1 //===-- DataExtractor.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "lldb/Utility/DataExtractor.h"
10
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
15
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/LLDBAssert.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Stream.h"
21 #include "lldb/Utility/StreamString.h"
22 #include "lldb/Utility/UUID.h"
23
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/Support/LEB128.h"
27 #include "llvm/Support/MD5.h"
28 #include "llvm/Support/MathExtras.h"
29
30 #include <algorithm>
31 #include <array>
32 #include <cassert>
33 #include <cstdint>
34 #include <string>
35
36 #include <ctype.h>
37 #include <inttypes.h>
38 #include <string.h>
39
40 using namespace lldb;
41 using namespace lldb_private;
42
ReadInt16(const unsigned char * ptr,offset_t offset)43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
44 uint16_t value;
45 memcpy(&value, ptr + offset, 2);
46 return value;
47 }
48
ReadInt32(const unsigned char * ptr,offset_t offset=0)49 static inline uint32_t ReadInt32(const unsigned char *ptr,
50 offset_t offset = 0) {
51 uint32_t value;
52 memcpy(&value, ptr + offset, 4);
53 return value;
54 }
55
ReadInt64(const unsigned char * ptr,offset_t offset=0)56 static inline uint64_t ReadInt64(const unsigned char *ptr,
57 offset_t offset = 0) {
58 uint64_t value;
59 memcpy(&value, ptr + offset, 8);
60 return value;
61 }
62
ReadInt16(const void * ptr)63 static inline uint16_t ReadInt16(const void *ptr) {
64 uint16_t value;
65 memcpy(&value, ptr, 2);
66 return value;
67 }
68
ReadSwapInt16(const unsigned char * ptr,offset_t offset)69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
70 offset_t offset) {
71 uint16_t value;
72 memcpy(&value, ptr + offset, 2);
73 return llvm::ByteSwap_16(value);
74 }
75
ReadSwapInt32(const unsigned char * ptr,offset_t offset)76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
77 offset_t offset) {
78 uint32_t value;
79 memcpy(&value, ptr + offset, 4);
80 return llvm::ByteSwap_32(value);
81 }
82
ReadSwapInt64(const unsigned char * ptr,offset_t offset)83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
84 offset_t offset) {
85 uint64_t value;
86 memcpy(&value, ptr + offset, 8);
87 return llvm::ByteSwap_64(value);
88 }
89
ReadSwapInt16(const void * ptr)90 static inline uint16_t ReadSwapInt16(const void *ptr) {
91 uint16_t value;
92 memcpy(&value, ptr, 2);
93 return llvm::ByteSwap_16(value);
94 }
95
ReadSwapInt32(const void * ptr)96 static inline uint32_t ReadSwapInt32(const void *ptr) {
97 uint32_t value;
98 memcpy(&value, ptr, 4);
99 return llvm::ByteSwap_32(value);
100 }
101
ReadSwapInt64(const void * ptr)102 static inline uint64_t ReadSwapInt64(const void *ptr) {
103 uint64_t value;
104 memcpy(&value, ptr, 8);
105 return llvm::ByteSwap_64(value);
106 }
107
ReadMaxInt64(const uint8_t * data,size_t byte_size,ByteOrder byte_order)108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
109 ByteOrder byte_order) {
110 uint64_t res = 0;
111 if (byte_order == eByteOrderBig)
112 for (size_t i = 0; i < byte_size; ++i)
113 res = (res << 8) | data[i];
114 else {
115 assert(byte_order == eByteOrderLittle);
116 for (size_t i = 0; i < byte_size; ++i)
117 res = (res << 8) | data[byte_size - 1 - i];
118 }
119 return res;
120 }
121
DataExtractor()122 DataExtractor::DataExtractor()
123 : m_start(nullptr), m_end(nullptr),
124 m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
125 m_data_sp(), m_target_byte_size(1) {}
126
127 // This constructor allows us to use data that is owned by someone else. The
128 // data must stay around as long as this object is valid.
DataExtractor(const void * data,offset_t length,ByteOrder endian,uint32_t addr_size,uint32_t target_byte_size)129 DataExtractor::DataExtractor(const void *data, offset_t length,
130 ByteOrder endian, uint32_t addr_size,
131 uint32_t target_byte_size /*=1*/)
132 : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
133 m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
134 m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
135 m_target_byte_size(target_byte_size) {
136 assert(addr_size >= 1 && addr_size <= 8);
137 }
138
139 // Make a shared pointer reference to the shared data in "data_sp" and set the
140 // endian swapping setting to "swap", and the address size to "addr_size". The
141 // shared data reference will ensure the data lives as long as any
142 // DataExtractor objects exist that have a reference to this data.
DataExtractor(const DataBufferSP & data_sp,ByteOrder endian,uint32_t addr_size,uint32_t target_byte_size)143 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
144 uint32_t addr_size,
145 uint32_t target_byte_size /*=1*/)
146 : m_start(nullptr), m_end(nullptr), m_byte_order(endian),
147 m_addr_size(addr_size), m_data_sp(),
148 m_target_byte_size(target_byte_size) {
149 assert(addr_size >= 1 && addr_size <= 8);
150 SetData(data_sp);
151 }
152
153 // Initialize this object with a subset of the data bytes in "data". If "data"
154 // contains shared data, then a reference to this shared data will added and
155 // the shared data will stay around as long as any object contains a reference
156 // to that data. The endian swap and address size settings are copied from
157 // "data".
DataExtractor(const DataExtractor & data,offset_t offset,offset_t length,uint32_t target_byte_size)158 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
159 offset_t length, uint32_t target_byte_size /*=1*/)
160 : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
161 m_addr_size(data.m_addr_size), m_data_sp(),
162 m_target_byte_size(target_byte_size) {
163 assert(m_addr_size >= 1 && m_addr_size <= 8);
164 if (data.ValidOffset(offset)) {
165 offset_t bytes_available = data.GetByteSize() - offset;
166 if (length > bytes_available)
167 length = bytes_available;
168 SetData(data, offset, length);
169 }
170 }
171
DataExtractor(const DataExtractor & rhs)172 DataExtractor::DataExtractor(const DataExtractor &rhs)
173 : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
174 m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
175 m_target_byte_size(rhs.m_target_byte_size) {
176 assert(m_addr_size >= 1 && m_addr_size <= 8);
177 }
178
179 // Assignment operator
operator =(const DataExtractor & rhs)180 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
181 if (this != &rhs) {
182 m_start = rhs.m_start;
183 m_end = rhs.m_end;
184 m_byte_order = rhs.m_byte_order;
185 m_addr_size = rhs.m_addr_size;
186 m_data_sp = rhs.m_data_sp;
187 }
188 return *this;
189 }
190
191 DataExtractor::~DataExtractor() = default;
192
193 // Clears the object contents back to a default invalid state, and release any
194 // references to shared data that this object may contain.
Clear()195 void DataExtractor::Clear() {
196 m_start = nullptr;
197 m_end = nullptr;
198 m_byte_order = endian::InlHostByteOrder();
199 m_addr_size = sizeof(void *);
200 m_data_sp.reset();
201 }
202
203 // If this object contains shared data, this function returns the offset into
204 // that shared data. Else zero is returned.
GetSharedDataOffset() const205 size_t DataExtractor::GetSharedDataOffset() const {
206 if (m_start != nullptr) {
207 const DataBuffer *data = m_data_sp.get();
208 if (data != nullptr) {
209 const uint8_t *data_bytes = data->GetBytes();
210 if (data_bytes != nullptr) {
211 assert(m_start >= data_bytes);
212 return m_start - data_bytes;
213 }
214 }
215 }
216 return 0;
217 }
218
219 // Set the data with which this object will extract from to data starting at
220 // BYTES and set the length of the data to LENGTH bytes long. The data is
221 // externally owned must be around at least as long as this object points to
222 // the data. No copy of the data is made, this object just refers to this data
223 // and can extract from it. If this object refers to any shared data upon
224 // entry, the reference to that data will be released. Is SWAP is set to true,
225 // any data extracted will be endian swapped.
SetData(const void * bytes,offset_t length,ByteOrder endian)226 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
227 ByteOrder endian) {
228 m_byte_order = endian;
229 m_data_sp.reset();
230 if (bytes == nullptr || length == 0) {
231 m_start = nullptr;
232 m_end = nullptr;
233 } else {
234 m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
235 m_end = m_start + length;
236 }
237 return GetByteSize();
238 }
239
240 // Assign the data for this object to be a subrange in "data" starting
241 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
242 // "data_offset" is not a valid offset into "data", then this object will
243 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
244 // large, the length will be capped at the number of bytes remaining in "data".
245 // If "data" contains a shared pointer to other data, then a ref counted
246 // pointer to that data will be made in this object. If "data" doesn't contain
247 // a shared pointer to data, then the bytes referred to in "data" will need to
248 // exist at least as long as this object refers to those bytes. The address
249 // size and endian swap settings are copied from the current values in "data".
SetData(const DataExtractor & data,offset_t data_offset,offset_t data_length)250 lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
251 offset_t data_offset,
252 offset_t data_length) {
253 m_addr_size = data.m_addr_size;
254 assert(m_addr_size >= 1 && m_addr_size <= 8);
255 // If "data" contains shared pointer to data, then we can use that
256 if (data.m_data_sp) {
257 m_byte_order = data.m_byte_order;
258 return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
259 data_length);
260 }
261
262 // We have a DataExtractor object that just has a pointer to bytes
263 if (data.ValidOffset(data_offset)) {
264 if (data_length > data.GetByteSize() - data_offset)
265 data_length = data.GetByteSize() - data_offset;
266 return SetData(data.GetDataStart() + data_offset, data_length,
267 data.GetByteOrder());
268 }
269 return 0;
270 }
271
272 // Assign the data for this object to be a subrange of the shared data in
273 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
274 // "data_length" bytes later. If "data_offset" is not a valid offset into
275 // "data_sp", then this object will contain no bytes. If "data_offset" is
276 // within "data_sp" yet "data_length" is too large, the length will be capped
277 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
278 // data in "data_sp" will be made in this object IF the number of bytes this
279 // object refers to in greater than zero (if at least one byte was available
280 // starting at "data_offset") to ensure the data stays around as long as it is
281 // needed. The address size and endian swap settings will remain unchanged from
282 // their current settings.
SetData(const DataBufferSP & data_sp,offset_t data_offset,offset_t data_length)283 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
284 offset_t data_offset,
285 offset_t data_length) {
286 m_start = m_end = nullptr;
287
288 if (data_length > 0) {
289 m_data_sp = data_sp;
290 if (data_sp) {
291 const size_t data_size = data_sp->GetByteSize();
292 if (data_offset < data_size) {
293 m_start = data_sp->GetBytes() + data_offset;
294 const size_t bytes_left = data_size - data_offset;
295 // Cap the length of we asked for too many
296 if (data_length <= bytes_left)
297 m_end = m_start + data_length; // We got all the bytes we wanted
298 else
299 m_end = m_start + bytes_left; // Not all the bytes requested were
300 // available in the shared data
301 }
302 }
303 }
304
305 size_t new_size = GetByteSize();
306
307 // Don't hold a shared pointer to the data buffer if we don't share any valid
308 // bytes in the shared buffer.
309 if (new_size == 0)
310 m_data_sp.reset();
311
312 return new_size;
313 }
314
315 // Extract a single unsigned char from the binary data and update the offset
316 // pointed to by "offset_ptr".
317 //
318 // RETURNS the byte that was extracted, or zero on failure.
GetU8(offset_t * offset_ptr) const319 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
320 const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
321 if (data)
322 return *data;
323 return 0;
324 }
325
326 // Extract "count" unsigned chars from the binary data and update the offset
327 // pointed to by "offset_ptr". The extracted data is copied into "dst".
328 //
329 // RETURNS the non-nullptr buffer pointer upon successful extraction of
330 // all the requested bytes, or nullptr when the data is not available in the
331 // buffer due to being out of bounds, or insufficient data.
GetU8(offset_t * offset_ptr,void * dst,uint32_t count) const332 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
333 uint32_t count) const {
334 const uint8_t *data =
335 static_cast<const uint8_t *>(GetData(offset_ptr, count));
336 if (data) {
337 // Copy the data into the buffer
338 memcpy(dst, data, count);
339 // Return a non-nullptr pointer to the converted data as an indicator of
340 // success
341 return dst;
342 }
343 return nullptr;
344 }
345
346 // Extract a single uint16_t from the data and update the offset pointed to by
347 // "offset_ptr".
348 //
349 // RETURNS the uint16_t that was extracted, or zero on failure.
GetU16(offset_t * offset_ptr) const350 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
351 uint16_t val = 0;
352 const uint8_t *data =
353 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
354 if (data) {
355 if (m_byte_order != endian::InlHostByteOrder())
356 val = ReadSwapInt16(data);
357 else
358 val = ReadInt16(data);
359 }
360 return val;
361 }
362
GetU16_unchecked(offset_t * offset_ptr) const363 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
364 uint16_t val;
365 if (m_byte_order == endian::InlHostByteOrder())
366 val = ReadInt16(m_start, *offset_ptr);
367 else
368 val = ReadSwapInt16(m_start, *offset_ptr);
369 *offset_ptr += sizeof(val);
370 return val;
371 }
372
GetU32_unchecked(offset_t * offset_ptr) const373 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
374 uint32_t val;
375 if (m_byte_order == endian::InlHostByteOrder())
376 val = ReadInt32(m_start, *offset_ptr);
377 else
378 val = ReadSwapInt32(m_start, *offset_ptr);
379 *offset_ptr += sizeof(val);
380 return val;
381 }
382
GetU64_unchecked(offset_t * offset_ptr) const383 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
384 uint64_t val;
385 if (m_byte_order == endian::InlHostByteOrder())
386 val = ReadInt64(m_start, *offset_ptr);
387 else
388 val = ReadSwapInt64(m_start, *offset_ptr);
389 *offset_ptr += sizeof(val);
390 return val;
391 }
392
393 // Extract "count" uint16_t values from the binary data and update the offset
394 // pointed to by "offset_ptr". The extracted data is copied into "dst".
395 //
396 // RETURNS the non-nullptr buffer pointer upon successful extraction of
397 // all the requested bytes, or nullptr when the data is not available in the
398 // buffer due to being out of bounds, or insufficient data.
GetU16(offset_t * offset_ptr,void * void_dst,uint32_t count) const399 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
400 uint32_t count) const {
401 const size_t src_size = sizeof(uint16_t) * count;
402 const uint16_t *src =
403 static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
404 if (src) {
405 if (m_byte_order != endian::InlHostByteOrder()) {
406 uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
407 uint16_t *dst_end = dst_pos + count;
408 const uint16_t *src_pos = src;
409 while (dst_pos < dst_end) {
410 *dst_pos = ReadSwapInt16(src_pos);
411 ++dst_pos;
412 ++src_pos;
413 }
414 } else {
415 memcpy(void_dst, src, src_size);
416 }
417 // Return a non-nullptr pointer to the converted data as an indicator of
418 // success
419 return void_dst;
420 }
421 return nullptr;
422 }
423
424 // Extract a single uint32_t from the data and update the offset pointed to by
425 // "offset_ptr".
426 //
427 // RETURNS the uint32_t that was extracted, or zero on failure.
GetU32(offset_t * offset_ptr) const428 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
429 uint32_t val = 0;
430 const uint8_t *data =
431 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
432 if (data) {
433 if (m_byte_order != endian::InlHostByteOrder()) {
434 val = ReadSwapInt32(data);
435 } else {
436 memcpy(&val, data, 4);
437 }
438 }
439 return val;
440 }
441
442 // Extract "count" uint32_t values from the binary data and update the offset
443 // pointed to by "offset_ptr". The extracted data is copied into "dst".
444 //
445 // RETURNS the non-nullptr buffer pointer upon successful extraction of
446 // all the requested bytes, or nullptr when the data is not available in the
447 // buffer due to being out of bounds, or insufficient data.
GetU32(offset_t * offset_ptr,void * void_dst,uint32_t count) const448 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
449 uint32_t count) const {
450 const size_t src_size = sizeof(uint32_t) * count;
451 const uint32_t *src =
452 static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
453 if (src) {
454 if (m_byte_order != endian::InlHostByteOrder()) {
455 uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
456 uint32_t *dst_end = dst_pos + count;
457 const uint32_t *src_pos = src;
458 while (dst_pos < dst_end) {
459 *dst_pos = ReadSwapInt32(src_pos);
460 ++dst_pos;
461 ++src_pos;
462 }
463 } else {
464 memcpy(void_dst, src, src_size);
465 }
466 // Return a non-nullptr pointer to the converted data as an indicator of
467 // success
468 return void_dst;
469 }
470 return nullptr;
471 }
472
473 // Extract a single uint64_t from the data and update the offset pointed to by
474 // "offset_ptr".
475 //
476 // RETURNS the uint64_t that was extracted, or zero on failure.
GetU64(offset_t * offset_ptr) const477 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
478 uint64_t val = 0;
479 const uint8_t *data =
480 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
481 if (data) {
482 if (m_byte_order != endian::InlHostByteOrder()) {
483 val = ReadSwapInt64(data);
484 } else {
485 memcpy(&val, data, 8);
486 }
487 }
488 return val;
489 }
490
491 // GetU64
492 //
493 // Get multiple consecutive 64 bit values. Return true if the entire read
494 // succeeds and increment the offset pointed to by offset_ptr, else return
495 // false and leave the offset pointed to by offset_ptr unchanged.
GetU64(offset_t * offset_ptr,void * void_dst,uint32_t count) const496 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
497 uint32_t count) const {
498 const size_t src_size = sizeof(uint64_t) * count;
499 const uint64_t *src =
500 static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
501 if (src) {
502 if (m_byte_order != endian::InlHostByteOrder()) {
503 uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
504 uint64_t *dst_end = dst_pos + count;
505 const uint64_t *src_pos = src;
506 while (dst_pos < dst_end) {
507 *dst_pos = ReadSwapInt64(src_pos);
508 ++dst_pos;
509 ++src_pos;
510 }
511 } else {
512 memcpy(void_dst, src, src_size);
513 }
514 // Return a non-nullptr pointer to the converted data as an indicator of
515 // success
516 return void_dst;
517 }
518 return nullptr;
519 }
520
GetMaxU32(offset_t * offset_ptr,size_t byte_size) const521 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
522 size_t byte_size) const {
523 lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
524 return GetMaxU64(offset_ptr, byte_size);
525 }
526
GetMaxU64(offset_t * offset_ptr,size_t byte_size) const527 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
528 size_t byte_size) const {
529 lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
530 switch (byte_size) {
531 case 1:
532 return GetU8(offset_ptr);
533 case 2:
534 return GetU16(offset_ptr);
535 case 4:
536 return GetU32(offset_ptr);
537 case 8:
538 return GetU64(offset_ptr);
539 default: {
540 // General case.
541 const uint8_t *data =
542 static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
543 if (data == nullptr)
544 return 0;
545 return ReadMaxInt64(data, byte_size, m_byte_order);
546 }
547 }
548 return 0;
549 }
550
GetMaxU64_unchecked(offset_t * offset_ptr,size_t byte_size) const551 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
552 size_t byte_size) const {
553 switch (byte_size) {
554 case 1:
555 return GetU8_unchecked(offset_ptr);
556 case 2:
557 return GetU16_unchecked(offset_ptr);
558 case 4:
559 return GetU32_unchecked(offset_ptr);
560 case 8:
561 return GetU64_unchecked(offset_ptr);
562 default: {
563 uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
564 *offset_ptr += byte_size;
565 return res;
566 }
567 }
568 return 0;
569 }
570
GetMaxS64(offset_t * offset_ptr,size_t byte_size) const571 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
572 uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
573 return llvm::SignExtend64(u64, 8 * byte_size);
574 }
575
GetMaxU64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const576 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
577 uint32_t bitfield_bit_size,
578 uint32_t bitfield_bit_offset) const {
579 assert(bitfield_bit_size <= 64);
580 uint64_t uval64 = GetMaxU64(offset_ptr, size);
581
582 if (bitfield_bit_size == 0)
583 return uval64;
584
585 int32_t lsbcount = bitfield_bit_offset;
586 if (m_byte_order == eByteOrderBig)
587 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
588
589 if (lsbcount > 0)
590 uval64 >>= lsbcount;
591
592 uint64_t bitfield_mask =
593 (bitfield_bit_size == 64
594 ? std::numeric_limits<uint64_t>::max()
595 : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
596 if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
597 return uval64;
598
599 uval64 &= bitfield_mask;
600
601 return uval64;
602 }
603
GetMaxS64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const604 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
605 uint32_t bitfield_bit_size,
606 uint32_t bitfield_bit_offset) const {
607 assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1");
608 assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8");
609 int64_t sval64 = GetMaxS64(offset_ptr, size);
610 if (bitfield_bit_size == 0)
611 return sval64;
612 int32_t lsbcount = bitfield_bit_offset;
613 if (m_byte_order == eByteOrderBig)
614 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
615 if (lsbcount > 0)
616 sval64 >>= lsbcount;
617 uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size);
618 sval64 &= bitfield_mask;
619 // sign extend if needed
620 if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
621 sval64 |= ~bitfield_mask;
622 return sval64;
623 }
624
GetFloat(offset_t * offset_ptr) const625 float DataExtractor::GetFloat(offset_t *offset_ptr) const {
626 return Get<float>(offset_ptr, 0.0f);
627 }
628
GetDouble(offset_t * offset_ptr) const629 double DataExtractor::GetDouble(offset_t *offset_ptr) const {
630 return Get<double>(offset_ptr, 0.0);
631 }
632
GetLongDouble(offset_t * offset_ptr) const633 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
634 long double val = 0.0;
635 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
636 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
637 *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
638 endian::InlHostByteOrder());
639 #else
640 *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
641 sizeof(val), endian::InlHostByteOrder());
642 #endif
643 return val;
644 }
645
646 // Extract a single address from the data and update the offset pointed to by
647 // "offset_ptr". The size of the extracted address comes from the
648 // "this->m_addr_size" member variable and should be set correctly prior to
649 // extracting any address values.
650 //
651 // RETURNS the address that was extracted, or zero on failure.
GetAddress(offset_t * offset_ptr) const652 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
653 assert(m_addr_size >= 1 && m_addr_size <= 8);
654 return GetMaxU64(offset_ptr, m_addr_size);
655 }
656
GetAddress_unchecked(offset_t * offset_ptr) const657 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
658 assert(m_addr_size >= 1 && m_addr_size <= 8);
659 return GetMaxU64_unchecked(offset_ptr, m_addr_size);
660 }
661
ExtractBytes(offset_t offset,offset_t length,ByteOrder dst_byte_order,void * dst) const662 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
663 ByteOrder dst_byte_order, void *dst) const {
664 const uint8_t *src = PeekData(offset, length);
665 if (src) {
666 if (dst_byte_order != GetByteOrder()) {
667 // Validate that only a word- or register-sized dst is byte swapped
668 assert(length == 1 || length == 2 || length == 4 || length == 8 ||
669 length == 10 || length == 16 || length == 32);
670
671 for (uint32_t i = 0; i < length; ++i)
672 (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
673 } else
674 ::memcpy(dst, src, length);
675 return length;
676 }
677 return 0;
678 }
679
680 // Extract data as it exists in target memory
CopyData(offset_t offset,offset_t length,void * dst) const681 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
682 void *dst) const {
683 const uint8_t *src = PeekData(offset, length);
684 if (src) {
685 ::memcpy(dst, src, length);
686 return length;
687 }
688 return 0;
689 }
690
691 // Extract data and swap if needed when doing the copy
692 lldb::offset_t
CopyByteOrderedData(offset_t src_offset,offset_t src_len,void * dst_void_ptr,offset_t dst_len,ByteOrder dst_byte_order) const693 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
694 void *dst_void_ptr, offset_t dst_len,
695 ByteOrder dst_byte_order) const {
696 // Validate the source info
697 if (!ValidOffsetForDataOfSize(src_offset, src_len))
698 assert(ValidOffsetForDataOfSize(src_offset, src_len));
699 assert(src_len > 0);
700 assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
701
702 // Validate the destination info
703 assert(dst_void_ptr != nullptr);
704 assert(dst_len > 0);
705 assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
706
707 // Validate that only a word- or register-sized dst is byte swapped
708 assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
709 dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
710 dst_len == 32);
711
712 // Must have valid byte orders set in this object and for destination
713 if (!(dst_byte_order == eByteOrderBig ||
714 dst_byte_order == eByteOrderLittle) ||
715 !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
716 return 0;
717
718 uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
719 const uint8_t *src = PeekData(src_offset, src_len);
720 if (src) {
721 if (dst_len >= src_len) {
722 // We are copying the entire value from src into dst. Calculate how many,
723 // if any, zeroes we need for the most significant bytes if "dst_len" is
724 // greater than "src_len"...
725 const size_t num_zeroes = dst_len - src_len;
726 if (dst_byte_order == eByteOrderBig) {
727 // Big endian, so we lead with zeroes...
728 if (num_zeroes > 0)
729 ::memset(dst, 0, num_zeroes);
730 // Then either copy or swap the rest
731 if (m_byte_order == eByteOrderBig) {
732 ::memcpy(dst + num_zeroes, src, src_len);
733 } else {
734 for (uint32_t i = 0; i < src_len; ++i)
735 dst[i + num_zeroes] = src[src_len - 1 - i];
736 }
737 } else {
738 // Little endian destination, so we lead the value bytes
739 if (m_byte_order == eByteOrderBig) {
740 for (uint32_t i = 0; i < src_len; ++i)
741 dst[i] = src[src_len - 1 - i];
742 } else {
743 ::memcpy(dst, src, src_len);
744 }
745 // And zero the rest...
746 if (num_zeroes > 0)
747 ::memset(dst + src_len, 0, num_zeroes);
748 }
749 return src_len;
750 } else {
751 // We are only copying some of the value from src into dst..
752
753 if (dst_byte_order == eByteOrderBig) {
754 // Big endian dst
755 if (m_byte_order == eByteOrderBig) {
756 // Big endian dst, with big endian src
757 ::memcpy(dst, src + (src_len - dst_len), dst_len);
758 } else {
759 // Big endian dst, with little endian src
760 for (uint32_t i = 0; i < dst_len; ++i)
761 dst[i] = src[dst_len - 1 - i];
762 }
763 } else {
764 // Little endian dst
765 if (m_byte_order == eByteOrderBig) {
766 // Little endian dst, with big endian src
767 for (uint32_t i = 0; i < dst_len; ++i)
768 dst[i] = src[src_len - 1 - i];
769 } else {
770 // Little endian dst, with big endian src
771 ::memcpy(dst, src, dst_len);
772 }
773 }
774 return dst_len;
775 }
776 }
777 return 0;
778 }
779
780 // Extracts a variable length NULL terminated C string from the data at the
781 // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with
782 // the offset of the byte that follows the NULL terminator byte.
783 //
784 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
785 // non-zero and there aren't enough available bytes, nullptr will be returned
786 // and "offset_ptr" will not be updated.
GetCStr(offset_t * offset_ptr) const787 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
788 const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
789 // Already at the end of the data.
790 if (!start)
791 return nullptr;
792
793 const char *end = reinterpret_cast<const char *>(m_end);
794
795 // Check all bytes for a null terminator that terminates a C string.
796 const char *terminator_or_end = std::find(start, end, '\0');
797
798 // We didn't find a null terminator, so return nullptr to indicate that there
799 // is no valid C string at that offset.
800 if (terminator_or_end == end)
801 return nullptr;
802
803 // Update offset_ptr for the caller to point to the data behind the
804 // terminator (which is 1 byte long).
805 *offset_ptr += (terminator_or_end - start + 1UL);
806 return start;
807 }
808
809 // Extracts a NULL terminated C string from the fixed length field of length
810 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
811 // updated with the offset of the byte that follows the fixed length field.
812 //
813 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
814 // plus the length of the field is out of bounds, or if the field does not
815 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
816 // will not be updated.
GetCStr(offset_t * offset_ptr,offset_t len) const817 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
818 const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
819 if (cstr != nullptr) {
820 if (memchr(cstr, '\0', len) == nullptr) {
821 return nullptr;
822 }
823 *offset_ptr += len;
824 return cstr;
825 }
826 return nullptr;
827 }
828
829 // Peeks at a string in the contained data. No verification is done to make
830 // sure the entire string lies within the bounds of this object's data, only
831 // "offset" is verified to be a valid offset.
832 //
833 // Returns a valid C string pointer if "offset" is a valid offset in this
834 // object's data, else nullptr is returned.
PeekCStr(offset_t offset) const835 const char *DataExtractor::PeekCStr(offset_t offset) const {
836 return reinterpret_cast<const char *>(PeekData(offset, 1));
837 }
838
839 // Extracts an unsigned LEB128 number from this object's data starting at the
840 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
841 // will be updated with the offset of the byte following the last extracted
842 // byte.
843 //
844 // Returned the extracted integer value.
GetULEB128(offset_t * offset_ptr) const845 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
846 const uint8_t *src = PeekData(*offset_ptr, 1);
847 if (src == nullptr)
848 return 0;
849
850 unsigned byte_count = 0;
851 uint64_t result = llvm::decodeULEB128(src, &byte_count, m_end);
852 *offset_ptr += byte_count;
853 return result;
854 }
855
856 // Extracts an signed LEB128 number from this object's data starting at the
857 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
858 // will be updated with the offset of the byte following the last extracted
859 // byte.
860 //
861 // Returned the extracted integer value.
GetSLEB128(offset_t * offset_ptr) const862 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
863 const uint8_t *src = PeekData(*offset_ptr, 1);
864 if (src == nullptr)
865 return 0;
866
867 unsigned byte_count = 0;
868 int64_t result = llvm::decodeSLEB128(src, &byte_count, m_end);
869 *offset_ptr += byte_count;
870 return result;
871 }
872
873 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
874 // at the offset pointed to by "offset_ptr". The offset pointed to by
875 // "offset_ptr" will be updated with the offset of the byte following the last
876 // extracted byte.
877 //
878 // Returns the number of bytes consumed during the extraction.
Skip_LEB128(offset_t * offset_ptr) const879 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
880 uint32_t bytes_consumed = 0;
881 const uint8_t *src = PeekData(*offset_ptr, 1);
882 if (src == nullptr)
883 return 0;
884
885 const uint8_t *end = m_end;
886
887 if (src < end) {
888 const uint8_t *src_pos = src;
889 while ((src_pos < end) && (*src_pos++ & 0x80))
890 ++bytes_consumed;
891 *offset_ptr += src_pos - src;
892 }
893 return bytes_consumed;
894 }
895
896 // Dumps bytes from this object's data to the stream "s" starting
897 // "start_offset" bytes into this data, and ending with the byte before
898 // "end_offset". "base_addr" will be added to the offset into the dumped data
899 // when showing the offset into the data in the output information.
900 // "num_per_line" objects of type "type" will be dumped with the option to
901 // override the format for each object with "type_format". "type_format" is a
902 // printf style formatting string. If "type_format" is nullptr, then an
903 // appropriate format string will be used for the supplied "type". If the
904 // stream "s" is nullptr, then the output will be send to Log().
PutToLog(Log * log,offset_t start_offset,offset_t length,uint64_t base_addr,uint32_t num_per_line,DataExtractor::Type type) const905 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
906 offset_t length, uint64_t base_addr,
907 uint32_t num_per_line,
908 DataExtractor::Type type) const {
909 if (log == nullptr)
910 return start_offset;
911
912 offset_t offset;
913 offset_t end_offset;
914 uint32_t count;
915 StreamString sstr;
916 for (offset = start_offset, end_offset = offset + length, count = 0;
917 ValidOffset(offset) && offset < end_offset; ++count) {
918 if ((count % num_per_line) == 0) {
919 // Print out any previous string
920 if (sstr.GetSize() > 0) {
921 log->PutString(sstr.GetString());
922 sstr.Clear();
923 }
924 // Reset string offset and fill the current line string with address:
925 if (base_addr != LLDB_INVALID_ADDRESS)
926 sstr.Printf("0x%8.8" PRIx64 ":",
927 static_cast<uint64_t>(base_addr + (offset - start_offset)));
928 }
929
930 switch (type) {
931 case TypeUInt8:
932 sstr.Printf(" %2.2x", GetU8(&offset));
933 break;
934 case TypeChar: {
935 char ch = GetU8(&offset);
936 sstr.Printf(" %c", llvm::isPrint(ch) ? ch : ' ');
937 } break;
938 case TypeUInt16:
939 sstr.Printf(" %4.4x", GetU16(&offset));
940 break;
941 case TypeUInt32:
942 sstr.Printf(" %8.8x", GetU32(&offset));
943 break;
944 case TypeUInt64:
945 sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
946 break;
947 case TypePointer:
948 sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
949 break;
950 case TypeULEB128:
951 sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
952 break;
953 case TypeSLEB128:
954 sstr.Printf(" %" PRId64, GetSLEB128(&offset));
955 break;
956 }
957 }
958
959 if (!sstr.Empty())
960 log->PutString(sstr.GetString());
961
962 return offset; // Return the offset at which we ended up
963 }
964
Copy(DataExtractor & dest_data) const965 size_t DataExtractor::Copy(DataExtractor &dest_data) const {
966 if (m_data_sp) {
967 // we can pass along the SP to the data
968 dest_data.SetData(m_data_sp);
969 } else {
970 const uint8_t *base_ptr = m_start;
971 size_t data_size = GetByteSize();
972 dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
973 }
974 return GetByteSize();
975 }
976
Append(DataExtractor & rhs)977 bool DataExtractor::Append(DataExtractor &rhs) {
978 if (rhs.GetByteOrder() != GetByteOrder())
979 return false;
980
981 if (rhs.GetByteSize() == 0)
982 return true;
983
984 if (GetByteSize() == 0)
985 return (rhs.Copy(*this) > 0);
986
987 size_t bytes = GetByteSize() + rhs.GetByteSize();
988
989 DataBufferHeap *buffer_heap_ptr = nullptr;
990 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
991
992 if (!buffer_sp || buffer_heap_ptr == nullptr)
993 return false;
994
995 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
996
997 memcpy(bytes_ptr, GetDataStart(), GetByteSize());
998 memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
999
1000 SetData(buffer_sp);
1001
1002 return true;
1003 }
1004
Append(void * buf,offset_t length)1005 bool DataExtractor::Append(void *buf, offset_t length) {
1006 if (buf == nullptr)
1007 return false;
1008
1009 if (length == 0)
1010 return true;
1011
1012 size_t bytes = GetByteSize() + length;
1013
1014 DataBufferHeap *buffer_heap_ptr = nullptr;
1015 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1016
1017 if (!buffer_sp || buffer_heap_ptr == nullptr)
1018 return false;
1019
1020 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1021
1022 if (GetByteSize() > 0)
1023 memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1024
1025 memcpy(bytes_ptr + GetByteSize(), buf, length);
1026
1027 SetData(buffer_sp);
1028
1029 return true;
1030 }
1031
Checksum(llvm::SmallVectorImpl<uint8_t> & dest,uint64_t max_data)1032 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1033 uint64_t max_data) {
1034 if (max_data == 0)
1035 max_data = GetByteSize();
1036 else
1037 max_data = std::min(max_data, GetByteSize());
1038
1039 llvm::MD5 md5;
1040
1041 const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1042 md5.update(data);
1043
1044 llvm::MD5::MD5Result result;
1045 md5.final(result);
1046
1047 dest.clear();
1048 dest.append(result.Bytes.begin(), result.Bytes.end());
1049 }
1050