to empty checkpoint.";
496 // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
497 Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
498 LOG(FATAL) << "Dumped all threads.";
499 }
500 }
501 }
502 }
503
504 // A checkpoint/suspend-all hybrid to switch thread roots from
505 // from-space to to-space refs. Used to synchronize threads at a point
506 // to mark the initiation of marking while maintaining the to-space
507 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector,gc::GcPauseListener * pause_listener)508 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
509 Closure* flip_callback,
510 gc::collector::GarbageCollector* collector,
511 gc::GcPauseListener* pause_listener) {
512 TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
513 Thread* self = Thread::Current();
514 Locks::mutator_lock_->AssertNotHeld(self);
515 Locks::thread_list_lock_->AssertNotHeld(self);
516 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
517 CHECK_NE(self->GetState(), kRunnable);
518
519 collector->GetHeap()->ThreadFlipBegin(self); // Sync with JNI critical calls.
520
521 // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
522 // pause.
523 const uint64_t suspend_start_time = NanoTime();
524 SuspendAllInternal(self, self, nullptr);
525 if (pause_listener != nullptr) {
526 pause_listener->StartPause();
527 }
528
529 // Run the flip callback for the collector.
530 Locks::mutator_lock_->ExclusiveLock(self);
531 suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
532 flip_callback->Run(self);
533 Locks::mutator_lock_->ExclusiveUnlock(self);
534 collector->RegisterPause(NanoTime() - suspend_start_time);
535 if (pause_listener != nullptr) {
536 pause_listener->EndPause();
537 }
538
539 // Resume runnable threads.
540 size_t runnable_thread_count = 0;
541 std::vector<Thread*> other_threads;
542 {
543 TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
544 MutexLock mu(self, *Locks::thread_list_lock_);
545 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
546 --suspend_all_count_;
547 for (const auto& thread : list_) {
548 // Set the flip function for all threads because Thread::DumpState/DumpJavaStack() (invoked by
549 // a checkpoint) may cause the flip function to be run for a runnable/suspended thread before
550 // a runnable thread runs it for itself or we run it for a suspended thread below.
551 thread->SetFlipFunction(thread_flip_visitor);
552 if (thread == self) {
553 continue;
554 }
555 // Resume early the threads that were runnable but are suspended just for this thread flip or
556 // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
557 // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
558 // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
559 ThreadState state = thread->GetState();
560 if ((state == kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
561 thread->GetSuspendCount() == 1) {
562 // The thread will resume right after the broadcast.
563 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
564 DCHECK(updated);
565 ++runnable_thread_count;
566 } else {
567 other_threads.push_back(thread);
568 }
569 }
570 Thread::resume_cond_->Broadcast(self);
571 }
572
573 collector->GetHeap()->ThreadFlipEnd(self);
574
575 // Run the closure on the other threads and let them resume.
576 {
577 TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
578 ReaderMutexLock mu(self, *Locks::mutator_lock_);
579 for (const auto& thread : other_threads) {
580 Closure* flip_func = thread->GetFlipFunction();
581 if (flip_func != nullptr) {
582 flip_func->Run(thread);
583 }
584 }
585 // Run it for self.
586 Closure* flip_func = self->GetFlipFunction();
587 if (flip_func != nullptr) {
588 flip_func->Run(self);
589 }
590 }
591
592 // Resume other threads.
593 {
594 TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
595 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
596 for (const auto& thread : other_threads) {
597 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
598 DCHECK(updated);
599 }
600 Thread::resume_cond_->Broadcast(self);
601 }
602
603 return runnable_thread_count + other_threads.size() + 1; // +1 for self.
604 }
605
SuspendAll(const char * cause,bool long_suspend)606 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
607 Thread* self = Thread::Current();
608
609 if (self != nullptr) {
610 VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
611 } else {
612 VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
613 }
614 {
615 ScopedTrace trace("Suspending mutator threads");
616 const uint64_t start_time = NanoTime();
617
618 SuspendAllInternal(self, self);
619 // All threads are known to have suspended (but a thread may still own the mutator lock)
620 // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
621 #if HAVE_TIMED_RWLOCK
622 while (true) {
623 if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
624 NsToMs(thread_suspend_timeout_ns_),
625 0)) {
626 break;
627 } else if (!long_suspend_) {
628 // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
629 // could result in a thread suspend timeout.
630 // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
631 UnsafeLogFatalForThreadSuspendAllTimeout();
632 }
633 }
634 #else
635 Locks::mutator_lock_->ExclusiveLock(self);
636 #endif
637
638 long_suspend_ = long_suspend;
639
640 const uint64_t end_time = NanoTime();
641 const uint64_t suspend_time = end_time - start_time;
642 suspend_all_historam_.AdjustAndAddValue(suspend_time);
643 if (suspend_time > kLongThreadSuspendThreshold) {
644 LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
645 }
646
647 if (kDebugLocking) {
648 // Debug check that all threads are suspended.
649 AssertThreadsAreSuspended(self, self);
650 }
651 }
652 ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str());
653
654 if (self != nullptr) {
655 VLOG(threads) << *self << " SuspendAll complete";
656 } else {
657 VLOG(threads) << "Thread[null] SuspendAll complete";
658 }
659 }
660
661 // Ensures all threads running Java suspend and that those not running Java don't start.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,SuspendReason reason)662 void ThreadList::SuspendAllInternal(Thread* self,
663 Thread* ignore1,
664 Thread* ignore2,
665 SuspendReason reason) {
666 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
667 Locks::thread_list_lock_->AssertNotHeld(self);
668 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
669 if (kDebugLocking && self != nullptr) {
670 CHECK_NE(self->GetState(), kRunnable);
671 }
672
673 // First request that all threads suspend, then wait for them to suspend before
674 // returning. This suspension scheme also relies on other behaviour:
675 // 1. Threads cannot be deleted while they are suspended or have a suspend-
676 // request flag set - (see Unregister() below).
677 // 2. When threads are created, they are created in a suspended state (actually
678 // kNative) and will never begin executing Java code without first checking
679 // the suspend-request flag.
680
681 // The atomic counter for number of threads that need to pass the barrier.
682 AtomicInteger pending_threads;
683 uint32_t num_ignored = 0;
684 if (ignore1 != nullptr) {
685 ++num_ignored;
686 }
687 if (ignore2 != nullptr && ignore1 != ignore2) {
688 ++num_ignored;
689 }
690 {
691 MutexLock mu(self, *Locks::thread_list_lock_);
692 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
693 // Update global suspend all state for attaching threads.
694 ++suspend_all_count_;
695 pending_threads.store(list_.size() - num_ignored, std::memory_order_relaxed);
696 // Increment everybody's suspend count (except those that should be ignored).
697 for (const auto& thread : list_) {
698 if (thread == ignore1 || thread == ignore2) {
699 continue;
700 }
701 VLOG(threads) << "requesting thread suspend: " << *thread;
702 bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason);
703 DCHECK(updated);
704
705 // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
706 // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
707 // that can lead a thread to miss a call to PassActiveSuspendBarriers().
708 if (thread->IsSuspended()) {
709 // Only clear the counter for the current thread.
710 thread->ClearSuspendBarrier(&pending_threads);
711 pending_threads.fetch_sub(1, std::memory_order_seq_cst);
712 }
713 }
714 }
715
716 // Wait for the barrier to be passed by all runnable threads. This wait
717 // is done with a timeout so that we can detect problems.
718 #if ART_USE_FUTEXES
719 timespec wait_timeout;
720 InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
721 #endif
722 const uint64_t start_time = NanoTime();
723 while (true) {
724 int32_t cur_val = pending_threads.load(std::memory_order_relaxed);
725 if (LIKELY(cur_val > 0)) {
726 #if ART_USE_FUTEXES
727 if (futex(pending_threads.Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0)
728 != 0) {
729 if ((errno == EAGAIN) || (errno == EINTR)) {
730 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
731 continue;
732 }
733 if (errno == ETIMEDOUT) {
734 const uint64_t wait_time = NanoTime() - start_time;
735 MutexLock mu(self, *Locks::thread_list_lock_);
736 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
737 std::ostringstream oss;
738 for (const auto& thread : list_) {
739 if (thread == ignore1 || thread == ignore2) {
740 continue;
741 }
742 if (!thread->IsSuspended()) {
743 oss << std::endl << "Thread not suspended: " << *thread;
744 }
745 }
746 LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
747 << "Timed out waiting for threads to suspend, waited for "
748 << PrettyDuration(wait_time)
749 << oss.str();
750 } else {
751 PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
752 }
753 } // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
754 #else
755 // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
756 UNUSED(start_time);
757 #endif
758 } else {
759 CHECK_EQ(cur_val, 0);
760 break;
761 }
762 }
763 }
764
ResumeAll()765 void ThreadList::ResumeAll() {
766 Thread* self = Thread::Current();
767
768 if (self != nullptr) {
769 VLOG(threads) << *self << " ResumeAll starting";
770 } else {
771 VLOG(threads) << "Thread[null] ResumeAll starting";
772 }
773
774 ATraceEnd();
775
776 ScopedTrace trace("Resuming mutator threads");
777
778 if (kDebugLocking) {
779 // Debug check that all threads are suspended.
780 AssertThreadsAreSuspended(self, self);
781 }
782
783 long_suspend_ = false;
784
785 Locks::mutator_lock_->ExclusiveUnlock(self);
786 {
787 MutexLock mu(self, *Locks::thread_list_lock_);
788 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
789 // Update global suspend all state for attaching threads.
790 --suspend_all_count_;
791 // Decrement the suspend counts for all threads.
792 for (const auto& thread : list_) {
793 if (thread == self) {
794 continue;
795 }
796 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
797 DCHECK(updated);
798 }
799
800 // Broadcast a notification to all suspended threads, some or all of
801 // which may choose to wake up. No need to wait for them.
802 if (self != nullptr) {
803 VLOG(threads) << *self << " ResumeAll waking others";
804 } else {
805 VLOG(threads) << "Thread[null] ResumeAll waking others";
806 }
807 Thread::resume_cond_->Broadcast(self);
808 }
809
810 if (self != nullptr) {
811 VLOG(threads) << *self << " ResumeAll complete";
812 } else {
813 VLOG(threads) << "Thread[null] ResumeAll complete";
814 }
815 }
816
Resume(Thread * thread,SuspendReason reason)817 bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
818 // This assumes there was an ATraceBegin when we suspended the thread.
819 ATraceEnd();
820
821 Thread* self = Thread::Current();
822 DCHECK_NE(thread, self);
823 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
824
825 {
826 // To check Contains.
827 MutexLock mu(self, *Locks::thread_list_lock_);
828 // To check IsSuspended.
829 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
830 if (UNLIKELY(!thread->IsSuspended())) {
831 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
832 << ") thread not suspended";
833 return false;
834 }
835 if (!Contains(thread)) {
836 // We only expect threads within the thread-list to have been suspended otherwise we can't
837 // stop such threads from delete-ing themselves.
838 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
839 << ") thread not within thread list";
840 return false;
841 }
842 if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) {
843 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
844 << ") could not modify suspend count.";
845 return false;
846 }
847 }
848
849 {
850 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
851 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
852 Thread::resume_cond_->Broadcast(self);
853 }
854
855 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
856 return true;
857 }
858
ThreadSuspendByPeerWarning(Thread * self,LogSeverity severity,const char * message,jobject peer)859 static void ThreadSuspendByPeerWarning(Thread* self,
860 LogSeverity severity,
861 const char* message,
862 jobject peer) {
863 JNIEnvExt* env = self->GetJniEnv();
864 ScopedLocalRef<jstring>
865 scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
866 peer, WellKnownClasses::java_lang_Thread_name)));
867 ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
868 if (scoped_name_chars.c_str() == nullptr) {
869 LOG(severity) << message << ": " << peer;
870 env->ExceptionClear();
871 } else {
872 LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
873 }
874 }
875
SuspendThreadByPeer(jobject peer,bool request_suspension,SuspendReason reason,bool * timed_out)876 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
877 bool request_suspension,
878 SuspendReason reason,
879 bool* timed_out) {
880 const uint64_t start_time = NanoTime();
881 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
882 *timed_out = false;
883 Thread* const self = Thread::Current();
884 Thread* suspended_thread = nullptr;
885 VLOG(threads) << "SuspendThreadByPeer starting";
886 while (true) {
887 Thread* thread;
888 {
889 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
890 // is requesting another suspend, to avoid deadlock, by requiring this function be called
891 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
892 // than request thread suspension, to avoid potential cycles in threads requesting each other
893 // suspend.
894 ScopedObjectAccess soa(self);
895 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
896 thread = Thread::FromManagedThread(soa, peer);
897 if (thread == nullptr) {
898 if (suspended_thread != nullptr) {
899 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
900 // If we incremented the suspend count but the thread reset its peer, we need to
901 // re-decrement it since it is shutting down and may deadlock the runtime in
902 // ThreadList::WaitForOtherNonDaemonThreadsToExit.
903 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
904 -1,
905 nullptr,
906 reason);
907 DCHECK(updated);
908 }
909 ThreadSuspendByPeerWarning(self,
910 ::android::base::WARNING,
911 "No such thread for suspend",
912 peer);
913 return nullptr;
914 }
915 if (!Contains(thread)) {
916 CHECK(suspended_thread == nullptr);
917 VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
918 << reinterpret_cast<void*>(thread);
919 return nullptr;
920 }
921 VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
922 {
923 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
924 if (request_suspension) {
925 if (self->GetSuspendCount() > 0) {
926 // We hold the suspend count lock but another thread is trying to suspend us. Its not
927 // safe to try to suspend another thread in case we get a cycle. Start the loop again
928 // which will allow this thread to be suspended.
929 continue;
930 }
931 CHECK(suspended_thread == nullptr);
932 suspended_thread = thread;
933 bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason);
934 DCHECK(updated);
935 request_suspension = false;
936 } else {
937 // If the caller isn't requesting suspension, a suspension should have already occurred.
938 CHECK_GT(thread->GetSuspendCount(), 0);
939 }
940 // IsSuspended on the current thread will fail as the current thread is changed into
941 // Runnable above. As the suspend count is now raised if this is the current thread
942 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
943 // to just explicitly handle the current thread in the callers to this code.
944 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
945 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
946 // count, or else we've waited and it has self suspended) or is the current thread, we're
947 // done.
948 if (thread->IsSuspended()) {
949 VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
950 if (ATraceEnabled()) {
951 std::string name;
952 thread->GetThreadName(name);
953 ATraceBegin(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
954 peer).c_str());
955 }
956 return thread;
957 }
958 const uint64_t total_delay = NanoTime() - start_time;
959 if (total_delay >= thread_suspend_timeout_ns_) {
960 ThreadSuspendByPeerWarning(self,
961 ::android::base::FATAL,
962 "Thread suspension timed out",
963 peer);
964 if (suspended_thread != nullptr) {
965 CHECK_EQ(suspended_thread, thread);
966 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
967 -1,
968 nullptr,
969 reason);
970 DCHECK(updated);
971 }
972 *timed_out = true;
973 return nullptr;
974 } else if (sleep_us == 0 &&
975 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
976 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
977 // excessive CPU usage.
978 sleep_us = kThreadSuspendMaxYieldUs / 2;
979 }
980 }
981 // Release locks and come out of runnable state.
982 }
983 VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
984 ThreadSuspendSleep(sleep_us);
985 // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
986 // all if possible. This shouldn't be an issue since time to suspend should always be small.
987 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
988 }
989 }
990
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)991 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
992 const char* message,
993 uint32_t thread_id) {
994 LOG(severity) << StringPrintf("%s: %d", message, thread_id);
995 }
996
SuspendThreadByThreadId(uint32_t thread_id,SuspendReason reason,bool * timed_out)997 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
998 SuspendReason reason,
999 bool* timed_out) {
1000 const uint64_t start_time = NanoTime();
1001 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
1002 *timed_out = false;
1003 Thread* suspended_thread = nullptr;
1004 Thread* const self = Thread::Current();
1005 CHECK_NE(thread_id, kInvalidThreadId);
1006 VLOG(threads) << "SuspendThreadByThreadId starting";
1007 while (true) {
1008 {
1009 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
1010 // is requesting another suspend, to avoid deadlock, by requiring this function be called
1011 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
1012 // than request thread suspension, to avoid potential cycles in threads requesting each other
1013 // suspend.
1014 ScopedObjectAccess soa(self);
1015 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1016 Thread* thread = nullptr;
1017 for (const auto& it : list_) {
1018 if (it->GetThreadId() == thread_id) {
1019 thread = it;
1020 break;
1021 }
1022 }
1023 if (thread == nullptr) {
1024 CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
1025 << " no longer in thread list";
1026 // There's a race in inflating a lock and the owner giving up ownership and then dying.
1027 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1028 "No such thread id for suspend",
1029 thread_id);
1030 return nullptr;
1031 }
1032 VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
1033 DCHECK(Contains(thread));
1034 {
1035 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1036 if (suspended_thread == nullptr) {
1037 if (self->GetSuspendCount() > 0) {
1038 // We hold the suspend count lock but another thread is trying to suspend us. Its not
1039 // safe to try to suspend another thread in case we get a cycle. Start the loop again
1040 // which will allow this thread to be suspended.
1041 continue;
1042 }
1043 bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason);
1044 DCHECK(updated);
1045 suspended_thread = thread;
1046 } else {
1047 CHECK_EQ(suspended_thread, thread);
1048 // If the caller isn't requesting suspension, a suspension should have already occurred.
1049 CHECK_GT(thread->GetSuspendCount(), 0);
1050 }
1051 // IsSuspended on the current thread will fail as the current thread is changed into
1052 // Runnable above. As the suspend count is now raised if this is the current thread
1053 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
1054 // to just explicitly handle the current thread in the callers to this code.
1055 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
1056 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
1057 // count, or else we've waited and it has self suspended) or is the current thread, we're
1058 // done.
1059 if (thread->IsSuspended()) {
1060 if (ATraceEnabled()) {
1061 std::string name;
1062 thread->GetThreadName(name);
1063 ATraceBegin(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
1064 name.c_str(), thread_id).c_str());
1065 }
1066 VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
1067 return thread;
1068 }
1069 const uint64_t total_delay = NanoTime() - start_time;
1070 if (total_delay >= thread_suspend_timeout_ns_) {
1071 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1072 "Thread suspension timed out",
1073 thread_id);
1074 if (suspended_thread != nullptr) {
1075 bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason);
1076 DCHECK(updated);
1077 }
1078 *timed_out = true;
1079 return nullptr;
1080 } else if (sleep_us == 0 &&
1081 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1082 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1083 // excessive CPU usage.
1084 sleep_us = kThreadSuspendMaxYieldUs / 2;
1085 }
1086 }
1087 // Release locks and come out of runnable state.
1088 }
1089 VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
1090 ThreadSuspendSleep(sleep_us);
1091 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1092 }
1093 }
1094
FindThreadByThreadId(uint32_t thread_id)1095 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
1096 for (const auto& thread : list_) {
1097 if (thread->GetThreadId() == thread_id) {
1098 return thread;
1099 }
1100 }
1101 return nullptr;
1102 }
1103
FindThreadByTid(int tid)1104 Thread* ThreadList::FindThreadByTid(int tid) {
1105 for (const auto& thread : list_) {
1106 if (thread->GetTid() == tid) {
1107 return thread;
1108 }
1109 }
1110 return nullptr;
1111 }
1112
WaitForOtherNonDaemonThreadsToExit(bool check_no_birth)1113 void ThreadList::WaitForOtherNonDaemonThreadsToExit(bool check_no_birth) {
1114 ScopedTrace trace(__PRETTY_FUNCTION__);
1115 Thread* self = Thread::Current();
1116 Locks::mutator_lock_->AssertNotHeld(self);
1117 while (true) {
1118 Locks::runtime_shutdown_lock_->Lock(self);
1119 if (check_no_birth) {
1120 // No more threads can be born after we start to shutdown.
1121 CHECK(Runtime::Current()->IsShuttingDownLocked());
1122 CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1123 } else {
1124 if (Runtime::Current()->NumberOfThreadsBeingBorn() != 0U) {
1125 // Awkward. Shutdown_cond_ is private, but the only live thread may not be registered yet.
1126 // Fortunately, this is used mostly for testing, and not performance-critical.
1127 Locks::runtime_shutdown_lock_->Unlock(self);
1128 usleep(1000);
1129 continue;
1130 }
1131 }
1132 MutexLock mu(self, *Locks::thread_list_lock_);
1133 Locks::runtime_shutdown_lock_->Unlock(self);
1134 // Also wait for any threads that are unregistering to finish. This is required so that no
1135 // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1136 // threads since they could unregister at the wrong time.
1137 bool done = unregistering_count_ == 0;
1138 if (done) {
1139 for (const auto& thread : list_) {
1140 if (thread != self && !thread->IsDaemon()) {
1141 done = false;
1142 break;
1143 }
1144 }
1145 }
1146 if (done) {
1147 break;
1148 }
1149 // Wait for another thread to exit before re-checking.
1150 Locks::thread_exit_cond_->Wait(self);
1151 }
1152 }
1153
SuspendAllDaemonThreadsForShutdown()1154 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1155 ScopedTrace trace(__PRETTY_FUNCTION__);
1156 Thread* self = Thread::Current();
1157 size_t daemons_left = 0;
1158 {
1159 // Tell all the daemons it's time to suspend.
1160 MutexLock mu(self, *Locks::thread_list_lock_);
1161 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1162 for (const auto& thread : list_) {
1163 // This is only run after all non-daemon threads have exited, so the remainder should all be
1164 // daemons.
1165 CHECK(thread->IsDaemon()) << *thread;
1166 if (thread != self) {
1167 bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1168 DCHECK(updated);
1169 ++daemons_left;
1170 }
1171 // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1172 // the sleep forever one.
1173 thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1174 }
1175 }
1176 if (daemons_left == 0) {
1177 // No threads left; safe to shut down.
1178 return;
1179 }
1180 // There is not a clean way to shut down if we have daemons left. We have no mechanism for
1181 // killing them and reclaiming thread stacks. We also have no mechanism for waiting until they
1182 // have truly finished touching the memory we are about to deallocate. We do the best we can with
1183 // timeouts.
1184 //
1185 // If we have any daemons left, wait until they are (a) suspended and (b) they are not stuck
1186 // in a place where they are about to access runtime state and are not in a runnable state.
1187 // We attempt to do the latter by just waiting long enough for things to
1188 // quiesce. Examples: Monitor code or waking up from a condition variable.
1189 //
1190 // Give the threads a chance to suspend, complaining if they're slow. (a)
1191 bool have_complained = false;
1192 static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1193 static constexpr size_t kSleepMicroseconds = 1000;
1194 bool all_suspended = false;
1195 for (size_t i = 0; !all_suspended && i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1196 bool found_running = false;
1197 {
1198 MutexLock mu(self, *Locks::thread_list_lock_);
1199 for (const auto& thread : list_) {
1200 if (thread != self && thread->GetState() == kRunnable) {
1201 if (!have_complained) {
1202 LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1203 have_complained = true;
1204 }
1205 found_running = true;
1206 }
1207 }
1208 }
1209 if (found_running) {
1210 // Sleep briefly before checking again. Max total sleep time is kTimeoutMicroseconds.
1211 usleep(kSleepMicroseconds);
1212 } else {
1213 all_suspended = true;
1214 }
1215 }
1216 if (!all_suspended) {
1217 // We can get here if a daemon thread executed a fastnative native call, so that it
1218 // remained in runnable state, and then made a JNI call after we called
1219 // SetFunctionsToRuntimeShutdownFunctions(), causing it to permanently stay in a harmless
1220 // but runnable state. See b/147804269 .
1221 LOG(WARNING) << "timed out suspending all daemon threads";
1222 }
1223 // Assume all threads are either suspended or somehow wedged.
1224 // Wait again for all the now "suspended" threads to actually quiesce. (b)
1225 static constexpr size_t kDaemonSleepTime = 400'000;
1226 usleep(kDaemonSleepTime);
1227 std::list<Thread*> list_copy;
1228 {
1229 MutexLock mu(self, *Locks::thread_list_lock_);
1230 // Half-way through the wait, set the "runtime deleted" flag, causing any newly awoken
1231 // threads to immediately go back to sleep without touching memory. This prevents us from
1232 // touching deallocated memory, but it also prevents mutexes from getting released. Thus we
1233 // only do this once we're reasonably sure that no system mutexes are still held.
1234 for (const auto& thread : list_) {
1235 DCHECK(thread == self || !all_suspended || thread->GetState() != kRunnable);
1236 // In the !all_suspended case, the target is probably sleeping.
1237 thread->GetJniEnv()->SetRuntimeDeleted();
1238 // Possibly contended Mutex acquisitions are unsafe after this.
1239 // Releasing thread_list_lock_ is OK, since it can't block.
1240 }
1241 }
1242 // Finally wait for any threads woken before we set the "runtime deleted" flags to finish
1243 // touching memory.
1244 usleep(kDaemonSleepTime);
1245 #if defined(__has_feature)
1246 #if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
1247 // Sleep a bit longer with -fsanitize=address, since everything is slower.
1248 usleep(2 * kDaemonSleepTime);
1249 #endif
1250 #endif
1251 // At this point no threads should be touching our data structures anymore.
1252 }
1253
Register(Thread * self)1254 void ThreadList::Register(Thread* self) {
1255 DCHECK_EQ(self, Thread::Current());
1256 CHECK(!shut_down_);
1257
1258 if (VLOG_IS_ON(threads)) {
1259 std::ostringstream oss;
1260 self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump.
1261 LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str();
1262 }
1263
1264 // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1265 // SuspendAll requests.
1266 MutexLock mu(self, *Locks::thread_list_lock_);
1267 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1268 // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1269 // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1270 for (int delta = suspend_all_count_; delta > 0; delta--) {
1271 bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1272 DCHECK(updated);
1273 }
1274 CHECK(!Contains(self));
1275 list_.push_back(self);
1276 if (kUseReadBarrier) {
1277 gc::collector::ConcurrentCopying* const cc =
1278 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
1279 // Initialize according to the state of the CC collector.
1280 self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
1281 if (cc->IsUsingReadBarrierEntrypoints()) {
1282 self->SetReadBarrierEntrypoints();
1283 }
1284 self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
1285 }
1286 self->NotifyInTheadList();
1287 }
1288
Unregister(Thread * self)1289 void ThreadList::Unregister(Thread* self) {
1290 DCHECK_EQ(self, Thread::Current());
1291 CHECK_NE(self->GetState(), kRunnable);
1292 Locks::mutator_lock_->AssertNotHeld(self);
1293
1294 VLOG(threads) << "ThreadList::Unregister() " << *self;
1295
1296 {
1297 MutexLock mu(self, *Locks::thread_list_lock_);
1298 ++unregistering_count_;
1299 }
1300
1301 // Any time-consuming destruction, plus anything that can call back into managed code or
1302 // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1303 // causes the threads to join. It is important to do this after incrementing unregistering_count_
1304 // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1305 // list.
1306 self->Destroy();
1307
1308 // If tracing, remember thread id and name before thread exits.
1309 Trace::StoreExitingThreadInfo(self);
1310
1311 uint32_t thin_lock_id = self->GetThreadId();
1312 while (true) {
1313 // Remove and delete the Thread* while holding the thread_list_lock_ and
1314 // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1315 // Note: deliberately not using MutexLock that could hold a stale self pointer.
1316 {
1317 MutexLock mu(self, *Locks::thread_list_lock_);
1318 if (!Contains(self)) {
1319 std::string thread_name;
1320 self->GetThreadName(thread_name);
1321 std::ostringstream os;
1322 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
1323 LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1324 break;
1325 } else {
1326 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1327 if (!self->IsSuspended()) {
1328 list_.remove(self);
1329 break;
1330 }
1331 }
1332 }
1333 // In the case where we are not suspended yet, sleep to leave other threads time to execute.
1334 // This is important if there are realtime threads. b/111277984
1335 usleep(1);
1336 // We failed to remove the thread due to a suspend request, loop and try again.
1337 }
1338 delete self;
1339
1340 // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1341 // temporarily have multiple threads with the same thread id. When this occurs, it causes
1342 // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1343 ReleaseThreadId(nullptr, thin_lock_id);
1344
1345 // Clear the TLS data, so that the underlying native thread is recognizably detached.
1346 // (It may wish to reattach later.)
1347 #ifdef __BIONIC__
1348 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1349 #else
1350 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1351 Thread::self_tls_ = nullptr;
1352 #endif
1353
1354 // Signal that a thread just detached.
1355 MutexLock mu(nullptr, *Locks::thread_list_lock_);
1356 --unregistering_count_;
1357 Locks::thread_exit_cond_->Broadcast(nullptr);
1358 }
1359
ForEach(void (* callback)(Thread *,void *),void * context)1360 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1361 for (const auto& thread : list_) {
1362 callback(thread, context);
1363 }
1364 }
1365
VisitRootsForSuspendedThreads(RootVisitor * visitor)1366 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
1367 Thread* const self = Thread::Current();
1368 std::vector<Thread*> threads_to_visit;
1369
1370 // Tell threads to suspend and copy them into list.
1371 {
1372 MutexLock mu(self, *Locks::thread_list_lock_);
1373 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1374 for (Thread* thread : list_) {
1375 bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1376 DCHECK(suspended);
1377 if (thread == self || thread->IsSuspended()) {
1378 threads_to_visit.push_back(thread);
1379 } else {
1380 bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1381 DCHECK(resumed);
1382 }
1383 }
1384 }
1385
1386 // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
1387 // order violations.
1388 for (Thread* thread : threads_to_visit) {
1389 thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
1390 }
1391
1392 // Restore suspend counts.
1393 {
1394 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1395 for (Thread* thread : threads_to_visit) {
1396 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1397 DCHECK(updated);
1398 }
1399 }
1400 }
1401
VisitRoots(RootVisitor * visitor,VisitRootFlags flags) const1402 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
1403 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1404 for (const auto& thread : list_) {
1405 thread->VisitRoots(visitor, flags);
1406 }
1407 }
1408
SweepInterpreterCaches(IsMarkedVisitor * visitor) const1409 void ThreadList::SweepInterpreterCaches(IsMarkedVisitor* visitor) const {
1410 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1411 for (const auto& thread : list_) {
1412 thread->SweepInterpreterCache(visitor);
1413 }
1414 }
1415
VisitReflectiveTargets(ReflectiveValueVisitor * visitor) const1416 void ThreadList::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) const {
1417 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1418 for (const auto& thread : list_) {
1419 thread->VisitReflectiveTargets(visitor);
1420 }
1421 }
1422
AllocThreadId(Thread * self)1423 uint32_t ThreadList::AllocThreadId(Thread* self) {
1424 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1425 for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1426 if (!allocated_ids_[i]) {
1427 allocated_ids_.set(i);
1428 return i + 1; // Zero is reserved to mean "invalid".
1429 }
1430 }
1431 LOG(FATAL) << "Out of internal thread ids";
1432 UNREACHABLE();
1433 }
1434
ReleaseThreadId(Thread * self,uint32_t id)1435 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1436 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1437 --id; // Zero is reserved to mean "invalid".
1438 DCHECK(allocated_ids_[id]) << id;
1439 allocated_ids_.reset(id);
1440 }
1441
ScopedSuspendAll(const char * cause,bool long_suspend)1442 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1443 Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1444 }
1445
~ScopedSuspendAll()1446 ScopedSuspendAll::~ScopedSuspendAll() {
1447 Runtime::Current()->GetThreadList()->ResumeAll();
1448 }
1449
1450 } // namespace art
1451