1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "runtime.h"
18
19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
20 #include <sys/mount.h>
21 #ifdef __linux__
22 #include <linux/fs.h>
23 #include <sys/prctl.h>
24 #endif
25
26 #include <fcntl.h>
27 #include <signal.h>
28 #include <sys/syscall.h>
29
30 #if defined(__APPLE__)
31 #include <crt_externs.h> // for _NSGetEnviron
32 #endif
33
34 #include <cstdio>
35 #include <cstdlib>
36 #include <limits>
37 #include <string.h>
38 #include <thread>
39 #include <unordered_set>
40 #include <vector>
41
42 #include "android-base/strings.h"
43
44 #include "aot_class_linker.h"
45 #include "arch/arm/registers_arm.h"
46 #include "arch/arm64/registers_arm64.h"
47 #include "arch/context.h"
48 #include "arch/instruction_set_features.h"
49 #include "arch/x86/registers_x86.h"
50 #include "arch/x86_64/registers_x86_64.h"
51 #include "art_field-inl.h"
52 #include "art_method-inl.h"
53 #include "asm_support.h"
54 #include "base/aborting.h"
55 #include "base/arena_allocator.h"
56 #include "base/atomic.h"
57 #include "base/dumpable.h"
58 #include "base/enums.h"
59 #include "base/file_utils.h"
60 #include "base/flags.h"
61 #include "base/malloc_arena_pool.h"
62 #include "base/mem_map_arena_pool.h"
63 #include "base/memory_tool.h"
64 #include "base/mutex.h"
65 #include "base/os.h"
66 #include "base/quasi_atomic.h"
67 #include "base/sdk_version.h"
68 #include "base/stl_util.h"
69 #include "base/systrace.h"
70 #include "base/unix_file/fd_file.h"
71 #include "base/utils.h"
72 #include "class_linker-inl.h"
73 #include "class_root-inl.h"
74 #include "compiler_callbacks.h"
75 #include "debugger.h"
76 #include "dex/art_dex_file_loader.h"
77 #include "dex/dex_file_loader.h"
78 #include "elf_file.h"
79 #include "entrypoints/runtime_asm_entrypoints.h"
80 #include "experimental_flags.h"
81 #include "fault_handler.h"
82 #include "gc/accounting/card_table-inl.h"
83 #include "gc/heap.h"
84 #include "gc/scoped_gc_critical_section.h"
85 #include "gc/space/image_space.h"
86 #include "gc/space/space-inl.h"
87 #include "gc/system_weak.h"
88 #include "gc/task_processor.h"
89 #include "handle_scope-inl.h"
90 #include "hidden_api.h"
91 #include "image-inl.h"
92 #include "instrumentation.h"
93 #include "intern_table-inl.h"
94 #include "interpreter/interpreter.h"
95 #include "jit/jit.h"
96 #include "jit/jit_code_cache.h"
97 #include "jit/profile_saver.h"
98 #include "jni/java_vm_ext.h"
99 #include "jni/jni_id_manager.h"
100 #include "jni_id_type.h"
101 #include "linear_alloc.h"
102 #include "memory_representation.h"
103 #include "mirror/array.h"
104 #include "mirror/class-alloc-inl.h"
105 #include "mirror/class-inl.h"
106 #include "mirror/class_ext.h"
107 #include "mirror/class_loader-inl.h"
108 #include "mirror/emulated_stack_frame.h"
109 #include "mirror/field.h"
110 #include "mirror/method.h"
111 #include "mirror/method_handle_impl.h"
112 #include "mirror/method_handles_lookup.h"
113 #include "mirror/method_type.h"
114 #include "mirror/stack_trace_element.h"
115 #include "mirror/throwable.h"
116 #include "mirror/var_handle.h"
117 #include "monitor.h"
118 #include "native/dalvik_system_DexFile.h"
119 #include "native/dalvik_system_BaseDexClassLoader.h"
120 #include "native/dalvik_system_VMDebug.h"
121 #include "native/dalvik_system_VMRuntime.h"
122 #include "native/dalvik_system_VMStack.h"
123 #include "native/dalvik_system_ZygoteHooks.h"
124 #include "native/java_lang_Class.h"
125 #include "native/java_lang_Object.h"
126 #include "native/java_lang_String.h"
127 #include "native/java_lang_StringFactory.h"
128 #include "native/java_lang_System.h"
129 #include "native/java_lang_Thread.h"
130 #include "native/java_lang_Throwable.h"
131 #include "native/java_lang_VMClassLoader.h"
132 #include "native/java_lang_invoke_MethodHandleImpl.h"
133 #include "native/java_lang_ref_FinalizerReference.h"
134 #include "native/java_lang_ref_Reference.h"
135 #include "native/java_lang_reflect_Array.h"
136 #include "native/java_lang_reflect_Constructor.h"
137 #include "native/java_lang_reflect_Executable.h"
138 #include "native/java_lang_reflect_Field.h"
139 #include "native/java_lang_reflect_Method.h"
140 #include "native/java_lang_reflect_Parameter.h"
141 #include "native/java_lang_reflect_Proxy.h"
142 #include "native/java_util_concurrent_atomic_AtomicLong.h"
143 #include "native/libcore_util_CharsetUtils.h"
144 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
145 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
146 #include "native/sun_misc_Unsafe.h"
147 #include "native_bridge_art_interface.h"
148 #include "native_stack_dump.h"
149 #include "nativehelper/scoped_local_ref.h"
150 #include "oat.h"
151 #include "oat_file.h"
152 #include "oat_file_manager.h"
153 #include "oat_quick_method_header.h"
154 #include "object_callbacks.h"
155 #include "odr_statslog/odr_statslog.h"
156 #include "parsed_options.h"
157 #include "quick/quick_method_frame_info.h"
158 #include "reflection.h"
159 #include "runtime_callbacks.h"
160 #include "runtime_common.h"
161 #include "runtime_intrinsics.h"
162 #include "runtime_options.h"
163 #include "scoped_thread_state_change-inl.h"
164 #include "sigchain.h"
165 #include "signal_catcher.h"
166 #include "signal_set.h"
167 #include "thread.h"
168 #include "thread_list.h"
169 #include "ti/agent.h"
170 #include "trace.h"
171 #include "transaction.h"
172 #include "vdex_file.h"
173 #include "verifier/class_verifier.h"
174 #include "well_known_classes.h"
175
176 #ifdef ART_TARGET_ANDROID
177 #include <android/set_abort_message.h>
178 #include "com_android_apex.h"
179 namespace apex = com::android::apex;
180
181 #endif
182
183 // Static asserts to check the values of generated assembly-support macros.
184 #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME);
185 #include "asm_defines.def"
186 #undef ASM_DEFINE
187
188 namespace art {
189
190 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
191 static constexpr bool kEnableJavaStackTraceHandler = false;
192 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
193 // linking.
194 static constexpr double kLowMemoryMinLoadFactor = 0.5;
195 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
196 static constexpr double kNormalMinLoadFactor = 0.4;
197 static constexpr double kNormalMaxLoadFactor = 0.7;
198
199 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
200 // barrier config.
201 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
202
203 Runtime* Runtime::instance_ = nullptr;
204
205 struct TraceConfig {
206 Trace::TraceMode trace_mode;
207 Trace::TraceOutputMode trace_output_mode;
208 std::string trace_file;
209 size_t trace_file_size;
210 };
211
212 namespace {
213
214 #ifdef __APPLE__
GetEnviron()215 inline char** GetEnviron() {
216 // When Google Test is built as a framework on MacOS X, the environ variable
217 // is unavailable. Apple's documentation (man environ) recommends using
218 // _NSGetEnviron() instead.
219 return *_NSGetEnviron();
220 }
221 #else
222 // Some POSIX platforms expect you to declare environ. extern "C" makes
223 // it reside in the global namespace.
224 extern "C" char** environ;
225 inline char** GetEnviron() { return environ; }
226 #endif
227
CheckConstants()228 void CheckConstants() {
229 CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset());
230 }
231
232 } // namespace
233
Runtime()234 Runtime::Runtime()
235 : resolution_method_(nullptr),
236 imt_conflict_method_(nullptr),
237 imt_unimplemented_method_(nullptr),
238 instruction_set_(InstructionSet::kNone),
239 compiler_callbacks_(nullptr),
240 is_zygote_(false),
241 is_primary_zygote_(false),
242 is_system_server_(false),
243 must_relocate_(false),
244 is_concurrent_gc_enabled_(true),
245 is_explicit_gc_disabled_(false),
246 image_dex2oat_enabled_(true),
247 default_stack_size_(0),
248 heap_(nullptr),
249 max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
250 monitor_list_(nullptr),
251 monitor_pool_(nullptr),
252 thread_list_(nullptr),
253 intern_table_(nullptr),
254 class_linker_(nullptr),
255 signal_catcher_(nullptr),
256 java_vm_(nullptr),
257 thread_pool_ref_count_(0u),
258 fault_message_(nullptr),
259 threads_being_born_(0),
260 shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
261 shutting_down_(false),
262 shutting_down_started_(false),
263 started_(false),
264 finished_starting_(false),
265 vfprintf_(nullptr),
266 exit_(nullptr),
267 abort_(nullptr),
268 stats_enabled_(false),
269 is_running_on_memory_tool_(kRunningOnMemoryTool),
270 instrumentation_(),
271 main_thread_group_(nullptr),
272 system_thread_group_(nullptr),
273 system_class_loader_(nullptr),
274 dump_gc_performance_on_shutdown_(false),
275 preinitialization_transactions_(),
276 verify_(verifier::VerifyMode::kNone),
277 target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)),
278 compat_framework_(),
279 implicit_null_checks_(false),
280 implicit_so_checks_(false),
281 implicit_suspend_checks_(false),
282 no_sig_chain_(false),
283 force_native_bridge_(false),
284 is_native_bridge_loaded_(false),
285 is_native_debuggable_(false),
286 async_exceptions_thrown_(false),
287 non_standard_exits_enabled_(false),
288 is_java_debuggable_(false),
289 monitor_timeout_enable_(false),
290 monitor_timeout_ns_(0),
291 zygote_max_failed_boots_(0),
292 experimental_flags_(ExperimentalFlags::kNone),
293 oat_file_manager_(nullptr),
294 is_low_memory_mode_(false),
295 madvise_willneed_vdex_filesize_(0),
296 madvise_willneed_odex_filesize_(0),
297 madvise_willneed_art_filesize_(0),
298 safe_mode_(false),
299 hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
300 core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
301 test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
302 dedupe_hidden_api_warnings_(true),
303 hidden_api_access_event_log_rate_(0),
304 dump_native_stack_on_sig_quit_(true),
305 // Initially assume we perceive jank in case the process state is never updated.
306 process_state_(kProcessStateJankPerceptible),
307 zygote_no_threads_(false),
308 verifier_logging_threshold_ms_(100),
309 verifier_missing_kthrow_fatal_(false),
310 perfetto_hprof_enabled_(false),
311 perfetto_javaheapprof_enabled_(false) {
312 static_assert(Runtime::kCalleeSaveSize ==
313 static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
314 CheckConstants();
315
316 std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
317 interpreter::CheckInterpreterAsmConstants();
318 callbacks_.reset(new RuntimeCallbacks());
319 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
320 deoptimization_counts_[i] = 0u;
321 }
322 }
323
~Runtime()324 Runtime::~Runtime() {
325 ScopedTrace trace("Runtime shutdown");
326 if (is_native_bridge_loaded_) {
327 UnloadNativeBridge();
328 }
329
330 Thread* self = Thread::Current();
331 const bool attach_shutdown_thread = self == nullptr;
332 if (attach_shutdown_thread) {
333 // We can only create a peer if the runtime is actually started. This is only not true during
334 // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
335 // In this case we will just try again without allocating a peer so that shutdown can continue.
336 // Very few things are actually capable of distinguishing between the peer & peerless states so
337 // this should be fine.
338 bool thread_attached = AttachCurrentThread("Shutdown thread",
339 /* as_daemon= */ false,
340 GetSystemThreadGroup(),
341 /* create_peer= */ IsStarted());
342 if (UNLIKELY(!thread_attached)) {
343 LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
344 CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
345 /* as_daemon= */ false,
346 /* thread_group=*/ nullptr,
347 /* create_peer= */ false));
348 }
349 self = Thread::Current();
350 } else {
351 LOG(WARNING) << "Current thread not detached in Runtime shutdown";
352 }
353
354 if (dump_gc_performance_on_shutdown_) {
355 heap_->CalculatePreGcWeightedAllocatedBytes();
356 uint64_t process_cpu_end_time = ProcessCpuNanoTime();
357 ScopedLogSeverity sls(LogSeverity::INFO);
358 // This can't be called from the Heap destructor below because it
359 // could call RosAlloc::InspectAll() which needs the thread_list
360 // to be still alive.
361 heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
362
363 uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime();
364 uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime();
365 float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time;
366 LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time)
367 << " out of process CPU time " << PrettyDuration(process_cpu_time)
368 << " (" << ratio << ")"
369 << "\n";
370 double pre_gc_weighted_allocated_bytes =
371 heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time;
372 // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real
373 // GC. Both numerator and denominator take into account until the end of the last GC,
374 // instead of the whole process life time like pre_gc_weighted_allocated_bytes.
375 double post_gc_weighted_allocated_bytes =
376 heap_->GetPostGcWeightedAllocatedBytes() /
377 (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime());
378
379 LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: "
380 << static_cast<uint64_t>(pre_gc_weighted_allocated_bytes)
381 << " (" << PrettySize(pre_gc_weighted_allocated_bytes) << ")";
382 LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: "
383 << static_cast<uint64_t>(post_gc_weighted_allocated_bytes)
384 << " (" << PrettySize(post_gc_weighted_allocated_bytes) << ")"
385 << "\n";
386 }
387
388 // Wait for the workers of thread pools to be created since there can't be any
389 // threads attaching during shutdown.
390 WaitForThreadPoolWorkersToStart();
391 if (jit_ != nullptr) {
392 jit_->WaitForWorkersToBeCreated();
393 // Stop the profile saver thread before marking the runtime as shutting down.
394 // The saver will try to dump the profiles before being sopped and that
395 // requires holding the mutator lock.
396 jit_->StopProfileSaver();
397 // Delete thread pool before the thread list since we don't want to wait forever on the
398 // JIT compiler threads. Also this should be run before marking the runtime
399 // as shutting down as some tasks may require mutator access.
400 jit_->DeleteThreadPool();
401 }
402 if (oat_file_manager_ != nullptr) {
403 oat_file_manager_->WaitForWorkersToBeCreated();
404 }
405
406 {
407 ScopedTrace trace2("Wait for shutdown cond");
408 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
409 shutting_down_started_ = true;
410 while (threads_being_born_ > 0) {
411 shutdown_cond_->Wait(self);
412 }
413 shutting_down_ = true;
414 }
415 // Shutdown and wait for the daemons.
416 CHECK(self != nullptr);
417 if (IsFinishedStarting()) {
418 ScopedTrace trace2("Waiting for Daemons");
419 self->ClearException();
420 self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
421 WellKnownClasses::java_lang_Daemons_stop);
422 }
423
424 // Shutdown any trace running.
425 Trace::Shutdown();
426
427 // Report death. Clients may require a working thread, still, so do it before GC completes and
428 // all non-daemon threads are done.
429 {
430 ScopedObjectAccess soa(self);
431 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
432 }
433
434 if (attach_shutdown_thread) {
435 DetachCurrentThread();
436 self = nullptr;
437 }
438
439 // Make sure to let the GC complete if it is running.
440 heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
441 heap_->DeleteThreadPool();
442 if (oat_file_manager_ != nullptr) {
443 oat_file_manager_->DeleteThreadPool();
444 }
445 DeleteThreadPool();
446 CHECK(thread_pool_ == nullptr);
447
448 // Make sure our internal threads are dead before we start tearing down things they're using.
449 GetRuntimeCallbacks()->StopDebugger();
450 // Deletion ordering is tricky. Null out everything we've deleted.
451 delete signal_catcher_;
452 signal_catcher_ = nullptr;
453
454 // Shutdown metrics reporting.
455 metrics_reporter_.reset();
456
457 // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
458 // Also wait for daemon threads to quiesce, so that in addition to being "suspended", they
459 // no longer access monitor and thread list data structures. We leak user daemon threads
460 // themselves, since we have no mechanism for shutting them down.
461 {
462 ScopedTrace trace2("Delete thread list");
463 thread_list_->ShutDown();
464 }
465
466 // TODO Maybe do some locking.
467 for (auto& agent : agents_) {
468 agent->Unload();
469 }
470
471 // TODO Maybe do some locking
472 for (auto& plugin : plugins_) {
473 plugin.Unload();
474 }
475
476 // Finally delete the thread list.
477 // Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked.
478 // We assume that by this point, we've waited long enough for things to quiesce.
479 delete thread_list_;
480 thread_list_ = nullptr;
481
482 // Delete the JIT after thread list to ensure that there is no remaining threads which could be
483 // accessing the instrumentation when we delete it.
484 if (jit_ != nullptr) {
485 VLOG(jit) << "Deleting jit";
486 jit_.reset(nullptr);
487 jit_code_cache_.reset(nullptr);
488 }
489
490 // Shutdown the fault manager if it was initialized.
491 fault_manager.Shutdown();
492
493 ScopedTrace trace2("Delete state");
494 delete monitor_list_;
495 monitor_list_ = nullptr;
496 delete monitor_pool_;
497 monitor_pool_ = nullptr;
498 delete class_linker_;
499 class_linker_ = nullptr;
500 delete heap_;
501 heap_ = nullptr;
502 delete intern_table_;
503 intern_table_ = nullptr;
504 delete oat_file_manager_;
505 oat_file_manager_ = nullptr;
506 Thread::Shutdown();
507 QuasiAtomic::Shutdown();
508 verifier::ClassVerifier::Shutdown();
509
510 // Destroy allocators before shutting down the MemMap because they may use it.
511 java_vm_.reset();
512 linear_alloc_.reset();
513 low_4gb_arena_pool_.reset();
514 arena_pool_.reset();
515 jit_arena_pool_.reset();
516 protected_fault_page_.Reset();
517 MemMap::Shutdown();
518
519 // TODO: acquire a static mutex on Runtime to avoid racing.
520 CHECK(instance_ == nullptr || instance_ == this);
521 instance_ = nullptr;
522
523 // Well-known classes must be deleted or it is impossible to successfully start another Runtime
524 // instance. We rely on a small initialization order issue in Runtime::Start() that requires
525 // elements of WellKnownClasses to be null, see b/65500943.
526 WellKnownClasses::Clear();
527 }
528
529 struct AbortState {
Dumpart::AbortState530 void Dump(std::ostream& os) const {
531 if (gAborting > 1) {
532 os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
533 DumpRecursiveAbort(os);
534 return;
535 }
536 gAborting++;
537 os << "Runtime aborting...\n";
538 if (Runtime::Current() == nullptr) {
539 os << "(Runtime does not yet exist!)\n";
540 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
541 return;
542 }
543 Thread* self = Thread::Current();
544
545 // Dump all threads first and then the aborting thread. While this is counter the logical flow,
546 // it improves the chance of relevant data surviving in the Android logs.
547
548 DumpAllThreads(os, self);
549
550 if (self == nullptr) {
551 os << "(Aborting thread was not attached to runtime!)\n";
552 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
553 } else {
554 os << "Aborting thread:\n";
555 if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
556 DumpThread(os, self);
557 } else {
558 if (Locks::mutator_lock_->SharedTryLock(self)) {
559 DumpThread(os, self);
560 Locks::mutator_lock_->SharedUnlock(self);
561 }
562 }
563 }
564 }
565
566 // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState567 void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
568 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
569 self->Dump(os);
570 if (self->IsExceptionPending()) {
571 mirror::Throwable* exception = self->GetException();
572 os << "Pending exception " << exception->Dump();
573 }
574 }
575
DumpAllThreadsart::AbortState576 void DumpAllThreads(std::ostream& os, Thread* self) const {
577 Runtime* runtime = Runtime::Current();
578 if (runtime != nullptr) {
579 ThreadList* thread_list = runtime->GetThreadList();
580 if (thread_list != nullptr) {
581 // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be
582 // grabbed).
583 // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout
584 // acquiring the locks.
585 bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
586 bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self);
587 if (tll_already_held || tscl_already_held) {
588 os << "Skipping all-threads dump as locks are held:"
589 << (tll_already_held ? "" : " thread_list_lock")
590 << (tscl_already_held ? "" : " thread_suspend_count_lock")
591 << "\n";
592 return;
593 }
594 bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self);
595 if (ml_already_exlusively_held) {
596 os << "Skipping all-threads dump as mutator lock is exclusively held.";
597 return;
598 }
599 bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
600 if (!ml_already_held) {
601 os << "Dumping all threads without mutator lock held\n";
602 }
603 os << "All threads:\n";
604 thread_list->Dump(os);
605 }
606 }
607 }
608
609 // For recursive aborts.
DumpRecursiveAbortart::AbortState610 void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
611 // The only thing we'll attempt is dumping the native stack of the current thread. We will only
612 // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
613 // die.
614 // Note: as we're using a global counter for the recursive abort detection, there is a potential
615 // race here and it is not OK to just print when the counter is "2" (one from
616 // Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
617 static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
618 if (gAborting < kOnlyPrintWhenRecursionLessThan) {
619 gAborting++;
620 DumpNativeStack(os, GetTid());
621 }
622 }
623 };
624
Abort(const char * msg)625 void Runtime::Abort(const char* msg) {
626 auto old_value = gAborting.fetch_add(1); // set before taking any locks
627
628 // Only set the first abort message.
629 if (old_value == 0) {
630 #ifdef ART_TARGET_ANDROID
631 android_set_abort_message(msg);
632 #else
633 // Set the runtime fault message in case our unexpected-signal code will run.
634 Runtime* current = Runtime::Current();
635 if (current != nullptr) {
636 current->SetFaultMessage(msg);
637 }
638 #endif
639 }
640
641 // May be coming from an unattached thread.
642 if (Thread::Current() == nullptr) {
643 Runtime* current = Runtime::Current();
644 if (current != nullptr && current->IsStarted() && !current->IsShuttingDown(nullptr)) {
645 // We do not flag this to the unexpected-signal handler so that that may dump the stack.
646 abort();
647 UNREACHABLE();
648 }
649 }
650
651 {
652 // Ensure that we don't have multiple threads trying to abort at once,
653 // which would result in significantly worse diagnostics.
654 ScopedThreadStateChange tsc(Thread::Current(), kNativeForAbort);
655 Locks::abort_lock_->ExclusiveLock(Thread::Current());
656 }
657
658 // Get any pending output out of the way.
659 fflush(nullptr);
660
661 // Many people have difficulty distinguish aborts from crashes,
662 // so be explicit.
663 // Note: use cerr on the host to print log lines immediately, so we get at least some output
664 // in case of recursive aborts. We lose annotation with the source file and line number
665 // here, which is a minor issue. The same is significantly more complicated on device,
666 // which is why we ignore the issue there.
667 AbortState state;
668 if (kIsTargetBuild) {
669 LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
670 } else {
671 std::cerr << Dumpable<AbortState>(state);
672 }
673
674 // Sometimes we dump long messages, and the Android abort message only retains the first line.
675 // In those cases, just log the message again, to avoid logcat limits.
676 if (msg != nullptr && strchr(msg, '\n') != nullptr) {
677 LOG(FATAL_WITHOUT_ABORT) << msg;
678 }
679
680 FlagRuntimeAbort();
681
682 // Call the abort hook if we have one.
683 if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
684 LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
685 Runtime::Current()->abort_();
686 // notreached
687 LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
688 }
689
690 abort();
691 // notreached
692 }
693
PreZygoteFork()694 void Runtime::PreZygoteFork() {
695 if (GetJit() != nullptr) {
696 GetJit()->PreZygoteFork();
697 }
698 heap_->PreZygoteFork();
699 PreZygoteForkNativeBridge();
700 }
701
PostZygoteFork()702 void Runtime::PostZygoteFork() {
703 jit::Jit* jit = GetJit();
704 if (jit != nullptr) {
705 jit->PostZygoteFork();
706 // Ensure that the threads in the JIT pool have been created with the right
707 // priority.
708 if (kIsDebugBuild && jit->GetThreadPool() != nullptr) {
709 jit->GetThreadPool()->CheckPthreadPriority(jit->GetThreadPoolPthreadPriority());
710 }
711 }
712 // Reset all stats.
713 ResetStats(0xFFFFFFFF);
714 }
715
CallExitHook(jint status)716 void Runtime::CallExitHook(jint status) {
717 if (exit_ != nullptr) {
718 ScopedThreadStateChange tsc(Thread::Current(), kNative);
719 exit_(status);
720 LOG(WARNING) << "Exit hook returned instead of exiting!";
721 }
722 }
723
SweepSystemWeaks(IsMarkedVisitor * visitor)724 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
725 GetInternTable()->SweepInternTableWeaks(visitor);
726 GetMonitorList()->SweepMonitorList(visitor);
727 GetJavaVM()->SweepJniWeakGlobals(visitor);
728 GetHeap()->SweepAllocationRecords(visitor);
729 if (GetJit() != nullptr) {
730 // Visit JIT literal tables. Objects in these tables are classes and strings
731 // and only classes can be affected by class unloading. The strings always
732 // stay alive as they are strongly interned.
733 // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
734 // from mutators. See b/32167580.
735 GetJit()->GetCodeCache()->SweepRootTables(visitor);
736 }
737 thread_list_->SweepInterpreterCaches(visitor);
738
739 // All other generic system-weak holders.
740 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
741 holder->Sweep(visitor);
742 }
743 }
744
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)745 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
746 bool ignore_unrecognized,
747 RuntimeArgumentMap* runtime_options) {
748 Locks::Init();
749 InitLogging(/* argv= */ nullptr, Abort); // Calls Locks::Init() as a side effect.
750 bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
751 if (!parsed) {
752 LOG(ERROR) << "Failed to parse options";
753 return false;
754 }
755 return true;
756 }
757
758 // Callback to check whether it is safe to call Abort (e.g., to use a call to
759 // LOG(FATAL)). It is only safe to call Abort if the runtime has been created,
760 // properly initialized, and has not shut down.
IsSafeToCallAbort()761 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
762 Runtime* runtime = Runtime::Current();
763 return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
764 }
765
Create(RuntimeArgumentMap && runtime_options)766 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
767 // TODO: acquire a static mutex on Runtime to avoid racing.
768 if (Runtime::instance_ != nullptr) {
769 return false;
770 }
771 instance_ = new Runtime;
772 Locks::SetClientCallback(IsSafeToCallAbort);
773 if (!instance_->Init(std::move(runtime_options))) {
774 // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
775 // leak memory, instead. Fix the destructor. b/19100793.
776 // delete instance_;
777 instance_ = nullptr;
778 return false;
779 }
780 return true;
781 }
782
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)783 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
784 RuntimeArgumentMap runtime_options;
785 return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
786 Create(std::move(runtime_options));
787 }
788
CreateSystemClassLoader(Runtime * runtime)789 static jobject CreateSystemClassLoader(Runtime* runtime) {
790 if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
791 return nullptr;
792 }
793
794 ScopedObjectAccess soa(Thread::Current());
795 ClassLinker* cl = Runtime::Current()->GetClassLinker();
796 auto pointer_size = cl->GetImagePointerSize();
797
798 StackHandleScope<2> hs(soa.Self());
799 Handle<mirror::Class> class_loader_class(
800 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
801 CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
802
803 ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
804 "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
805 CHECK(getSystemClassLoader != nullptr);
806 CHECK(getSystemClassLoader->IsStatic());
807
808 JValue result = InvokeWithJValues(soa,
809 nullptr,
810 getSystemClassLoader,
811 nullptr);
812 JNIEnv* env = soa.Self()->GetJniEnv();
813 ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
814 CHECK(system_class_loader.get() != nullptr);
815
816 soa.Self()->SetClassLoaderOverride(system_class_loader.get());
817
818 Handle<mirror::Class> thread_class(
819 hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
820 CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
821
822 ArtField* contextClassLoader =
823 thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
824 CHECK(contextClassLoader != nullptr);
825
826 // We can't run in a transaction yet.
827 contextClassLoader->SetObject<false>(
828 soa.Self()->GetPeer(),
829 soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
830
831 return env->NewGlobalRef(system_class_loader.get());
832 }
833
GetCompilerExecutable() const834 std::string Runtime::GetCompilerExecutable() const {
835 if (!compiler_executable_.empty()) {
836 return compiler_executable_;
837 }
838 std::string compiler_executable = GetArtBinDir() + "/dex2oat";
839 if (kIsDebugBuild) {
840 compiler_executable += 'd';
841 }
842 if (kIsTargetBuild) {
843 compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32";
844 }
845 return compiler_executable;
846 }
847
RunRootClinits(Thread * self)848 void Runtime::RunRootClinits(Thread* self) {
849 class_linker_->RunRootClinits(self);
850
851 GcRoot<mirror::Throwable>* exceptions[] = {
852 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
853 // &pre_allocated_OutOfMemoryError_when_throwing_oome_, // Same class as above.
854 // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, // Same class as above.
855 &pre_allocated_NoClassDefFoundError_,
856 };
857 for (GcRoot<mirror::Throwable>* exception : exceptions) {
858 StackHandleScope<1> hs(self);
859 Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass());
860 class_linker_->EnsureInitialized(self, klass, true, true);
861 self->AssertNoPendingException();
862 }
863 }
864
Start()865 bool Runtime::Start() {
866 VLOG(startup) << "Runtime::Start entering";
867
868 CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
869
870 // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
871 // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
872 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
873 if (kIsDebugBuild) {
874 if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
875 PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY";
876 }
877 }
878 #endif
879
880 // Restore main thread state to kNative as expected by native code.
881 Thread* self = Thread::Current();
882
883 self->TransitionFromRunnableToSuspended(kNative);
884
885 DoAndMaybeSwitchInterpreter([=](){ started_ = true; });
886
887 if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
888 ScopedObjectAccess soa(self);
889 StackHandleScope<3> hs(soa.Self());
890
891 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
892 auto class_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Class>(class_roots)));
893 auto string_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::String>(class_roots)));
894 auto field_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Field>(class_roots)));
895
896 class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
897 class_linker_->EnsureInitialized(soa.Self(), string_class, true, true);
898 self->AssertNoPendingException();
899 // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
900 class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
901 self->AssertNoPendingException();
902 }
903
904 // InitNativeMethods needs to be after started_ so that the classes
905 // it touches will have methods linked to the oat file if necessary.
906 {
907 ScopedTrace trace2("InitNativeMethods");
908 InitNativeMethods();
909 }
910
911 // IntializeIntrinsics needs to be called after the WellKnownClasses::Init in InitNativeMethods
912 // because in checking the invocation types of intrinsic methods ArtMethod::GetInvokeType()
913 // needs the SignaturePolymorphic annotation class which is initialized in WellKnownClasses::Init.
914 InitializeIntrinsics();
915
916 // InitializeCorePlatformApiPrivateFields() needs to be called after well known class
917 // initializtion in InitNativeMethods().
918 art::hiddenapi::InitializeCorePlatformApiPrivateFields();
919
920 // Initialize well known thread group values that may be accessed threads while attaching.
921 InitThreadGroups(self);
922
923 Thread::FinishStartup();
924
925 // Create the JIT either if we have to use JIT compilation or save profiling info. This is
926 // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
927 // ThreadGroup to exist.
928 //
929 // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
930 // recoding profiles. Maybe we should consider changing the name to be more clear it's
931 // not only about compiling. b/28295073.
932 if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
933 // Try to load compiler pre zygote to reduce PSS. b/27744947
934 std::string error_msg;
935 if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
936 LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
937 }
938 CreateJitCodeCache(/*rwx_memory_allowed=*/true);
939 CreateJit();
940 }
941
942 // Send the start phase event. We have to wait till here as this is when the main thread peer
943 // has just been generated, important root clinits have been run and JNI is completely functional.
944 {
945 ScopedObjectAccess soa(self);
946 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
947 }
948
949 system_class_loader_ = CreateSystemClassLoader(this);
950
951 if (!is_zygote_) {
952 if (is_native_bridge_loaded_) {
953 PreInitializeNativeBridge(".");
954 }
955 NativeBridgeAction action = force_native_bridge_
956 ? NativeBridgeAction::kInitialize
957 : NativeBridgeAction::kUnload;
958 InitNonZygoteOrPostFork(self->GetJniEnv(),
959 /* is_system_server= */ false,
960 /* is_child_zygote= */ false,
961 action,
962 GetInstructionSetString(kRuntimeISA));
963 }
964
965 StartDaemonThreads();
966
967 // Make sure the environment is still clean (no lingering local refs from starting daemon
968 // threads).
969 {
970 ScopedObjectAccess soa(self);
971 self->GetJniEnv()->AssertLocalsEmpty();
972 }
973
974 // Send the initialized phase event. Send it after starting the Daemon threads so that agents
975 // cannot delay the daemon threads from starting forever.
976 {
977 ScopedObjectAccess soa(self);
978 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
979 }
980
981 {
982 ScopedObjectAccess soa(self);
983 self->GetJniEnv()->AssertLocalsEmpty();
984 }
985
986 VLOG(startup) << "Runtime::Start exiting";
987 finished_starting_ = true;
988
989 if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
990 ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
991 Trace::Start(trace_config_->trace_file.c_str(),
992 static_cast<int>(trace_config_->trace_file_size),
993 0,
994 trace_config_->trace_output_mode,
995 trace_config_->trace_mode,
996 0);
997 }
998
999 // In case we have a profile path passed as a command line argument,
1000 // register the current class path for profiling now. Note that we cannot do
1001 // this before we create the JIT and having it here is the most convenient way.
1002 // This is used when testing profiles with dalvikvm command as there is no
1003 // framework to register the dex files for profiling.
1004 if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
1005 !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
1006 std::vector<std::string> dex_filenames;
1007 Split(class_path_string_, ':', &dex_filenames);
1008
1009 // We pass "" as the package name because at this point we don't know it. It could be the
1010 // Zygote or it could be a dalvikvm cmd line execution. The package name will be re-set during
1011 // post-fork or during RegisterAppInfo.
1012 //
1013 // Also, it's ok to pass "" to the ref profile filename. It indicates we don't have
1014 // a reference profile.
1015 RegisterAppInfo(
1016 /*package_name=*/ "",
1017 dex_filenames,
1018 jit_options_->GetProfileSaverOptions().GetProfilePath(),
1019 /*ref_profile_filename=*/ "",
1020 kVMRuntimePrimaryApk);
1021 }
1022
1023 return true;
1024 }
1025
EndThreadBirth()1026 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
1027 DCHECK_GT(threads_being_born_, 0U);
1028 threads_being_born_--;
1029 if (shutting_down_started_ && threads_being_born_ == 0) {
1030 shutdown_cond_->Broadcast(Thread::Current());
1031 }
1032 }
1033
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,bool is_child_zygote,NativeBridgeAction action,const char * isa,bool profile_system_server)1034 void Runtime::InitNonZygoteOrPostFork(
1035 JNIEnv* env,
1036 bool is_system_server,
1037 // This is true when we are initializing a child-zygote. It requires
1038 // native bridge initialization to be able to run guest native code in
1039 // doPreload().
1040 bool is_child_zygote,
1041 NativeBridgeAction action,
1042 const char* isa,
1043 bool profile_system_server) {
1044 if (is_native_bridge_loaded_) {
1045 switch (action) {
1046 case NativeBridgeAction::kUnload:
1047 UnloadNativeBridge();
1048 is_native_bridge_loaded_ = false;
1049 break;
1050 case NativeBridgeAction::kInitialize:
1051 InitializeNativeBridge(env, isa);
1052 break;
1053 }
1054 }
1055
1056 if (is_child_zygote) {
1057 // If creating a child-zygote we only initialize native bridge. The rest of
1058 // runtime post-fork logic would spin up threads for Binder and JDWP.
1059 // Instead, the Java side of the child process will call a static main in a
1060 // class specified by the parent.
1061 return;
1062 }
1063
1064 DCHECK(!IsZygote());
1065
1066 if (is_system_server) {
1067 // Register the system server code paths.
1068 // TODO: Ideally this should be done by the VMRuntime#RegisterAppInfo. However, right now
1069 // the method is only called when we set up the profile. It should be called all the time
1070 // (simillar to the apps). Once that's done this manual registration can be removed.
1071 const char* system_server_classpath = getenv("SYSTEMSERVERCLASSPATH");
1072 if (system_server_classpath == nullptr || (strlen(system_server_classpath) == 0)) {
1073 LOG(WARNING) << "System server class path not set";
1074 } else {
1075 std::vector<std::string> jars = android::base::Split(system_server_classpath, ":");
1076 app_info_.RegisterAppInfo("android",
1077 jars,
1078 /*cur_profile_path=*/ "",
1079 /*ref_profile_path=*/ "",
1080 AppInfo::CodeType::kPrimaryApk);
1081 }
1082
1083 // Set the system server package name to "android".
1084 // This is used to tell the difference between samples provided by system server
1085 // and samples generated by other apps when processing boot image profiles.
1086 SetProcessPackageName("android");
1087 if (profile_system_server) {
1088 jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
1089 VLOG(profiler) << "Enabling system server profiles";
1090 }
1091 }
1092
1093 // Create the thread pools.
1094 heap_->CreateThreadPool();
1095 // Avoid creating the runtime thread pool for system server since it will not be used and would
1096 // waste memory.
1097 if (!is_system_server) {
1098 ScopedTrace timing("CreateThreadPool");
1099 constexpr size_t kStackSize = 64 * KB;
1100 constexpr size_t kMaxRuntimeWorkers = 4u;
1101 const size_t num_workers =
1102 std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers);
1103 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
1104 CHECK(thread_pool_ == nullptr);
1105 thread_pool_.reset(new ThreadPool("Runtime", num_workers, /*create_peers=*/false, kStackSize));
1106 thread_pool_->StartWorkers(Thread::Current());
1107 }
1108
1109 // Reset the gc performance data and metrics at zygote fork so that the events from
1110 // before fork aren't attributed to an app.
1111 heap_->ResetGcPerformanceInfo();
1112 GetMetrics()->Reset();
1113
1114 if (metrics_reporter_ != nullptr) {
1115 // Now that we know if we are an app or system server, reload the metrics reporter config
1116 // in case there are any difference.
1117 metrics::ReportingConfig metrics_config =
1118 metrics::ReportingConfig::FromFlags(is_system_server);
1119
1120 metrics_reporter_->ReloadConfig(metrics_config);
1121
1122 metrics::SessionData session_data{metrics::SessionData::CreateDefault()};
1123 // Start the session id from 1 to avoid clashes with the default value.
1124 // (better for debugability)
1125 session_data.session_id = GetRandomNumber<int64_t>(1, std::numeric_limits<int64_t>::max());
1126 // TODO: set session_data.compilation_reason and session_data.compiler_filter
1127 metrics_reporter_->MaybeStartBackgroundThread(session_data);
1128 // Also notify about any updates to the app info.
1129 metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
1130 }
1131
1132 StartSignalCatcher();
1133
1134 ScopedObjectAccess soa(Thread::Current());
1135 if (IsPerfettoHprofEnabled() &&
1136 (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1137 Runtime::Current()->IsSystemServer())) {
1138 std::string err;
1139 ScopedTrace tr("perfetto_hprof init.");
1140 ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1141 if (!EnsurePerfettoPlugin(&err)) {
1142 LOG(WARNING) << "Failed to load perfetto_hprof: " << err;
1143 }
1144 }
1145 if (IsPerfettoJavaHeapStackProfEnabled() &&
1146 (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1147 Runtime::Current()->IsSystemServer())) {
1148 // Marker used for dev tracing similar to above markers.
1149 ScopedTrace tr("perfetto_javaheapprof init.");
1150 }
1151 if (Runtime::Current()->IsSystemServer()) {
1152 std::string err;
1153 ScopedTrace tr("odrefresh stats logging");
1154 ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1155 // Report stats if available. This should be moved into ART Services when they are ready.
1156 if (!odrefresh::UploadStatsIfAvailable(&err)) {
1157 LOG(WARNING) << "Failed to upload odrefresh metrics: " << err;
1158 }
1159 }
1160
1161 if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) {
1162 if (IsJavaDebuggable()) {
1163 SetJniIdType(JniIdType::kIndices);
1164 } else {
1165 SetJniIdType(JniIdType::kPointer);
1166 }
1167 }
1168 ATraceIntegerValue(
1169 "profilebootclasspath",
1170 static_cast<int>(jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()));
1171 // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
1172 // this will pause the runtime (in the internal debugger implementation), so we probably want
1173 // this to come last.
1174 GetRuntimeCallbacks()->StartDebugger();
1175 }
1176
StartSignalCatcher()1177 void Runtime::StartSignalCatcher() {
1178 if (!is_zygote_) {
1179 signal_catcher_ = new SignalCatcher();
1180 }
1181 }
1182
IsShuttingDown(Thread * self)1183 bool Runtime::IsShuttingDown(Thread* self) {
1184 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1185 return IsShuttingDownLocked();
1186 }
1187
StartDaemonThreads()1188 void Runtime::StartDaemonThreads() {
1189 ScopedTrace trace(__FUNCTION__);
1190 VLOG(startup) << "Runtime::StartDaemonThreads entering";
1191
1192 Thread* self = Thread::Current();
1193
1194 // Must be in the kNative state for calling native methods.
1195 CHECK_EQ(self->GetState(), kNative);
1196
1197 JNIEnv* env = self->GetJniEnv();
1198 env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
1199 WellKnownClasses::java_lang_Daemons_start);
1200 if (env->ExceptionCheck()) {
1201 env->ExceptionDescribe();
1202 LOG(FATAL) << "Error starting java.lang.Daemons";
1203 }
1204
1205 VLOG(startup) << "Runtime::StartDaemonThreads exiting";
1206 }
1207
OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,ArrayRef<const std::string> dex_locations,std::vector<std::unique_ptr<const DexFile>> * dex_files)1208 static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,
1209 ArrayRef<const std::string> dex_locations,
1210 std::vector<std::unique_ptr<const DexFile>>* dex_files) {
1211 DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1212 size_t failure_count = 0;
1213 const ArtDexFileLoader dex_file_loader;
1214 for (size_t i = 0; i < dex_filenames.size(); i++) {
1215 const char* dex_filename = dex_filenames[i].c_str();
1216 const char* dex_location = dex_locations[i].c_str();
1217 static constexpr bool kVerifyChecksum = true;
1218 std::string error_msg;
1219 if (!OS::FileExists(dex_filename)) {
1220 LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1221 continue;
1222 }
1223 bool verify = Runtime::Current()->IsVerificationEnabled();
1224 if (!dex_file_loader.Open(dex_filename,
1225 dex_location,
1226 verify,
1227 kVerifyChecksum,
1228 &error_msg,
1229 dex_files)) {
1230 LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
1231 ++failure_count;
1232 }
1233 }
1234 return failure_count;
1235 }
1236
SetSentinel(ObjPtr<mirror::Object> sentinel)1237 void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) {
1238 CHECK(sentinel_.Read() == nullptr);
1239 CHECK(sentinel != nullptr);
1240 CHECK(!heap_->IsMovableObject(sentinel));
1241 sentinel_ = GcRoot<mirror::Object>(sentinel);
1242 }
1243
GetSentinel()1244 GcRoot<mirror::Object> Runtime::GetSentinel() {
1245 return sentinel_;
1246 }
1247
CreatePreAllocatedException(Thread * self,Runtime * runtime,GcRoot<mirror::Throwable> * exception,const char * exception_class_descriptor,const char * msg)1248 static inline void CreatePreAllocatedException(Thread* self,
1249 Runtime* runtime,
1250 GcRoot<mirror::Throwable>* exception,
1251 const char* exception_class_descriptor,
1252 const char* msg)
1253 REQUIRES_SHARED(Locks::mutator_lock_) {
1254 DCHECK_EQ(self, Thread::Current());
1255 ClassLinker* class_linker = runtime->GetClassLinker();
1256 // Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>().
1257 ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor);
1258 CHECK(klass != nullptr);
1259 gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
1260 ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast(
1261 klass->Alloc(self, allocator_type));
1262 CHECK(exception_object != nullptr);
1263 *exception = GcRoot<mirror::Throwable>(exception_object);
1264 // Initialize the "detailMessage" field.
1265 ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg);
1266 CHECK(message != nullptr);
1267 ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker);
1268 ArtField* detailMessageField =
1269 throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;");
1270 CHECK(detailMessageField != nullptr);
1271 detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message);
1272 }
1273
InitializeApexVersions()1274 void Runtime::InitializeApexVersions() {
1275 std::vector<std::string_view> bcp_apexes;
1276 for (std::string_view jar : Runtime::Current()->GetBootClassPathLocations()) {
1277 if (LocationIsOnApex(jar)) {
1278 size_t start = jar.find('/', 1);
1279 if (start == std::string::npos) {
1280 continue;
1281 }
1282 size_t end = jar.find('/', start + 1);
1283 if (end == std::string::npos) {
1284 continue;
1285 }
1286 std::string_view apex = jar.substr(start + 1, end - start - 1);
1287 bcp_apexes.push_back(apex);
1288 }
1289 }
1290 std::string result;
1291 static const char* kApexFileName = "/apex/apex-info-list.xml";
1292 // When running on host or chroot, we just encode empty markers.
1293 if (!kIsTargetBuild || !OS::FileExists(kApexFileName)) {
1294 for (uint32_t i = 0; i < bcp_apexes.size(); ++i) {
1295 result += '/';
1296 }
1297 } else {
1298 #ifdef ART_TARGET_ANDROID
1299 auto info_list = apex::readApexInfoList(kApexFileName);
1300 CHECK(info_list.has_value());
1301 std::map<std::string_view, const apex::ApexInfo*> apex_infos;
1302 for (const apex::ApexInfo& info : info_list->getApexInfo()) {
1303 if (info.getIsActive()) {
1304 apex_infos.emplace(info.getModuleName(), &info);
1305 }
1306 }
1307 for (const std::string_view& str : bcp_apexes) {
1308 auto info = apex_infos.find(str);
1309 if (info == apex_infos.end() || info->second->getIsFactory()) {
1310 result += '/';
1311 } else {
1312 // In case lastUpdateMillis field is populated in apex-info-list.xml, we
1313 // prefer to use it as version scheme. If the field is missing we
1314 // fallback to the version code of the APEX.
1315 uint64_t version = info->second->hasLastUpdateMillis()
1316 ? info->second->getLastUpdateMillis()
1317 : info->second->getVersionCode();
1318 android::base::StringAppendF(&result, "/%" PRIu64, version);
1319 }
1320 }
1321 #endif
1322 }
1323 apex_versions_ = result;
1324 }
1325
ReloadAllFlags(const std::string & caller)1326 void Runtime::ReloadAllFlags(const std::string& caller) {
1327 FlagBase::ReloadAllFlags(caller);
1328 }
1329
Init(RuntimeArgumentMap && runtime_options_in)1330 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1331 // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1332 // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1333 env_snapshot_.TakeSnapshot();
1334
1335 using Opt = RuntimeArgumentMap;
1336 Opt runtime_options(std::move(runtime_options_in));
1337 ScopedTrace trace(__FUNCTION__);
1338 CHECK_EQ(static_cast<size_t>(sysconf(_SC_PAGE_SIZE)), kPageSize);
1339
1340 // Reload all the flags value (from system properties and device configs).
1341 ReloadAllFlags(__FUNCTION__);
1342
1343 deny_art_apex_data_files_ = runtime_options.Exists(Opt::DenyArtApexDataFiles);
1344 if (deny_art_apex_data_files_) {
1345 // We will run slower without those files if the system has taken an ART APEX update.
1346 LOG(WARNING) << "ART APEX data files are untrusted.";
1347 }
1348
1349 // Early override for logging output.
1350 if (runtime_options.Exists(Opt::UseStderrLogger)) {
1351 android::base::SetLogger(android::base::StderrLogger);
1352 }
1353
1354 MemMap::Init();
1355
1356 verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal);
1357 force_java_zygote_fork_loop_ = runtime_options.GetOrDefault(Opt::ForceJavaZygoteForkLoop);
1358 perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof);
1359 perfetto_javaheapprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoJavaHeapStackProf);
1360
1361 // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1362 // If we cannot reserve it, log a warning.
1363 // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1364 // is out-of-the-way enough that it should not collide with boot image mapping.
1365 // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1366 // leading to logspam.
1367 {
1368 constexpr uintptr_t kSentinelAddr =
1369 RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
1370 protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page",
1371 reinterpret_cast<uint8_t*>(kSentinelAddr),
1372 kPageSize,
1373 PROT_NONE,
1374 /*low_4gb=*/ true,
1375 /*reuse=*/ false,
1376 /*reservation=*/ nullptr,
1377 /*error_msg=*/ nullptr);
1378 if (!protected_fault_page_.IsValid()) {
1379 LOG(WARNING) << "Could not reserve sentinel fault page";
1380 } else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != kSentinelAddr) {
1381 LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1382 protected_fault_page_.Reset();
1383 }
1384 }
1385
1386 VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1387
1388 QuasiAtomic::Startup();
1389
1390 oat_file_manager_ = new OatFileManager;
1391
1392 jni_id_manager_.reset(new jni::JniIdManager);
1393
1394 Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1395 Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1396 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1397
1398 image_location_ = runtime_options.GetOrDefault(Opt::Image);
1399
1400 SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet));
1401 boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1402 boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations);
1403 DCHECK(boot_class_path_locations_.empty() ||
1404 boot_class_path_locations_.size() == boot_class_path_.size());
1405 if (boot_class_path_.empty()) {
1406 // Try to extract the boot class path from the system boot image.
1407 if (image_location_.empty()) {
1408 LOG(ERROR) << "Empty boot class path, cannot continue without image.";
1409 return false;
1410 }
1411 std::string system_oat_filename = ImageHeader::GetOatLocationFromImageLocation(
1412 GetSystemImageFilename(image_location_.c_str(), instruction_set_));
1413 std::string system_oat_location = ImageHeader::GetOatLocationFromImageLocation(
1414 image_location_);
1415
1416 if (deny_art_apex_data_files_ && (LocationIsOnArtApexData(system_oat_filename) ||
1417 LocationIsOnArtApexData(system_oat_location))) {
1418 // This code path exists for completeness, but we don't expect it to be hit.
1419 //
1420 // `deny_art_apex_data_files` defaults to false unless set at the command-line. The image
1421 // locations come from the -Ximage argument and it would need to be specified as being on
1422 // the ART APEX data directory. This combination of flags would say apexdata is compromised,
1423 // use apexdata to load image files, which is obviously not a good idea.
1424 LOG(ERROR) << "Could not open boot oat file from untrusted location: " << system_oat_filename;
1425 return false;
1426 }
1427
1428 std::string error_msg;
1429 std::unique_ptr<OatFile> oat_file(OatFile::Open(/*zip_fd=*/ -1,
1430 system_oat_filename,
1431 system_oat_location,
1432 /*executable=*/ false,
1433 /*low_4gb=*/ false,
1434 &error_msg));
1435 if (oat_file == nullptr) {
1436 LOG(ERROR) << "Could not open boot oat file for extracting boot class path: " << error_msg;
1437 return false;
1438 }
1439 const OatHeader& oat_header = oat_file->GetOatHeader();
1440 const char* oat_boot_class_path = oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
1441 if (oat_boot_class_path != nullptr) {
1442 Split(oat_boot_class_path, ':', &boot_class_path_);
1443 }
1444 if (boot_class_path_.empty()) {
1445 LOG(ERROR) << "Boot class path missing from boot image oat file " << oat_file->GetLocation();
1446 return false;
1447 }
1448 }
1449
1450 class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1451 properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1452
1453 compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1454 must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1455 is_zygote_ = runtime_options.Exists(Opt::Zygote);
1456 is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote);
1457 is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1458 image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1459 dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1460
1461 vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1462 exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1463 abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1464
1465 default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1466
1467 compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1468 compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1469 for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
1470 if (option == "--debuggable") {
1471 SetJavaDebuggable(true);
1472 break;
1473 }
1474 }
1475 image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1476
1477 finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs);
1478 max_spins_before_thin_lock_inflation_ =
1479 runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1480
1481 monitor_list_ = new MonitorList;
1482 monitor_pool_ = MonitorPool::Create();
1483 thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1484 intern_table_ = new InternTable;
1485
1486 monitor_timeout_enable_ = runtime_options.GetOrDefault(Opt::MonitorTimeoutEnable);
1487 int monitor_timeout_ms = runtime_options.GetOrDefault(Opt::MonitorTimeout);
1488 if (monitor_timeout_ms < Monitor::kMonitorTimeoutMinMs) {
1489 LOG(WARNING) << "Monitor timeout too short: Increasing";
1490 monitor_timeout_ms = Monitor::kMonitorTimeoutMinMs;
1491 }
1492 if (monitor_timeout_ms >= Monitor::kMonitorTimeoutMaxMs) {
1493 LOG(WARNING) << "Monitor timeout too long: Decreasing";
1494 monitor_timeout_ms = Monitor::kMonitorTimeoutMaxMs - 1;
1495 }
1496 monitor_timeout_ns_ = MsToNs(monitor_timeout_ms);
1497
1498 verify_ = runtime_options.GetOrDefault(Opt::Verify);
1499
1500 target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
1501
1502 // Set hidden API enforcement policy. The checks are disabled by default and
1503 // we only enable them if:
1504 // (a) runtime was started with a command line flag that enables the checks, or
1505 // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
1506 hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy);
1507 DCHECK(!is_zygote_ || hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled);
1508
1509 // Set core platform API enforcement policy. The checks are disabled by default and
1510 // can be enabled with a command line flag. AndroidRuntime will pass the flag if
1511 // a system property is set.
1512 core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy);
1513 if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) {
1514 LOG(INFO) << "Core platform API reporting enabled, enforcing="
1515 << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false");
1516 }
1517
1518 no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1519 force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1520
1521 Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1522
1523 fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1524
1525 if (runtime_options.GetOrDefault(Opt::Interpret)) {
1526 GetInstrumentation()->ForceInterpretOnly();
1527 }
1528
1529 zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1530 experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1531 is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1532 madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
1533 madvise_willneed_vdex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedVdexFileSize);
1534 madvise_willneed_odex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedOdexFileSize);
1535 madvise_willneed_art_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedArtFileSize);
1536
1537 jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds);
1538 automatically_set_jni_ids_indirection_ =
1539 runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds);
1540
1541 plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1542 agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1543 // TODO Add back in -agentlib
1544 // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1545 // agents_.push_back(lib);
1546 // }
1547
1548 float foreground_heap_growth_multiplier;
1549 if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1550 // If low memory mode, use 1.0 as the multiplier by default.
1551 foreground_heap_growth_multiplier = 1.0f;
1552 } else {
1553 foreground_heap_growth_multiplier =
1554 runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
1555 kExtraDefaultHeapGrowthMultiplier;
1556 }
1557 XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1558
1559 // Generational CC collection is currently only compatible with Baker read barriers.
1560 bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc;
1561
1562 heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1563 runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1564 runtime_options.GetOrDefault(Opt::HeapMinFree),
1565 runtime_options.GetOrDefault(Opt::HeapMaxFree),
1566 runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1567 foreground_heap_growth_multiplier,
1568 runtime_options.GetOrDefault(Opt::StopForNativeAllocs),
1569 runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1570 runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1571 GetBootClassPath(),
1572 GetBootClassPathLocations(),
1573 image_location_,
1574 instruction_set_,
1575 // Override the collector type to CC if the read barrier config.
1576 kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1577 kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1578 : runtime_options.GetOrDefault(Opt::BackgroundGc),
1579 runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1580 runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1581 runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1582 runtime_options.GetOrDefault(Opt::ConcGCThreads),
1583 runtime_options.Exists(Opt::LowMemoryMode),
1584 runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1585 runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1586 runtime_options.Exists(Opt::IgnoreMaxFootprint),
1587 runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs),
1588 runtime_options.GetOrDefault(Opt::UseTLAB),
1589 xgc_option.verify_pre_gc_heap_,
1590 xgc_option.verify_pre_sweeping_heap_,
1591 xgc_option.verify_post_gc_heap_,
1592 xgc_option.verify_pre_gc_rosalloc_,
1593 xgc_option.verify_pre_sweeping_rosalloc_,
1594 xgc_option.verify_post_gc_rosalloc_,
1595 xgc_option.gcstress_,
1596 xgc_option.measure_,
1597 runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1598 use_generational_cc,
1599 runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs),
1600 runtime_options.Exists(Opt::DumpRegionInfoBeforeGC),
1601 runtime_options.Exists(Opt::DumpRegionInfoAfterGC));
1602
1603 dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1604
1605 bool has_explicit_jdwp_options = runtime_options.Get(Opt::JdwpOptions) != nullptr;
1606 jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
1607 jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider),
1608 IsJavaDebuggable());
1609 switch (jdwp_provider_) {
1610 case JdwpProvider::kNone: {
1611 VLOG(jdwp) << "Disabling all JDWP support.";
1612 if (!jdwp_options_.empty()) {
1613 bool has_transport = jdwp_options_.find("transport") != std::string::npos;
1614 std::string adb_connection_args =
1615 std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
1616 if (has_explicit_jdwp_options) {
1617 LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
1618 << "jdwp with one of:" << std::endl
1619 << " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
1620 << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
1621 << (has_transport ? "" : adb_connection_args);
1622 }
1623 }
1624 break;
1625 }
1626 case JdwpProvider::kAdbConnection: {
1627 constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
1628 : "libadbconnection.so";
1629 plugins_.push_back(Plugin::Create(plugin_name));
1630 break;
1631 }
1632 case JdwpProvider::kUnset: {
1633 LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!";
1634 }
1635 }
1636 callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1637
1638 jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1639 if (IsAotCompiler()) {
1640 // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1641 // this case.
1642 // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1643 // null and we don't create the jit.
1644 jit_options_->SetUseJitCompilation(false);
1645 jit_options_->SetSaveProfilingInfo(false);
1646 }
1647
1648 // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1649 // can't be trimmed as easily.
1650 const bool use_malloc = IsAotCompiler();
1651 if (use_malloc) {
1652 arena_pool_.reset(new MallocArenaPool());
1653 jit_arena_pool_.reset(new MallocArenaPool());
1654 } else {
1655 arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false));
1656 jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata"));
1657 }
1658
1659 if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
1660 // 4gb, no malloc. Explanation in header.
1661 low_4gb_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ true));
1662 }
1663 linear_alloc_.reset(CreateLinearAlloc());
1664
1665 BlockSignals();
1666 InitPlatformSignalHandlers();
1667
1668 // Change the implicit checks flags based on runtime architecture.
1669 switch (kRuntimeISA) {
1670 case InstructionSet::kArm:
1671 case InstructionSet::kThumb2:
1672 case InstructionSet::kX86:
1673 case InstructionSet::kArm64:
1674 case InstructionSet::kX86_64:
1675 implicit_null_checks_ = true;
1676 // Historical note: Installing stack protection was not playing well with Valgrind.
1677 implicit_so_checks_ = true;
1678 break;
1679 default:
1680 // Keep the defaults.
1681 break;
1682 }
1683
1684 if (!no_sig_chain_) {
1685 // Dex2Oat's Runtime does not need the signal chain or the fault handler.
1686 if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
1687 fault_manager.Init();
1688
1689 // These need to be in a specific order. The null point check handler must be
1690 // after the suspend check and stack overflow check handlers.
1691 //
1692 // Note: the instances attach themselves to the fault manager and are handled by it. The
1693 // manager will delete the instance on Shutdown().
1694 if (implicit_suspend_checks_) {
1695 new SuspensionHandler(&fault_manager);
1696 }
1697
1698 if (implicit_so_checks_) {
1699 new StackOverflowHandler(&fault_manager);
1700 }
1701
1702 if (implicit_null_checks_) {
1703 new NullPointerHandler(&fault_manager);
1704 }
1705
1706 if (kEnableJavaStackTraceHandler) {
1707 new JavaStackTraceHandler(&fault_manager);
1708 }
1709 }
1710 }
1711
1712 verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold);
1713
1714 std::string error_msg;
1715 java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1716 if (java_vm_.get() == nullptr) {
1717 LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1718 return false;
1719 }
1720
1721 // Add the JniEnv handler.
1722 // TODO Refactor this stuff.
1723 java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1724
1725 Thread::Startup();
1726
1727 // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1728 // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1729 // thread, we do not get a java peer.
1730 Thread* self = Thread::Attach("main", false, nullptr, false);
1731 CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1732 CHECK(self != nullptr);
1733
1734 self->SetIsRuntimeThread(IsAotCompiler());
1735
1736 // Set us to runnable so tools using a runtime can allocate and GC by default
1737 self->TransitionFromSuspendedToRunnable();
1738
1739 // Now we're attached, we can take the heap locks and validate the heap.
1740 GetHeap()->EnableObjectValidation();
1741
1742 CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1743
1744 if (UNLIKELY(IsAotCompiler())) {
1745 class_linker_ = new AotClassLinker(intern_table_);
1746 } else {
1747 class_linker_ = new ClassLinker(
1748 intern_table_,
1749 runtime_options.GetOrDefault(Opt::FastClassNotFoundException));
1750 }
1751 if (GetHeap()->HasBootImageSpace()) {
1752 bool result = class_linker_->InitFromBootImage(&error_msg);
1753 if (!result) {
1754 LOG(ERROR) << "Could not initialize from image: " << error_msg;
1755 return false;
1756 }
1757 if (kIsDebugBuild) {
1758 for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1759 image_space->VerifyImageAllocations();
1760 }
1761 }
1762 {
1763 ScopedTrace trace2("AddImageStringsToTable");
1764 for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) {
1765 GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor());
1766 }
1767 }
1768
1769 const size_t total_components = gc::space::ImageSpace::GetNumberOfComponents(
1770 ArrayRef<gc::space::ImageSpace* const>(heap_->GetBootImageSpaces()));
1771 if (total_components != GetBootClassPath().size()) {
1772 // The boot image did not contain all boot class path components. Load the rest.
1773 CHECK_LT(total_components, GetBootClassPath().size());
1774 size_t start = total_components;
1775 DCHECK_LT(start, GetBootClassPath().size());
1776 std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path;
1777 if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1778 extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1779 } else {
1780 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start),
1781 ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start),
1782 &extra_boot_class_path);
1783 }
1784 class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path));
1785 }
1786 if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) {
1787 // Deoptimize the boot image if debuggable as the code may have been compiled non-debuggable.
1788 // Also deoptimize if we are profiling the boot class path.
1789 ScopedThreadSuspension sts(self, ThreadState::kNative);
1790 ScopedSuspendAll ssa(__FUNCTION__);
1791 DeoptimizeBootImage();
1792 }
1793 } else {
1794 std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1795 if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1796 boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1797 } else {
1798 OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()),
1799 ArrayRef<const std::string>(GetBootClassPathLocations()),
1800 &boot_class_path);
1801 }
1802 if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1803 LOG(ERROR) << "Could not initialize without image: " << error_msg;
1804 return false;
1805 }
1806
1807 // TODO: Should we move the following to InitWithoutImage?
1808 SetInstructionSet(instruction_set_);
1809 for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
1810 CalleeSaveType type = CalleeSaveType(i);
1811 if (!HasCalleeSaveMethod(type)) {
1812 SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1813 }
1814 }
1815 }
1816
1817 // Now that the boot image space is set, cache the boot classpath checksums,
1818 // to be used when validating oat files.
1819 ArrayRef<gc::space::ImageSpace* const> image_spaces(GetHeap()->GetBootImageSpaces());
1820 ArrayRef<const DexFile* const> bcp_dex_files(GetClassLinker()->GetBootClassPath());
1821 boot_class_path_checksums_ = gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces,
1822 bcp_dex_files);
1823
1824 // Cache the apex versions.
1825 InitializeApexVersions();
1826
1827 CHECK(class_linker_ != nullptr);
1828
1829 verifier::ClassVerifier::Init(class_linker_);
1830
1831 if (runtime_options.Exists(Opt::MethodTrace)) {
1832 trace_config_.reset(new TraceConfig());
1833 trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1834 trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1835 trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1836 trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1837 Trace::TraceOutputMode::kStreaming :
1838 Trace::TraceOutputMode::kFile;
1839 }
1840
1841 // TODO: move this to just be an Trace::Start argument
1842 Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1843
1844 if (GetHeap()->HasBootImageSpace()) {
1845 const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader();
1846 ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
1847 ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
1848 image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
1849 pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>(
1850 boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable());
1851 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass()
1852 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1853 pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>(
1854 boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable());
1855 DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass()
1856 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1857 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>(
1858 boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable());
1859 DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass()
1860 ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1861 pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(
1862 boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable());
1863 DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass()
1864 ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;"));
1865 } else {
1866 // Pre-allocate an OutOfMemoryError for the case when we fail to
1867 // allocate the exception to be thrown.
1868 CreatePreAllocatedException(self,
1869 this,
1870 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
1871 "Ljava/lang/OutOfMemoryError;",
1872 "OutOfMemoryError thrown while trying to throw an exception; "
1873 "no stack trace available");
1874 // Pre-allocate an OutOfMemoryError for the double-OOME case.
1875 CreatePreAllocatedException(self,
1876 this,
1877 &pre_allocated_OutOfMemoryError_when_throwing_oome_,
1878 "Ljava/lang/OutOfMemoryError;",
1879 "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1880 "no stack trace available");
1881 // Pre-allocate an OutOfMemoryError for the case when we fail to
1882 // allocate while handling a stack overflow.
1883 CreatePreAllocatedException(self,
1884 this,
1885 &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,
1886 "Ljava/lang/OutOfMemoryError;",
1887 "OutOfMemoryError thrown while trying to handle a stack overflow; "
1888 "no stack trace available");
1889
1890 // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1891 // ahead of checking the application's class loader.
1892 CreatePreAllocatedException(self,
1893 this,
1894 &pre_allocated_NoClassDefFoundError_,
1895 "Ljava/lang/NoClassDefFoundError;",
1896 "Class not found using the boot class loader; "
1897 "no stack trace available");
1898 }
1899
1900 // Class-roots are setup, we can now finish initializing the JniIdManager.
1901 GetJniIdManager()->Init(self);
1902
1903 InitMetrics();
1904
1905 // Runtime initialization is largely done now.
1906 // We load plugins first since that can modify the runtime state slightly.
1907 // Load all plugins
1908 {
1909 // The init method of plugins expect the state of the thread to be non runnable.
1910 ScopedThreadSuspension sts(self, ThreadState::kNative);
1911 for (auto& plugin : plugins_) {
1912 std::string err;
1913 if (!plugin.Load(&err)) {
1914 LOG(FATAL) << plugin << " failed to load: " << err;
1915 }
1916 }
1917 }
1918
1919 // Look for a native bridge.
1920 //
1921 // The intended flow here is, in the case of a running system:
1922 //
1923 // Runtime::Init() (zygote):
1924 // LoadNativeBridge -> dlopen from cmd line parameter.
1925 // |
1926 // V
1927 // Runtime::Start() (zygote):
1928 // No-op wrt native bridge.
1929 // |
1930 // | start app
1931 // V
1932 // DidForkFromZygote(action)
1933 // action = kUnload -> dlclose native bridge.
1934 // action = kInitialize -> initialize library
1935 //
1936 //
1937 // The intended flow here is, in the case of a simple dalvikvm call:
1938 //
1939 // Runtime::Init():
1940 // LoadNativeBridge -> dlopen from cmd line parameter.
1941 // |
1942 // V
1943 // Runtime::Start():
1944 // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
1945 // No-op wrt native bridge.
1946 {
1947 std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
1948 is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
1949 }
1950
1951 // Startup agents
1952 // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
1953 for (auto& agent_spec : agent_specs_) {
1954 // TODO Check err
1955 int res = 0;
1956 std::string err = "";
1957 ti::LoadError error;
1958 std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
1959
1960 if (agent != nullptr) {
1961 agents_.push_back(std::move(agent));
1962 continue;
1963 }
1964
1965 switch (error) {
1966 case ti::LoadError::kInitializationError:
1967 LOG(FATAL) << "Unable to initialize agent!";
1968 UNREACHABLE();
1969
1970 case ti::LoadError::kLoadingError:
1971 LOG(ERROR) << "Unable to load an agent: " << err;
1972 continue;
1973
1974 case ti::LoadError::kNoError:
1975 break;
1976 }
1977 LOG(FATAL) << "Unreachable";
1978 UNREACHABLE();
1979 }
1980 {
1981 ScopedObjectAccess soa(self);
1982 callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
1983 }
1984
1985 if (IsZygote() && IsPerfettoHprofEnabled()) {
1986 constexpr const char* plugin_name = kIsDebugBuild ?
1987 "libperfetto_hprofd.so" : "libperfetto_hprof.so";
1988 // Load eagerly in Zygote to improve app startup times. This will make
1989 // subsequent dlopens for the library no-ops.
1990 dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL);
1991 }
1992
1993 VLOG(startup) << "Runtime::Init exiting";
1994
1995 // Set OnlyUseTrustedOatFiles only after the boot classpath has been set up.
1996 if (runtime_options.Exists(Opt::OnlyUseTrustedOatFiles)) {
1997 oat_file_manager_->SetOnlyUseTrustedOatFiles();
1998 }
1999
2000 return true;
2001 }
2002
InitMetrics()2003 void Runtime::InitMetrics() {
2004 metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags();
2005 metrics_reporter_ = metrics::MetricsReporter::Create(metrics_config, this);
2006 }
2007
RequestMetricsReport(bool synchronous)2008 void Runtime::RequestMetricsReport(bool synchronous) {
2009 if (metrics_reporter_) {
2010 metrics_reporter_->RequestMetricsReport(synchronous);
2011 }
2012 }
2013
EnsurePluginLoaded(const char * plugin_name,std::string * error_msg)2014 bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) {
2015 // Is the plugin already loaded?
2016 for (const Plugin& p : plugins_) {
2017 if (p.GetLibrary() == plugin_name) {
2018 return true;
2019 }
2020 }
2021 Plugin new_plugin = Plugin::Create(plugin_name);
2022
2023 if (!new_plugin.Load(error_msg)) {
2024 return false;
2025 }
2026 plugins_.push_back(std::move(new_plugin));
2027 return true;
2028 }
2029
EnsurePerfettoPlugin(std::string * error_msg)2030 bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) {
2031 constexpr const char* plugin_name = kIsDebugBuild ?
2032 "libperfetto_hprofd.so" : "libperfetto_hprof.so";
2033 return EnsurePluginLoaded(plugin_name, error_msg);
2034 }
2035
EnsureJvmtiPlugin(Runtime * runtime,std::string * error_msg)2036 static bool EnsureJvmtiPlugin(Runtime* runtime,
2037 std::string* error_msg) {
2038 // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
2039 DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
2040 << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
2041 // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
2042 // specifically allowed.
2043 if (!Dbg::IsJdwpAllowed()) {
2044 *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
2045 return false;
2046 }
2047
2048 constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
2049 return runtime->EnsurePluginLoaded(plugin_name, error_msg);
2050 }
2051
2052 // Attach a new agent and add it to the list of runtime agents
2053 //
2054 // TODO: once we decide on the threading model for agents,
2055 // revisit this and make sure we're doing this on the right thread
2056 // (and we synchronize access to any shared data structures like "agents_")
2057 //
AttachAgent(JNIEnv * env,const std::string & agent_arg,jobject class_loader)2058 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
2059 std::string error_msg;
2060 if (!EnsureJvmtiPlugin(this, &error_msg)) {
2061 LOG(WARNING) << "Could not load plugin: " << error_msg;
2062 ScopedObjectAccess soa(Thread::Current());
2063 ThrowIOException("%s", error_msg.c_str());
2064 return;
2065 }
2066
2067 ti::AgentSpec agent_spec(agent_arg);
2068
2069 int res = 0;
2070 ti::LoadError error;
2071 std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
2072
2073 if (agent != nullptr) {
2074 agents_.push_back(std::move(agent));
2075 } else {
2076 LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
2077 ScopedObjectAccess soa(Thread::Current());
2078 ThrowIOException("%s", error_msg.c_str());
2079 }
2080 }
2081
InitNativeMethods()2082 void Runtime::InitNativeMethods() {
2083 VLOG(startup) << "Runtime::InitNativeMethods entering";
2084 Thread* self = Thread::Current();
2085 JNIEnv* env = self->GetJniEnv();
2086
2087 // Must be in the kNative state for calling native methods (JNI_OnLoad code).
2088 CHECK_EQ(self->GetState(), kNative);
2089
2090 // Set up the native methods provided by the runtime itself.
2091 RegisterRuntimeNativeMethods(env);
2092
2093 // Initialize classes used in JNI. The initialization requires runtime native
2094 // methods to be loaded first.
2095 WellKnownClasses::Init(env);
2096
2097 // Then set up libjavacore / libopenjdk / libicu_jni ,which are just
2098 // a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can
2099 // just use System.loadLibrary, but libcore can't because it's the library
2100 // that implements System.loadLibrary!
2101 //
2102 // By setting calling class to java.lang.Object, the caller location for these
2103 // JNI libs is core-oj.jar in the ART APEX, and hence they are loaded from the
2104 // com_android_art linker namespace.
2105
2106 // libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from
2107 // libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405
2108 {
2109 std::string error_msg;
2110 if (!java_vm_->LoadNativeLibrary(
2111 env, "libicu_jni.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
2112 LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg;
2113 }
2114 }
2115 {
2116 std::string error_msg;
2117 if (!java_vm_->LoadNativeLibrary(
2118 env, "libjavacore.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
2119 LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
2120 }
2121 }
2122 {
2123 constexpr const char* kOpenJdkLibrary = kIsDebugBuild
2124 ? "libopenjdkd.so"
2125 : "libopenjdk.so";
2126 std::string error_msg;
2127 if (!java_vm_->LoadNativeLibrary(
2128 env, kOpenJdkLibrary, nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
2129 LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
2130 }
2131 }
2132
2133 // Initialize well known classes that may invoke runtime native methods.
2134 WellKnownClasses::LateInit(env);
2135
2136 VLOG(startup) << "Runtime::InitNativeMethods exiting";
2137 }
2138
ReclaimArenaPoolMemory()2139 void Runtime::ReclaimArenaPoolMemory() {
2140 arena_pool_->LockReclaimMemory();
2141 }
2142
InitThreadGroups(Thread * self)2143 void Runtime::InitThreadGroups(Thread* self) {
2144 JNIEnvExt* env = self->GetJniEnv();
2145 ScopedJniEnvLocalRefState env_state(env);
2146 main_thread_group_ =
2147 env->NewGlobalRef(env->GetStaticObjectField(
2148 WellKnownClasses::java_lang_ThreadGroup,
2149 WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
2150 CHECK(main_thread_group_ != nullptr || IsAotCompiler());
2151 system_thread_group_ =
2152 env->NewGlobalRef(env->GetStaticObjectField(
2153 WellKnownClasses::java_lang_ThreadGroup,
2154 WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
2155 CHECK(system_thread_group_ != nullptr || IsAotCompiler());
2156 }
2157
GetMainThreadGroup() const2158 jobject Runtime::GetMainThreadGroup() const {
2159 CHECK(main_thread_group_ != nullptr || IsAotCompiler());
2160 return main_thread_group_;
2161 }
2162
GetSystemThreadGroup() const2163 jobject Runtime::GetSystemThreadGroup() const {
2164 CHECK(system_thread_group_ != nullptr || IsAotCompiler());
2165 return system_thread_group_;
2166 }
2167
GetSystemClassLoader() const2168 jobject Runtime::GetSystemClassLoader() const {
2169 CHECK(system_class_loader_ != nullptr || IsAotCompiler());
2170 return system_class_loader_;
2171 }
2172
RegisterRuntimeNativeMethods(JNIEnv * env)2173 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
2174 register_dalvik_system_DexFile(env);
2175 register_dalvik_system_BaseDexClassLoader(env);
2176 register_dalvik_system_VMDebug(env);
2177 register_dalvik_system_VMRuntime(env);
2178 register_dalvik_system_VMStack(env);
2179 register_dalvik_system_ZygoteHooks(env);
2180 register_java_lang_Class(env);
2181 register_java_lang_Object(env);
2182 register_java_lang_invoke_MethodHandleImpl(env);
2183 register_java_lang_ref_FinalizerReference(env);
2184 register_java_lang_reflect_Array(env);
2185 register_java_lang_reflect_Constructor(env);
2186 register_java_lang_reflect_Executable(env);
2187 register_java_lang_reflect_Field(env);
2188 register_java_lang_reflect_Method(env);
2189 register_java_lang_reflect_Parameter(env);
2190 register_java_lang_reflect_Proxy(env);
2191 register_java_lang_ref_Reference(env);
2192 register_java_lang_String(env);
2193 register_java_lang_StringFactory(env);
2194 register_java_lang_System(env);
2195 register_java_lang_Thread(env);
2196 register_java_lang_Throwable(env);
2197 register_java_lang_VMClassLoader(env);
2198 register_java_util_concurrent_atomic_AtomicLong(env);
2199 register_libcore_util_CharsetUtils(env);
2200 register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
2201 register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
2202 register_sun_misc_Unsafe(env);
2203 }
2204
operator <<(std::ostream & os,const DeoptimizationKind & kind)2205 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
2206 os << GetDeoptimizationKindName(kind);
2207 return os;
2208 }
2209
DumpDeoptimizations(std::ostream & os)2210 void Runtime::DumpDeoptimizations(std::ostream& os) {
2211 for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
2212 if (deoptimization_counts_[i] != 0) {
2213 os << "Number of "
2214 << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
2215 << " deoptimizations: "
2216 << deoptimization_counts_[i]
2217 << "\n";
2218 }
2219 }
2220 }
2221
DumpForSigQuit(std::ostream & os)2222 void Runtime::DumpForSigQuit(std::ostream& os) {
2223 GetClassLinker()->DumpForSigQuit(os);
2224 GetInternTable()->DumpForSigQuit(os);
2225 GetJavaVM()->DumpForSigQuit(os);
2226 GetHeap()->DumpForSigQuit(os);
2227 oat_file_manager_->DumpForSigQuit(os);
2228 if (GetJit() != nullptr) {
2229 GetJit()->DumpForSigQuit(os);
2230 } else {
2231 os << "Running non JIT\n";
2232 }
2233 DumpDeoptimizations(os);
2234 TrackedAllocators::Dump(os);
2235 GetMetrics()->DumpForSigQuit(os);
2236 os << "\n";
2237
2238 thread_list_->DumpForSigQuit(os);
2239 BaseMutex::DumpAll(os);
2240
2241 // Inform anyone else who is interested in SigQuit.
2242 {
2243 ScopedObjectAccess soa(Thread::Current());
2244 callbacks_->SigQuit();
2245 }
2246 }
2247
DumpLockHolders(std::ostream & os)2248 void Runtime::DumpLockHolders(std::ostream& os) {
2249 uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
2250 pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
2251 pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
2252 pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
2253 if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
2254 os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
2255 << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
2256 << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
2257 << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
2258 }
2259 }
2260
SetStatsEnabled(bool new_state)2261 void Runtime::SetStatsEnabled(bool new_state) {
2262 Thread* self = Thread::Current();
2263 MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
2264 if (new_state == true) {
2265 GetStats()->Clear(~0);
2266 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2267 self->GetStats()->Clear(~0);
2268 if (stats_enabled_ != new_state) {
2269 GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
2270 }
2271 } else if (stats_enabled_ != new_state) {
2272 GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
2273 }
2274 stats_enabled_ = new_state;
2275 }
2276
ResetStats(int kinds)2277 void Runtime::ResetStats(int kinds) {
2278 GetStats()->Clear(kinds & 0xffff);
2279 // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2280 Thread::Current()->GetStats()->Clear(kinds >> 16);
2281 }
2282
GetStat(int kind)2283 uint64_t Runtime::GetStat(int kind) {
2284 RuntimeStats* stats;
2285 if (kind < (1<<16)) {
2286 stats = GetStats();
2287 } else {
2288 stats = Thread::Current()->GetStats();
2289 kind >>= 16;
2290 }
2291 switch (kind) {
2292 case KIND_ALLOCATED_OBJECTS:
2293 return stats->allocated_objects;
2294 case KIND_ALLOCATED_BYTES:
2295 return stats->allocated_bytes;
2296 case KIND_FREED_OBJECTS:
2297 return stats->freed_objects;
2298 case KIND_FREED_BYTES:
2299 return stats->freed_bytes;
2300 case KIND_GC_INVOCATIONS:
2301 return stats->gc_for_alloc_count;
2302 case KIND_CLASS_INIT_COUNT:
2303 return stats->class_init_count;
2304 case KIND_CLASS_INIT_TIME:
2305 return stats->class_init_time_ns;
2306 case KIND_EXT_ALLOCATED_OBJECTS:
2307 case KIND_EXT_ALLOCATED_BYTES:
2308 case KIND_EXT_FREED_OBJECTS:
2309 case KIND_EXT_FREED_BYTES:
2310 return 0; // backward compatibility
2311 default:
2312 LOG(FATAL) << "Unknown statistic " << kind;
2313 UNREACHABLE();
2314 }
2315 }
2316
BlockSignals()2317 void Runtime::BlockSignals() {
2318 SignalSet signals;
2319 signals.Add(SIGPIPE);
2320 // SIGQUIT is used to dump the runtime's state (including stack traces).
2321 signals.Add(SIGQUIT);
2322 // SIGUSR1 is used to initiate a GC.
2323 signals.Add(SIGUSR1);
2324 signals.Block();
2325 }
2326
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)2327 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
2328 bool create_peer) {
2329 ScopedTrace trace(__FUNCTION__);
2330 Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer);
2331 // Run ThreadGroup.add to notify the group that this thread is now started.
2332 if (self != nullptr && create_peer && !IsAotCompiler()) {
2333 ScopedObjectAccess soa(self);
2334 self->NotifyThreadGroup(soa, thread_group);
2335 }
2336 return self != nullptr;
2337 }
2338
DetachCurrentThread()2339 void Runtime::DetachCurrentThread() {
2340 ScopedTrace trace(__FUNCTION__);
2341 Thread* self = Thread::Current();
2342 if (self == nullptr) {
2343 LOG(FATAL) << "attempting to detach thread that is not attached";
2344 }
2345 if (self->HasManagedStack()) {
2346 LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
2347 }
2348 thread_list_->Unregister(self);
2349 }
2350
GetPreAllocatedOutOfMemoryErrorWhenThrowingException()2351 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() {
2352 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read();
2353 if (oome == nullptr) {
2354 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception";
2355 }
2356 return oome;
2357 }
2358
GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()2359 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() {
2360 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read();
2361 if (oome == nullptr) {
2362 LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME";
2363 }
2364 return oome;
2365 }
2366
GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()2367 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() {
2368 mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read();
2369 if (oome == nullptr) {
2370 LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow";
2371 }
2372 return oome;
2373 }
2374
GetPreAllocatedNoClassDefFoundError()2375 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
2376 mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
2377 if (ncdfe == nullptr) {
2378 LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
2379 }
2380 return ncdfe;
2381 }
2382
VisitConstantRoots(RootVisitor * visitor)2383 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
2384 // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
2385 // null.
2386 BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
2387 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2388 if (HasResolutionMethod()) {
2389 resolution_method_->VisitRoots(buffered_visitor, pointer_size);
2390 }
2391 if (HasImtConflictMethod()) {
2392 imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
2393 }
2394 if (imt_unimplemented_method_ != nullptr) {
2395 imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
2396 }
2397 for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
2398 auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
2399 if (m != nullptr) {
2400 m->VisitRoots(buffered_visitor, pointer_size);
2401 }
2402 }
2403 }
2404
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2405 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2406 intern_table_->VisitRoots(visitor, flags);
2407 class_linker_->VisitRoots(visitor, flags);
2408 jni_id_manager_->VisitRoots(visitor);
2409 heap_->VisitAllocationRecords(visitor);
2410 if ((flags & kVisitRootFlagNewRoots) == 0) {
2411 // Guaranteed to have no new roots in the constant roots.
2412 VisitConstantRoots(visitor);
2413 }
2414 }
2415
VisitTransactionRoots(RootVisitor * visitor)2416 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
2417 for (auto& transaction : preinitialization_transactions_) {
2418 transaction->VisitRoots(visitor);
2419 }
2420 }
2421
VisitNonThreadRoots(RootVisitor * visitor)2422 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
2423 java_vm_->VisitRoots(visitor);
2424 sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2425 pre_allocated_OutOfMemoryError_when_throwing_exception_
2426 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2427 pre_allocated_OutOfMemoryError_when_throwing_oome_
2428 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2429 pre_allocated_OutOfMemoryError_when_handling_stack_overflow_
2430 .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2431 pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2432 VisitImageRoots(visitor);
2433 verifier::ClassVerifier::VisitStaticRoots(visitor);
2434 VisitTransactionRoots(visitor);
2435 }
2436
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2437 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2438 VisitThreadRoots(visitor, flags);
2439 VisitNonThreadRoots(visitor);
2440 }
2441
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)2442 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
2443 thread_list_->VisitRoots(visitor, flags);
2444 }
2445
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2446 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2447 VisitNonConcurrentRoots(visitor, flags);
2448 VisitConcurrentRoots(visitor, flags);
2449 }
2450
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)2451 void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) {
2452 thread_list_->VisitReflectiveTargets(visitor);
2453 heap_->VisitReflectiveTargets(visitor);
2454 jni_id_manager_->VisitReflectiveTargets(visitor);
2455 callbacks_->VisitReflectiveTargets(visitor);
2456 }
2457
VisitImageRoots(RootVisitor * visitor)2458 void Runtime::VisitImageRoots(RootVisitor* visitor) {
2459 for (auto* space : GetHeap()->GetContinuousSpaces()) {
2460 if (space->IsImageSpace()) {
2461 auto* image_space = space->AsImageSpace();
2462 const auto& image_header = image_space->GetImageHeader();
2463 for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
2464 mirror::Object* obj =
2465 image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr();
2466 if (obj != nullptr) {
2467 mirror::Object* after_obj = obj;
2468 visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
2469 CHECK_EQ(after_obj, obj);
2470 }
2471 }
2472 }
2473 }
2474 }
2475
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)2476 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc)
2477 REQUIRES_SHARED(Locks::mutator_lock_) {
2478 const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
2479 const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
2480 const size_t method_size = ArtMethod::Size(image_pointer_size);
2481 LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
2482 Thread::Current(),
2483 linear_alloc,
2484 1);
2485 ArtMethod* method = &method_array->At(0, method_size, method_alignment);
2486 CHECK(method != nullptr);
2487 method->SetDexMethodIndex(dex::kDexNoIndex);
2488 CHECK(method->IsRuntimeMethod());
2489 return method;
2490 }
2491
CreateImtConflictMethod(LinearAlloc * linear_alloc)2492 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
2493 ClassLinker* const class_linker = GetClassLinker();
2494 ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
2495 // When compiling, the code pointer will get set later when the image is loaded.
2496 const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2497 if (IsAotCompiler()) {
2498 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2499 } else {
2500 method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
2501 }
2502 // Create empty conflict table.
2503 method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc),
2504 pointer_size);
2505 return method;
2506 }
2507
SetImtConflictMethod(ArtMethod * method)2508 void Runtime::SetImtConflictMethod(ArtMethod* method) {
2509 CHECK(method != nullptr);
2510 CHECK(method->IsRuntimeMethod());
2511 imt_conflict_method_ = method;
2512 }
2513
CreateResolutionMethod()2514 ArtMethod* Runtime::CreateResolutionMethod() {
2515 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2516 // When compiling, the code pointer will get set later when the image is loaded.
2517 if (IsAotCompiler()) {
2518 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2519 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2520 method->SetEntryPointFromJniPtrSize(nullptr, pointer_size);
2521 } else {
2522 method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2523 method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub());
2524 }
2525 return method;
2526 }
2527
CreateCalleeSaveMethod()2528 ArtMethod* Runtime::CreateCalleeSaveMethod() {
2529 auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2530 PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2531 method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2532 DCHECK_NE(instruction_set_, InstructionSet::kNone);
2533 DCHECK(method->IsRuntimeMethod());
2534 return method;
2535 }
2536
DisallowNewSystemWeaks()2537 void Runtime::DisallowNewSystemWeaks() {
2538 CHECK(!kUseReadBarrier);
2539 monitor_list_->DisallowNewMonitors();
2540 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
2541 java_vm_->DisallowNewWeakGlobals();
2542 heap_->DisallowNewAllocationRecords();
2543 if (GetJit() != nullptr) {
2544 GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
2545 }
2546
2547 // All other generic system-weak holders.
2548 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2549 holder->Disallow();
2550 }
2551 }
2552
AllowNewSystemWeaks()2553 void Runtime::AllowNewSystemWeaks() {
2554 CHECK(!kUseReadBarrier);
2555 monitor_list_->AllowNewMonitors();
2556 intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping.
2557 java_vm_->AllowNewWeakGlobals();
2558 heap_->AllowNewAllocationRecords();
2559 if (GetJit() != nullptr) {
2560 GetJit()->GetCodeCache()->AllowInlineCacheAccess();
2561 }
2562
2563 // All other generic system-weak holders.
2564 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2565 holder->Allow();
2566 }
2567 }
2568
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)2569 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
2570 // This is used for the read barrier case that uses the thread-local
2571 // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
2572 // (see ThreadList::RunCheckpoint).
2573 monitor_list_->BroadcastForNewMonitors();
2574 intern_table_->BroadcastForNewInterns();
2575 java_vm_->BroadcastForNewWeakGlobals();
2576 heap_->BroadcastForNewAllocationRecords();
2577 if (GetJit() != nullptr) {
2578 GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2579 }
2580
2581 // All other generic system-weak holders.
2582 for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2583 holder->Broadcast(broadcast_for_checkpoint);
2584 }
2585 }
2586
SetInstructionSet(InstructionSet instruction_set)2587 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2588 instruction_set_ = instruction_set;
2589 switch (instruction_set) {
2590 case InstructionSet::kThumb2:
2591 // kThumb2 is the same as kArm, use the canonical value.
2592 instruction_set_ = InstructionSet::kArm;
2593 break;
2594 case InstructionSet::kArm:
2595 case InstructionSet::kArm64:
2596 case InstructionSet::kX86:
2597 case InstructionSet::kX86_64:
2598 break;
2599 default:
2600 UNIMPLEMENTED(FATAL) << instruction_set_;
2601 UNREACHABLE();
2602 }
2603 }
2604
ClearInstructionSet()2605 void Runtime::ClearInstructionSet() {
2606 instruction_set_ = InstructionSet::kNone;
2607 }
2608
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2609 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2610 DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2611 CHECK(method != nullptr);
2612 callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2613 }
2614
ClearCalleeSaveMethods()2615 void Runtime::ClearCalleeSaveMethods() {
2616 for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2617 callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2618 }
2619 }
2620
RegisterAppInfo(const std::string & package_name,const std::vector<std::string> & code_paths,const std::string & profile_output_filename,const std::string & ref_profile_filename,int32_t code_type)2621 void Runtime::RegisterAppInfo(const std::string& package_name,
2622 const std::vector<std::string>& code_paths,
2623 const std::string& profile_output_filename,
2624 const std::string& ref_profile_filename,
2625 int32_t code_type) {
2626 app_info_.RegisterAppInfo(
2627 package_name,
2628 code_paths,
2629 profile_output_filename,
2630 ref_profile_filename,
2631 AppInfo::FromVMRuntimeConstants(code_type));
2632
2633 if (metrics_reporter_ != nullptr) {
2634 metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
2635 }
2636
2637 if (jit_.get() == nullptr) {
2638 // We are not JITing. Nothing to do.
2639 return;
2640 }
2641
2642 VLOG(profiler) << "Register app with " << profile_output_filename
2643 << " " << android::base::Join(code_paths, ':');
2644 VLOG(profiler) << "Reference profile is: " << ref_profile_filename;
2645
2646 if (profile_output_filename.empty()) {
2647 LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2648 return;
2649 }
2650 if (!OS::FileExists(profile_output_filename.c_str(), /*check_file_type=*/ false)) {
2651 LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exist.";
2652 return;
2653 }
2654 if (code_paths.empty()) {
2655 LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2656 return;
2657 }
2658
2659 jit_->StartProfileSaver(profile_output_filename, code_paths, ref_profile_filename);
2660 }
2661
2662 // Transaction support.
IsActiveTransaction() const2663 bool Runtime::IsActiveTransaction() const {
2664 return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
2665 }
2666
EnterTransactionMode(bool strict,mirror::Class * root)2667 void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
2668 DCHECK(IsAotCompiler());
2669 if (preinitialization_transactions_.empty()) { // Top-level transaction?
2670 // Make initialized classes visibly initialized now. If that happened during the transaction
2671 // and then the transaction was aborted, we would roll back the status update but not the
2672 // ClassLinker's bookkeeping structures, so these classes would never be visibly initialized.
2673 GetClassLinker()->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true);
2674 }
2675 preinitialization_transactions_.push_back(std::make_unique<Transaction>(strict, root));
2676 }
2677
ExitTransactionMode()2678 void Runtime::ExitTransactionMode() {
2679 DCHECK(IsAotCompiler());
2680 DCHECK(IsActiveTransaction());
2681 preinitialization_transactions_.pop_back();
2682 }
2683
RollbackAndExitTransactionMode()2684 void Runtime::RollbackAndExitTransactionMode() {
2685 DCHECK(IsAotCompiler());
2686 DCHECK(IsActiveTransaction());
2687 preinitialization_transactions_.back()->Rollback();
2688 preinitialization_transactions_.pop_back();
2689 }
2690
IsTransactionAborted() const2691 bool Runtime::IsTransactionAborted() const {
2692 if (!IsActiveTransaction()) {
2693 return false;
2694 } else {
2695 DCHECK(IsAotCompiler());
2696 return GetTransaction()->IsAborted();
2697 }
2698 }
2699
RollbackAllTransactions()2700 void Runtime::RollbackAllTransactions() {
2701 // If transaction is aborted, all transactions will be kept in the list.
2702 // Rollback and exit all of them.
2703 while (IsActiveTransaction()) {
2704 RollbackAndExitTransactionMode();
2705 }
2706 }
2707
IsActiveStrictTransactionMode() const2708 bool Runtime::IsActiveStrictTransactionMode() const {
2709 return IsActiveTransaction() && GetTransaction()->IsStrict();
2710 }
2711
GetTransaction() const2712 const std::unique_ptr<Transaction>& Runtime::GetTransaction() const {
2713 DCHECK(!preinitialization_transactions_.empty());
2714 return preinitialization_transactions_.back();
2715 }
2716
AbortTransactionAndThrowAbortError(Thread * self,const std::string & abort_message)2717 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2718 DCHECK(IsAotCompiler());
2719 DCHECK(IsActiveTransaction());
2720 // Throwing an exception may cause its class initialization. If we mark the transaction
2721 // aborted before that, we may warn with a false alarm. Throwing the exception before
2722 // marking the transaction aborted avoids that.
2723 // But now the transaction can be nested, and abort the transaction will relax the constraints
2724 // for constructing stack trace.
2725 GetTransaction()->Abort(abort_message);
2726 GetTransaction()->ThrowAbortError(self, &abort_message);
2727 }
2728
ThrowTransactionAbortError(Thread * self)2729 void Runtime::ThrowTransactionAbortError(Thread* self) {
2730 DCHECK(IsAotCompiler());
2731 DCHECK(IsActiveTransaction());
2732 // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2733 GetTransaction()->ThrowAbortError(self, nullptr);
2734 }
2735
RecordWriteFieldBoolean(mirror::Object * obj,MemberOffset field_offset,uint8_t value,bool is_volatile) const2736 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
2737 uint8_t value, bool is_volatile) const {
2738 DCHECK(IsAotCompiler());
2739 DCHECK(IsActiveTransaction());
2740 GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2741 }
2742
RecordWriteFieldByte(mirror::Object * obj,MemberOffset field_offset,int8_t value,bool is_volatile) const2743 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
2744 int8_t value, bool is_volatile) const {
2745 DCHECK(IsAotCompiler());
2746 DCHECK(IsActiveTransaction());
2747 GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2748 }
2749
RecordWriteFieldChar(mirror::Object * obj,MemberOffset field_offset,uint16_t value,bool is_volatile) const2750 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
2751 uint16_t value, bool is_volatile) const {
2752 DCHECK(IsAotCompiler());
2753 DCHECK(IsActiveTransaction());
2754 GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2755 }
2756
RecordWriteFieldShort(mirror::Object * obj,MemberOffset field_offset,int16_t value,bool is_volatile) const2757 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
2758 int16_t value, bool is_volatile) const {
2759 DCHECK(IsAotCompiler());
2760 DCHECK(IsActiveTransaction());
2761 GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2762 }
2763
RecordWriteField32(mirror::Object * obj,MemberOffset field_offset,uint32_t value,bool is_volatile) const2764 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
2765 uint32_t value, bool is_volatile) const {
2766 DCHECK(IsAotCompiler());
2767 DCHECK(IsActiveTransaction());
2768 GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
2769 }
2770
RecordWriteField64(mirror::Object * obj,MemberOffset field_offset,uint64_t value,bool is_volatile) const2771 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
2772 uint64_t value, bool is_volatile) const {
2773 DCHECK(IsAotCompiler());
2774 DCHECK(IsActiveTransaction());
2775 GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
2776 }
2777
RecordWriteFieldReference(mirror::Object * obj,MemberOffset field_offset,ObjPtr<mirror::Object> value,bool is_volatile) const2778 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2779 MemberOffset field_offset,
2780 ObjPtr<mirror::Object> value,
2781 bool is_volatile) const {
2782 DCHECK(IsAotCompiler());
2783 DCHECK(IsActiveTransaction());
2784 GetTransaction()->RecordWriteFieldReference(obj,
2785 field_offset,
2786 value.Ptr(),
2787 is_volatile);
2788 }
2789
RecordWriteArray(mirror::Array * array,size_t index,uint64_t value) const2790 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
2791 DCHECK(IsAotCompiler());
2792 DCHECK(IsActiveTransaction());
2793 GetTransaction()->RecordWriteArray(array, index, value);
2794 }
2795
RecordStrongStringInsertion(ObjPtr<mirror::String> s) const2796 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
2797 DCHECK(IsAotCompiler());
2798 DCHECK(IsActiveTransaction());
2799 GetTransaction()->RecordStrongStringInsertion(s);
2800 }
2801
RecordWeakStringInsertion(ObjPtr<mirror::String> s) const2802 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
2803 DCHECK(IsAotCompiler());
2804 DCHECK(IsActiveTransaction());
2805 GetTransaction()->RecordWeakStringInsertion(s);
2806 }
2807
RecordStrongStringRemoval(ObjPtr<mirror::String> s) const2808 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
2809 DCHECK(IsAotCompiler());
2810 DCHECK(IsActiveTransaction());
2811 GetTransaction()->RecordStrongStringRemoval(s);
2812 }
2813
RecordWeakStringRemoval(ObjPtr<mirror::String> s) const2814 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
2815 DCHECK(IsAotCompiler());
2816 DCHECK(IsActiveTransaction());
2817 GetTransaction()->RecordWeakStringRemoval(s);
2818 }
2819
RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,dex::StringIndex string_idx) const2820 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2821 dex::StringIndex string_idx) const {
2822 DCHECK(IsAotCompiler());
2823 DCHECK(IsActiveTransaction());
2824 GetTransaction()->RecordResolveString(dex_cache, string_idx);
2825 }
2826
SetFaultMessage(const std::string & message)2827 void Runtime::SetFaultMessage(const std::string& message) {
2828 std::string* new_msg = new std::string(message);
2829 std::string* cur_msg = fault_message_.exchange(new_msg);
2830 delete cur_msg;
2831 }
2832
GetFaultMessage()2833 std::string Runtime::GetFaultMessage() {
2834 // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete
2835 // the string in parallel.
2836 std::string* cur_msg = fault_message_.exchange(nullptr);
2837
2838 // Make a copy of the string.
2839 std::string ret = cur_msg == nullptr ? "" : *cur_msg;
2840
2841 // Put the message back if it hasn't been updated.
2842 std::string* null_str = nullptr;
2843 if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) {
2844 // Already replaced.
2845 delete cur_msg;
2846 }
2847
2848 return ret;
2849 }
2850
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2851 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2852 const {
2853 if (GetInstrumentation()->InterpretOnly()) {
2854 argv->push_back("--compiler-filter=quicken");
2855 }
2856
2857 // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2858 // architecture support, dex2oat may be compiled as a different instruction-set than that
2859 // currently being executed.
2860 std::string instruction_set("--instruction-set=");
2861 instruction_set += GetInstructionSetString(kRuntimeISA);
2862 argv->push_back(instruction_set);
2863
2864 if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
2865 argv->push_back("--instruction-set-features=runtime");
2866 } else {
2867 std::unique_ptr<const InstructionSetFeatures> features(
2868 InstructionSetFeatures::FromCppDefines());
2869 std::string feature_string("--instruction-set-features=");
2870 feature_string += features->GetFeatureString();
2871 argv->push_back(feature_string);
2872 }
2873 }
2874
CreateJitCodeCache(bool rwx_memory_allowed)2875 void Runtime::CreateJitCodeCache(bool rwx_memory_allowed) {
2876 if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2877 DCHECK(!jit_options_->UseJitCompilation());
2878 }
2879
2880 if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) {
2881 return;
2882 }
2883
2884 std::string error_msg;
2885 bool profiling_only = !jit_options_->UseJitCompilation();
2886 jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only,
2887 rwx_memory_allowed,
2888 IsZygote(),
2889 &error_msg));
2890 if (jit_code_cache_.get() == nullptr) {
2891 LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg;
2892 }
2893 }
2894
CreateJit()2895 void Runtime::CreateJit() {
2896 DCHECK(jit_ == nullptr);
2897 if (jit_code_cache_.get() == nullptr) {
2898 if (!IsSafeMode()) {
2899 LOG(WARNING) << "Missing code cache, cannot create JIT.";
2900 }
2901 return;
2902 }
2903 if (IsSafeMode()) {
2904 LOG(INFO) << "Not creating JIT because of SafeMode.";
2905 jit_code_cache_.reset();
2906 return;
2907 }
2908
2909 jit::Jit* jit = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get());
2910 DoAndMaybeSwitchInterpreter([=](){ jit_.reset(jit); });
2911 if (jit == nullptr) {
2912 LOG(WARNING) << "Failed to allocate JIT";
2913 // Release JIT code cache resources (several MB of memory).
2914 jit_code_cache_.reset();
2915 } else {
2916 jit->CreateThreadPool();
2917 }
2918 }
2919
CanRelocate() const2920 bool Runtime::CanRelocate() const {
2921 return !IsAotCompiler();
2922 }
2923
IsCompilingBootImage() const2924 bool Runtime::IsCompilingBootImage() const {
2925 return IsCompiler() && compiler_callbacks_->IsBootImage();
2926 }
2927
SetResolutionMethod(ArtMethod * method)2928 void Runtime::SetResolutionMethod(ArtMethod* method) {
2929 CHECK(method != nullptr);
2930 CHECK(method->IsRuntimeMethod()) << method;
2931 resolution_method_ = method;
2932 }
2933
SetImtUnimplementedMethod(ArtMethod * method)2934 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
2935 CHECK(method != nullptr);
2936 CHECK(method->IsRuntimeMethod());
2937 imt_unimplemented_method_ = method;
2938 }
2939
FixupConflictTables()2940 void Runtime::FixupConflictTables() {
2941 // We can only do this after the class linker is created.
2942 const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2943 if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
2944 imt_unimplemented_method_->SetImtConflictTable(
2945 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
2946 pointer_size);
2947 }
2948 if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
2949 imt_conflict_method_->SetImtConflictTable(
2950 ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
2951 pointer_size);
2952 }
2953 }
2954
DisableVerifier()2955 void Runtime::DisableVerifier() {
2956 verify_ = verifier::VerifyMode::kNone;
2957 }
2958
IsVerificationEnabled() const2959 bool Runtime::IsVerificationEnabled() const {
2960 return verify_ == verifier::VerifyMode::kEnable ||
2961 verify_ == verifier::VerifyMode::kSoftFail;
2962 }
2963
IsVerificationSoftFail() const2964 bool Runtime::IsVerificationSoftFail() const {
2965 return verify_ == verifier::VerifyMode::kSoftFail;
2966 }
2967
IsAsyncDeoptimizeable(uintptr_t code) const2968 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
2969 if (OatQuickMethodHeader::NterpMethodHeader != nullptr) {
2970 if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) {
2971 return true;
2972 }
2973 }
2974 // We only support async deopt (ie the compiled code is not explicitly asking for
2975 // deopt, but something else like the debugger) in debuggable JIT code.
2976 // We could look at the oat file where `code` is being defined,
2977 // and check whether it's been compiled debuggable, but we decided to
2978 // only rely on the JIT for debuggable apps.
2979 // The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private
2980 // region as well.
2981 return IsJavaDebuggable() && GetJit() != nullptr &&
2982 GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code));
2983 }
2984
CreateLinearAlloc()2985 LinearAlloc* Runtime::CreateLinearAlloc() {
2986 // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
2987 // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
2988 // when we have 64 bit ArtMethod pointers.
2989 return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
2990 ? new LinearAlloc(low_4gb_arena_pool_.get())
2991 : new LinearAlloc(arena_pool_.get());
2992 }
2993
GetHashTableMinLoadFactor() const2994 double Runtime::GetHashTableMinLoadFactor() const {
2995 return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
2996 }
2997
GetHashTableMaxLoadFactor() const2998 double Runtime::GetHashTableMaxLoadFactor() const {
2999 return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
3000 }
3001
UpdateProcessState(ProcessState process_state)3002 void Runtime::UpdateProcessState(ProcessState process_state) {
3003 ProcessState old_process_state = process_state_;
3004 process_state_ = process_state;
3005 GetHeap()->UpdateProcessState(old_process_state, process_state);
3006 }
3007
RegisterSensitiveThread() const3008 void Runtime::RegisterSensitiveThread() const {
3009 Thread::SetJitSensitiveThread();
3010 }
3011
3012 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const3013 bool Runtime::UseJitCompilation() const {
3014 return (jit_ != nullptr) && jit_->UseJitCompilation();
3015 }
3016
TakeSnapshot()3017 void Runtime::EnvSnapshot::TakeSnapshot() {
3018 char** env = GetEnviron();
3019 for (size_t i = 0; env[i] != nullptr; ++i) {
3020 name_value_pairs_.emplace_back(new std::string(env[i]));
3021 }
3022 // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
3023 // for quick use by GetSnapshot. This avoids allocation and copying cost at Exec.
3024 c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
3025 for (size_t i = 0; env[i] != nullptr; ++i) {
3026 c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
3027 }
3028 c_env_vector_[name_value_pairs_.size()] = nullptr;
3029 }
3030
GetSnapshot() const3031 char** Runtime::EnvSnapshot::GetSnapshot() const {
3032 return c_env_vector_.get();
3033 }
3034
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3035 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3036 gc::ScopedGCCriticalSection gcs(Thread::Current(),
3037 gc::kGcCauseAddRemoveSystemWeakHolder,
3038 gc::kCollectorTypeAddRemoveSystemWeakHolder);
3039 // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
3040 // a critical section.
3041 system_weak_holders_.push_back(holder);
3042 }
3043
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3044 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3045 gc::ScopedGCCriticalSection gcs(Thread::Current(),
3046 gc::kGcCauseAddRemoveSystemWeakHolder,
3047 gc::kCollectorTypeAddRemoveSystemWeakHolder);
3048 auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
3049 if (it != system_weak_holders_.end()) {
3050 system_weak_holders_.erase(it);
3051 }
3052 }
3053
GetRuntimeCallbacks()3054 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
3055 return callbacks_.get();
3056 }
3057
3058 // Used to patch boot image method entry point to interpreter bridge.
3059 class UpdateEntryPointsClassVisitor : public ClassVisitor {
3060 public:
UpdateEntryPointsClassVisitor(instrumentation::Instrumentation * instrumentation)3061 explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
3062 : instrumentation_(instrumentation) {}
3063
operator ()(ObjPtr<mirror::Class> klass)3064 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) {
3065 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current()));
3066 auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
3067 for (auto& m : klass->GetMethods(pointer_size)) {
3068 const void* code = m.GetEntryPointFromQuickCompiledCode();
3069 if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
3070 !m.IsNative() &&
3071 !m.IsProxyMethod()) {
3072 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
3073 }
3074
3075 if (Runtime::Current()->GetJit() != nullptr &&
3076 Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) &&
3077 !m.IsNative()) {
3078 DCHECK(!m.IsProxyMethod());
3079 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
3080 }
3081
3082 if (m.IsPreCompiled()) {
3083 // Precompilation is incompatible with debuggable, so clear the flag
3084 // and update the entrypoint in case it has been compiled.
3085 m.ClearPreCompiled();
3086 instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
3087 }
3088 }
3089 return true;
3090 }
3091
3092 private:
3093 instrumentation::Instrumentation* const instrumentation_;
3094 };
3095
SetJavaDebuggable(bool value)3096 void Runtime::SetJavaDebuggable(bool value) {
3097 is_java_debuggable_ = value;
3098 // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
3099 }
3100
DeoptimizeBootImage()3101 void Runtime::DeoptimizeBootImage() {
3102 // If we've already started and we are setting this runtime to debuggable,
3103 // we patch entry points of methods in boot image to interpreter bridge, as
3104 // boot image code may be AOT compiled as not debuggable.
3105 if (!GetInstrumentation()->IsForcedInterpretOnly()) {
3106 UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
3107 GetClassLinker()->VisitClasses(&visitor);
3108 jit::Jit* jit = GetJit();
3109 if (jit != nullptr) {
3110 // Code previously compiled may not be compiled debuggable.
3111 jit->GetCodeCache()->TransitionToDebuggable();
3112 }
3113 }
3114 }
3115
ScopedThreadPoolUsage()3116 Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage()
3117 : thread_pool_(Runtime::Current()->AcquireThreadPool()) {}
3118
~ScopedThreadPoolUsage()3119 Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() {
3120 Runtime::Current()->ReleaseThreadPool();
3121 }
3122
DeleteThreadPool()3123 bool Runtime::DeleteThreadPool() {
3124 // Make sure workers are started to prevent thread shutdown errors.
3125 WaitForThreadPoolWorkersToStart();
3126 std::unique_ptr<ThreadPool> thread_pool;
3127 {
3128 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3129 if (thread_pool_ref_count_ == 0) {
3130 thread_pool = std::move(thread_pool_);
3131 }
3132 }
3133 return thread_pool != nullptr;
3134 }
3135
AcquireThreadPool()3136 ThreadPool* Runtime::AcquireThreadPool() {
3137 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3138 ++thread_pool_ref_count_;
3139 return thread_pool_.get();
3140 }
3141
ReleaseThreadPool()3142 void Runtime::ReleaseThreadPool() {
3143 MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3144 CHECK_GT(thread_pool_ref_count_, 0u);
3145 --thread_pool_ref_count_;
3146 }
3147
WaitForThreadPoolWorkersToStart()3148 void Runtime::WaitForThreadPoolWorkersToStart() {
3149 // Need to make sure workers are created before deleting the pool.
3150 ScopedThreadPoolUsage stpu;
3151 if (stpu.GetThreadPool() != nullptr) {
3152 stpu.GetThreadPool()->WaitForWorkersToBeCreated();
3153 }
3154 }
3155
ResetStartupCompleted()3156 void Runtime::ResetStartupCompleted() {
3157 startup_completed_.store(false, std::memory_order_seq_cst);
3158 }
3159
3160 class Runtime::NotifyStartupCompletedTask : public gc::HeapTask {
3161 public:
NotifyStartupCompletedTask()3162 NotifyStartupCompletedTask() : gc::HeapTask(/*target_run_time=*/ NanoTime()) {}
3163
Run(Thread * self)3164 void Run(Thread* self) override {
3165 VLOG(startup) << "NotifyStartupCompletedTask running";
3166 Runtime* const runtime = Runtime::Current();
3167 {
3168 ScopedTrace trace("Releasing app image spaces metadata");
3169 ScopedObjectAccess soa(Thread::Current());
3170 // Request empty checkpoints to make sure no threads are accessing the image space metadata
3171 // section when we madvise it. Use GC exclusion to prevent deadlocks that may happen if
3172 // multiple threads are attempting to run empty checkpoints at the same time.
3173 {
3174 // Avoid using ScopedGCCriticalSection since that does not allow thread suspension. This is
3175 // not allowed to prevent allocations, but it's still safe to suspend temporarily for the
3176 // checkpoint.
3177 gc::ScopedInterruptibleGCCriticalSection sigcs(self,
3178 gc::kGcCauseRunEmptyCheckpoint,
3179 gc::kCollectorTypeCriticalSection);
3180 runtime->GetThreadList()->RunEmptyCheckpoint();
3181 }
3182 for (gc::space::ContinuousSpace* space : runtime->GetHeap()->GetContinuousSpaces()) {
3183 if (space->IsImageSpace()) {
3184 gc::space::ImageSpace* image_space = space->AsImageSpace();
3185 if (image_space->GetImageHeader().IsAppImage()) {
3186 image_space->ReleaseMetadata();
3187 }
3188 }
3189 }
3190 }
3191
3192 {
3193 // Delete the thread pool used for app image loading since startup is assumed to be completed.
3194 ScopedTrace trace2("Delete thread pool");
3195 runtime->DeleteThreadPool();
3196 }
3197 }
3198 };
3199
NotifyStartupCompleted()3200 void Runtime::NotifyStartupCompleted() {
3201 bool expected = false;
3202 if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) {
3203 // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to
3204 // once externally. For this reason there are no asserts.
3205 return;
3206 }
3207
3208 VLOG(startup) << app_info_;
3209
3210 VLOG(startup) << "Adding NotifyStartupCompleted task";
3211 // Use the heap task processor since we want to be exclusive with the GC and we don't want to
3212 // block the caller if the GC is running.
3213 if (!GetHeap()->AddHeapTask(new NotifyStartupCompletedTask)) {
3214 VLOG(startup) << "Failed to add NotifyStartupCompletedTask";
3215 }
3216
3217 // Notify the profiler saver that startup is now completed.
3218 ProfileSaver::NotifyStartupCompleted();
3219
3220 if (metrics_reporter_ != nullptr) {
3221 metrics_reporter_->NotifyStartupCompleted();
3222 }
3223 }
3224
NotifyDexFileLoaded()3225 void Runtime::NotifyDexFileLoaded() {
3226 if (metrics_reporter_ != nullptr) {
3227 metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
3228 }
3229 }
3230
GetStartupCompleted() const3231 bool Runtime::GetStartupCompleted() const {
3232 return startup_completed_.load(std::memory_order_seq_cst);
3233 }
3234
SetSignalHookDebuggable(bool value)3235 void Runtime::SetSignalHookDebuggable(bool value) {
3236 SkipAddSignalHandler(value);
3237 }
3238
SetJniIdType(JniIdType t)3239 void Runtime::SetJniIdType(JniIdType t) {
3240 CHECK(CanSetJniIdType()) << "Not allowed to change id type!";
3241 if (t == GetJniIdType()) {
3242 return;
3243 }
3244 jni_ids_indirection_ = t;
3245 JNIEnvExt::ResetFunctionTable();
3246 WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv());
3247 }
3248
GetOatFilesExecutable() const3249 bool Runtime::GetOatFilesExecutable() const {
3250 return !IsAotCompiler() && !(IsSystemServer() && jit_options_->GetSaveProfilingInfo());
3251 }
3252
ProcessWeakClass(GcRoot<mirror::Class> * root_ptr,IsMarkedVisitor * visitor,mirror::Class * update)3253 void Runtime::ProcessWeakClass(GcRoot<mirror::Class>* root_ptr,
3254 IsMarkedVisitor* visitor,
3255 mirror::Class* update) {
3256 // This does not need a read barrier because this is called by GC.
3257 mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>();
3258 if (cls != nullptr && cls != GetWeakClassSentinel()) {
3259 DCHECK((cls->IsClass<kDefaultVerifyFlags>()));
3260 // Look at the classloader of the class to know if it has been unloaded.
3261 // This does not need a read barrier because this is called by GC.
3262 ObjPtr<mirror::Object> class_loader =
3263 cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>();
3264 if (class_loader == nullptr || visitor->IsMarked(class_loader.Ptr()) != nullptr) {
3265 // The class loader is live, update the entry if the class has moved.
3266 mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls));
3267 // Note that new_object can be null for CMS and newly allocated objects.
3268 if (new_cls != nullptr && new_cls != cls) {
3269 *root_ptr = GcRoot<mirror::Class>(new_cls);
3270 }
3271 } else {
3272 // The class loader is not live, clear the entry.
3273 *root_ptr = GcRoot<mirror::Class>(update);
3274 }
3275 }
3276 }
3277
MadviseFileForRange(size_t madvise_size_limit_bytes,size_t map_size_bytes,const uint8_t * map_begin,const uint8_t * map_end,const std::string & file_name)3278 void Runtime::MadviseFileForRange(size_t madvise_size_limit_bytes,
3279 size_t map_size_bytes,
3280 const uint8_t* map_begin,
3281 const uint8_t* map_end,
3282 const std::string& file_name) {
3283 // Ideal blockTransferSize for madvising files (128KiB)
3284 static constexpr size_t kIdealIoTransferSizeBytes = 128*1024;
3285
3286 size_t target_size_bytes = std::min<size_t>(map_size_bytes, madvise_size_limit_bytes);
3287
3288 if (target_size_bytes > 0) {
3289 ScopedTrace madvising_trace("madvising "
3290 + file_name
3291 + " size="
3292 + std::to_string(target_size_bytes));
3293
3294 // Based on requested size (target_size_bytes)
3295 const uint8_t* target_pos = map_begin + target_size_bytes;
3296
3297 // Clamp endOfFile if its past map_end
3298 if (target_pos > map_end) {
3299 target_pos = map_end;
3300 }
3301
3302 // Madvise the whole file up to target_pos in chunks of
3303 // kIdealIoTransferSizeBytes (to MADV_WILLNEED)
3304 // Note:
3305 // madvise(MADV_WILLNEED) will prefetch max(fd readahead size, optimal
3306 // block size for device) per call, hence the need for chunks. (128KB is a
3307 // good default.)
3308 for (const uint8_t* madvise_start = map_begin;
3309 madvise_start < target_pos;
3310 madvise_start += kIdealIoTransferSizeBytes) {
3311 void* madvise_addr = const_cast<void*>(reinterpret_cast<const void*>(madvise_start));
3312 size_t madvise_length = std::min(kIdealIoTransferSizeBytes,
3313 static_cast<size_t>(target_pos - madvise_start));
3314 int status = madvise(madvise_addr, madvise_length, MADV_WILLNEED);
3315 // In case of error we stop madvising rest of the file
3316 if (status < 0) {
3317 LOG(ERROR) << "Failed to madvise file:" << file_name << " for size:" << map_size_bytes;
3318 break;
3319 }
3320 }
3321 }
3322 }
3323
3324 } // namespace art
3325