• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/strings/safe_sprintf.h"
6 
7 #include <errno.h>
8 #include <string.h>
9 
10 #include <limits>
11 
12 #include "base/macros.h"
13 #include "build/build_config.h"
14 
15 #if !defined(NDEBUG)
16 // In debug builds, we use RAW_CHECK() to print useful error messages, if
17 // SafeSPrintf() is called with broken arguments.
18 // As our contract promises that SafeSPrintf() can be called from any
19 // restricted run-time context, it is not actually safe to call logging
20 // functions from it; and we only ever do so for debug builds and hope for the
21 // best. We should _never_ call any logging function other than RAW_CHECK(),
22 // and we should _never_ include any logging code that is active in production
23 // builds. Most notably, we should not include these logging functions in
24 // unofficial release builds, even though those builds would otherwise have
25 // DCHECKS() enabled.
26 // In other words; please do not remove the #ifdef around this #include.
27 // Instead, in production builds we opt for returning a degraded result,
28 // whenever an error is encountered.
29 // E.g. The broken function call
30 //        SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
31 //      will print something like
32 //        errno = 13, (%x)
33 //      instead of
34 //        errno = 13 (Access denied)
35 //      In most of the anticipated use cases, that's probably the preferred
36 //      behavior.
37 #include "base/logging.h"
38 #define DEBUG_CHECK RAW_CHECK
39 #else
40 #define DEBUG_CHECK(x) do { if (x) { } } while (0)
41 #endif
42 
43 namespace base {
44 namespace strings {
45 
46 // The code in this file is extremely careful to be async-signal-safe.
47 //
48 // Most obviously, we avoid calling any code that could dynamically allocate
49 // memory. Doing so would almost certainly result in bugs and dead-locks.
50 // We also avoid calling any other STL functions that could have unintended
51 // side-effects involving memory allocation or access to other shared
52 // resources.
53 //
54 // But on top of that, we also avoid calling other library functions, as many
55 // of them have the side-effect of calling getenv() (in order to deal with
56 // localization) or accessing errno. The latter sounds benign, but there are
57 // several execution contexts where it isn't even possible to safely read let
58 // alone write errno.
59 //
60 // The stated design goal of the SafeSPrintf() function is that it can be
61 // called from any context that can safely call C or C++ code (i.e. anything
62 // that doesn't require assembly code).
63 //
64 // For a brief overview of some but not all of the issues with async-signal-
65 // safety, refer to:
66 // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
67 
68 namespace {
69 const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
70 
71 const char kUpCaseHexDigits[]   = "0123456789ABCDEF";
72 const char kDownCaseHexDigits[] = "0123456789abcdef";
73 }
74 
75 #if defined(NDEBUG)
76 // We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
77 // but C++ doesn't allow us to do that for constants. Instead, we have to
78 // use careful casting and shifting. We later use a static_assert to
79 // verify that this worked correctly.
80 namespace {
81 const size_t kSSizeMax = kSSizeMaxConst;
82 }
83 #else  // defined(NDEBUG)
84 // For efficiency, we really need kSSizeMax to be a constant. But for unit
85 // tests, it should be adjustable. This allows us to verify edge cases without
86 // having to fill the entire available address space. As a compromise, we make
87 // kSSizeMax adjustable in debug builds, and then only compile that particular
88 // part of the unit test in debug builds.
89 namespace {
90 static size_t kSSizeMax = kSSizeMaxConst;
91 }
92 
93 namespace internal {
SetSafeSPrintfSSizeMaxForTest(size_t max)94 void SetSafeSPrintfSSizeMaxForTest(size_t max) {
95   kSSizeMax = max;
96 }
97 
GetSafeSPrintfSSizeMaxForTest()98 size_t GetSafeSPrintfSSizeMaxForTest() {
99   return kSSizeMax;
100 }
101 }
102 #endif  // defined(NDEBUG)
103 
104 namespace {
105 class Buffer {
106  public:
107   // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
108   // has |size| bytes of writable storage. It is the caller's responsibility
109   // to ensure that the buffer is at least one byte in size, so that it fits
110   // the trailing NUL that will be added by the destructor. The buffer also
111   // must be smaller or equal to kSSizeMax in size.
Buffer(char * buffer,size_t size)112   Buffer(char* buffer, size_t size)
113       : buffer_(buffer),
114         size_(size - 1),  // Account for trailing NUL byte
115         count_(0) {
116 // MSVS2013's standard library doesn't mark max() as constexpr yet. cl.exe
117 // supports static_cast but doesn't really implement constexpr yet so it doesn't
118 // complain, but clang does.
119 #if __cplusplus >= 201103 && !(defined(__clang__) && defined(OS_WIN))
120     static_assert(kSSizeMaxConst ==
121                       static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
122                   "kSSizeMaxConst should be the max value of an ssize_t");
123 #endif
124     DEBUG_CHECK(size > 0);
125     DEBUG_CHECK(size <= kSSizeMax);
126   }
127 
~Buffer()128   ~Buffer() {
129     // The code calling the constructor guaranteed that there was enough space
130     // to store a trailing NUL -- and in debug builds, we are actually
131     // verifying this with DEBUG_CHECK()s in the constructor. So, we can
132     // always unconditionally write the NUL byte in the destructor.  We do not
133     // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
134     // including the NUL byte in its return code.
135     *GetInsertionPoint() = '\000';
136   }
137 
138   // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
139   // caller can now stop adding more data, as GetCount() has reached its
140   // maximum possible value.
OutOfAddressableSpace() const141   inline bool OutOfAddressableSpace() const {
142     return count_ == static_cast<size_t>(kSSizeMax - 1);
143   }
144 
145   // Returns the number of bytes that would have been emitted to |buffer_|
146   // if it was sized sufficiently large. This number can be larger than
147   // |size_|, if the caller provided an insufficiently large output buffer.
148   // But it will never be bigger than |kSSizeMax-1|.
GetCount() const149   inline ssize_t GetCount() const {
150     DEBUG_CHECK(count_ < kSSizeMax);
151     return static_cast<ssize_t>(count_);
152   }
153 
154   // Emits one |ch| character into the |buffer_| and updates the |count_| of
155   // characters that are currently supposed to be in the buffer.
156   // Returns "false", iff the buffer was already full.
157   // N.B. |count_| increases even if no characters have been written. This is
158   // needed so that GetCount() can return the number of bytes that should
159   // have been allocated for the |buffer_|.
Out(char ch)160   inline bool Out(char ch) {
161     if (size_ >= 1 && count_ < size_) {
162       buffer_[count_] = ch;
163       return IncrementCountByOne();
164     }
165     // |count_| still needs to be updated, even if the buffer has been
166     // filled completely. This allows SafeSPrintf() to return the number of
167     // bytes that should have been emitted.
168     IncrementCountByOne();
169     return false;
170   }
171 
172   // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
173   // |count_| will also be incremented by the number of bytes that were meant
174   // to be emitted. The |pad| character is typically either a ' ' space
175   // or a '0' zero, but other non-NUL values are legal.
176   // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
177   // overflowed |size_|) at any time during padding.
Pad(char pad,size_t padding,size_t len)178   inline bool Pad(char pad, size_t padding, size_t len) {
179     DEBUG_CHECK(pad);
180     DEBUG_CHECK(padding <= kSSizeMax);
181     for (; padding > len; --padding) {
182       if (!Out(pad)) {
183         if (--padding) {
184           IncrementCount(padding-len);
185         }
186         return false;
187       }
188     }
189     return true;
190   }
191 
192   // POSIX doesn't define any async-signal-safe function for converting
193   // an integer to ASCII. Define our own version.
194   //
195   // This also gives us the ability to make the function a little more
196   // powerful and have it deal with |padding|, with truncation, and with
197   // predicting the length of the untruncated output.
198   //
199   // IToASCII() converts an integer |i| to ASCII.
200   //
201   // Unlike similar functions in the standard C library, it never appends a
202   // NUL character. This is left for the caller to do.
203   //
204   // While the function signature takes a signed int64_t, the code decides at
205   // run-time whether to treat the argument as signed (int64_t) or as unsigned
206   // (uint64_t) based on the value of |sign|.
207   //
208   // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
209   // a |sign|. Otherwise, |i| is treated as unsigned.
210   //
211   // For bases larger than 10, |upcase| decides whether lower-case or upper-
212   // case letters should be used to designate digits greater than 10.
213   //
214   // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
215   // be positive and will always be applied to the left of the output.
216   //
217   // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
218   // the left of |padding|, if |pad| is '0'; and to the right of |padding|
219   // if |pad| is ' '.
220   //
221   // Returns "false", if the |buffer_| overflowed at any time.
222   bool IToASCII(bool sign, bool upcase, int64_t i, int base,
223                 char pad, size_t padding, const char* prefix);
224 
225  private:
226   // Increments |count_| by |inc| unless this would cause |count_| to
227   // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
228   // it then clamps |count_| to |kSSizeMax-1|.
IncrementCount(size_t inc)229   inline bool IncrementCount(size_t inc) {
230     // "inc" is either 1 or a "padding" value. Padding is clamped at
231     // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
232     // the range 1..kSSizeMax-1.
233     // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
234     // integer overflows.
235     DEBUG_CHECK(inc <= kSSizeMax - 1);
236     if (count_ > kSSizeMax - 1 - inc) {
237       count_ = kSSizeMax - 1;
238       return false;
239     } else {
240       count_ += inc;
241       return true;
242     }
243   }
244 
245   // Convenience method for the common case of incrementing |count_| by one.
IncrementCountByOne()246   inline bool IncrementCountByOne() {
247     return IncrementCount(1);
248   }
249 
250   // Return the current insertion point into the buffer. This is typically
251   // at |buffer_| + |count_|, but could be before that if truncation
252   // happened. It always points to one byte past the last byte that was
253   // successfully placed into the |buffer_|.
GetInsertionPoint() const254   inline char* GetInsertionPoint() const {
255     size_t idx = count_;
256     if (idx > size_) {
257       idx = size_;
258     }
259     return buffer_ + idx;
260   }
261 
262   // User-provided buffer that will receive the fully formatted output string.
263   char* buffer_;
264 
265   // Number of bytes that are available in the buffer excluding the trailing
266   // NUL byte that will be added by the destructor.
267   const size_t size_;
268 
269   // Number of bytes that would have been emitted to the buffer, if the buffer
270   // was sufficiently big. This number always excludes the trailing NUL byte
271   // and it is guaranteed to never grow bigger than kSSizeMax-1.
272   size_t count_;
273 
274   DISALLOW_COPY_AND_ASSIGN(Buffer);
275 };
276 
277 
IToASCII(bool sign,bool upcase,int64_t i,int base,char pad,size_t padding,const char * prefix)278 bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
279                       char pad, size_t padding, const char* prefix) {
280   // Sanity check for parameters. None of these should ever fail, but see
281   // above for the rationale why we can't call CHECK().
282   DEBUG_CHECK(base >= 2);
283   DEBUG_CHECK(base <= 16);
284   DEBUG_CHECK(!sign || base == 10);
285   DEBUG_CHECK(pad == '0' || pad == ' ');
286   DEBUG_CHECK(padding <= kSSizeMax);
287   DEBUG_CHECK(!(sign && prefix && *prefix));
288 
289   // Handle negative numbers, if the caller indicated that |i| should be
290   // treated as a signed number; otherwise treat |i| as unsigned (even if the
291   // MSB is set!)
292   // Details are tricky, because of limited data-types, but equivalent pseudo-
293   // code would look like:
294   //   if (sign && i < 0)
295   //     prefix = "-";
296   //   num = abs(i);
297   int minint = 0;
298   uint64_t num;
299   if (sign && i < 0) {
300     prefix = "-";
301 
302     // Turn our number positive.
303     if (i == std::numeric_limits<int64_t>::min()) {
304       // The most negative integer needs special treatment.
305       minint = 1;
306       num = static_cast<uint64_t>(-(i + 1));
307     } else {
308       // "Normal" negative numbers are easy.
309       num = static_cast<uint64_t>(-i);
310     }
311   } else {
312     num = static_cast<uint64_t>(i);
313   }
314 
315   // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
316   // make the prefix accessible in reverse order, so that we can later output
317   // it right between padding and the number.
318   // We cannot choose the easier approach of just reversing the number, as that
319   // fails in situations where we need to truncate numbers that have padding
320   // and/or prefixes.
321   const char* reverse_prefix = nullptr;
322   if (prefix && *prefix) {
323     if (pad == '0') {
324       while (*prefix) {
325         if (padding) {
326           --padding;
327         }
328         Out(*prefix++);
329       }
330       prefix = nullptr;
331     } else {
332       for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
333       }
334     }
335   } else
336     prefix = nullptr;
337   const size_t prefix_length = reverse_prefix - prefix;
338 
339   // Loop until we have converted the entire number. Output at least one
340   // character (i.e. '0').
341   size_t start = count_;
342   size_t discarded = 0;
343   bool started = false;
344   do {
345     // Make sure there is still enough space left in our output buffer.
346     if (count_ >= size_) {
347       if (start < size_) {
348         // It is rare that we need to output a partial number. But if asked
349         // to do so, we will still make sure we output the correct number of
350         // leading digits.
351         // Since we are generating the digits in reverse order, we actually
352         // have to discard digits in the order that we have already emitted
353         // them. This is essentially equivalent to:
354         //   memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
355         for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
356              move < end;
357              ++move) {
358           *move = move[1];
359         }
360         ++discarded;
361         --count_;
362       } else if (count_ - size_ > 1) {
363         // Need to increment either |count_| or |discarded| to make progress.
364         // The latter is more efficient, as it eventually triggers fast
365         // handling of padding. But we have to ensure we don't accidentally
366         // change the overall state (i.e. switch the state-machine from
367         // discarding to non-discarding). |count_| needs to always stay
368         // bigger than |size_|.
369         --count_;
370         ++discarded;
371       }
372     }
373 
374     // Output the next digit and (if necessary) compensate for the most
375     // negative integer needing special treatment. This works because,
376     // no matter the bit width of the integer, the lowest-most decimal
377     // integer always ends in 2, 4, 6, or 8.
378     if (!num && started) {
379       if (reverse_prefix > prefix) {
380         Out(*--reverse_prefix);
381       } else {
382         Out(pad);
383       }
384     } else {
385       started = true;
386       Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
387     }
388 
389     minint = 0;
390     num /= base;
391 
392     // Add padding, if requested.
393     if (padding > 0) {
394       --padding;
395 
396       // Performance optimization for when we are asked to output excessive
397       // padding, but our output buffer is limited in size.  Even if we output
398       // a 64bit number in binary, we would never write more than 64 plus
399       // prefix non-padding characters. So, once this limit has been passed,
400       // any further state change can be computed arithmetically; we know that
401       // by this time, our entire final output consists of padding characters
402       // that have all already been output.
403       if (discarded > 8*sizeof(num) + prefix_length) {
404         IncrementCount(padding);
405         padding = 0;
406       }
407     }
408   } while (num || padding || (reverse_prefix > prefix));
409 
410   // Conversion to ASCII actually resulted in the digits being in reverse
411   // order. We can't easily generate them in forward order, as we can't tell
412   // the number of characters needed until we are done converting.
413   // So, now, we reverse the string (except for the possible '-' sign).
414   char* front = buffer_ + start;
415   char* back = GetInsertionPoint();
416   while (--back > front) {
417     char ch = *back;
418     *back = *front;
419     *front++ = ch;
420   }
421 
422   IncrementCount(discarded);
423   return !discarded;
424 }
425 
426 }  // anonymous namespace
427 
428 namespace internal {
429 
SafeSNPrintf(char * buf,size_t sz,const char * fmt,const Arg * args,const size_t max_args)430 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
431                      const size_t max_args) {
432   // Make sure that at least one NUL byte can be written, and that the buffer
433   // never overflows kSSizeMax. Not only does that use up most or all of the
434   // address space, it also would result in a return code that cannot be
435   // represented.
436   if (static_cast<ssize_t>(sz) < 1) {
437     return -1;
438   } else if (sz > kSSizeMax) {
439     sz = kSSizeMax;
440   }
441 
442   // Iterate over format string and interpret '%' arguments as they are
443   // encountered.
444   Buffer buffer(buf, sz);
445   size_t padding;
446   char pad;
447   for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
448     if (*fmt++ == '%') {
449       padding = 0;
450       pad = ' ';
451       char ch = *fmt++;
452     format_character_found:
453       switch (ch) {
454       case '0': case '1': case '2': case '3': case '4':
455       case '5': case '6': case '7': case '8': case '9':
456         // Found a width parameter. Convert to an integer value and store in
457         // "padding". If the leading digit is a zero, change the padding
458         // character from a space ' ' to a zero '0'.
459         pad = ch == '0' ? '0' : ' ';
460         for (;;) {
461           // The maximum allowed padding fills all the available address
462           // space and leaves just enough space to insert the trailing NUL.
463           const size_t max_padding = kSSizeMax - 1;
464           if (padding > max_padding/10 ||
465               10*padding > max_padding - (ch - '0')) {
466             DEBUG_CHECK(padding <= max_padding/10 &&
467                         10*padding <= max_padding - (ch - '0'));
468             // Integer overflow detected. Skip the rest of the width until
469             // we find the format character, then do the normal error handling.
470           padding_overflow:
471             padding = max_padding;
472             while ((ch = *fmt++) >= '0' && ch <= '9') {
473             }
474             if (cur_arg < max_args) {
475               ++cur_arg;
476             }
477             goto fail_to_expand;
478           }
479           padding = 10*padding + ch - '0';
480           if (padding > max_padding) {
481             // This doesn't happen for "sane" values of kSSizeMax. But once
482             // kSSizeMax gets smaller than about 10, our earlier range checks
483             // are incomplete. Unittests do trigger this artificial corner
484             // case.
485             DEBUG_CHECK(padding <= max_padding);
486             goto padding_overflow;
487           }
488           ch = *fmt++;
489           if (ch < '0' || ch > '9') {
490             // Reached the end of the width parameter. This is where the format
491             // character is found.
492             goto format_character_found;
493           }
494         }
495         break;
496       case 'c': {  // Output an ASCII character.
497         // Check that there are arguments left to be inserted.
498         if (cur_arg >= max_args) {
499           DEBUG_CHECK(cur_arg < max_args);
500           goto fail_to_expand;
501         }
502 
503         // Check that the argument has the expected type.
504         const Arg& arg = args[cur_arg++];
505         if (arg.type != Arg::INT && arg.type != Arg::UINT) {
506           DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
507           goto fail_to_expand;
508         }
509 
510         // Apply padding, if needed.
511         buffer.Pad(' ', padding, 1);
512 
513         // Convert the argument to an ASCII character and output it.
514         char as_char = static_cast<char>(arg.integer.i);
515         if (!as_char) {
516           goto end_of_output_buffer;
517         }
518         buffer.Out(as_char);
519         break; }
520       case 'd':    // Output a possibly signed decimal value.
521       case 'o':    // Output an unsigned octal value.
522       case 'x':    // Output an unsigned hexadecimal value.
523       case 'X':
524       case 'p': {  // Output a pointer value.
525         // Check that there are arguments left to be inserted.
526         if (cur_arg >= max_args) {
527           DEBUG_CHECK(cur_arg < max_args);
528           goto fail_to_expand;
529         }
530 
531         const Arg& arg = args[cur_arg++];
532         int64_t i;
533         const char* prefix = nullptr;
534         if (ch != 'p') {
535           // Check that the argument has the expected type.
536           if (arg.type != Arg::INT && arg.type != Arg::UINT) {
537             DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
538             goto fail_to_expand;
539           }
540           i = arg.integer.i;
541 
542           if (ch != 'd') {
543             // The Arg() constructor automatically performed sign expansion on
544             // signed parameters. This is great when outputting a %d decimal
545             // number, but can result in unexpected leading 0xFF bytes when
546             // outputting a %x hexadecimal number. Mask bits, if necessary.
547             // We have to do this here, instead of in the Arg() constructor, as
548             // the Arg() constructor cannot tell whether we will output a %d
549             // or a %x. Only the latter should experience masking.
550             if (arg.integer.width < sizeof(int64_t)) {
551               i &= (1LL << (8*arg.integer.width)) - 1;
552             }
553           }
554         } else {
555           // Pointer values require an actual pointer or a string.
556           if (arg.type == Arg::POINTER) {
557             i = reinterpret_cast<uintptr_t>(arg.ptr);
558           } else if (arg.type == Arg::STRING) {
559             i = reinterpret_cast<uintptr_t>(arg.str);
560           } else if (arg.type == Arg::INT &&
561                      arg.integer.width == sizeof(NULL) &&
562                      arg.integer.i == 0) {  // Allow C++'s version of NULL
563             i = 0;
564           } else {
565             DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
566             goto fail_to_expand;
567           }
568 
569           // Pointers always include the "0x" prefix.
570           prefix = "0x";
571         }
572 
573         // Use IToASCII() to convert to ASCII representation. For decimal
574         // numbers, optionally print a sign. For hexadecimal numbers,
575         // distinguish between upper and lower case. %p addresses are always
576         // printed as upcase. Supports base 8, 10, and 16. Prints padding
577         // and/or prefixes, if so requested.
578         buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
579                         ch != 'x', i,
580                         ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
581                         pad, padding, prefix);
582         break; }
583       case 's': {
584         // Check that there are arguments left to be inserted.
585         if (cur_arg >= max_args) {
586           DEBUG_CHECK(cur_arg < max_args);
587           goto fail_to_expand;
588         }
589 
590         // Check that the argument has the expected type.
591         const Arg& arg = args[cur_arg++];
592         const char *s;
593         if (arg.type == Arg::STRING) {
594           s = arg.str ? arg.str : "<NULL>";
595         } else if (arg.type == Arg::INT && arg.integer.width == sizeof(NULL) &&
596                    arg.integer.i == 0) {  // Allow C++'s version of NULL
597           s = "<NULL>";
598         } else {
599           DEBUG_CHECK(arg.type == Arg::STRING);
600           goto fail_to_expand;
601         }
602 
603         // Apply padding, if needed. This requires us to first check the
604         // length of the string that we are outputting.
605         if (padding) {
606           size_t len = 0;
607           for (const char* src = s; *src++; ) {
608             ++len;
609           }
610           buffer.Pad(' ', padding, len);
611         }
612 
613         // Printing a string involves nothing more than copying it into the
614         // output buffer and making sure we don't output more bytes than
615         // available space; Out() takes care of doing that.
616         for (const char* src = s; *src; ) {
617           buffer.Out(*src++);
618         }
619         break; }
620       case '%':
621         // Quoted percent '%' character.
622         goto copy_verbatim;
623       fail_to_expand:
624         // C++ gives us tools to do type checking -- something that snprintf()
625         // could never really do. So, whenever we see arguments that don't
626         // match up with the format string, we refuse to output them. But
627         // since we have to be extremely conservative about being async-
628         // signal-safe, we are limited in the type of error handling that we
629         // can do in production builds (in debug builds we can use
630         // DEBUG_CHECK() and hope for the best). So, all we do is pass the
631         // format string unchanged. That should eventually get the user's
632         // attention; and in the meantime, it hopefully doesn't lose too much
633         // data.
634       default:
635         // Unknown or unsupported format character. Just copy verbatim to
636         // output.
637         buffer.Out('%');
638         DEBUG_CHECK(ch);
639         if (!ch) {
640           goto end_of_format_string;
641         }
642         buffer.Out(ch);
643         break;
644       }
645     } else {
646   copy_verbatim:
647     buffer.Out(fmt[-1]);
648     }
649   }
650  end_of_format_string:
651  end_of_output_buffer:
652   return buffer.GetCount();
653 }
654 
655 }  // namespace internal
656 
SafeSNPrintf(char * buf,size_t sz,const char * fmt)657 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
658   // Make sure that at least one NUL byte can be written, and that the buffer
659   // never overflows kSSizeMax. Not only does that use up most or all of the
660   // address space, it also would result in a return code that cannot be
661   // represented.
662   if (static_cast<ssize_t>(sz) < 1) {
663     return -1;
664   } else if (sz > kSSizeMax) {
665     sz = kSSizeMax;
666   }
667 
668   Buffer buffer(buf, sz);
669 
670   // In the slow-path, we deal with errors by copying the contents of
671   // "fmt" unexpanded. This means, if there are no arguments passed, the
672   // SafeSPrintf() function always degenerates to a version of strncpy() that
673   // de-duplicates '%' characters.
674   const char* src = fmt;
675   for (; *src; ++src) {
676     buffer.Out(*src);
677     DEBUG_CHECK(src[0] != '%' || src[1] == '%');
678     if (src[0] == '%' && src[1] == '%') {
679       ++src;
680     }
681   }
682   return buffer.GetCount();
683 }
684 
685 }  // namespace strings
686 }  // namespace base
687