• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google LLC.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrVx_DEFINED
9 #define GrVx_DEFINED
10 
11 #include "include/core/SkTypes.h"
12 #include "include/private/SkVx.h"
13 
14 // grvx is Ganesh's addendum to skvx, Skia's SIMD library. Here we introduce functions that are
15 // approximate and/or have LSB differences from platform to platform (e.g., by using hardware FMAs
16 // when available). When a function is approximate, its error range is well documented and tested.
17 namespace grvx {
18 
19 // Allow floating point contraction. e.g., allow a*x + y to be compiled to a single FMA even though
20 // it introduces LSB differences on platforms that don't have an FMA instruction.
21 #if defined(__clang__)
22     #pragma STDC FP_CONTRACT ON
23 #endif
24 
25 // Use familiar type names and functions from SkSL and GLSL.
26 template<int N> using vec = skvx::Vec<N, float>;
27 using float2 = vec<2>;
28 using float4 = vec<4>;
29 
30 template<int N> using ivec = skvx::Vec<N, int32_t>;
31 using int2 = ivec<2>;
32 using int4 = ivec<4>;
33 
34 template<int N> using uvec = skvx::Vec<N, uint32_t>;
35 using uint2 = uvec<2>;
36 using uint4 = uvec<4>;
37 
dot(float2 a,float2 b)38 static SK_ALWAYS_INLINE float dot(float2 a, float2 b) {
39     float2 ab = a*b;
40     return ab[0] + ab[1];
41 }
42 
cross(float2 a,float2 b)43 static SK_ALWAYS_INLINE float cross(float2 a, float2 b) {
44     float2 x = a*skvx::shuffle<1,0>(b);
45     return x[0] - x[1];
46 }
47 
48 // Returns f*m + a. The actual implementation may or may not be fused, depending on hardware
49 // support. We call this method "fast_madd" to draw attention to the fact that the operation may
50 // give different results on different platforms.
fast_madd(vec<N> f,vec<N> m,vec<N> a)51 template<int N> SK_ALWAYS_INLINE vec<N> fast_madd(vec<N> f, vec<N> m, vec<N> a) {
52 #if FP_FAST_FMAF
53     return skvx::fma(f,m,a);
54 #else
55     return f*m + a;
56 #endif
57 }
58 
59 // Approximates the inverse cosine of x within 0.96 degrees using the rational polynomial:
60 //
61 //     acos(x) ~= (bx^3 + ax) / (dx^4 + cx^2 + 1) + pi/2
62 //
63 // See: https://stackoverflow.com/a/36387954
64 //
65 // For a proof of max error, see the "grvx_approx_acos" unit test.
66 //
67 // NOTE: This function deviates immediately from pi and 0 outside -1 and 1. (The derivatives are
68 // infinite at -1 and 1). So the input must still be clamped between -1 and 1.
69 #define GRVX_APPROX_ACOS_MAX_ERROR SkDegreesToRadians(.96f)
approx_acos(vec<N> x)70 template<int N> SK_ALWAYS_INLINE vec<N> approx_acos(vec<N> x) {
71     constexpr static float a = -0.939115566365855f;
72     constexpr static float b =  0.9217841528914573f;
73     constexpr static float c = -1.2845906244690837f;
74     constexpr static float d =  0.295624144969963174f;
75     constexpr static float pi_over_2 = 1.5707963267948966f;
76     vec<N> xx = x*x;
77     vec<N> numer = fast_madd<N>(b,xx,a);
78     vec<N> denom = fast_madd<N>(xx, fast_madd<N>(d,xx,c), 1);
79     return fast_madd<N>(x, numer/denom, pi_over_2);
80 }
81 
82 // Approximates the angle between vectors a and b within .96 degrees (GRVX_FAST_ACOS_MAX_ERROR).
83 // a (and b) represent "N" (Nx2/2) 2d vectors in SIMD, with the x values found in a.lo, and the
84 // y values in a.hi.
85 //
86 // Due to fp32 overflow, this method is only valid for magnitudes in the range (2^-31, 2^31)
87 // exclusive. Results are undefined if the inputs fall outside this range.
88 //
89 // NOTE: If necessary, we can extend our valid range to 2^(+/-63) by normalizing a and b separately.
90 // i.e.: "cosTheta = dot(a,b) / sqrt(dot(a,a)) / sqrt(dot(b,b))".
91 template<int Nx2>
approx_angle_between_vectors(vec<Nx2> a,vec<Nx2> b)92 SK_ALWAYS_INLINE vec<Nx2/2> approx_angle_between_vectors(vec<Nx2> a, vec<Nx2> b) {
93     auto aa=a*a, bb=b*b, ab=a*b;
94     auto cosTheta = (ab.lo + ab.hi) / skvx::sqrt((aa.lo + aa.hi) * (bb.lo + bb.hi));
95     // Clamp cosTheta such that if it is NaN (e.g., if a or b was 0), then we return acos(1) = 0.
96     cosTheta = skvx::max(skvx::min(1, cosTheta), -1);
97     return approx_acos(cosTheta);
98 }
99 
100 // De-interleaving load of 4 vectors.
101 //
102 // WARNING: These are really only supported well on NEON. Consider restructuring your data before
103 // resorting to these methods.
104 template<typename T>
strided_load4(const T * v,skvx::Vec<1,T> & a,skvx::Vec<1,T> & b,skvx::Vec<1,T> & c,skvx::Vec<1,T> & d)105 SK_ALWAYS_INLINE void strided_load4(const T* v, skvx::Vec<1,T>& a, skvx::Vec<1,T>& b,
106                                     skvx::Vec<1,T>& c, skvx::Vec<1,T>& d) {
107     a.val = v[0];
108     b.val = v[1];
109     c.val = v[2];
110     d.val = v[3];
111 }
112 template<int N, typename T>
113 SK_ALWAYS_INLINE typename std::enable_if<N >= 2, void>::type
114 strided_load4(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b, skvx::Vec<N,T>& c,
115               skvx::Vec<N,T>& d) {
116     strided_load4(v, a.lo, b.lo, c.lo, d.lo);
117     strided_load4(v + 4*(N/2), a.hi, b.hi, c.hi, d.hi);
118 }
119 #if !defined(SKNX_NO_SIMD)
120 #if defined(__ARM_NEON)
121 #define IMPL_LOAD4_TRANSPOSED(N, T, VLD) \
122 template<> \
123 SK_ALWAYS_INLINE void strided_load4(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b, \
124                                     skvx::Vec<N,T>& c, skvx::Vec<N,T>& d) { \
125     auto mat = VLD(v); \
126     a = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[0]); \
127     b = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[1]); \
128     c = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[2]); \
129     d = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[3]); \
130 }
131 IMPL_LOAD4_TRANSPOSED(2, uint32_t, vld4_u32);
132 IMPL_LOAD4_TRANSPOSED(4, uint16_t, vld4_u16);
133 IMPL_LOAD4_TRANSPOSED(8, uint8_t, vld4_u8);
134 IMPL_LOAD4_TRANSPOSED(2, int32_t, vld4_s32);
135 IMPL_LOAD4_TRANSPOSED(4, int16_t, vld4_s16);
136 IMPL_LOAD4_TRANSPOSED(8, int8_t, vld4_s8);
137 IMPL_LOAD4_TRANSPOSED(2, float, vld4_f32);
138 IMPL_LOAD4_TRANSPOSED(4, uint32_t, vld4q_u32);
139 IMPL_LOAD4_TRANSPOSED(8, uint16_t, vld4q_u16);
140 IMPL_LOAD4_TRANSPOSED(16, uint8_t, vld4q_u8);
141 IMPL_LOAD4_TRANSPOSED(4, int32_t, vld4q_s32);
142 IMPL_LOAD4_TRANSPOSED(8, int16_t, vld4q_s16);
143 IMPL_LOAD4_TRANSPOSED(16, int8_t, vld4q_s8);
144 IMPL_LOAD4_TRANSPOSED(4, float, vld4q_f32);
145 #undef IMPL_LOAD4_TRANSPOSED
146 #elif defined(__SSE__)
147 template<>
strided_load4(const float * v,float4 & a,float4 & b,float4 & c,float4 & d)148 SK_ALWAYS_INLINE void strided_load4(const float* v, float4& a, float4& b, float4& c, float4& d) {
149     using skvx::bit_pun;
150     __m128 a_ = _mm_loadu_ps(v);
151     __m128 b_ = _mm_loadu_ps(v+4);
152     __m128 c_ = _mm_loadu_ps(v+8);
153     __m128 d_ = _mm_loadu_ps(v+12);
154     _MM_TRANSPOSE4_PS(a_, b_, c_, d_);
155     a = bit_pun<float4>(a_);
156     b = bit_pun<float4>(b_);
157     c = bit_pun<float4>(c_);
158     d = bit_pun<float4>(d_);
159 }
160 #endif
161 #endif
162 
163 // De-interleaving load of 2 vectors.
164 //
165 // WARNING: These are really only supported well on NEON. Consider restructuring your data before
166 // resorting to these methods.
167 template<typename T>
strided_load2(const T * v,skvx::Vec<1,T> & a,skvx::Vec<1,T> & b)168 SK_ALWAYS_INLINE void strided_load2(const T* v, skvx::Vec<1,T>& a, skvx::Vec<1,T>& b) {
169     a.val = v[0];
170     b.val = v[1];
171 }
172 template<int N, typename T>
173 SK_ALWAYS_INLINE typename std::enable_if<N >= 2, void>::type
174 strided_load2(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b) {
175     strided_load2(v, a.lo, b.lo);
176     strided_load2(v + 2*(N/2), a.hi, b.hi);
177 }
178 #if !defined(SKNX_NO_SIMD)
179 #if defined(__ARM_NEON)
180 #define IMPL_LOAD2_TRANSPOSED(N, T, VLD) \
181 template<> \
182 SK_ALWAYS_INLINE void strided_load2(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b) { \
183     auto mat = VLD(v); \
184     a = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[0]); \
185     b = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[1]); \
186 }
187 IMPL_LOAD2_TRANSPOSED(2, uint32_t, vld2_u32);
188 IMPL_LOAD2_TRANSPOSED(4, uint16_t, vld2_u16);
189 IMPL_LOAD2_TRANSPOSED(8, uint8_t, vld2_u8);
190 IMPL_LOAD2_TRANSPOSED(2, int32_t, vld2_s32);
191 IMPL_LOAD2_TRANSPOSED(4, int16_t, vld2_s16);
192 IMPL_LOAD2_TRANSPOSED(8, int8_t, vld2_s8);
193 IMPL_LOAD2_TRANSPOSED(2, float, vld2_f32);
194 IMPL_LOAD2_TRANSPOSED(4, uint32_t, vld2q_u32);
195 IMPL_LOAD2_TRANSPOSED(8, uint16_t, vld2q_u16);
196 IMPL_LOAD2_TRANSPOSED(16, uint8_t, vld2q_u8);
197 IMPL_LOAD2_TRANSPOSED(4, int32_t, vld2q_s32);
198 IMPL_LOAD2_TRANSPOSED(8, int16_t, vld2q_s16);
199 IMPL_LOAD2_TRANSPOSED(16, int8_t, vld2q_s8);
200 IMPL_LOAD2_TRANSPOSED(4, float, vld2q_f32);
201 #undef IMPL_LOAD2_TRANSPOSED
202 #endif
203 #endif
204 
205 #if defined(__clang__)
206     #pragma STDC FP_CONTRACT DEFAULT
207 #endif
208 
209 };  // namespace grvx
210 
211 #endif
212