1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "jit_memory_region.h"
18
19 #include <fcntl.h>
20 #include <unistd.h>
21
22 #include <android-base/unique_fd.h>
23 #include "base/bit_utils.h" // For RoundDown, RoundUp
24 #include "base/globals.h"
25 #include "base/logging.h" // For VLOG.
26 #include "base/membarrier.h"
27 #include "base/memfd.h"
28 #include "base/systrace.h"
29 #include "gc/allocator/dlmalloc.h"
30 #include "jit/jit_scoped_code_cache_write.h"
31 #include "oat_quick_method_header.h"
32 #include "palette/palette.h"
33
34 using android::base::unique_fd;
35
36 namespace art {
37 namespace jit {
38
39 // Data cache will be half of the capacity
40 // Code cache will be the other half of the capacity.
41 // TODO: Make this variable?
42 static constexpr size_t kCodeAndDataCapacityDivider = 2;
43
Initialize(size_t initial_capacity,size_t max_capacity,bool rwx_memory_allowed,bool is_zygote,std::string * error_msg)44 bool JitMemoryRegion::Initialize(size_t initial_capacity,
45 size_t max_capacity,
46 bool rwx_memory_allowed,
47 bool is_zygote,
48 std::string* error_msg) {
49 ScopedTrace trace(__PRETTY_FUNCTION__);
50
51 CHECK_GE(max_capacity, initial_capacity);
52 CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB";
53 // Align both capacities to page size, as that's the unit mspaces use.
54 initial_capacity_ = RoundDown(initial_capacity, 2 * kPageSize);
55 max_capacity_ = RoundDown(max_capacity, 2 * kPageSize);
56 current_capacity_ = initial_capacity,
57 data_end_ = initial_capacity / kCodeAndDataCapacityDivider;
58 exec_end_ = initial_capacity - data_end_;
59
60 const size_t capacity = max_capacity_;
61 const size_t data_capacity = capacity / kCodeAndDataCapacityDivider;
62 const size_t exec_capacity = capacity - data_capacity;
63
64 // File descriptor enabling dual-view mapping of code section.
65 unique_fd mem_fd;
66
67 if (is_zygote) {
68 // Because we are not going to GC code generated by the zygote, just use all available.
69 current_capacity_ = max_capacity;
70 mem_fd = unique_fd(CreateZygoteMemory(capacity, error_msg));
71 if (mem_fd.get() < 0) {
72 return false;
73 }
74 } else {
75 // Bionic supports memfd_create, but the call may fail on older kernels.
76 mem_fd = unique_fd(art::memfd_create("jit-cache", /* flags= */ 0));
77 if (mem_fd.get() < 0) {
78 std::ostringstream oss;
79 oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno);
80 if (!rwx_memory_allowed) {
81 // Without using RWX page permissions, the JIT can not fallback to single mapping as it
82 // requires tranitioning the code pages to RWX for updates.
83 *error_msg = oss.str();
84 return false;
85 }
86 VLOG(jit) << oss.str();
87 } else if (ftruncate(mem_fd, capacity) != 0) {
88 std::ostringstream oss;
89 oss << "Failed to initialize memory file: " << strerror(errno);
90 *error_msg = oss.str();
91 return false;
92 }
93 }
94
95 std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache";
96 std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache";
97
98 std::string error_str;
99 // Map name specific for android_os_Debug.cpp accounting.
100 // Map in low 4gb to simplify accessing root tables for x86_64.
101 // We could do PC-relative addressing to avoid this problem, but that
102 // would require reserving code and data area before submitting, which
103 // means more windows for the code memory to be RWX.
104 int base_flags;
105 MemMap data_pages;
106 if (mem_fd.get() >= 0) {
107 // Dual view of JIT code cache case. Create an initial mapping of data pages large enough
108 // for data and non-writable view of JIT code pages. We use the memory file descriptor to
109 // enable dual mapping - we'll create a second mapping using the descriptor below. The
110 // mappings will look like:
111 //
112 // VA PA
113 //
114 // +---------------+
115 // | non exec code |\
116 // +---------------+ \
117 // | writable data |\ \
118 // +---------------+ \ \
119 // : :\ \ \
120 // +---------------+.\.\.+---------------+
121 // | exec code | \ \| code |
122 // +---------------+...\.+---------------+
123 // | readonly data | \| data |
124 // +---------------+.....+---------------+
125 //
126 // In this configuration code updates are written to the non-executable view of the code
127 // cache, and the executable view of the code cache has fixed RX memory protections.
128 //
129 // This memory needs to be mapped shared as the code portions will have two mappings.
130 //
131 // Additionally, the zyzote will create a dual view of the data portion of
132 // the cache. This mapping will be read-only, whereas the second mapping
133 // will be writable.
134 base_flags = MAP_SHARED;
135 data_pages = MemMap::MapFile(
136 data_capacity + exec_capacity,
137 kProtR,
138 base_flags,
139 mem_fd,
140 /* start= */ 0,
141 /* low_4gb= */ true,
142 data_cache_name.c_str(),
143 &error_str);
144 } else {
145 // Single view of JIT code cache case. Create an initial mapping of data pages large enough
146 // for data and JIT code pages. The mappings will look like:
147 //
148 // VA PA
149 //
150 // +---------------+...+---------------+
151 // | exec code | | code |
152 // +---------------+...+---------------+
153 // | data | | data |
154 // +---------------+...+---------------+
155 //
156 // In this configuration code updates are written to the executable view of the code cache,
157 // and the executable view of the code cache transitions RX to RWX for the update and then
158 // back to RX after the update.
159 base_flags = MAP_PRIVATE | MAP_ANON;
160 data_pages = MemMap::MapAnonymous(
161 data_cache_name.c_str(),
162 data_capacity + exec_capacity,
163 kProtRW,
164 /* low_4gb= */ true,
165 &error_str);
166 }
167
168 if (!data_pages.IsValid()) {
169 std::ostringstream oss;
170 oss << "Failed to create read write cache: " << error_str << " size=" << capacity;
171 *error_msg = oss.str();
172 return false;
173 }
174
175 MemMap exec_pages;
176 MemMap non_exec_pages;
177 MemMap writable_data_pages;
178 if (exec_capacity > 0) {
179 uint8_t* const divider = data_pages.Begin() + data_capacity;
180 // Set initial permission for executable view to catch any SELinux permission problems early
181 // (for processes that cannot map WX pages). Otherwise, this region does not need to be
182 // executable as there is no code in the cache yet.
183 exec_pages = data_pages.RemapAtEnd(divider,
184 exec_cache_name.c_str(),
185 kProtRX,
186 base_flags | MAP_FIXED,
187 mem_fd.get(),
188 (mem_fd.get() >= 0) ? data_capacity : 0,
189 &error_str);
190 if (!exec_pages.IsValid()) {
191 std::ostringstream oss;
192 oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity;
193 *error_msg = oss.str();
194 return false;
195 }
196
197 if (mem_fd.get() >= 0) {
198 // For dual view, create the secondary view of code memory used for updating code. This view
199 // is never executable.
200 std::string name = exec_cache_name + "-rw";
201 non_exec_pages = MemMap::MapFile(exec_capacity,
202 kIsDebugBuild ? kProtR : kProtRW,
203 base_flags,
204 mem_fd,
205 /* start= */ data_capacity,
206 /* low_4GB= */ false,
207 name.c_str(),
208 &error_str);
209 if (!non_exec_pages.IsValid()) {
210 static const char* kFailedNxView = "Failed to map non-executable view of JIT code cache";
211 if (rwx_memory_allowed) {
212 // Log and continue as single view JIT (requires RWX memory).
213 VLOG(jit) << kFailedNxView;
214 } else {
215 *error_msg = kFailedNxView;
216 return false;
217 }
218 }
219 // Create a dual view of the data cache.
220 name = data_cache_name + "-rw";
221 writable_data_pages = MemMap::MapFile(data_capacity,
222 kProtRW,
223 base_flags,
224 mem_fd,
225 /* start= */ 0,
226 /* low_4GB= */ false,
227 name.c_str(),
228 &error_str);
229 if (!writable_data_pages.IsValid()) {
230 std::ostringstream oss;
231 oss << "Failed to create dual data view: " << error_str;
232 *error_msg = oss.str();
233 return false;
234 }
235 if (writable_data_pages.MadviseDontFork() != 0) {
236 *error_msg = "Failed to madvise dont fork the writable data view";
237 return false;
238 }
239 if (non_exec_pages.MadviseDontFork() != 0) {
240 *error_msg = "Failed to madvise dont fork the writable code view";
241 return false;
242 }
243 // Now that we have created the writable and executable mappings, prevent creating any new
244 // ones.
245 if (is_zygote && !ProtectZygoteMemory(mem_fd.get(), error_msg)) {
246 return false;
247 }
248 }
249 } else {
250 // Profiling only. No memory for code required.
251 }
252
253 data_pages_ = std::move(data_pages);
254 exec_pages_ = std::move(exec_pages);
255 non_exec_pages_ = std::move(non_exec_pages);
256 writable_data_pages_ = std::move(writable_data_pages);
257
258 VLOG(jit) << "Created JitMemoryRegion"
259 << ": data_pages=" << reinterpret_cast<void*>(data_pages_.Begin())
260 << ", exec_pages=" << reinterpret_cast<void*>(exec_pages_.Begin())
261 << ", non_exec_pages=" << reinterpret_cast<void*>(non_exec_pages_.Begin())
262 << ", writable_data_pages=" << reinterpret_cast<void*>(writable_data_pages_.Begin());
263
264 // Now that the pages are initialized, initialize the spaces.
265
266 // Initialize the data heap.
267 data_mspace_ = create_mspace_with_base(
268 HasDualDataMapping() ? writable_data_pages_.Begin() : data_pages_.Begin(),
269 data_end_,
270 /* locked= */ false);
271 CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed";
272
273 // Allow mspace to use the full data capacity.
274 // It will still only use as litle memory as possible and ask for MoreCore as needed.
275 CHECK(IsAlignedParam(data_capacity, kPageSize));
276 mspace_set_footprint_limit(data_mspace_, data_capacity);
277
278 // Initialize the code heap.
279 MemMap* code_heap = nullptr;
280 if (non_exec_pages_.IsValid()) {
281 code_heap = &non_exec_pages_;
282 } else if (exec_pages_.IsValid()) {
283 code_heap = &exec_pages_;
284 }
285 if (code_heap != nullptr) {
286 // Make all pages reserved for the code heap writable. The mspace allocator, that manages the
287 // heap, will take and initialize pages in create_mspace_with_base().
288 {
289 ScopedCodeCacheWrite scc(*this);
290 exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/);
291 }
292 CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed";
293 SetFootprintLimit(current_capacity_);
294 } else {
295 exec_mspace_ = nullptr;
296 SetFootprintLimit(current_capacity_);
297 }
298 return true;
299 }
300
SetFootprintLimit(size_t new_footprint)301 void JitMemoryRegion::SetFootprintLimit(size_t new_footprint) {
302 size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider;
303 DCHECK(IsAlignedParam(data_space_footprint, kPageSize));
304 DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint);
305 if (HasCodeMapping()) {
306 ScopedCodeCacheWrite scc(*this);
307 mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint);
308 }
309 }
310
IncreaseCodeCacheCapacity()311 bool JitMemoryRegion::IncreaseCodeCacheCapacity() {
312 if (current_capacity_ == max_capacity_) {
313 return false;
314 }
315
316 // Double the capacity if we're below 1MB, or increase it by 1MB if
317 // we're above.
318 if (current_capacity_ < 1 * MB) {
319 current_capacity_ *= 2;
320 } else {
321 current_capacity_ += 1 * MB;
322 }
323 if (current_capacity_ > max_capacity_) {
324 current_capacity_ = max_capacity_;
325 }
326
327 VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_);
328
329 SetFootprintLimit(current_capacity_);
330
331 return true;
332 }
333
334 // NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock
335 // is already held.
MoreCore(const void * mspace,intptr_t increment)336 void* JitMemoryRegion::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS {
337 if (mspace == exec_mspace_) {
338 CHECK(exec_mspace_ != nullptr);
339 const MemMap* const code_pages = GetUpdatableCodeMapping();
340 void* result = code_pages->Begin() + exec_end_;
341 exec_end_ += increment;
342 return result;
343 } else {
344 CHECK_EQ(data_mspace_, mspace);
345 const MemMap* const writable_data_pages = GetWritableDataMapping();
346 void* result = writable_data_pages->Begin() + data_end_;
347 data_end_ += increment;
348 return result;
349 }
350 }
351
CommitCode(ArrayRef<const uint8_t> reserved_code,ArrayRef<const uint8_t> code,const uint8_t * stack_map,bool has_should_deoptimize_flag)352 const uint8_t* JitMemoryRegion::CommitCode(ArrayRef<const uint8_t> reserved_code,
353 ArrayRef<const uint8_t> code,
354 const uint8_t* stack_map,
355 bool has_should_deoptimize_flag) {
356 DCHECK(IsInExecSpace(reserved_code.data()));
357 ScopedCodeCacheWrite scc(*this);
358
359 size_t alignment = GetInstructionSetAlignment(kRuntimeISA);
360 size_t header_size = OatQuickMethodHeader::InstructionAlignedSize();
361 size_t total_size = header_size + code.size();
362
363 // Each allocation should be on its own set of cache lines.
364 // `total_size` covers the OatQuickMethodHeader, the JIT generated machine code,
365 // and any alignment padding.
366 DCHECK_GT(total_size, header_size);
367 DCHECK_LE(total_size, reserved_code.size());
368 uint8_t* x_memory = const_cast<uint8_t*>(reserved_code.data());
369 uint8_t* w_memory = const_cast<uint8_t*>(GetNonExecutableAddress(x_memory));
370 // Ensure the header ends up at expected instruction alignment.
371 DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(w_memory + header_size), alignment);
372 const uint8_t* result = x_memory + header_size;
373
374 // Write the code.
375 std::copy(code.begin(), code.end(), w_memory + header_size);
376
377 // Write the header.
378 OatQuickMethodHeader* method_header =
379 OatQuickMethodHeader::FromCodePointer(w_memory + header_size);
380 new (method_header) OatQuickMethodHeader((stack_map != nullptr) ? result - stack_map : 0u);
381 if (has_should_deoptimize_flag) {
382 method_header->SetHasShouldDeoptimizeFlag();
383 }
384
385 // Both instruction and data caches need flushing to the point of unification where both share
386 // a common view of memory. Flushing the data cache ensures the dirty cachelines from the
387 // newly added code are written out to the point of unification. Flushing the instruction
388 // cache ensures the newly written code will be fetched from the point of unification before
389 // use. Memory in the code cache is re-cycled as code is added and removed. The flushes
390 // prevent stale code from residing in the instruction cache.
391 //
392 // Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels
393 // may trigger a segfault if a page fault occurs when requesting a cache maintenance
394 // operation. This is a kernel bug that we need to work around until affected devices
395 // (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed.
396 //
397 // For reference, this behavior is caused by this commit:
398 // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c
399 //
400 bool cache_flush_success = true;
401 if (HasDualCodeMapping()) {
402 // Flush d-cache for the non-executable mapping.
403 cache_flush_success = FlushCpuCaches(w_memory, w_memory + total_size);
404 }
405
406 // Invalidate i-cache for the executable mapping.
407 if (cache_flush_success) {
408 cache_flush_success = FlushCpuCaches(x_memory, x_memory + total_size);
409 }
410
411 // If flushing the cache has failed, reject the allocation because we can't guarantee
412 // correctness of the instructions present in the processor caches.
413 if (!cache_flush_success) {
414 PLOG(ERROR) << "Cache flush failed triggering code allocation failure";
415 return nullptr;
416 }
417
418 // Ensure CPU instruction pipelines are flushed for all cores. This is necessary for
419 // correctness as code may still be in instruction pipelines despite the i-cache flush. It is
420 // not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB
421 // shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to
422 // notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have
423 // hardware support that broadcasts TLB invalidations and so their kernels have no software
424 // based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to
425 // address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on
426 // platforms lacking the appropriate support.
427 art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore);
428
429 return result;
430 }
431
FillRootTable(uint8_t * roots_data,const std::vector<Handle<mirror::Object>> & roots)432 static void FillRootTable(uint8_t* roots_data, const std::vector<Handle<mirror::Object>>& roots)
433 REQUIRES(Locks::jit_lock_)
434 REQUIRES_SHARED(Locks::mutator_lock_) {
435 GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data);
436 const uint32_t length = roots.size();
437 // Put all roots in `roots_data`.
438 for (uint32_t i = 0; i < length; ++i) {
439 ObjPtr<mirror::Object> object = roots[i].Get();
440 gc_roots[i] = GcRoot<mirror::Object>(object);
441 }
442 // Store the length of the table at the end. This will allow fetching it from a stack_map
443 // pointer.
444 reinterpret_cast<uint32_t*>(roots_data)[length] = length;
445 }
446
CommitData(ArrayRef<const uint8_t> reserved_data,const std::vector<Handle<mirror::Object>> & roots,ArrayRef<const uint8_t> stack_map)447 bool JitMemoryRegion::CommitData(ArrayRef<const uint8_t> reserved_data,
448 const std::vector<Handle<mirror::Object>>& roots,
449 ArrayRef<const uint8_t> stack_map) {
450 DCHECK(IsInDataSpace(reserved_data.data()));
451 uint8_t* roots_data = GetWritableDataAddress(reserved_data.data());
452 size_t root_table_size = ComputeRootTableSize(roots.size());
453 uint8_t* stack_map_data = roots_data + root_table_size;
454 DCHECK_LE(root_table_size + stack_map.size(), reserved_data.size());
455 FillRootTable(roots_data, roots);
456 memcpy(stack_map_data, stack_map.data(), stack_map.size());
457 // Flush data cache, as compiled code references literals in it.
458 // TODO(oth): establish whether this is necessary.
459 if (UNLIKELY(!FlushCpuCaches(roots_data, roots_data + root_table_size + stack_map.size()))) {
460 VLOG(jit) << "Failed to flush data in CommitData";
461 return false;
462 }
463 return true;
464 }
465
AllocateCode(size_t size)466 const uint8_t* JitMemoryRegion::AllocateCode(size_t size) {
467 size_t alignment = GetInstructionSetAlignment(kRuntimeISA);
468 void* result = mspace_memalign(exec_mspace_, alignment, size);
469 if (UNLIKELY(result == nullptr)) {
470 return nullptr;
471 }
472 used_memory_for_code_ += mspace_usable_size(result);
473 return reinterpret_cast<uint8_t*>(GetExecutableAddress(result));
474 }
475
FreeCode(const uint8_t * code)476 void JitMemoryRegion::FreeCode(const uint8_t* code) {
477 code = GetNonExecutableAddress(code);
478 used_memory_for_code_ -= mspace_usable_size(code);
479 mspace_free(exec_mspace_, const_cast<uint8_t*>(code));
480 }
481
AllocateData(size_t data_size)482 const uint8_t* JitMemoryRegion::AllocateData(size_t data_size) {
483 void* result = mspace_malloc(data_mspace_, data_size);
484 if (UNLIKELY(result == nullptr)) {
485 return nullptr;
486 }
487 used_memory_for_data_ += mspace_usable_size(result);
488 return reinterpret_cast<uint8_t*>(GetNonWritableDataAddress(result));
489 }
490
FreeData(const uint8_t * data)491 void JitMemoryRegion::FreeData(const uint8_t* data) {
492 FreeWritableData(GetWritableDataAddress(data));
493 }
494
FreeWritableData(uint8_t * writable_data)495 void JitMemoryRegion::FreeWritableData(uint8_t* writable_data) REQUIRES(Locks::jit_lock_) {
496 used_memory_for_data_ -= mspace_usable_size(writable_data);
497 mspace_free(data_mspace_, writable_data);
498 }
499
500 #if defined(__BIONIC__) && defined(ART_TARGET)
501 // The code below only works on bionic on target.
502
CreateZygoteMemory(size_t capacity,std::string * error_msg)503 int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) {
504 if (CacheOperationsMaySegFault()) {
505 // Zygote JIT requires dual code mappings by design. We can only do this if the cache flush
506 // and invalidate instructions work without raising faults.
507 *error_msg = "Zygote memory only works with dual mappings";
508 return -1;
509 }
510 /* Check if kernel support exists, otherwise fall back to ashmem */
511 static const char* kRegionName = "jit-zygote-cache";
512 if (art::IsSealFutureWriteSupported()) {
513 int fd = art::memfd_create(kRegionName, MFD_ALLOW_SEALING);
514 if (fd == -1) {
515 std::ostringstream oss;
516 oss << "Failed to create zygote mapping: " << strerror(errno);
517 *error_msg = oss.str();
518 return -1;
519 }
520
521 if (ftruncate(fd, capacity) != 0) {
522 std::ostringstream oss;
523 oss << "Failed to create zygote mapping: " << strerror(errno);
524 *error_msg = oss.str();
525 return -1;
526 }
527
528 return fd;
529 }
530
531 LOG(INFO) << "Falling back to ashmem implementation for JIT zygote mapping";
532
533 int fd;
534 palette_status_t status = PaletteAshmemCreateRegion(kRegionName, capacity, &fd);
535 if (status != PALETTE_STATUS_OK) {
536 CHECK_EQ(status, PALETTE_STATUS_CHECK_ERRNO);
537 std::ostringstream oss;
538 oss << "Failed to create zygote mapping: " << strerror(errno);
539 *error_msg = oss.str();
540 return -1;
541 }
542 return fd;
543 }
544
ProtectZygoteMemory(int fd,std::string * error_msg)545 bool JitMemoryRegion::ProtectZygoteMemory(int fd, std::string* error_msg) {
546 if (art::IsSealFutureWriteSupported()) {
547 if (fcntl(fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL | F_SEAL_FUTURE_WRITE)
548 == -1) {
549 std::ostringstream oss;
550 oss << "Failed to protect zygote mapping: " << strerror(errno);
551 *error_msg = oss.str();
552 return false;
553 }
554 } else {
555 palette_status_t status = PaletteAshmemSetProtRegion(fd, PROT_READ);
556 if (status != PALETTE_STATUS_OK) {
557 CHECK_EQ(status, PALETTE_STATUS_CHECK_ERRNO);
558 std::ostringstream oss;
559 oss << "Failed to protect zygote mapping: " << strerror(errno);
560 *error_msg = oss.str();
561 return false;
562 }
563 }
564 return true;
565 }
566
567 #else
568
CreateZygoteMemory(size_t capacity,std::string * error_msg)569 int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) {
570 // To simplify host building, we don't rely on the latest memfd features.
571 LOG(WARNING) << "Returning un-sealable region on non-bionic";
572 static const char* kRegionName = "/jit-zygote-cache";
573 int fd = art::memfd_create(kRegionName, 0);
574 if (fd == -1) {
575 std::ostringstream oss;
576 oss << "Failed to create zygote mapping: " << strerror(errno);
577 *error_msg = oss.str();
578 return -1;
579 }
580 if (ftruncate(fd, capacity) != 0) {
581 std::ostringstream oss;
582 oss << "Failed to create zygote mapping: " << strerror(errno);
583 *error_msg = oss.str();
584 return -1;
585 }
586 return fd;
587 }
588
ProtectZygoteMemory(int fd ATTRIBUTE_UNUSED,std::string * error_msg ATTRIBUTE_UNUSED)589 bool JitMemoryRegion::ProtectZygoteMemory(int fd ATTRIBUTE_UNUSED,
590 std::string* error_msg ATTRIBUTE_UNUSED) {
591 return true;
592 }
593
594 #endif
595
596 } // namespace jit
597 } // namespace art
598