1 // Copyright 2020 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "cast/streaming/sender.h"
6
7 #include <algorithm>
8 #include <chrono>
9 #include <ratio>
10
11 #include "cast/streaming/session_config.h"
12 #include "util/chrono_helpers.h"
13 #include "util/osp_logging.h"
14 #include "util/std_util.h"
15
16 namespace openscreen {
17 namespace cast {
18
19 using openscreen::operator<<; // For std::chrono::duration logging.
20
Sender(Environment * environment,SenderPacketRouter * packet_router,SessionConfig config,RtpPayloadType rtp_payload_type)21 Sender::Sender(Environment* environment,
22 SenderPacketRouter* packet_router,
23 SessionConfig config,
24 RtpPayloadType rtp_payload_type)
25 : config_(config),
26 packet_router_(packet_router),
27 rtcp_session_(config.sender_ssrc,
28 config.receiver_ssrc,
29 environment->now()),
30 rtcp_parser_(&rtcp_session_, this),
31 sender_report_builder_(&rtcp_session_),
32 rtp_packetizer_(rtp_payload_type,
33 config.sender_ssrc,
34 packet_router_->max_packet_size()),
35 rtp_timebase_(config.rtp_timebase),
36 crypto_(config.aes_secret_key, config.aes_iv_mask),
37 target_playout_delay_(config.target_playout_delay) {
38 OSP_DCHECK(packet_router_);
39 OSP_DCHECK_NE(rtcp_session_.sender_ssrc(), rtcp_session_.receiver_ssrc());
40 OSP_DCHECK_GT(rtp_timebase_, 0);
41 OSP_DCHECK(target_playout_delay_ > milliseconds::zero());
42
43 pending_sender_report_.reference_time = SenderPacketRouter::kNever;
44
45 packet_router_->OnSenderCreated(rtcp_session_.receiver_ssrc(), this);
46 }
47
~Sender()48 Sender::~Sender() {
49 packet_router_->OnSenderDestroyed(rtcp_session_.receiver_ssrc());
50 }
51
SetObserver(Sender::Observer * observer)52 void Sender::SetObserver(Sender::Observer* observer) {
53 observer_ = observer;
54 }
55
GetInFlightFrameCount() const56 int Sender::GetInFlightFrameCount() const {
57 return num_frames_in_flight_;
58 }
59
GetInFlightMediaDuration(RtpTimeTicks next_frame_rtp_timestamp) const60 Clock::duration Sender::GetInFlightMediaDuration(
61 RtpTimeTicks next_frame_rtp_timestamp) const {
62 if (num_frames_in_flight_ == 0) {
63 return Clock::duration::zero(); // No frames are currently in-flight.
64 }
65
66 const PendingFrameSlot& oldest_slot = *get_slot_for(checkpoint_frame_id_ + 1);
67 // Note: The oldest slot's frame cannot have been canceled because the
68 // protocol does not allow ACK'ing this particular frame without also moving
69 // the checkpoint forward. See "CST2 feedback" discussion in rtp_defines.h.
70 OSP_DCHECK(oldest_slot.is_active_for_frame(checkpoint_frame_id_ + 1));
71
72 return (next_frame_rtp_timestamp - oldest_slot.frame->rtp_timestamp)
73 .ToDuration<Clock::duration>(rtp_timebase_);
74 }
75
GetMaxInFlightMediaDuration() const76 Clock::duration Sender::GetMaxInFlightMediaDuration() const {
77 // Assumption: The total amount of allowed in-flight media should equal the
78 // half of the playout delay window, plus the amount of time it takes to
79 // receive an ACK from the Receiver.
80 //
81 // Why half of the playout delay window? It's assumed here that capture and
82 // media encoding, which occur before EnqueueFrame() is called, are executing
83 // within the first half of the playout delay window. This leaves the second
84 // half for executing all network transmits/re-transmits, plus decoding and
85 // play-out at the Receiver.
86 return (target_playout_delay_ / 2) + (round_trip_time_ / 2);
87 }
88
NeedsKeyFrame() const89 bool Sender::NeedsKeyFrame() const {
90 return last_enqueued_key_frame_id_ <= picture_lost_at_frame_id_;
91 }
92
GetNextFrameId() const93 FrameId Sender::GetNextFrameId() const {
94 return last_enqueued_frame_id_ + 1;
95 }
96
EnqueueFrame(const EncodedFrame & frame)97 Sender::EnqueueFrameResult Sender::EnqueueFrame(const EncodedFrame& frame) {
98 // Assume the fields of the |frame| have all been set correctly, with
99 // monotonically increasing timestamps and a valid pointer to the data.
100 OSP_DCHECK_EQ(frame.frame_id, GetNextFrameId());
101 OSP_DCHECK_GE(frame.referenced_frame_id, FrameId::first());
102 if (frame.frame_id != FrameId::first()) {
103 OSP_DCHECK_GT(frame.rtp_timestamp, pending_sender_report_.rtp_timestamp);
104 OSP_DCHECK_GT(frame.reference_time, pending_sender_report_.reference_time);
105 }
106 OSP_DCHECK(frame.data.data());
107
108 // Check whether enqueuing the frame would exceed the design limit for the
109 // span of FrameIds. Even if |num_frames_in_flight_| is less than
110 // kMaxUnackedFrames, it's the span of FrameIds that is restricted.
111 if ((frame.frame_id - checkpoint_frame_id_) > kMaxUnackedFrames) {
112 return REACHED_ID_SPAN_LIMIT;
113 }
114
115 // Check whether enqueuing the frame would exceed the current maximum media
116 // duration limit.
117 if (GetInFlightMediaDuration(frame.rtp_timestamp) >
118 GetMaxInFlightMediaDuration()) {
119 return MAX_DURATION_IN_FLIGHT;
120 }
121
122 // Encrypt the frame and initialize the slot tracking its sending.
123 PendingFrameSlot* const slot = get_slot_for(frame.frame_id);
124 OSP_DCHECK(!slot->frame);
125 slot->frame = crypto_.Encrypt(frame);
126 const int packet_count = rtp_packetizer_.ComputeNumberOfPackets(*slot->frame);
127 if (packet_count <= 0) {
128 slot->frame.reset();
129 return PAYLOAD_TOO_LARGE;
130 }
131 slot->send_flags.Resize(packet_count, YetAnotherBitVector::SET);
132 slot->packet_sent_times.assign(packet_count, SenderPacketRouter::kNever);
133
134 // Officially record the "enqueue."
135 ++num_frames_in_flight_;
136 last_enqueued_frame_id_ = slot->frame->frame_id;
137 OSP_DCHECK_LE(num_frames_in_flight_,
138 last_enqueued_frame_id_ - checkpoint_frame_id_);
139 if (slot->frame->dependency == EncodedFrame::KEY_FRAME) {
140 last_enqueued_key_frame_id_ = slot->frame->frame_id;
141 }
142
143 // Update the target playout delay, if necessary.
144 if (slot->frame->new_playout_delay > milliseconds::zero()) {
145 target_playout_delay_ = slot->frame->new_playout_delay;
146 playout_delay_change_at_frame_id_ = slot->frame->frame_id;
147 }
148
149 // Update the lip-sync information for the next Sender Report.
150 pending_sender_report_.reference_time = slot->frame->reference_time;
151 pending_sender_report_.rtp_timestamp = slot->frame->rtp_timestamp;
152
153 // If the round trip time hasn't been computed yet, immediately send a RTCP
154 // packet (i.e., before the RTP packets are sent). The RTCP packet will
155 // provide a Sender Report which contains the required lip-sync information
156 // the Receiver needs for timing the media playout.
157 //
158 // Detail: Working backwards, if the round trip time is not known, then this
159 // Sender has never processed a Receiver Report. Thus, the Receiver has never
160 // provided a Receiver Report, which it can only do after having processed a
161 // Sender Report from this Sender. Thus, this Sender really needs to send
162 // that, right now!
163 if (round_trip_time_ == Clock::duration::zero()) {
164 packet_router_->RequestRtcpSend(rtcp_session_.receiver_ssrc());
165 }
166
167 // Re-activate RTP sending if it was suspended.
168 packet_router_->RequestRtpSend(rtcp_session_.receiver_ssrc());
169
170 return OK;
171 }
172
CancelInFlightData()173 void Sender::CancelInFlightData() {
174 while (checkpoint_frame_id_ <= last_enqueued_frame_id_) {
175 ++checkpoint_frame_id_;
176 CancelPendingFrame(checkpoint_frame_id_);
177 }
178 }
179
OnReceivedRtcpPacket(Clock::time_point arrival_time,absl::Span<const uint8_t> packet)180 void Sender::OnReceivedRtcpPacket(Clock::time_point arrival_time,
181 absl::Span<const uint8_t> packet) {
182 rtcp_packet_arrival_time_ = arrival_time;
183 // This call to Parse() invoke zero or more of the OnReceiverXYZ() methods in
184 // the current call stack:
185 if (rtcp_parser_.Parse(packet, last_enqueued_frame_id_)) {
186 packet_router_->OnRtcpReceived(arrival_time, round_trip_time_);
187 }
188 }
189
GetRtcpPacketForImmediateSend(Clock::time_point send_time,absl::Span<uint8_t> buffer)190 absl::Span<uint8_t> Sender::GetRtcpPacketForImmediateSend(
191 Clock::time_point send_time,
192 absl::Span<uint8_t> buffer) {
193 if (pending_sender_report_.reference_time == SenderPacketRouter::kNever) {
194 // Cannot send a report if one is not available (i.e., a frame has never
195 // been enqueued).
196 return buffer.subspan(0, 0);
197 }
198
199 // The Sender Report to be sent is a snapshot of the "pending Sender Report,"
200 // but with its timestamp fields modified. First, the reference time is set to
201 // the RTCP packet's send time. Then, the corresponding RTP timestamp is
202 // translated to match (for lip-sync).
203 RtcpSenderReport sender_report = pending_sender_report_;
204 sender_report.reference_time = send_time;
205 sender_report.rtp_timestamp += RtpTimeDelta::FromDuration(
206 sender_report.reference_time - pending_sender_report_.reference_time,
207 rtp_timebase_);
208
209 return sender_report_builder_.BuildPacket(sender_report, buffer).first;
210 }
211
GetRtpPacketForImmediateSend(Clock::time_point send_time,absl::Span<uint8_t> buffer)212 absl::Span<uint8_t> Sender::GetRtpPacketForImmediateSend(
213 Clock::time_point send_time,
214 absl::Span<uint8_t> buffer) {
215 ChosenPacket chosen = ChooseNextRtpPacketNeedingSend();
216
217 // If no packets need sending (i.e., all packets have been sent at least once
218 // and do not need to be re-sent yet), check whether a Kickstart packet should
219 // be sent. It's possible that there has been complete packet loss of some
220 // frames, and the Receiver may not be aware of the existence of the latest
221 // frame(s). Kickstarting is the only way the Receiver can discover the newer
222 // frames it doesn't know about.
223 if (!chosen) {
224 const ChosenPacketAndWhen kickstart = ChooseKickstartPacket();
225 if (kickstart.when > send_time) {
226 // Nothing to send, so return "empty" signal to the packet router. The
227 // packet router will suspend RTP sending until this Sender explicitly
228 // resumes it.
229 return buffer.subspan(0, 0);
230 }
231 chosen = kickstart;
232 OSP_DCHECK(chosen);
233 }
234
235 const absl::Span<uint8_t> result = rtp_packetizer_.GeneratePacket(
236 *chosen.slot->frame, chosen.packet_id, buffer);
237 chosen.slot->send_flags.Clear(chosen.packet_id);
238 chosen.slot->packet_sent_times[chosen.packet_id] = send_time;
239
240 ++pending_sender_report_.send_packet_count;
241 // According to RFC3550, the octet count does not include the RTP header. The
242 // following is just a good approximation, however, because the header size
243 // will very infrequently be 4 bytes greater (see
244 // RtpPacketizer::kAdaptiveLatencyHeaderSize). No known Cast Streaming
245 // Receiver implementations use this for anything, and so this should be fine.
246 const int approximate_octet_count =
247 static_cast<int>(result.size()) - RtpPacketizer::kBaseRtpHeaderSize;
248 OSP_DCHECK_GE(approximate_octet_count, 0);
249 pending_sender_report_.send_octet_count += approximate_octet_count;
250
251 return result;
252 }
253
GetRtpResumeTime()254 Clock::time_point Sender::GetRtpResumeTime() {
255 if (ChooseNextRtpPacketNeedingSend()) {
256 return Alarm::kImmediately;
257 }
258 return ChooseKickstartPacket().when;
259 }
260
OnReceiverReferenceTimeAdvanced(Clock::time_point reference_time)261 void Sender::OnReceiverReferenceTimeAdvanced(Clock::time_point reference_time) {
262 // Not used.
263 }
264
OnReceiverReport(const RtcpReportBlock & receiver_report)265 void Sender::OnReceiverReport(const RtcpReportBlock& receiver_report) {
266 OSP_DCHECK_NE(rtcp_packet_arrival_time_, SenderPacketRouter::kNever);
267
268 const Clock::duration total_delay =
269 rtcp_packet_arrival_time_ -
270 sender_report_builder_.GetRecentReportTime(
271 receiver_report.last_status_report_id, rtcp_packet_arrival_time_);
272 const auto non_network_delay =
273 Clock::to_duration(receiver_report.delay_since_last_report);
274
275 // Round trip time measurement: This is the time elapsed since the Sender
276 // Report was sent, minus the time the Receiver did other stuff before sending
277 // the Receiver Report back.
278 //
279 // If the round trip time seems to be less than or equal to zero, assume clock
280 // imprecision by one or both peers caused a bad value to be calculated. The
281 // true value is likely very close to zero (i.e., this is ideal network
282 // behavior); and so just represent this as 75 µs, an optimistic
283 // wired-Ethernet LAN ping time.
284 constexpr auto kNearZeroRoundTripTime = Clock::to_duration(microseconds(75));
285 static_assert(kNearZeroRoundTripTime > Clock::duration::zero(),
286 "More precision in Clock::duration needed!");
287 const Clock::duration measurement =
288 std::max(total_delay - non_network_delay, kNearZeroRoundTripTime);
289
290 // Validate the measurement by using the current target playout delay as a
291 // "reasonable upper-bound." It's certainly possible that the actual network
292 // round-trip time could exceed the target playout delay, but that would mean
293 // the current network performance is totally inadequate for streaming anyway.
294 if (measurement > target_playout_delay_) {
295 OSP_LOG_WARN << "Invalidating a round-trip time measurement ("
296 << measurement
297 << ") since it exceeds the current target playout delay ("
298 << target_playout_delay_ << ").";
299 return;
300 }
301
302 // Measurements will typically have high variance. Use a simple smoothing
303 // filter to track a short-term average that changes less drastically.
304 if (round_trip_time_ == Clock::duration::zero()) {
305 round_trip_time_ = measurement;
306 } else {
307 // Arbitrary constant, to provide 1/8 weight to the new measurement, and 7/8
308 // weight to the old estimate, which seems to work well for de-noising the
309 // estimate.
310 constexpr int kInertia = 7;
311 round_trip_time_ =
312 (kInertia * round_trip_time_ + measurement) / (kInertia + 1);
313 }
314 // TODO(miu): Add tracing event here to note the updated RTT.
315 }
316
OnReceiverIndicatesPictureLoss()317 void Sender::OnReceiverIndicatesPictureLoss() {
318 // The Receiver will continue the PLI notifications until it has received a
319 // key frame. Thus, if a key frame is already in-flight, don't make a state
320 // change that would cause this Sender to force another expensive key frame.
321 if (checkpoint_frame_id_ < last_enqueued_key_frame_id_) {
322 return;
323 }
324
325 picture_lost_at_frame_id_ = checkpoint_frame_id_;
326
327 if (observer_) {
328 observer_->OnPictureLost();
329 }
330
331 // Note: It may seem that all pending frames should be canceled until
332 // EnqueueFrame() is called with a key frame. However:
333 //
334 // 1. The Receiver should still be the main authority on what frames/packets
335 // are being ACK'ed and NACK'ed.
336 //
337 // 2. It may be desirable for the Receiver to be "limping along" in the
338 // meantime. For example, video may be corrupted but mostly watchable,
339 // and so it's best for the Sender to continue sending the non-key frames
340 // until the Receiver indicates otherwise.
341 }
342
OnReceiverCheckpoint(FrameId frame_id,milliseconds playout_delay)343 void Sender::OnReceiverCheckpoint(FrameId frame_id,
344 milliseconds playout_delay) {
345 if (frame_id > last_enqueued_frame_id_) {
346 OSP_LOG_ERROR
347 << "Ignoring checkpoint for " << latest_expected_frame_id_
348 << " because this Sender could not have sent any frames after "
349 << last_enqueued_frame_id_ << '.';
350 return;
351 }
352 // CompoundRtcpParser should guarantee this:
353 OSP_DCHECK(playout_delay >= milliseconds::zero());
354
355 while (checkpoint_frame_id_ < frame_id) {
356 ++checkpoint_frame_id_;
357 CancelPendingFrame(checkpoint_frame_id_);
358 }
359 latest_expected_frame_id_ = std::max(latest_expected_frame_id_, frame_id);
360
361 if (playout_delay != target_playout_delay_ &&
362 frame_id >= playout_delay_change_at_frame_id_) {
363 OSP_LOG_WARN << "Sender's target playout delay (" << target_playout_delay_
364 << ") disagrees with the Receiver's (" << playout_delay << ")";
365 }
366 }
367
OnReceiverHasFrames(std::vector<FrameId> acks)368 void Sender::OnReceiverHasFrames(std::vector<FrameId> acks) {
369 OSP_DCHECK(!acks.empty() && AreElementsSortedAndUnique(acks));
370
371 if (acks.back() > last_enqueued_frame_id_) {
372 OSP_LOG_ERROR << "Ignoring individual frame ACKs: ACKing frame "
373 << latest_expected_frame_id_
374 << " is invalid because this Sender could not have sent any "
375 "frames after "
376 << last_enqueued_frame_id_ << '.';
377 return;
378 }
379
380 for (FrameId id : acks) {
381 CancelPendingFrame(id);
382 }
383 latest_expected_frame_id_ = std::max(latest_expected_frame_id_, acks.back());
384 }
385
OnReceiverIsMissingPackets(std::vector<PacketNack> nacks)386 void Sender::OnReceiverIsMissingPackets(std::vector<PacketNack> nacks) {
387 OSP_DCHECK(!nacks.empty() && AreElementsSortedAndUnique(nacks));
388 OSP_DCHECK_NE(rtcp_packet_arrival_time_, SenderPacketRouter::kNever);
389
390 // This is a point-in-time threshold that indicates whether each NACK will
391 // trigger a packet retransmit. The threshold is based on the network round
392 // trip time because a Receiver's NACK may have been issued while the needed
393 // packet was in-flight from the Sender. In such cases, the Receiver's NACK is
394 // likely stale and this Sender should not redundantly re-transmit the packet
395 // again.
396 const Clock::time_point too_recent_a_send_time =
397 rtcp_packet_arrival_time_ - round_trip_time_;
398
399 // Iterate over all the NACKs...
400 bool need_to_send = false;
401 for (auto nack_it = nacks.begin(); nack_it != nacks.end();) {
402 // Find the slot associated with the NACK's frame ID.
403 const FrameId frame_id = nack_it->frame_id;
404 PendingFrameSlot* slot = nullptr;
405 if (frame_id <= last_enqueued_frame_id_) {
406 PendingFrameSlot* const candidate_slot = get_slot_for(frame_id);
407 if (candidate_slot->is_active_for_frame(frame_id)) {
408 slot = candidate_slot;
409 }
410 }
411
412 // If no slot was found (i.e., the NACK is invalid) for the frame, skip-over
413 // all other NACKs for the same frame. While it seems to be a bug that the
414 // Receiver would attempt to NACK a frame that does not yet exist, this can
415 // happen in rare cases where RTCP packets arrive out-of-order (i.e., the
416 // network shuffled them).
417 if (!slot) {
418 // TODO(miu): Add tracing event here to record this.
419 for (++nack_it; nack_it != nacks.end() && nack_it->frame_id == frame_id;
420 ++nack_it) {
421 }
422 continue;
423 }
424
425 // NOLINTNEXTLINE
426 latest_expected_frame_id_ = std::max(latest_expected_frame_id_, frame_id);
427
428 const auto HandleIndividualNack = [&](FramePacketId packet_id) {
429 if (slot->packet_sent_times[packet_id] <= too_recent_a_send_time) {
430 slot->send_flags.Set(packet_id);
431 need_to_send = true;
432 }
433 };
434 const FramePacketId range_end = slot->packet_sent_times.size();
435 if (nack_it->packet_id == kAllPacketsLost) {
436 for (FramePacketId packet_id = 0; packet_id < range_end; ++packet_id) {
437 HandleIndividualNack(packet_id);
438 }
439 ++nack_it;
440 } else {
441 do {
442 if (nack_it->packet_id < range_end) {
443 HandleIndividualNack(nack_it->packet_id);
444 } else {
445 OSP_LOG_WARN
446 << "Ignoring NACK for packet that doesn't exist in frame "
447 << frame_id << ": " << static_cast<int>(nack_it->packet_id);
448 }
449 ++nack_it;
450 } while (nack_it != nacks.end() && nack_it->frame_id == frame_id);
451 }
452 }
453
454 if (need_to_send) {
455 packet_router_->RequestRtpSend(rtcp_session_.receiver_ssrc());
456 }
457 }
458
ChooseNextRtpPacketNeedingSend()459 Sender::ChosenPacket Sender::ChooseNextRtpPacketNeedingSend() {
460 // Find the oldest packet needing to be sent (or re-sent).
461 for (FrameId frame_id = checkpoint_frame_id_ + 1;
462 frame_id <= last_enqueued_frame_id_; ++frame_id) {
463 PendingFrameSlot* const slot = get_slot_for(frame_id);
464 if (!slot->is_active_for_frame(frame_id)) {
465 continue; // Frame was canceled. None of its packets need to be sent.
466 }
467 const FramePacketId packet_id = slot->send_flags.FindFirstSet();
468 if (packet_id < slot->send_flags.size()) {
469 return {slot, packet_id};
470 }
471 }
472
473 return {}; // Nothing needs to be sent.
474 }
475
ChooseKickstartPacket()476 Sender::ChosenPacketAndWhen Sender::ChooseKickstartPacket() {
477 if (latest_expected_frame_id_ >= last_enqueued_frame_id_) {
478 // Since the Receiver must know about all of the frames currently queued, no
479 // Kickstart packet is necessary.
480 return {};
481 }
482
483 // The Kickstart packet is always in the last-enqueued frame, so that the
484 // Receiver will know about every frame the Sender has. However, which packet
485 // should be chosen? Any would do, since all packets contain the frame's total
486 // packet count. For historical reasons, all sender implementations have
487 // always just sent the last packet; and so that tradition is continued here.
488 ChosenPacketAndWhen chosen;
489 chosen.slot = get_slot_for(last_enqueued_frame_id_);
490 // Note: This frame cannot have been canceled since
491 // |latest_expected_frame_id_| hasn't yet reached this point.
492 OSP_DCHECK(chosen.slot->is_active_for_frame(last_enqueued_frame_id_));
493 chosen.packet_id = chosen.slot->send_flags.size() - 1;
494
495 const Clock::time_point time_last_sent =
496 chosen.slot->packet_sent_times[chosen.packet_id];
497 // Sanity-check: This method should not be called to choose a packet while
498 // there are still unsent packets.
499 OSP_DCHECK_NE(time_last_sent, SenderPacketRouter::kNever);
500
501 // The desired Kickstart interval is a fraction of the total
502 // |target_playout_delay_|. The reason for the specific ratio here is based on
503 // lost knowledge (from legacy implementations); but it makes sense (i.e., to
504 // be a good "network citizen") to be less aggressive for larger playout delay
505 // windows, and more aggressive for shorter ones to avoid too-late packet
506 // arrivals.
507 using kWaitFraction = std::ratio<1, 20>;
508 const Clock::duration desired_kickstart_interval =
509 Clock::to_duration(target_playout_delay_) * kWaitFraction::num /
510 kWaitFraction::den;
511 // The actual interval used is increased, if current network performance
512 // warrants waiting longer. Don't send a Kickstart packet until no NACKs
513 // have been received for two network round-trip periods.
514 constexpr int kLowerBoundRoundTrips = 2;
515 const Clock::duration kickstart_interval = std::max(
516 desired_kickstart_interval, round_trip_time_ * kLowerBoundRoundTrips);
517 chosen.when = time_last_sent + kickstart_interval;
518
519 return chosen;
520 }
521
CancelPendingFrame(FrameId frame_id)522 void Sender::CancelPendingFrame(FrameId frame_id) {
523 PendingFrameSlot* const slot = get_slot_for(frame_id);
524 if (!slot->is_active_for_frame(frame_id)) {
525 return; // Frame was already canceled.
526 }
527
528 packet_router_->OnPayloadReceived(
529 slot->frame->data.size(), rtcp_packet_arrival_time_, round_trip_time_);
530
531 slot->frame.reset();
532 OSP_DCHECK_GT(num_frames_in_flight_, 0);
533 --num_frames_in_flight_;
534 if (observer_) {
535 observer_->OnFrameCanceled(frame_id);
536 }
537 }
538
OnFrameCanceled(FrameId frame_id)539 void Sender::Observer::OnFrameCanceled(FrameId frame_id) {}
OnPictureLost()540 void Sender::Observer::OnPictureLost() {}
541 Sender::Observer::~Observer() = default;
542
543 Sender::PendingFrameSlot::PendingFrameSlot() = default;
544 Sender::PendingFrameSlot::~PendingFrameSlot() = default;
545
546 } // namespace cast
547 } // namespace openscreen
548