1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_GC_HEAP_H_ 18 #define ART_RUNTIME_GC_HEAP_H_ 19 20 #include <iosfwd> 21 #include <string> 22 #include <unordered_set> 23 #include <vector> 24 25 #include <android-base/logging.h> 26 27 #include "allocator_type.h" 28 #include "base/atomic.h" 29 #include "base/histogram.h" 30 #include "base/macros.h" 31 #include "base/mutex.h" 32 #include "base/runtime_debug.h" 33 #include "base/safe_map.h" 34 #include "base/time_utils.h" 35 #include "gc/collector/gc_type.h" 36 #include "gc/collector/iteration.h" 37 #include "gc/collector_type.h" 38 #include "gc/gc_cause.h" 39 #include "gc/space/large_object_space.h" 40 #include "handle.h" 41 #include "obj_ptr.h" 42 #include "offsets.h" 43 #include "process_state.h" 44 #include "read_barrier_config.h" 45 #include "runtime_globals.h" 46 #include "verify_object.h" 47 48 namespace art { 49 50 class ConditionVariable; 51 enum class InstructionSet; 52 class IsMarkedVisitor; 53 class Mutex; 54 class ReflectiveValueVisitor; 55 class RootVisitor; 56 class StackVisitor; 57 class Thread; 58 class ThreadPool; 59 class TimingLogger; 60 class VariableSizedHandleScope; 61 62 namespace mirror { 63 class Class; 64 class Object; 65 } // namespace mirror 66 67 namespace gc { 68 69 class AllocationListener; 70 class AllocRecordObjectMap; 71 class GcPauseListener; 72 class HeapTask; 73 class ReferenceProcessor; 74 class TaskProcessor; 75 class Verification; 76 77 namespace accounting { 78 template <typename T> class AtomicStack; 79 typedef AtomicStack<mirror::Object> ObjectStack; 80 class CardTable; 81 class HeapBitmap; 82 class ModUnionTable; 83 class ReadBarrierTable; 84 class RememberedSet; 85 } // namespace accounting 86 87 namespace collector { 88 class ConcurrentCopying; 89 class GarbageCollector; 90 class MarkSweep; 91 class SemiSpace; 92 } // namespace collector 93 94 namespace allocator { 95 class RosAlloc; 96 } // namespace allocator 97 98 namespace space { 99 class AllocSpace; 100 class BumpPointerSpace; 101 class ContinuousMemMapAllocSpace; 102 class DiscontinuousSpace; 103 class DlMallocSpace; 104 class ImageSpace; 105 class LargeObjectSpace; 106 class MallocSpace; 107 class RegionSpace; 108 class RosAllocSpace; 109 class Space; 110 class ZygoteSpace; 111 } // namespace space 112 113 enum HomogeneousSpaceCompactResult { 114 // Success. 115 kSuccess, 116 // Reject due to disabled moving GC. 117 kErrorReject, 118 // Unsupported due to the current configuration. 119 kErrorUnsupported, 120 // System is shutting down. 121 kErrorVMShuttingDown, 122 }; 123 124 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace 125 static constexpr bool kUseRosAlloc = true; 126 127 // If true, use thread-local allocation stack. 128 static constexpr bool kUseThreadLocalAllocationStack = true; 129 130 class Heap { 131 public: 132 // How much we grow the TLAB if we can do it. 133 static constexpr size_t kPartialTlabSize = 16 * KB; 134 static constexpr bool kUsePartialTlabs = true; 135 136 static constexpr size_t kDefaultStartingSize = kPageSize; 137 static constexpr size_t kDefaultInitialSize = 2 * MB; 138 static constexpr size_t kDefaultMaximumSize = 256 * MB; 139 static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB; 140 static constexpr size_t kDefaultMaxFree = 2 * MB; 141 static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; 142 static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); 143 static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); 144 static constexpr size_t kDefaultTLABSize = 32 * KB; 145 static constexpr double kDefaultTargetUtilization = 0.75; 146 static constexpr double kDefaultHeapGrowthMultiplier = 2.0; 147 // Primitive arrays larger than this size are put in the large object space. 148 static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize; 149 static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold; 150 // Whether or not parallel GC is enabled. If not, then we never create the thread pool. 151 static constexpr bool kDefaultEnableParallelGC = false; 152 static uint8_t* const kPreferredAllocSpaceBegin; 153 154 // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR 155 // since this means that we have to use the slow msync loop in MemMap::MapAnonymous. 156 static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType = 157 USE_ART_LOW_4G_ALLOCATOR ? 158 space::LargeObjectSpaceType::kFreeList 159 : space::LargeObjectSpaceType::kMap; 160 161 // Used so that we don't overflow the allocation time atomic integer. 162 static constexpr size_t kTimeAdjust = 1024; 163 164 // Client should call NotifyNativeAllocation every kNotifyNativeInterval allocations. 165 // Should be chosen so that time_to_call_mallinfo / kNotifyNativeInterval is on the same order 166 // as object allocation time. time_to_call_mallinfo seems to be on the order of 1 usec 167 // on Android. 168 #ifdef __ANDROID__ 169 static constexpr uint32_t kNotifyNativeInterval = 32; 170 #else 171 // Some host mallinfo() implementations are slow. And memory is less scarce. 172 static constexpr uint32_t kNotifyNativeInterval = 384; 173 #endif 174 175 // RegisterNativeAllocation checks immediately whether GC is needed if size exceeds the 176 // following. kCheckImmediatelyThreshold * kNotifyNativeInterval should be small enough to 177 // make it safe to allocate that many bytes between checks. 178 static constexpr size_t kCheckImmediatelyThreshold = 300000; 179 180 // How often we allow heap trimming to happen (nanoseconds). 181 static constexpr uint64_t kHeapTrimWait = MsToNs(5000); 182 // How long we wait after a transition request to perform a collector transition (nanoseconds). 183 static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000); 184 // Whether the transition-wait applies or not. Zero wait will stress the 185 // transition code and collector, but increases jank probability. 186 DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition); 187 188 // Create a heap with the requested sizes. The possible empty 189 // image_file_names names specify Spaces to load based on 190 // ImageWriter output. 191 Heap(size_t initial_size, 192 size_t growth_limit, 193 size_t min_free, 194 size_t max_free, 195 double target_utilization, 196 double foreground_heap_growth_multiplier, 197 size_t stop_for_native_allocs, 198 size_t capacity, 199 size_t non_moving_space_capacity, 200 const std::vector<std::string>& boot_class_path, 201 const std::vector<std::string>& boot_class_path_locations, 202 const std::string& image_file_name, 203 InstructionSet image_instruction_set, 204 CollectorType foreground_collector_type, 205 CollectorType background_collector_type, 206 space::LargeObjectSpaceType large_object_space_type, 207 size_t large_object_threshold, 208 size_t parallel_gc_threads, 209 size_t conc_gc_threads, 210 bool low_memory_mode, 211 size_t long_pause_threshold, 212 size_t long_gc_threshold, 213 bool ignore_target_footprint, 214 bool always_log_explicit_gcs, 215 bool use_tlab, 216 bool verify_pre_gc_heap, 217 bool verify_pre_sweeping_heap, 218 bool verify_post_gc_heap, 219 bool verify_pre_gc_rosalloc, 220 bool verify_pre_sweeping_rosalloc, 221 bool verify_post_gc_rosalloc, 222 bool gc_stress_mode, 223 bool measure_gc_performance, 224 bool use_homogeneous_space_compaction, 225 bool use_generational_cc, 226 uint64_t min_interval_homogeneous_space_compaction_by_oom, 227 bool dump_region_info_before_gc, 228 bool dump_region_info_after_gc); 229 230 ~Heap(); 231 232 // Allocates and initializes storage for an object instance. 233 template <bool kInstrumented = true, typename PreFenceVisitor> AllocObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)234 mirror::Object* AllocObject(Thread* self, 235 ObjPtr<mirror::Class> klass, 236 size_t num_bytes, 237 const PreFenceVisitor& pre_fence_visitor) 238 REQUIRES_SHARED(Locks::mutator_lock_) 239 REQUIRES(!*gc_complete_lock_, 240 !*pending_task_lock_, 241 !*backtrace_lock_, 242 !process_state_update_lock_, 243 !Roles::uninterruptible_) { 244 return AllocObjectWithAllocator<kInstrumented>(self, 245 klass, 246 num_bytes, 247 GetCurrentAllocator(), 248 pre_fence_visitor); 249 } 250 251 template <bool kInstrumented = true, typename PreFenceVisitor> AllocNonMovableObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)252 mirror::Object* AllocNonMovableObject(Thread* self, 253 ObjPtr<mirror::Class> klass, 254 size_t num_bytes, 255 const PreFenceVisitor& pre_fence_visitor) 256 REQUIRES_SHARED(Locks::mutator_lock_) 257 REQUIRES(!*gc_complete_lock_, 258 !*pending_task_lock_, 259 !*backtrace_lock_, 260 !process_state_update_lock_, 261 !Roles::uninterruptible_) { 262 mirror::Object* obj = AllocObjectWithAllocator<kInstrumented>(self, 263 klass, 264 num_bytes, 265 GetCurrentNonMovingAllocator(), 266 pre_fence_visitor); 267 // Java Heap Profiler check and sample allocation. 268 JHPCheckNonTlabSampleAllocation(self, obj, num_bytes); 269 return obj; 270 } 271 272 template <bool kInstrumented = true, bool kCheckLargeObject = true, typename PreFenceVisitor> 273 ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self, 274 ObjPtr<mirror::Class> klass, 275 size_t byte_count, 276 AllocatorType allocator, 277 const PreFenceVisitor& pre_fence_visitor) 278 REQUIRES_SHARED(Locks::mutator_lock_) 279 REQUIRES(!*gc_complete_lock_, 280 !*pending_task_lock_, 281 !*backtrace_lock_, 282 !process_state_update_lock_, 283 !Roles::uninterruptible_); 284 GetCurrentAllocator()285 AllocatorType GetCurrentAllocator() const { 286 return current_allocator_; 287 } 288 GetCurrentNonMovingAllocator()289 AllocatorType GetCurrentNonMovingAllocator() const { 290 return current_non_moving_allocator_; 291 } 292 GetUpdatedAllocator(AllocatorType old_allocator)293 AllocatorType GetUpdatedAllocator(AllocatorType old_allocator) { 294 return (old_allocator == kAllocatorTypeNonMoving) ? 295 GetCurrentNonMovingAllocator() : GetCurrentAllocator(); 296 } 297 298 // Visit all of the live objects in the heap. 299 template <typename Visitor> 300 ALWAYS_INLINE void VisitObjects(Visitor&& visitor) 301 REQUIRES_SHARED(Locks::mutator_lock_) 302 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 303 template <typename Visitor> 304 ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor) 305 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 306 307 void VisitReflectiveTargets(ReflectiveValueVisitor* visitor) 308 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 309 310 void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) 311 REQUIRES_SHARED(Locks::mutator_lock_); 312 313 // Inform the garbage collector of a non-malloc allocated native memory that might become 314 // reclaimable in the future as a result of Java garbage collection. 315 void RegisterNativeAllocation(JNIEnv* env, size_t bytes) 316 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 317 void RegisterNativeFree(JNIEnv* env, size_t bytes); 318 319 // Notify the garbage collector of malloc allocations that might be reclaimable 320 // as a result of Java garbage collection. Each such call represents approximately 321 // kNotifyNativeInterval such allocations. 322 void NotifyNativeAllocations(JNIEnv* env) 323 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 324 GetNotifyNativeInterval()325 uint32_t GetNotifyNativeInterval() { 326 return kNotifyNativeInterval; 327 } 328 329 // Change the allocator, updates entrypoints. 330 void ChangeAllocator(AllocatorType allocator) 331 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_); 332 333 // Change the collector to be one of the possible options (MS, CMS, SS). 334 void ChangeCollector(CollectorType collector_type) 335 REQUIRES(Locks::mutator_lock_); 336 337 // The given reference is believed to be to an object in the Java heap, check the soundness of it. 338 // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a 339 // proper lock ordering for it. 340 void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS; 341 342 // Consistency check of all live references. 343 void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_); 344 // Returns how many failures occured. 345 size_t VerifyHeapReferences(bool verify_referents = true) 346 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 347 bool VerifyMissingCardMarks() 348 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 349 350 // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, 351 // and doesn't abort on error, allowing the caller to report more 352 // meaningful diagnostics. 353 bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_); 354 355 // Faster alternative to IsHeapAddress since finding if an object is in the large object space is 356 // very slow. 357 bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const 358 REQUIRES_SHARED(Locks::mutator_lock_); 359 360 // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). 361 // Requires the heap lock to be held. 362 bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj, 363 bool search_allocation_stack = true, 364 bool search_live_stack = true, 365 bool sorted = false) 366 REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 367 368 // Returns true if there is any chance that the object (obj) will move. 369 bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_); 370 371 // Enables us to compacting GC until objects are released. 372 void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 373 void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 374 375 // Temporarily disable thread flip for JNI critical calls. 376 void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 377 void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 378 void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_); 379 void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_); 380 381 // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits. 382 // Mutator lock is required for GetContinuousSpaces. 383 void ClearMarkedObjects() 384 REQUIRES(Locks::heap_bitmap_lock_) 385 REQUIRES_SHARED(Locks::mutator_lock_); 386 387 // Initiates an explicit garbage collection. Guarantees that a GC started after this call has 388 // completed. 389 void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit) 390 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 391 392 // Does a concurrent GC, provided the GC numbered requested_gc_num has not already been 393 // completed. Should only be called by the GC daemon thread through runtime. 394 void ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num) 395 REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, 396 !*pending_task_lock_, !process_state_update_lock_); 397 398 // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. 399 // The boolean decides whether to use IsAssignableFrom or == when comparing classes. 400 void CountInstances(const std::vector<Handle<mirror::Class>>& classes, 401 bool use_is_assignable_from, 402 uint64_t* counts) 403 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 404 REQUIRES_SHARED(Locks::mutator_lock_); 405 406 // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to 407 // implement dalvik.system.VMRuntime.clearGrowthLimit. 408 void ClearGrowthLimit(); 409 410 // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces 411 // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit. 412 void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_); 413 414 // Target ideal heap utilization ratio, implements 415 // dalvik.system.VMRuntime.getTargetHeapUtilization. GetTargetHeapUtilization()416 double GetTargetHeapUtilization() const { 417 return target_utilization_; 418 } 419 420 // Data structure memory usage tracking. 421 void RegisterGCAllocation(size_t bytes); 422 void RegisterGCDeAllocation(size_t bytes); 423 424 // Set the heap's private space pointers to be the same as the space based on it's type. Public 425 // due to usage by tests. 426 void SetSpaceAsDefault(space::ContinuousSpace* continuous_space) 427 REQUIRES(!Locks::heap_bitmap_lock_); 428 void AddSpace(space::Space* space) 429 REQUIRES(!Locks::heap_bitmap_lock_) 430 REQUIRES(Locks::mutator_lock_); 431 void RemoveSpace(space::Space* space) 432 REQUIRES(!Locks::heap_bitmap_lock_) 433 REQUIRES(Locks::mutator_lock_); 434 GetPreGcWeightedAllocatedBytes()435 double GetPreGcWeightedAllocatedBytes() const { 436 return pre_gc_weighted_allocated_bytes_; 437 } 438 GetPostGcWeightedAllocatedBytes()439 double GetPostGcWeightedAllocatedBytes() const { 440 return post_gc_weighted_allocated_bytes_; 441 } 442 443 void CalculatePreGcWeightedAllocatedBytes(); 444 void CalculatePostGcWeightedAllocatedBytes(); 445 uint64_t GetTotalGcCpuTime(); 446 GetProcessCpuStartTime()447 uint64_t GetProcessCpuStartTime() const { 448 return process_cpu_start_time_ns_; 449 } 450 GetPostGCLastProcessCpuTime()451 uint64_t GetPostGCLastProcessCpuTime() const { 452 return post_gc_last_process_cpu_time_ns_; 453 } 454 455 // Set target ideal heap utilization ratio, implements 456 // dalvik.system.VMRuntime.setTargetHeapUtilization. 457 void SetTargetHeapUtilization(float target); 458 459 // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate 460 // from the system. Doesn't allow the space to exceed its growth limit. 461 void SetIdealFootprint(size_t max_allowed_footprint); 462 463 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 464 // waited for. Only waits for running collections, ignoring a requested but unstarted GC. Only 465 // heuristic, since a new GC may have started by the time we return. 466 collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_); 467 468 // Update the heap's process state to a new value, may cause compaction to occur. 469 void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) 470 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_); 471 HaveContinuousSpaces()472 bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS { 473 // No lock since vector empty is thread safe. 474 return !continuous_spaces_.empty(); 475 } 476 GetContinuousSpaces()477 const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const 478 REQUIRES_SHARED(Locks::mutator_lock_) { 479 return continuous_spaces_; 480 } 481 GetDiscontinuousSpaces()482 const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const { 483 return discontinuous_spaces_; 484 } 485 GetCurrentGcIteration()486 const collector::Iteration* GetCurrentGcIteration() const { 487 return ¤t_gc_iteration_; 488 } GetCurrentGcIteration()489 collector::Iteration* GetCurrentGcIteration() { 490 return ¤t_gc_iteration_; 491 } 492 493 // Enable verification of object references when the runtime is sufficiently initialized. EnableObjectValidation()494 void EnableObjectValidation() { 495 verify_object_mode_ = kVerifyObjectSupport; 496 if (verify_object_mode_ > kVerifyObjectModeDisabled) { 497 VerifyHeap(); 498 } 499 } 500 501 // Disable object reference verification for image writing. DisableObjectValidation()502 void DisableObjectValidation() { 503 verify_object_mode_ = kVerifyObjectModeDisabled; 504 } 505 506 // Other checks may be performed if we know the heap should be in a healthy state. IsObjectValidationEnabled()507 bool IsObjectValidationEnabled() const { 508 return verify_object_mode_ > kVerifyObjectModeDisabled; 509 } 510 511 // Returns true if low memory mode is enabled. IsLowMemoryMode()512 bool IsLowMemoryMode() const { 513 return low_memory_mode_; 514 } 515 516 // Returns the heap growth multiplier, this affects how much we grow the heap after a GC. 517 // Scales heap growth, min free, and max free. 518 double HeapGrowthMultiplier() const; 519 520 // Freed bytes can be negative in cases where we copy objects from a compacted space to a 521 // free-list backed space. 522 void RecordFree(uint64_t freed_objects, int64_t freed_bytes); 523 524 // Record the bytes freed by thread-local buffer revoke. 525 void RecordFreeRevoke(); 526 GetCardTable()527 accounting::CardTable* GetCardTable() const { 528 return card_table_.get(); 529 } 530 GetReadBarrierTable()531 accounting::ReadBarrierTable* GetReadBarrierTable() const { 532 return rb_table_.get(); 533 } 534 535 void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object); 536 537 // Returns the number of bytes currently allocated. 538 // The result should be treated as an approximation, if it is being concurrently updated. GetBytesAllocated()539 size_t GetBytesAllocated() const { 540 return num_bytes_allocated_.load(std::memory_order_relaxed); 541 } 542 GetUseGenerationalCC()543 bool GetUseGenerationalCC() const { 544 return use_generational_cc_; 545 } 546 547 // Returns the number of objects currently allocated. 548 size_t GetObjectsAllocated() const 549 REQUIRES(!Locks::heap_bitmap_lock_); 550 551 // Returns the total number of objects allocated since the heap was created. 552 uint64_t GetObjectsAllocatedEver() const; 553 554 // Returns the total number of bytes allocated since the heap was created. 555 uint64_t GetBytesAllocatedEver() const; 556 557 // Returns the total number of objects freed since the heap was created. 558 // With default memory order, this should be viewed only as a hint. 559 uint64_t GetObjectsFreedEver(std::memory_order mo = std::memory_order_relaxed) const { 560 return total_objects_freed_ever_.load(mo); 561 } 562 563 // Returns the total number of bytes freed since the heap was created. 564 // With default memory order, this should be viewed only as a hint. 565 uint64_t GetBytesFreedEver(std::memory_order mo = std::memory_order_relaxed) const { 566 return total_bytes_freed_ever_.load(mo); 567 } 568 GetRegionSpace()569 space::RegionSpace* GetRegionSpace() const { 570 return region_space_; 571 } 572 573 // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can 574 // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx 575 // were specified. Android apps start with a growth limit (small heap size) which is 576 // cleared/extended for large apps. GetMaxMemory()577 size_t GetMaxMemory() const { 578 // There are some race conditions in the allocation code that can cause bytes allocated to 579 // become larger than growth_limit_ in rare cases. 580 return std::max(GetBytesAllocated(), growth_limit_); 581 } 582 583 // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently 584 // consumed by an application. 585 size_t GetTotalMemory() const; 586 587 // Returns approximately how much free memory we have until the next GC happens. GetFreeMemoryUntilGC()588 size_t GetFreeMemoryUntilGC() const { 589 return UnsignedDifference(target_footprint_.load(std::memory_order_relaxed), 590 GetBytesAllocated()); 591 } 592 593 // Returns approximately how much free memory we have until the next OOME happens. GetFreeMemoryUntilOOME()594 size_t GetFreeMemoryUntilOOME() const { 595 return UnsignedDifference(growth_limit_, GetBytesAllocated()); 596 } 597 598 // Returns how much free memory we have until we need to grow the heap to perform an allocation. 599 // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory. GetFreeMemory()600 size_t GetFreeMemory() const { 601 return UnsignedDifference(GetTotalMemory(), 602 num_bytes_allocated_.load(std::memory_order_relaxed)); 603 } 604 605 // Get the space that corresponds to an object's address. Current implementation searches all 606 // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. 607 // TODO: consider using faster data structure like binary tree. 608 space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const 609 REQUIRES_SHARED(Locks::mutator_lock_); 610 611 space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const 612 REQUIRES_SHARED(Locks::mutator_lock_); 613 614 space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>, 615 bool fail_ok) const 616 REQUIRES_SHARED(Locks::mutator_lock_); 617 618 space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const 619 REQUIRES_SHARED(Locks::mutator_lock_); 620 621 space::Space* FindSpaceFromAddress(const void* ptr) const 622 REQUIRES_SHARED(Locks::mutator_lock_); 623 624 std::string DumpSpaceNameFromAddress(const void* addr) const 625 REQUIRES_SHARED(Locks::mutator_lock_); 626 627 void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_); 628 629 // Do a pending collector transition. 630 void DoPendingCollectorTransition() 631 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 632 633 // Deflate monitors, ... and trim the spaces. 634 void Trim(Thread* self) REQUIRES(!*gc_complete_lock_); 635 636 void RevokeThreadLocalBuffers(Thread* thread); 637 void RevokeRosAllocThreadLocalBuffers(Thread* thread); 638 void RevokeAllThreadLocalBuffers(); 639 void AssertThreadLocalBuffersAreRevoked(Thread* thread); 640 void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 641 void RosAllocVerification(TimingLogger* timings, const char* name) 642 REQUIRES(Locks::mutator_lock_); 643 GetLiveBitmap()644 accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 645 return live_bitmap_.get(); 646 } 647 GetMarkBitmap()648 accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 649 return mark_bitmap_.get(); 650 } 651 GetLiveStack()652 accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 653 return live_stack_.get(); 654 } 655 656 void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; 657 658 // Mark and empty stack. 659 void FlushAllocStack() 660 REQUIRES_SHARED(Locks::mutator_lock_) 661 REQUIRES(Locks::heap_bitmap_lock_); 662 663 // Revoke all the thread-local allocation stacks. 664 void RevokeAllThreadLocalAllocationStacks(Thread* self) 665 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_); 666 667 // Mark all the objects in the allocation stack in the specified bitmap. 668 // TODO: Refactor? 669 void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1, 670 accounting::SpaceBitmap<kObjectAlignment>* bitmap2, 671 accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects, 672 accounting::ObjectStack* stack) 673 REQUIRES_SHARED(Locks::mutator_lock_) 674 REQUIRES(Locks::heap_bitmap_lock_); 675 676 // Mark the specified allocation stack as live. 677 void MarkAllocStackAsLive(accounting::ObjectStack* stack) 678 REQUIRES_SHARED(Locks::mutator_lock_) 679 REQUIRES(Locks::heap_bitmap_lock_); 680 681 // Unbind any bound bitmaps. 682 void UnBindBitmaps() 683 REQUIRES(Locks::heap_bitmap_lock_) 684 REQUIRES_SHARED(Locks::mutator_lock_); 685 686 // Returns the boot image spaces. There may be multiple boot image spaces. GetBootImageSpaces()687 const std::vector<space::ImageSpace*>& GetBootImageSpaces() const { 688 return boot_image_spaces_; 689 } 690 691 bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const 692 REQUIRES_SHARED(Locks::mutator_lock_); 693 694 bool IsInBootImageOatFile(const void* p) const 695 REQUIRES_SHARED(Locks::mutator_lock_); 696 697 // Get the start address of the boot images if any; otherwise returns 0. GetBootImagesStartAddress()698 uint32_t GetBootImagesStartAddress() const { 699 return boot_images_start_address_; 700 } 701 702 // Get the size of all boot images, including the heap and oat areas. GetBootImagesSize()703 uint32_t GetBootImagesSize() const { 704 return boot_images_size_; 705 } 706 707 // Check if a pointer points to a boot image. IsBootImageAddress(const void * p)708 bool IsBootImageAddress(const void* p) const { 709 return reinterpret_cast<uintptr_t>(p) - boot_images_start_address_ < boot_images_size_; 710 } 711 GetDlMallocSpace()712 space::DlMallocSpace* GetDlMallocSpace() const { 713 return dlmalloc_space_; 714 } 715 GetRosAllocSpace()716 space::RosAllocSpace* GetRosAllocSpace() const { 717 return rosalloc_space_; 718 } 719 720 // Return the corresponding rosalloc space. 721 space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const 722 REQUIRES_SHARED(Locks::mutator_lock_); 723 GetNonMovingSpace()724 space::MallocSpace* GetNonMovingSpace() const { 725 return non_moving_space_; 726 } 727 GetLargeObjectsSpace()728 space::LargeObjectSpace* GetLargeObjectsSpace() const { 729 return large_object_space_; 730 } 731 732 // Returns the free list space that may contain movable objects (the 733 // one that's not the non-moving space), either rosalloc_space_ or 734 // dlmalloc_space_. GetPrimaryFreeListSpace()735 space::MallocSpace* GetPrimaryFreeListSpace() { 736 if (kUseRosAlloc) { 737 DCHECK(rosalloc_space_ != nullptr); 738 // reinterpret_cast is necessary as the space class hierarchy 739 // isn't known (#included) yet here. 740 return reinterpret_cast<space::MallocSpace*>(rosalloc_space_); 741 } else { 742 DCHECK(dlmalloc_space_ != nullptr); 743 return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_); 744 } 745 } 746 747 void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_); 748 std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_); 749 750 // GC performance measuring 751 void DumpGcPerformanceInfo(std::ostream& os) 752 REQUIRES(!*gc_complete_lock_); 753 void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_); 754 755 // Thread pool. 756 void CreateThreadPool(); 757 void DeleteThreadPool(); GetThreadPool()758 ThreadPool* GetThreadPool() { 759 return thread_pool_.get(); 760 } GetParallelGCThreadCount()761 size_t GetParallelGCThreadCount() const { 762 return parallel_gc_threads_; 763 } GetConcGCThreadCount()764 size_t GetConcGCThreadCount() const { 765 return conc_gc_threads_; 766 } 767 accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); 768 void AddModUnionTable(accounting::ModUnionTable* mod_union_table); 769 770 accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); 771 void AddRememberedSet(accounting::RememberedSet* remembered_set); 772 // Also deletes the remebered set. 773 void RemoveRememberedSet(space::Space* space); 774 775 bool IsCompilingBoot() const; HasBootImageSpace()776 bool HasBootImageSpace() const { 777 return !boot_image_spaces_.empty(); 778 } 779 GetReferenceProcessor()780 ReferenceProcessor* GetReferenceProcessor() { 781 return reference_processor_.get(); 782 } GetTaskProcessor()783 TaskProcessor* GetTaskProcessor() { 784 return task_processor_.get(); 785 } 786 HasZygoteSpace()787 bool HasZygoteSpace() const { 788 return zygote_space_ != nullptr; 789 } 790 791 // Returns the active concurrent copying collector. ConcurrentCopyingCollector()792 collector::ConcurrentCopying* ConcurrentCopyingCollector() { 793 collector::ConcurrentCopying* active_collector = 794 active_concurrent_copying_collector_.load(std::memory_order_relaxed); 795 if (use_generational_cc_) { 796 DCHECK((active_collector == concurrent_copying_collector_) || 797 (active_collector == young_concurrent_copying_collector_)) 798 << "active_concurrent_copying_collector: " << active_collector 799 << " young_concurrent_copying_collector: " << young_concurrent_copying_collector_ 800 << " concurrent_copying_collector: " << concurrent_copying_collector_; 801 } else { 802 DCHECK_EQ(active_collector, concurrent_copying_collector_); 803 } 804 return active_collector; 805 } 806 CurrentCollectorType()807 CollectorType CurrentCollectorType() { 808 return collector_type_; 809 } 810 IsGcConcurrentAndMoving()811 bool IsGcConcurrentAndMoving() const { 812 if (IsGcConcurrent() && IsMovingGc(collector_type_)) { 813 // Assume no transition when a concurrent moving collector is used. 814 DCHECK_EQ(collector_type_, foreground_collector_type_); 815 return true; 816 } 817 return false; 818 } 819 IsMovingGCDisabled(Thread * self)820 bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) { 821 MutexLock mu(self, *gc_complete_lock_); 822 return disable_moving_gc_count_ > 0; 823 } 824 825 // Request an asynchronous trim. 826 void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_); 827 828 // Retrieve the current GC number, i.e. the number n such that we completed n GCs so far. 829 // Provides acquire ordering, so that if we read this first, and then check whether a GC is 830 // required, we know that the GC number read actually preceded the test. GetCurrentGcNum()831 uint32_t GetCurrentGcNum() { 832 return gcs_completed_.load(std::memory_order_acquire); 833 } 834 835 // Request asynchronous GC. Observed_gc_num is the value of GetCurrentGcNum() when we started to 836 // evaluate the GC triggering condition. If a GC has been completed since then, we consider our 837 // job done. If we return true, then we ensured that gcs_completed_ will eventually be 838 // incremented beyond observed_gc_num. We return false only in corner cases in which we cannot 839 // ensure that. 840 bool RequestConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t observed_gc_num) 841 REQUIRES(!*pending_task_lock_); 842 843 // Whether or not we may use a garbage collector, used so that we only create collectors we need. 844 bool MayUseCollector(CollectorType type) const; 845 846 // Used by tests to reduce timinig-dependent flakiness in OOME behavior. SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval)847 void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) { 848 min_interval_homogeneous_space_compaction_by_oom_ = interval; 849 } 850 851 // Helpers for android.os.Debug.getRuntimeStat(). 852 uint64_t GetGcCount() const; 853 uint64_t GetGcTime() const; 854 uint64_t GetBlockingGcCount() const; 855 uint64_t GetBlockingGcTime() const; 856 void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); 857 void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); GetTotalTimeWaitingForGC()858 uint64_t GetTotalTimeWaitingForGC() const { 859 return total_wait_time_; 860 } 861 862 // Perfetto Art Heap Profiler Support. GetHeapSampler()863 HeapSampler& GetHeapSampler() { 864 return heap_sampler_; 865 } 866 867 void InitPerfettoJavaHeapProf(); 868 int CheckPerfettoJHPEnabled(); 869 // In NonTlab case: Check whether we should report a sample allocation and if so report it. 870 // Also update state (bytes_until_sample). 871 // By calling JHPCheckNonTlabSampleAllocation from different functions for Large allocations and 872 // non-moving allocations we are able to use the stack to identify these allocations separately. 873 void JHPCheckNonTlabSampleAllocation(Thread* self, 874 mirror::Object* ret, 875 size_t alloc_size); 876 // In Tlab case: Calculate the next tlab size (location of next sample point) and whether 877 // a sample should be taken. 878 size_t JHPCalculateNextTlabSize(Thread* self, 879 size_t jhp_def_tlab_size, 880 size_t alloc_size, 881 bool* take_sample, 882 size_t* bytes_until_sample); 883 // Reduce the number of bytes to the next sample position by this adjustment. 884 void AdjustSampleOffset(size_t adjustment); 885 886 // Allocation tracking support 887 // Callers to this function use double-checked locking to ensure safety on allocation_records_ IsAllocTrackingEnabled()888 bool IsAllocTrackingEnabled() const { 889 return alloc_tracking_enabled_.load(std::memory_order_relaxed); 890 } 891 SetAllocTrackingEnabled(bool enabled)892 void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) { 893 alloc_tracking_enabled_.store(enabled, std::memory_order_relaxed); 894 } 895 896 // Return the current stack depth of allocation records. GetAllocTrackerStackDepth()897 size_t GetAllocTrackerStackDepth() const { 898 return alloc_record_depth_; 899 } 900 901 // Return the current stack depth of allocation records. SetAllocTrackerStackDepth(size_t alloc_record_depth)902 void SetAllocTrackerStackDepth(size_t alloc_record_depth) { 903 alloc_record_depth_ = alloc_record_depth; 904 } 905 GetAllocationRecords()906 AllocRecordObjectMap* GetAllocationRecords() const REQUIRES(Locks::alloc_tracker_lock_) { 907 return allocation_records_.get(); 908 } 909 910 void SetAllocationRecords(AllocRecordObjectMap* records) 911 REQUIRES(Locks::alloc_tracker_lock_); 912 913 void VisitAllocationRecords(RootVisitor* visitor) const 914 REQUIRES_SHARED(Locks::mutator_lock_) 915 REQUIRES(!Locks::alloc_tracker_lock_); 916 917 void SweepAllocationRecords(IsMarkedVisitor* visitor) const 918 REQUIRES_SHARED(Locks::mutator_lock_) 919 REQUIRES(!Locks::alloc_tracker_lock_); 920 921 void DisallowNewAllocationRecords() const 922 REQUIRES_SHARED(Locks::mutator_lock_) 923 REQUIRES(!Locks::alloc_tracker_lock_); 924 925 void AllowNewAllocationRecords() const 926 REQUIRES_SHARED(Locks::mutator_lock_) 927 REQUIRES(!Locks::alloc_tracker_lock_); 928 929 void BroadcastForNewAllocationRecords() const 930 REQUIRES(!Locks::alloc_tracker_lock_); 931 932 void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_); 933 934 // Create a new alloc space and compact default alloc space to it. 935 HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() 936 REQUIRES(!*gc_complete_lock_, !process_state_update_lock_); 937 bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const; 938 939 // Install an allocation listener. 940 void SetAllocationListener(AllocationListener* l); 941 // Remove an allocation listener. Note: the listener must not be deleted, as for performance 942 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 943 void RemoveAllocationListener(); 944 945 // Install a gc pause listener. 946 void SetGcPauseListener(GcPauseListener* l); 947 // Get the currently installed gc pause listener, or null. GetGcPauseListener()948 GcPauseListener* GetGcPauseListener() { 949 return gc_pause_listener_.load(std::memory_order_acquire); 950 } 951 // Remove a gc pause listener. Note: the listener must not be deleted, as for performance 952 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 953 void RemoveGcPauseListener(); 954 955 const Verification* GetVerification() const; 956 957 void PostForkChildAction(Thread* self); 958 959 void TraceHeapSize(size_t heap_size); 960 961 bool AddHeapTask(gc::HeapTask* task); 962 963 private: 964 class ConcurrentGCTask; 965 class CollectorTransitionTask; 966 class HeapTrimTask; 967 class TriggerPostForkCCGcTask; 968 969 // Compact source space to target space. Returns the collector used. 970 collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space, 971 space::ContinuousMemMapAllocSpace* source_space, 972 GcCause gc_cause) 973 REQUIRES(Locks::mutator_lock_); 974 975 void LogGC(GcCause gc_cause, collector::GarbageCollector* collector); 976 void StartGC(Thread* self, GcCause cause, CollectorType collector_type) 977 REQUIRES(!*gc_complete_lock_); 978 void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_); 979 980 double CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns, 981 uint64_t current_process_cpu_time) const; 982 983 // Create a mem map with a preferred base address. 984 static MemMap MapAnonymousPreferredAddress(const char* name, 985 uint8_t* request_begin, 986 size_t capacity, 987 std::string* out_error_str); 988 SupportHSpaceCompaction()989 bool SupportHSpaceCompaction() const { 990 // Returns true if we can do hspace compaction 991 return main_space_backup_ != nullptr; 992 } 993 994 // Size_t saturating arithmetic UnsignedDifference(size_t x,size_t y)995 static ALWAYS_INLINE size_t UnsignedDifference(size_t x, size_t y) { 996 return x > y ? x - y : 0; 997 } UnsignedSum(size_t x,size_t y)998 static ALWAYS_INLINE size_t UnsignedSum(size_t x, size_t y) { 999 return x + y >= x ? x + y : std::numeric_limits<size_t>::max(); 1000 } 1001 AllocatorHasAllocationStack(AllocatorType allocator_type)1002 static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { 1003 return 1004 allocator_type != kAllocatorTypeRegionTLAB && 1005 allocator_type != kAllocatorTypeBumpPointer && 1006 allocator_type != kAllocatorTypeTLAB && 1007 allocator_type != kAllocatorTypeRegion; 1008 } AllocatorMayHaveConcurrentGC(AllocatorType allocator_type)1009 static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) { 1010 if (kUseReadBarrier) { 1011 // Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up. 1012 return true; 1013 } 1014 return 1015 allocator_type != kAllocatorTypeTLAB && 1016 allocator_type != kAllocatorTypeBumpPointer; 1017 } IsMovingGc(CollectorType collector_type)1018 static bool IsMovingGc(CollectorType collector_type) { 1019 return 1020 collector_type == kCollectorTypeCC || 1021 collector_type == kCollectorTypeSS || 1022 collector_type == kCollectorTypeCCBackground || 1023 collector_type == kCollectorTypeHomogeneousSpaceCompact; 1024 } 1025 bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const 1026 REQUIRES_SHARED(Locks::mutator_lock_); 1027 1028 // Checks whether we should garbage collect: 1029 ALWAYS_INLINE bool ShouldConcurrentGCForJava(size_t new_num_bytes_allocated); 1030 float NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent); 1031 void CheckGCForNative(Thread* self) 1032 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_); 1033 GetMarkStack()1034 accounting::ObjectStack* GetMarkStack() { 1035 return mark_stack_.get(); 1036 } 1037 1038 // We don't force this to be inlined since it is a slow path. 1039 template <bool kInstrumented, typename PreFenceVisitor> 1040 mirror::Object* AllocLargeObject(Thread* self, 1041 ObjPtr<mirror::Class>* klass, 1042 size_t byte_count, 1043 const PreFenceVisitor& pre_fence_visitor) 1044 REQUIRES_SHARED(Locks::mutator_lock_) 1045 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, 1046 !*backtrace_lock_, !process_state_update_lock_); 1047 1048 // Handles Allocate()'s slow allocation path with GC involved after an initial allocation 1049 // attempt failed. 1050 // Called with thread suspension disallowed, but re-enables it, and may suspend, internally. 1051 // Returns null if instrumentation or the allocator changed. 1052 mirror::Object* AllocateInternalWithGc(Thread* self, 1053 AllocatorType allocator, 1054 bool instrumented, 1055 size_t num_bytes, 1056 size_t* bytes_allocated, 1057 size_t* usable_size, 1058 size_t* bytes_tl_bulk_allocated, 1059 ObjPtr<mirror::Class>* klass) 1060 REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_) 1061 REQUIRES(Roles::uninterruptible_) 1062 REQUIRES_SHARED(Locks::mutator_lock_); 1063 1064 // Allocate into a specific space. 1065 mirror::Object* AllocateInto(Thread* self, 1066 space::AllocSpace* space, 1067 ObjPtr<mirror::Class> c, 1068 size_t bytes) 1069 REQUIRES_SHARED(Locks::mutator_lock_); 1070 1071 // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the 1072 // wrong space. 1073 void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_); 1074 1075 // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so 1076 // that the switch statement is constant optimized in the entrypoints. 1077 template <const bool kInstrumented, const bool kGrow> 1078 ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, 1079 AllocatorType allocator_type, 1080 size_t alloc_size, 1081 size_t* bytes_allocated, 1082 size_t* usable_size, 1083 size_t* bytes_tl_bulk_allocated) 1084 REQUIRES_SHARED(Locks::mutator_lock_); 1085 1086 mirror::Object* AllocWithNewTLAB(Thread* self, 1087 AllocatorType allocator_type, 1088 size_t alloc_size, 1089 bool grow, 1090 size_t* bytes_allocated, 1091 size_t* usable_size, 1092 size_t* bytes_tl_bulk_allocated) 1093 REQUIRES_SHARED(Locks::mutator_lock_); 1094 1095 void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) 1096 REQUIRES_SHARED(Locks::mutator_lock_); 1097 1098 // Are we out of memory, and thus should force a GC or fail? 1099 // For concurrent collectors, out of memory is defined by growth_limit_. 1100 // For nonconcurrent collectors it is defined by target_footprint_ unless grow is 1101 // set. If grow is set, the limit is growth_limit_ and we adjust target_footprint_ 1102 // to accomodate the allocation. 1103 ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, 1104 size_t alloc_size, 1105 bool grow); 1106 1107 // Run the finalizers. If timeout is non zero, then we use the VMRuntime version. 1108 void RunFinalization(JNIEnv* env, uint64_t timeout); 1109 1110 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 1111 // waited for. 1112 collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self) 1113 REQUIRES(gc_complete_lock_); 1114 1115 void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) 1116 REQUIRES(!*pending_task_lock_); 1117 1118 void RequestConcurrentGCAndSaveObject(Thread* self, 1119 bool force_full, 1120 uint32_t observed_gc_num, 1121 ObjPtr<mirror::Object>* obj) 1122 REQUIRES_SHARED(Locks::mutator_lock_) 1123 REQUIRES(!*pending_task_lock_); 1124 1125 static constexpr uint32_t GC_NUM_ANY = std::numeric_limits<uint32_t>::max(); 1126 1127 // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns 1128 // which type of Gc was actually run. 1129 // We pass in the intended GC sequence number to ensure that multiple approximately concurrent 1130 // requests result in a single GC; clearly redundant request will be pruned. A requested_gc_num 1131 // of GC_NUM_ANY indicates that we should not prune redundant requests. (In the unlikely case 1132 // that gcs_completed_ gets this big, we just accept a potential extra GC or two.) 1133 collector::GcType CollectGarbageInternal(collector::GcType gc_plan, 1134 GcCause gc_cause, 1135 bool clear_soft_references, 1136 uint32_t requested_gc_num) 1137 REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_, 1138 !*pending_task_lock_, !process_state_update_lock_); 1139 1140 void PreGcVerification(collector::GarbageCollector* gc) 1141 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 1142 void PreGcVerificationPaused(collector::GarbageCollector* gc) 1143 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 1144 void PrePauseRosAllocVerification(collector::GarbageCollector* gc) 1145 REQUIRES(Locks::mutator_lock_); 1146 void PreSweepingGcVerification(collector::GarbageCollector* gc) 1147 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1148 void PostGcVerification(collector::GarbageCollector* gc) 1149 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 1150 void PostGcVerificationPaused(collector::GarbageCollector* gc) 1151 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 1152 1153 // Find a collector based on GC type. 1154 collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type); 1155 1156 // Create the main free list malloc space, either a RosAlloc space or DlMalloc space. 1157 void CreateMainMallocSpace(MemMap&& mem_map, 1158 size_t initial_size, 1159 size_t growth_limit, 1160 size_t capacity); 1161 1162 // Create a malloc space based on a mem map. Does not set the space as default. 1163 space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap&& mem_map, 1164 size_t initial_size, 1165 size_t growth_limit, 1166 size_t capacity, 1167 const char* name, 1168 bool can_move_objects); 1169 1170 // Given the current contents of the alloc space, increase the allowed heap footprint to match 1171 // the target utilization ratio. This should only be called immediately after a full garbage 1172 // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which 1173 // the GC was run. 1174 void GrowForUtilization(collector::GarbageCollector* collector_ran, 1175 size_t bytes_allocated_before_gc = 0) 1176 REQUIRES(!process_state_update_lock_); 1177 1178 size_t GetPercentFree(); 1179 1180 // Swap the allocation stack with the live stack. 1181 void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_); 1182 1183 // Clear cards and update the mod union table. When process_alloc_space_cards is true, 1184 // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do 1185 // not process the alloc space if process_alloc_space_cards is false. 1186 void ProcessCards(TimingLogger* timings, 1187 bool use_rem_sets, 1188 bool process_alloc_space_cards, 1189 bool clear_alloc_space_cards) 1190 REQUIRES_SHARED(Locks::mutator_lock_); 1191 1192 // Push an object onto the allocation stack. 1193 void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) 1194 REQUIRES_SHARED(Locks::mutator_lock_) 1195 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 1196 void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) 1197 REQUIRES_SHARED(Locks::mutator_lock_) 1198 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 1199 void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj) 1200 REQUIRES_SHARED(Locks::mutator_lock_) 1201 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 1202 1203 void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_); 1204 void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_); 1205 1206 // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark 1207 // sweep GC, false for other GC types. IsGcConcurrent()1208 bool IsGcConcurrent() const ALWAYS_INLINE { 1209 return collector_type_ == kCollectorTypeCC || 1210 collector_type_ == kCollectorTypeCMS || 1211 collector_type_ == kCollectorTypeCCBackground; 1212 } 1213 1214 // Trim the managed and native spaces by releasing unused memory back to the OS. 1215 void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_); 1216 1217 // Trim 0 pages at the end of reference tables. 1218 void TrimIndirectReferenceTables(Thread* self); 1219 1220 template <typename Visitor> 1221 ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor) 1222 REQUIRES_SHARED(Locks::mutator_lock_) 1223 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1224 template <typename Visitor> 1225 ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor) 1226 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1227 1228 void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_); 1229 1230 // GC stress mode attempts to do one GC per unique backtrace. 1231 void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) 1232 REQUIRES_SHARED(Locks::mutator_lock_) 1233 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, 1234 !*backtrace_lock_, !process_state_update_lock_); 1235 NonStickyGcType()1236 collector::GcType NonStickyGcType() const { 1237 return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; 1238 } 1239 1240 // Return the amount of space we allow for native memory when deciding whether to 1241 // collect. We collect when a weighted sum of Java memory plus native memory exceeds 1242 // the similarly weighted sum of the Java heap size target and this value. NativeAllocationGcWatermark()1243 ALWAYS_INLINE size_t NativeAllocationGcWatermark() const { 1244 // We keep the traditional limit of max_free_ in place for small heaps, 1245 // but allow it to be adjusted upward for large heaps to limit GC overhead. 1246 return target_footprint_.load(std::memory_order_relaxed) / 8 + max_free_; 1247 } 1248 1249 ALWAYS_INLINE void IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke); 1250 1251 // On switching app from background to foreground, grow the heap size 1252 // to incorporate foreground heap growth multiplier. 1253 void GrowHeapOnJankPerceptibleSwitch() REQUIRES(!process_state_update_lock_); 1254 1255 // Update *_freed_ever_ counters to reflect current GC values. 1256 void IncrementFreedEver(); 1257 1258 // Remove a vlog code from heap-inl.h which is transitively included in half the world. 1259 static void VlogHeapGrowth(size_t max_allowed_footprint, size_t new_footprint, size_t alloc_size); 1260 1261 // Return our best approximation of the number of bytes of native memory that 1262 // are currently in use, and could possibly be reclaimed as an indirect result 1263 // of a garbage collection. 1264 size_t GetNativeBytes(); 1265 1266 // All-known continuous spaces, where objects lie within fixed bounds. 1267 std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1268 1269 // All-known discontinuous spaces, where objects may be placed throughout virtual memory. 1270 std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1271 1272 // All-known alloc spaces, where objects may be or have been allocated. 1273 std::vector<space::AllocSpace*> alloc_spaces_; 1274 1275 // A space where non-movable objects are allocated, when compaction is enabled it contains 1276 // Classes, ArtMethods, ArtFields, and non moving objects. 1277 space::MallocSpace* non_moving_space_; 1278 1279 // Space which we use for the kAllocatorTypeROSAlloc. 1280 space::RosAllocSpace* rosalloc_space_; 1281 1282 // Space which we use for the kAllocatorTypeDlMalloc. 1283 space::DlMallocSpace* dlmalloc_space_; 1284 1285 // The main space is the space which the GC copies to and from on process state updates. This 1286 // space is typically either the dlmalloc_space_ or the rosalloc_space_. 1287 space::MallocSpace* main_space_; 1288 1289 // The large object space we are currently allocating into. 1290 space::LargeObjectSpace* large_object_space_; 1291 1292 // The card table, dirtied by the write barrier. 1293 std::unique_ptr<accounting::CardTable> card_table_; 1294 1295 std::unique_ptr<accounting::ReadBarrierTable> rb_table_; 1296 1297 // A mod-union table remembers all of the references from the it's space to other spaces. 1298 AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap> 1299 mod_union_tables_; 1300 1301 // A remembered set remembers all of the references from the it's space to the target space. 1302 AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap> 1303 remembered_sets_; 1304 1305 // The current collector type. 1306 CollectorType collector_type_; 1307 // Which collector we use when the app is in the foreground. 1308 CollectorType foreground_collector_type_; 1309 // Which collector we will use when the app is notified of a transition to background. 1310 CollectorType background_collector_type_; 1311 // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. 1312 CollectorType desired_collector_type_; 1313 1314 // Lock which guards pending tasks. 1315 Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1316 1317 // How many GC threads we may use for paused parts of garbage collection. 1318 const size_t parallel_gc_threads_; 1319 1320 // How many GC threads we may use for unpaused parts of garbage collection. 1321 const size_t conc_gc_threads_; 1322 1323 // Boolean for if we are in low memory mode. 1324 const bool low_memory_mode_; 1325 1326 // If we get a pause longer than long pause log threshold, then we print out the GC after it 1327 // finishes. 1328 const size_t long_pause_log_threshold_; 1329 1330 // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. 1331 const size_t long_gc_log_threshold_; 1332 1333 // Starting time of the new process; meant to be used for measuring total process CPU time. 1334 uint64_t process_cpu_start_time_ns_; 1335 1336 // Last time (before and after) GC started; meant to be used to measure the 1337 // duration between two GCs. 1338 uint64_t pre_gc_last_process_cpu_time_ns_; 1339 uint64_t post_gc_last_process_cpu_time_ns_; 1340 1341 // allocated_bytes * (current_process_cpu_time - [pre|post]_gc_last_process_cpu_time) 1342 double pre_gc_weighted_allocated_bytes_; 1343 double post_gc_weighted_allocated_bytes_; 1344 1345 // If we ignore the target footprint it lets the heap grow until it hits the heap capacity, this 1346 // is useful for benchmarking since it reduces time spent in GC to a low %. 1347 const bool ignore_target_footprint_; 1348 1349 // If we are running tests or some other configurations we might not actually 1350 // want logs for explicit gcs since they can get spammy. 1351 const bool always_log_explicit_gcs_; 1352 1353 // Lock which guards zygote space creation. 1354 Mutex zygote_creation_lock_; 1355 1356 // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before 1357 // zygote space creation. 1358 space::ZygoteSpace* zygote_space_; 1359 1360 // Minimum allocation size of large object. 1361 size_t large_object_threshold_; 1362 1363 // Guards access to the state of GC, associated conditional variable is used to signal when a GC 1364 // completes. 1365 Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1366 std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_); 1367 1368 // Used to synchronize between JNI critical calls and the thread flip of the CC collector. 1369 Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1370 std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_); 1371 // This counter keeps track of how many threads are currently in a JNI critical section. This is 1372 // incremented once per thread even with nested enters. 1373 size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_); 1374 bool thread_flip_running_ GUARDED_BY(thread_flip_lock_); 1375 1376 // Reference processor; 1377 std::unique_ptr<ReferenceProcessor> reference_processor_; 1378 1379 // Task processor, proxies heap trim requests to the daemon threads. 1380 std::unique_ptr<TaskProcessor> task_processor_; 1381 1382 // Collector type of the running GC. 1383 volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); 1384 1385 // Cause of the last running GC. 1386 volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_); 1387 1388 // The thread currently running the GC. 1389 volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_); 1390 1391 // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. 1392 volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); 1393 collector::GcType next_gc_type_; 1394 1395 // Maximum size that the heap can reach. 1396 size_t capacity_; 1397 1398 // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap 1399 // programs it is "cleared" making it the same as capacity. 1400 // Only weakly enforced for simultaneous allocations. 1401 size_t growth_limit_; 1402 1403 // Target size (as in maximum allocatable bytes) for the heap. Weakly enforced as a limit for 1404 // non-concurrent GC. Used as a guideline for computing concurrent_start_bytes_ in the 1405 // concurrent GC case. 1406 Atomic<size_t> target_footprint_; 1407 1408 // Computed with foreground-multiplier in GrowForUtilization() when run in 1409 // jank non-perceptible state. On update to process state from background to 1410 // foreground we set target_footprint_ to this value. 1411 Mutex process_state_update_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1412 size_t min_foreground_target_footprint_ GUARDED_BY(process_state_update_lock_); 1413 1414 // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that 1415 // it completes ahead of an allocation failing. 1416 // A multiple of this is also used to determine when to trigger a GC in response to native 1417 // allocation. 1418 size_t concurrent_start_bytes_; 1419 1420 // Since the heap was created, how many bytes have been freed. 1421 std::atomic<uint64_t> total_bytes_freed_ever_; 1422 1423 // Since the heap was created, how many objects have been freed. 1424 std::atomic<uint64_t> total_objects_freed_ever_; 1425 1426 // Number of bytes currently allocated and not yet reclaimed. Includes active 1427 // TLABS in their entirety, even if they have not yet been parceled out. 1428 Atomic<size_t> num_bytes_allocated_; 1429 1430 // Number of registered native bytes allocated. Adjusted after each RegisterNativeAllocation and 1431 // RegisterNativeFree. Used to help determine when to trigger GC for native allocations. Should 1432 // not include bytes allocated through the system malloc, since those are implicitly included. 1433 Atomic<size_t> native_bytes_registered_; 1434 1435 // Approximately the smallest value of GetNativeBytes() we've seen since the last GC. 1436 Atomic<size_t> old_native_bytes_allocated_; 1437 1438 // Total number of native objects of which we were notified since the beginning of time, mod 2^32. 1439 // Allows us to check for GC only roughly every kNotifyNativeInterval allocations. 1440 Atomic<uint32_t> native_objects_notified_; 1441 1442 // Number of bytes freed by thread local buffer revokes. This will 1443 // cancel out the ahead-of-time bulk counting of bytes allocated in 1444 // rosalloc thread-local buffers. It is temporarily accumulated 1445 // here to be subtracted from num_bytes_allocated_ later at the next 1446 // GC. 1447 Atomic<size_t> num_bytes_freed_revoke_; 1448 1449 // Info related to the current or previous GC iteration. 1450 collector::Iteration current_gc_iteration_; 1451 1452 // Heap verification flags. 1453 const bool verify_missing_card_marks_; 1454 const bool verify_system_weaks_; 1455 const bool verify_pre_gc_heap_; 1456 const bool verify_pre_sweeping_heap_; 1457 const bool verify_post_gc_heap_; 1458 const bool verify_mod_union_table_; 1459 bool verify_pre_gc_rosalloc_; 1460 bool verify_pre_sweeping_rosalloc_; 1461 bool verify_post_gc_rosalloc_; 1462 const bool gc_stress_mode_; 1463 1464 // RAII that temporarily disables the rosalloc verification during 1465 // the zygote fork. 1466 class ScopedDisableRosAllocVerification { 1467 private: 1468 Heap* const heap_; 1469 const bool orig_verify_pre_gc_; 1470 const bool orig_verify_pre_sweeping_; 1471 const bool orig_verify_post_gc_; 1472 1473 public: ScopedDisableRosAllocVerification(Heap * heap)1474 explicit ScopedDisableRosAllocVerification(Heap* heap) 1475 : heap_(heap), 1476 orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), 1477 orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_), 1478 orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { 1479 heap_->verify_pre_gc_rosalloc_ = false; 1480 heap_->verify_pre_sweeping_rosalloc_ = false; 1481 heap_->verify_post_gc_rosalloc_ = false; 1482 } ~ScopedDisableRosAllocVerification()1483 ~ScopedDisableRosAllocVerification() { 1484 heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; 1485 heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_; 1486 heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; 1487 } 1488 }; 1489 1490 // Parallel GC data structures. 1491 std::unique_ptr<ThreadPool> thread_pool_; 1492 1493 // A bitmap that is set corresponding to the known live objects since the last GC cycle. 1494 std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1495 // A bitmap that is set corresponding to the marked objects in the current GC cycle. 1496 std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1497 1498 // Mark stack that we reuse to avoid re-allocating the mark stack. 1499 std::unique_ptr<accounting::ObjectStack> mark_stack_; 1500 1501 // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us 1502 // to use the live bitmap as the old mark bitmap. 1503 const size_t max_allocation_stack_size_; 1504 std::unique_ptr<accounting::ObjectStack> allocation_stack_; 1505 1506 // Second allocation stack so that we can process allocation with the heap unlocked. 1507 std::unique_ptr<accounting::ObjectStack> live_stack_; 1508 1509 // Allocator type. 1510 AllocatorType current_allocator_; 1511 const AllocatorType current_non_moving_allocator_; 1512 1513 // Which GCs we run in order when an allocation fails. 1514 std::vector<collector::GcType> gc_plan_; 1515 1516 // Bump pointer spaces. 1517 space::BumpPointerSpace* bump_pointer_space_; 1518 // Temp space is the space which the semispace collector copies to. 1519 space::BumpPointerSpace* temp_space_; 1520 1521 // Region space, used by the concurrent collector. 1522 space::RegionSpace* region_space_; 1523 1524 // Minimum free guarantees that you always have at least min_free_ free bytes after growing for 1525 // utilization, regardless of target utilization ratio. 1526 const size_t min_free_; 1527 1528 // The ideal maximum free size, when we grow the heap for utilization. 1529 const size_t max_free_; 1530 1531 // Target ideal heap utilization ratio. 1532 double target_utilization_; 1533 1534 // How much more we grow the heap when we are a foreground app instead of background. 1535 double foreground_heap_growth_multiplier_; 1536 1537 // The amount of native memory allocation since the last GC required to cause us to wait for a 1538 // collection as a result of native allocation. Very large values can cause the device to run 1539 // out of memory, due to lack of finalization to reclaim native memory. Making it too small can 1540 // cause jank in apps like launcher that intentionally allocate large amounts of memory in rapid 1541 // succession. (b/122099093) 1/4 to 1/3 of physical memory seems to be a good number. 1542 const size_t stop_for_native_allocs_; 1543 1544 // Total time which mutators are paused or waiting for GC to complete. 1545 uint64_t total_wait_time_; 1546 1547 // The current state of heap verification, may be enabled or disabled. 1548 VerifyObjectMode verify_object_mode_; 1549 1550 // Compacting GC disable count, prevents compacting GC from running iff > 0. 1551 size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); 1552 1553 std::vector<collector::GarbageCollector*> garbage_collectors_; 1554 collector::SemiSpace* semi_space_collector_; 1555 Atomic<collector::ConcurrentCopying*> active_concurrent_copying_collector_; 1556 collector::ConcurrentCopying* young_concurrent_copying_collector_; 1557 collector::ConcurrentCopying* concurrent_copying_collector_; 1558 1559 const bool is_running_on_memory_tool_; 1560 const bool use_tlab_; 1561 1562 // Pointer to the space which becomes the new main space when we do homogeneous space compaction. 1563 // Use unique_ptr since the space is only added during the homogeneous compaction phase. 1564 std::unique_ptr<space::MallocSpace> main_space_backup_; 1565 1566 // Minimal interval allowed between two homogeneous space compactions caused by OOM. 1567 uint64_t min_interval_homogeneous_space_compaction_by_oom_; 1568 1569 // Times of the last homogeneous space compaction caused by OOM. 1570 uint64_t last_time_homogeneous_space_compaction_by_oom_; 1571 1572 // Saved OOMs by homogeneous space compaction. 1573 Atomic<size_t> count_delayed_oom_; 1574 1575 // Count for requested homogeneous space compaction. 1576 Atomic<size_t> count_requested_homogeneous_space_compaction_; 1577 1578 // Count for ignored homogeneous space compaction. 1579 Atomic<size_t> count_ignored_homogeneous_space_compaction_; 1580 1581 // Count for performed homogeneous space compaction. 1582 Atomic<size_t> count_performed_homogeneous_space_compaction_; 1583 1584 // The number of garbage collections (either young or full, not trims or the like) we have 1585 // completed since heap creation. We include requests that turned out to be impossible 1586 // because they were disabled. We guard against wrapping, though that's unlikely. 1587 // Increment is guarded by gc_complete_lock_. 1588 Atomic<uint32_t> gcs_completed_; 1589 1590 // The number of the last garbage collection that has been requested. A value of gcs_completed 1591 // + 1 indicates that another collection is needed or in progress. A value of gcs_completed_ or 1592 // (logically) less means that no new GC has been requested. 1593 Atomic<uint32_t> max_gc_requested_; 1594 1595 // Active tasks which we can modify (change target time, desired collector type, etc..). 1596 CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_); 1597 HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_); 1598 1599 // Whether or not we use homogeneous space compaction to avoid OOM errors. 1600 bool use_homogeneous_space_compaction_for_oom_; 1601 1602 // If true, enable generational collection when using the Concurrent Copying 1603 // (CC) collector, i.e. use sticky-bit CC for minor collections and (full) CC 1604 // for major collections. Set in Heap constructor. 1605 const bool use_generational_cc_; 1606 1607 // True if the currently running collection has made some thread wait. 1608 bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_); 1609 // The number of blocking GC runs. 1610 uint64_t blocking_gc_count_; 1611 // The total duration of blocking GC runs. 1612 uint64_t blocking_gc_time_; 1613 // The duration of the window for the GC count rate histograms. 1614 static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000); // 10s. 1615 // Maximum number of missed histogram windows for which statistics will be collected. 1616 static constexpr uint64_t kGcCountRateHistogramMaxNumMissedWindows = 100; 1617 // The last time when the GC count rate histograms were updated. 1618 // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s). 1619 uint64_t last_update_time_gc_count_rate_histograms_; 1620 // The running count of GC runs in the last window. 1621 uint64_t gc_count_last_window_; 1622 // The running count of blocking GC runs in the last window. 1623 uint64_t blocking_gc_count_last_window_; 1624 // The maximum number of buckets in the GC count rate histograms. 1625 static constexpr size_t kGcCountRateMaxBucketCount = 200; 1626 // The histogram of the number of GC invocations per window duration. 1627 Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1628 // The histogram of the number of blocking GC invocations per window duration. 1629 Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1630 1631 // Allocation tracking support 1632 Atomic<bool> alloc_tracking_enabled_; 1633 std::unique_ptr<AllocRecordObjectMap> allocation_records_; 1634 size_t alloc_record_depth_; 1635 1636 // Perfetto Java Heap Profiler support. 1637 HeapSampler heap_sampler_; 1638 1639 // GC stress related data structures. 1640 Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1641 // Debugging variables, seen backtraces vs unique backtraces. 1642 Atomic<uint64_t> seen_backtrace_count_; 1643 Atomic<uint64_t> unique_backtrace_count_; 1644 // Stack trace hashes that we already saw, 1645 std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_); 1646 1647 // We disable GC when we are shutting down the runtime in case there are daemon threads still 1648 // allocating. 1649 bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_); 1650 1651 // Turned on by -XX:DumpRegionInfoBeforeGC and -XX:DumpRegionInfoAfterGC to 1652 // emit region info before and after each GC cycle. 1653 bool dump_region_info_before_gc_; 1654 bool dump_region_info_after_gc_; 1655 1656 // Boot image spaces. 1657 std::vector<space::ImageSpace*> boot_image_spaces_; 1658 1659 // Boot image address range. Includes images and oat files. 1660 uint32_t boot_images_start_address_; 1661 uint32_t boot_images_size_; 1662 1663 // An installed allocation listener. 1664 Atomic<AllocationListener*> alloc_listener_; 1665 // An installed GC Pause listener. 1666 Atomic<GcPauseListener*> gc_pause_listener_; 1667 1668 std::unique_ptr<Verification> verification_; 1669 1670 friend class CollectorTransitionTask; 1671 friend class collector::GarbageCollector; 1672 friend class collector::ConcurrentCopying; 1673 friend class collector::MarkSweep; 1674 friend class collector::SemiSpace; 1675 friend class GCCriticalSection; 1676 friend class ReferenceQueue; 1677 friend class ScopedGCCriticalSection; 1678 friend class ScopedInterruptibleGCCriticalSection; 1679 friend class VerifyReferenceCardVisitor; 1680 friend class VerifyReferenceVisitor; 1681 friend class VerifyObjectVisitor; 1682 1683 DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); 1684 }; 1685 1686 } // namespace gc 1687 } // namespace art 1688 1689 #endif // ART_RUNTIME_GC_HEAP_H_ 1690