1 /*
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/rtp_rtcp/source/flexfec_header_reader_writer.h"
12
13 #include <string.h>
14
15 #include "api/scoped_refptr.h"
16 #include "modules/rtp_rtcp/source/byte_io.h"
17 #include "modules/rtp_rtcp/source/forward_error_correction_internal.h"
18 #include "rtc_base/checks.h"
19 #include "rtc_base/logging.h"
20
21 namespace webrtc {
22
23 namespace {
24
25 // Maximum number of media packets that can be protected in one batch.
26 constexpr size_t kMaxMediaPackets = 48; // Since we are reusing ULPFEC masks.
27
28 // Maximum number of FEC packets stored inside ForwardErrorCorrection.
29 constexpr size_t kMaxFecPackets = kMaxMediaPackets;
30
31 // Size (in bytes) of packet masks, given number of K bits set.
32 constexpr size_t kFlexfecPacketMaskSizes[] = {2, 6, 14};
33
34 // Size (in bytes) of part of header which is not packet mask specific.
35 constexpr size_t kBaseHeaderSize = 12;
36
37 // Size (in bytes) of part of header which is stream specific.
38 constexpr size_t kStreamSpecificHeaderSize = 6;
39
40 // Size (in bytes) of header, given the single stream packet mask size, i.e.
41 // the number of K-bits set.
42 constexpr size_t kHeaderSizes[] = {
43 kBaseHeaderSize + kStreamSpecificHeaderSize + kFlexfecPacketMaskSizes[0],
44 kBaseHeaderSize + kStreamSpecificHeaderSize + kFlexfecPacketMaskSizes[1],
45 kBaseHeaderSize + kStreamSpecificHeaderSize + kFlexfecPacketMaskSizes[2]};
46
47 // We currently only support single-stream protection.
48 // TODO(brandtr): Update this when we support multistream protection.
49 constexpr uint8_t kSsrcCount = 1;
50
51 // There are three reserved bytes that MUST be set to zero in the header.
52 constexpr uint32_t kReservedBits = 0;
53
54 // TODO(brandtr): Update this when we support multistream protection.
55 constexpr size_t kPacketMaskOffset =
56 kBaseHeaderSize + kStreamSpecificHeaderSize;
57
58 // Here we count the K-bits as belonging to the packet mask.
59 // This can be used in conjunction with FlexfecHeaderWriter::MinPacketMaskSize,
60 // which calculates a bound on the needed packet mask size including K-bits,
61 // given a packet mask without K-bits.
FlexfecHeaderSize(size_t packet_mask_size)62 size_t FlexfecHeaderSize(size_t packet_mask_size) {
63 RTC_DCHECK_LE(packet_mask_size, kFlexfecPacketMaskSizes[2]);
64 if (packet_mask_size <= kFlexfecPacketMaskSizes[0]) {
65 return kHeaderSizes[0];
66 } else if (packet_mask_size <= kFlexfecPacketMaskSizes[1]) {
67 return kHeaderSizes[1];
68 }
69 return kHeaderSizes[2];
70 }
71
72 } // namespace
73
FlexfecHeaderReader()74 FlexfecHeaderReader::FlexfecHeaderReader()
75 : FecHeaderReader(kMaxMediaPackets, kMaxFecPackets) {}
76
77 FlexfecHeaderReader::~FlexfecHeaderReader() = default;
78
79 // TODO(brandtr): Update this function when we support flexible masks,
80 // retransmissions, and/or several protected SSRCs.
ReadFecHeader(ForwardErrorCorrection::ReceivedFecPacket * fec_packet) const81 bool FlexfecHeaderReader::ReadFecHeader(
82 ForwardErrorCorrection::ReceivedFecPacket* fec_packet) const {
83 if (fec_packet->pkt->data.size() <=
84 kBaseHeaderSize + kStreamSpecificHeaderSize) {
85 RTC_LOG(LS_WARNING) << "Discarding truncated FlexFEC packet.";
86 return false;
87 }
88 uint8_t* const data = fec_packet->pkt->data.data();
89 bool r_bit = (data[0] & 0x80) != 0;
90 if (r_bit) {
91 RTC_LOG(LS_INFO)
92 << "FlexFEC packet with retransmission bit set. We do not yet "
93 "support this, thus discarding the packet.";
94 return false;
95 }
96 bool f_bit = (data[0] & 0x40) != 0;
97 if (f_bit) {
98 RTC_LOG(LS_INFO)
99 << "FlexFEC packet with inflexible generator matrix. We do "
100 "not yet support this, thus discarding packet.";
101 return false;
102 }
103 uint8_t ssrc_count = ByteReader<uint8_t>::ReadBigEndian(&data[8]);
104 if (ssrc_count != 1) {
105 RTC_LOG(LS_INFO)
106 << "FlexFEC packet protecting multiple media SSRCs. We do not "
107 "yet support this, thus discarding packet.";
108 return false;
109 }
110 uint32_t protected_ssrc = ByteReader<uint32_t>::ReadBigEndian(&data[12]);
111 uint16_t seq_num_base = ByteReader<uint16_t>::ReadBigEndian(&data[16]);
112
113 // Parse the FlexFEC packet mask and remove the interleaved K-bits.
114 // (See FEC header schematic in flexfec_header_reader_writer.h.)
115 // We store the packed packet mask in-band, which "destroys" the standards
116 // compliance of the header. That is fine though, since the code that
117 // reads from the header (from this point and onwards) is aware of this.
118 // TODO(brandtr): When the FEC packet classes have been refactored, store
119 // the packed packet masks out-of-band, thus leaving the FlexFEC header as is.
120 //
121 // We treat the mask parts as unsigned integers with host order endianness
122 // in order to simplify the bit shifting between bytes.
123 if (fec_packet->pkt->data.size() < kHeaderSizes[0]) {
124 RTC_LOG(LS_WARNING) << "Discarding truncated FlexFEC packet.";
125 return false;
126 }
127 uint8_t* const packet_mask = data + kPacketMaskOffset;
128 bool k_bit0 = (packet_mask[0] & 0x80) != 0;
129 uint16_t mask_part0 = ByteReader<uint16_t>::ReadBigEndian(&packet_mask[0]);
130 // Shift away K-bit 0, implicitly clearing the last bit.
131 mask_part0 <<= 1;
132 ByteWriter<uint16_t>::WriteBigEndian(&packet_mask[0], mask_part0);
133 size_t packet_mask_size;
134 if (k_bit0) {
135 // The first K-bit is set, and the packet mask is thus only 2 bytes long.
136 // We have now read the entire FEC header, and the rest of the packet
137 // is payload.
138 packet_mask_size = kFlexfecPacketMaskSizes[0];
139 } else {
140 if (fec_packet->pkt->data.size() < kHeaderSizes[1]) {
141 return false;
142 }
143 bool k_bit1 = (packet_mask[2] & 0x80) != 0;
144 // We have already shifted the first two bytes of the packet mask one step
145 // to the left, thus removing K-bit 0. We will now shift the next four bytes
146 // of the packet mask two steps to the left. (One step for the removed
147 // K-bit 0, and one step for the to be removed K-bit 1).
148 uint8_t bit15 = (packet_mask[2] >> 6) & 0x01;
149 packet_mask[1] |= bit15;
150 uint32_t mask_part1 = ByteReader<uint32_t>::ReadBigEndian(&packet_mask[2]);
151 // Shift away K-bit 1 and bit 15, implicitly clearing the last two bits.
152 mask_part1 <<= 2;
153 ByteWriter<uint32_t>::WriteBigEndian(&packet_mask[2], mask_part1);
154 if (k_bit1) {
155 // The first K-bit is clear, but the second K-bit is set. The packet
156 // mask is thus 6 bytes long. We have now read the entire FEC header,
157 // and the rest of the packet is payload.
158 packet_mask_size = kFlexfecPacketMaskSizes[1];
159 } else {
160 if (fec_packet->pkt->data.size() < kHeaderSizes[2]) {
161 RTC_LOG(LS_WARNING) << "Discarding truncated FlexFEC packet.";
162 return false;
163 }
164 bool k_bit2 = (packet_mask[6] & 0x80) != 0;
165 if (k_bit2) {
166 // The first and second K-bits are clear, but the third K-bit is set.
167 // The packet mask is thus 14 bytes long. We have now read the entire
168 // FEC header, and the rest of the packet is payload.
169 packet_mask_size = kFlexfecPacketMaskSizes[2];
170 } else {
171 RTC_LOG(LS_WARNING)
172 << "Discarding FlexFEC packet with malformed header.";
173 return false;
174 }
175 // At this point, K-bits 0 and 1 have been removed, and the front-most
176 // part of the FlexFEC packet mask has been packed accordingly. We will
177 // now shift the remaning part of the packet mask three steps to the left.
178 // This corresponds to the (in total) three K-bits, which have been
179 // removed.
180 uint8_t tail_bits = (packet_mask[6] >> 5) & 0x03;
181 packet_mask[5] |= tail_bits;
182 uint64_t mask_part2 =
183 ByteReader<uint64_t>::ReadBigEndian(&packet_mask[6]);
184 // Shift away K-bit 2, bit 46, and bit 47, implicitly clearing the last
185 // three bits.
186 mask_part2 <<= 3;
187 ByteWriter<uint64_t>::WriteBigEndian(&packet_mask[6], mask_part2);
188 }
189 }
190
191 // Store "ULPFECized" packet mask info.
192 fec_packet->fec_header_size = FlexfecHeaderSize(packet_mask_size);
193 fec_packet->protected_ssrc = protected_ssrc;
194 fec_packet->seq_num_base = seq_num_base;
195 fec_packet->packet_mask_offset = kPacketMaskOffset;
196 fec_packet->packet_mask_size = packet_mask_size;
197
198 // In FlexFEC, all media packets are protected in their entirety.
199 fec_packet->protection_length =
200 fec_packet->pkt->data.size() - fec_packet->fec_header_size;
201
202 return true;
203 }
204
FlexfecHeaderWriter()205 FlexfecHeaderWriter::FlexfecHeaderWriter()
206 : FecHeaderWriter(kMaxMediaPackets, kMaxFecPackets, kHeaderSizes[2]) {}
207
208 FlexfecHeaderWriter::~FlexfecHeaderWriter() = default;
209
MinPacketMaskSize(const uint8_t * packet_mask,size_t packet_mask_size) const210 size_t FlexfecHeaderWriter::MinPacketMaskSize(const uint8_t* packet_mask,
211 size_t packet_mask_size) const {
212 if (packet_mask_size == kUlpfecPacketMaskSizeLBitClear &&
213 (packet_mask[1] & 0x01) == 0) {
214 // Packet mask is 16 bits long, with bit 15 clear.
215 // It can be used as is.
216 return kFlexfecPacketMaskSizes[0];
217 } else if (packet_mask_size == kUlpfecPacketMaskSizeLBitClear) {
218 // Packet mask is 16 bits long, with bit 15 set.
219 // We must expand the packet mask with zeros in the FlexFEC header.
220 return kFlexfecPacketMaskSizes[1];
221 } else if (packet_mask_size == kUlpfecPacketMaskSizeLBitSet &&
222 (packet_mask[5] & 0x03) == 0) {
223 // Packet mask is 48 bits long, with bits 46 and 47 clear.
224 // It can be used as is.
225 return kFlexfecPacketMaskSizes[1];
226 } else if (packet_mask_size == kUlpfecPacketMaskSizeLBitSet) {
227 // Packet mask is 48 bits long, with at least one of bits 46 and 47 set.
228 // We must expand it with zeros.
229 return kFlexfecPacketMaskSizes[2];
230 }
231 RTC_NOTREACHED() << "Incorrect packet mask size: " << packet_mask_size << ".";
232 return kFlexfecPacketMaskSizes[2];
233 }
234
FecHeaderSize(size_t packet_mask_size) const235 size_t FlexfecHeaderWriter::FecHeaderSize(size_t packet_mask_size) const {
236 return FlexfecHeaderSize(packet_mask_size);
237 }
238
239 // This function adapts the precomputed ULPFEC packet masks to the
240 // FlexFEC header standard. Note that the header size is computed by
241 // FecHeaderSize(), so in this function we can be sure that we are
242 // writing in space that is intended for the header.
243 //
244 // TODO(brandtr): Update this function when we support offset-based masks,
245 // retransmissions, and protecting multiple SSRCs.
FinalizeFecHeader(uint32_t media_ssrc,uint16_t seq_num_base,const uint8_t * packet_mask,size_t packet_mask_size,ForwardErrorCorrection::Packet * fec_packet) const246 void FlexfecHeaderWriter::FinalizeFecHeader(
247 uint32_t media_ssrc,
248 uint16_t seq_num_base,
249 const uint8_t* packet_mask,
250 size_t packet_mask_size,
251 ForwardErrorCorrection::Packet* fec_packet) const {
252 uint8_t* data = fec_packet->data.data();
253 data[0] &= 0x7f; // Clear R bit.
254 data[0] &= 0xbf; // Clear F bit.
255 ByteWriter<uint8_t>::WriteBigEndian(&data[8], kSsrcCount);
256 ByteWriter<uint32_t, 3>::WriteBigEndian(&data[9], kReservedBits);
257 ByteWriter<uint32_t>::WriteBigEndian(&data[12], media_ssrc);
258 ByteWriter<uint16_t>::WriteBigEndian(&data[16], seq_num_base);
259 // Adapt ULPFEC packet mask to FlexFEC header.
260 //
261 // We treat the mask parts as unsigned integers with host order endianness
262 // in order to simplify the bit shifting between bytes.
263 uint8_t* const written_packet_mask =
264 fec_packet->data.data() + kPacketMaskOffset;
265 if (packet_mask_size == kUlpfecPacketMaskSizeLBitSet) {
266 // The packet mask is 48 bits long.
267 uint16_t tmp_mask_part0 =
268 ByteReader<uint16_t>::ReadBigEndian(&packet_mask[0]);
269 uint32_t tmp_mask_part1 =
270 ByteReader<uint32_t>::ReadBigEndian(&packet_mask[2]);
271
272 tmp_mask_part0 >>= 1; // Shift, thus clearing K-bit 0.
273 ByteWriter<uint16_t>::WriteBigEndian(&written_packet_mask[0],
274 tmp_mask_part0);
275 tmp_mask_part1 >>= 2; // Shift, thus clearing K-bit 1 and bit 15.
276 ByteWriter<uint32_t>::WriteBigEndian(&written_packet_mask[2],
277 tmp_mask_part1);
278 bool bit15 = (packet_mask[1] & 0x01) != 0;
279 if (bit15)
280 written_packet_mask[2] |= 0x40; // Set bit 15.
281 bool bit46 = (packet_mask[5] & 0x02) != 0;
282 bool bit47 = (packet_mask[5] & 0x01) != 0;
283 if (!bit46 && !bit47) {
284 written_packet_mask[2] |= 0x80; // Set K-bit 1.
285 } else {
286 memset(&written_packet_mask[6], 0, 8); // Clear all trailing bits.
287 written_packet_mask[6] |= 0x80; // Set K-bit 2.
288 if (bit46)
289 written_packet_mask[6] |= 0x40; // Set bit 46.
290 if (bit47)
291 written_packet_mask[6] |= 0x20; // Set bit 47.
292 }
293 } else if (packet_mask_size == kUlpfecPacketMaskSizeLBitClear) {
294 // The packet mask is 16 bits long.
295 uint16_t tmp_mask_part0 =
296 ByteReader<uint16_t>::ReadBigEndian(&packet_mask[0]);
297
298 tmp_mask_part0 >>= 1; // Shift, thus clearing K-bit 0.
299 ByteWriter<uint16_t>::WriteBigEndian(&written_packet_mask[0],
300 tmp_mask_part0);
301 bool bit15 = (packet_mask[1] & 0x01) != 0;
302 if (!bit15) {
303 written_packet_mask[0] |= 0x80; // Set K-bit 0.
304 } else {
305 memset(&written_packet_mask[2], 0U, 4); // Clear all trailing bits.
306 written_packet_mask[2] |= 0x80; // Set K-bit 1.
307 written_packet_mask[2] |= 0x40; // Set bit 15.
308 }
309 } else {
310 RTC_NOTREACHED() << "Incorrect packet mask size: " << packet_mask_size
311 << ".";
312 }
313 }
314
315 } // namespace webrtc
316