• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
18 #define ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
19 
20 #include <iostream>
21 
22 #include "base/intrusive_forward_list.h"
23 #include "base/iteration_range.h"
24 #include "base/scoped_arena_allocator.h"
25 #include "base/scoped_arena_containers.h"
26 #include "nodes.h"
27 
28 namespace art {
29 
30 class CodeGenerator;
31 class SsaLivenessAnalysis;
32 
33 static constexpr int kNoRegister = -1;
34 
35 class BlockInfo : public ArenaObject<kArenaAllocSsaLiveness> {
36  public:
BlockInfo(ScopedArenaAllocator * allocator,const HBasicBlock & block,size_t number_of_ssa_values)37   BlockInfo(ScopedArenaAllocator* allocator, const HBasicBlock& block, size_t number_of_ssa_values)
38       : block_(block),
39         live_in_(allocator, number_of_ssa_values, false, kArenaAllocSsaLiveness),
40         live_out_(allocator, number_of_ssa_values, false, kArenaAllocSsaLiveness),
41         kill_(allocator, number_of_ssa_values, false, kArenaAllocSsaLiveness) {
42     UNUSED(block_);
43     live_in_.ClearAllBits();
44     live_out_.ClearAllBits();
45     kill_.ClearAllBits();
46   }
47 
48  private:
49   const HBasicBlock& block_;
50   ArenaBitVector live_in_;
51   ArenaBitVector live_out_;
52   ArenaBitVector kill_;
53 
54   friend class SsaLivenessAnalysis;
55 
56   DISALLOW_COPY_AND_ASSIGN(BlockInfo);
57 };
58 
59 /**
60  * A live range contains the start and end of a range where an instruction or a temporary
61  * is live.
62  */
63 class LiveRange final : public ArenaObject<kArenaAllocSsaLiveness> {
64  public:
LiveRange(size_t start,size_t end,LiveRange * next)65   LiveRange(size_t start, size_t end, LiveRange* next) : start_(start), end_(end), next_(next) {
66     DCHECK_LT(start, end);
67     DCHECK(next_ == nullptr || next_->GetStart() > GetEnd());
68   }
69 
GetStart()70   size_t GetStart() const { return start_; }
GetEnd()71   size_t GetEnd() const { return end_; }
GetNext()72   LiveRange* GetNext() const { return next_; }
73 
IntersectsWith(const LiveRange & other)74   bool IntersectsWith(const LiveRange& other) const {
75     return (start_ >= other.start_ && start_ < other.end_)
76         || (other.start_ >= start_ && other.start_ < end_);
77   }
78 
IsBefore(const LiveRange & other)79   bool IsBefore(const LiveRange& other) const {
80     return end_ <= other.start_;
81   }
82 
Dump(std::ostream & stream)83   void Dump(std::ostream& stream) const {
84     stream << "[" << start_ << "," << end_ << ")";
85   }
86 
Dup(ScopedArenaAllocator * allocator)87   LiveRange* Dup(ScopedArenaAllocator* allocator) const {
88     return new (allocator) LiveRange(
89         start_, end_, next_ == nullptr ? nullptr : next_->Dup(allocator));
90   }
91 
GetLastRange()92   LiveRange* GetLastRange() {
93     return next_ == nullptr ? this : next_->GetLastRange();
94   }
95 
96  private:
97   size_t start_;
98   size_t end_;
99   LiveRange* next_;
100 
101   friend class LiveInterval;
102 
103   DISALLOW_COPY_AND_ASSIGN(LiveRange);
104 };
105 
106 /**
107  * A use position represents a live interval use at a given position.
108  */
109 class UsePosition : public ArenaObject<kArenaAllocSsaLiveness>,
110                     public IntrusiveForwardListNode<UsePosition> {
111  public:
UsePosition(HInstruction * user,size_t input_index,size_t position)112   UsePosition(HInstruction* user, size_t input_index, size_t position)
113       : user_(user),
114         input_index_(input_index),
115         position_(position) {
116   }
117 
UsePosition(size_t position)118   explicit UsePosition(size_t position)
119       : user_(nullptr),
120         input_index_(kNoInput),
121         position_(dchecked_integral_cast<uint32_t>(position)) {
122   }
123 
GetPosition()124   size_t GetPosition() const { return position_; }
125 
GetUser()126   HInstruction* GetUser() const { return user_; }
127 
IsSynthesized()128   bool IsSynthesized() const { return user_ == nullptr; }
129 
GetInputIndex()130   size_t GetInputIndex() const { return input_index_; }
131 
Dump(std::ostream & stream)132   void Dump(std::ostream& stream) const {
133     stream << position_;
134   }
135 
GetLoopInformation()136   HLoopInformation* GetLoopInformation() const {
137     return user_->GetBlock()->GetLoopInformation();
138   }
139 
Clone(ScopedArenaAllocator * allocator)140   UsePosition* Clone(ScopedArenaAllocator* allocator) const {
141     return new (allocator) UsePosition(user_, input_index_, position_);
142   }
143 
RequiresRegister()144   bool RequiresRegister() const {
145     if (IsSynthesized()) return false;
146     Location location = GetUser()->GetLocations()->InAt(GetInputIndex());
147     return location.IsUnallocated() && location.RequiresRegisterKind();
148   }
149 
150  private:
151   static constexpr uint32_t kNoInput = static_cast<uint32_t>(-1);
152 
153   HInstruction* const user_;
154   const size_t input_index_;
155   const size_t position_;
156 
157   DISALLOW_COPY_AND_ASSIGN(UsePosition);
158 };
159 using UsePositionList = IntrusiveForwardList<UsePosition>;
160 
161 /**
162  * An environment use position represents a live interval for environment use at a given position.
163  */
164 class EnvUsePosition : public ArenaObject<kArenaAllocSsaLiveness>,
165                        public IntrusiveForwardListNode<EnvUsePosition> {
166  public:
EnvUsePosition(HEnvironment * environment,size_t input_index,size_t position)167   EnvUsePosition(HEnvironment* environment,
168                  size_t input_index,
169                  size_t position)
170       : environment_(environment),
171         input_index_(input_index),
172         position_(position) {
173     DCHECK(environment != nullptr);
174   }
175 
GetPosition()176   size_t GetPosition() const { return position_; }
177 
GetEnvironment()178   HEnvironment* GetEnvironment() const { return environment_; }
GetInputIndex()179   size_t GetInputIndex() const { return input_index_; }
180 
Dump(std::ostream & stream)181   void Dump(std::ostream& stream) const {
182     stream << position_;
183   }
184 
Clone(ScopedArenaAllocator * allocator)185   EnvUsePosition* Clone(ScopedArenaAllocator* allocator) const {
186     return new (allocator) EnvUsePosition(environment_, input_index_, position_);
187   }
188 
189  private:
190   HEnvironment* const environment_;
191   const size_t input_index_;
192   const size_t position_;
193 
194   DISALLOW_COPY_AND_ASSIGN(EnvUsePosition);
195 };
196 using EnvUsePositionList = IntrusiveForwardList<EnvUsePosition>;
197 
198 template <typename Iterator>
FindUseAtOrAfterPosition(Iterator first,Iterator last,size_t position)199 inline Iterator FindUseAtOrAfterPosition(Iterator first, Iterator last, size_t position) {
200   using value_type = const typename Iterator::value_type;
201   static_assert(std::is_same<value_type, const UsePosition>::value ||
202                     std::is_same<value_type, const EnvUsePosition>::value,
203                 "Expecting value type UsePosition or EnvUsePosition.");
204   Iterator ret = std::find_if(
205       first, last, [position](const value_type& use) { return use.GetPosition() >= position; });
206   // Check that the processed range is sorted. Do not check the rest of the range to avoid
207   // increasing the complexity of callers from O(n) to O(n^2).
208   DCHECK(std::is_sorted(
209       first,
210       ret,
211       [](const value_type& lhs, const value_type& rhs) {
212           return lhs.GetPosition() < rhs.GetPosition();
213       }));
214   return ret;
215 }
216 
217 template <typename Iterator>
FindMatchingUseRange(Iterator first,Iterator last,size_t position_begin,size_t position_end)218 inline IterationRange<Iterator> FindMatchingUseRange(Iterator first,
219                                                      Iterator last,
220                                                      size_t position_begin,
221                                                      size_t position_end) {
222   Iterator begin = FindUseAtOrAfterPosition(first, last, position_begin);
223   Iterator end = FindUseAtOrAfterPosition(begin, last, position_end);
224   return MakeIterationRange(begin, end);
225 }
226 
227 class SafepointPosition : public ArenaObject<kArenaAllocSsaLiveness> {
228  public:
SafepointPosition(HInstruction * instruction)229   explicit SafepointPosition(HInstruction* instruction)
230       : instruction_(instruction),
231         next_(nullptr) {}
232 
ComputePosition(HInstruction * instruction)233   static size_t ComputePosition(HInstruction* instruction) {
234     // We special case instructions emitted at use site, as their
235     // safepoint position needs to be at their use.
236     if (instruction->IsEmittedAtUseSite()) {
237       // Currently only applies to implicit null checks, which are emitted
238       // at the next instruction.
239       DCHECK(instruction->IsNullCheck()) << instruction->DebugName();
240       return instruction->GetLifetimePosition() + 2;
241     } else {
242       return instruction->GetLifetimePosition();
243     }
244   }
245 
SetNext(SafepointPosition * next)246   void SetNext(SafepointPosition* next) {
247     next_ = next;
248   }
249 
GetPosition()250   size_t GetPosition() const {
251     return ComputePosition(instruction_);
252   }
253 
GetNext()254   SafepointPosition* GetNext() const {
255     return next_;
256   }
257 
GetLocations()258   LocationSummary* GetLocations() const {
259     return instruction_->GetLocations();
260   }
261 
GetInstruction()262   HInstruction* GetInstruction() const {
263     return instruction_;
264   }
265 
266  private:
267   HInstruction* const instruction_;
268   SafepointPosition* next_;
269 
270   DISALLOW_COPY_AND_ASSIGN(SafepointPosition);
271 };
272 
273 /**
274  * An interval is a list of disjoint live ranges where an instruction is live.
275  * Each instruction that has uses gets an interval.
276  */
277 class LiveInterval : public ArenaObject<kArenaAllocSsaLiveness> {
278  public:
279   static LiveInterval* MakeInterval(ScopedArenaAllocator* allocator,
280                                     DataType::Type type,
281                                     HInstruction* instruction = nullptr) {
282     return new (allocator) LiveInterval(allocator, type, instruction);
283   }
284 
MakeFixedInterval(ScopedArenaAllocator * allocator,int reg,DataType::Type type)285   static LiveInterval* MakeFixedInterval(ScopedArenaAllocator* allocator,
286                                          int reg,
287                                          DataType::Type type) {
288     return new (allocator) LiveInterval(allocator, type, nullptr, true, reg, false);
289   }
290 
MakeTempInterval(ScopedArenaAllocator * allocator,DataType::Type type)291   static LiveInterval* MakeTempInterval(ScopedArenaAllocator* allocator, DataType::Type type) {
292     return new (allocator) LiveInterval(allocator, type, nullptr, false, kNoRegister, true);
293   }
294 
IsFixed()295   bool IsFixed() const { return is_fixed_; }
IsTemp()296   bool IsTemp() const { return is_temp_; }
297   // This interval is the result of a split.
IsSplit()298   bool IsSplit() const { return parent_ != this; }
299 
AddTempUse(HInstruction * instruction,size_t temp_index)300   void AddTempUse(HInstruction* instruction, size_t temp_index) {
301     DCHECK(IsTemp());
302     DCHECK(GetUses().empty()) << "A temporary can only have one user";
303     DCHECK(GetEnvironmentUses().empty()) << "A temporary cannot have environment user";
304     size_t position = instruction->GetLifetimePosition();
305     UsePosition* new_use = new (allocator_) UsePosition(instruction, temp_index, position);
306     uses_.push_front(*new_use);
307     AddRange(position, position + 1);
308   }
309 
310   // Record use of an input. The use will be recorded as an environment use if
311   // `environment` is not null and as register use otherwise. If `actual_user`
312   // is specified, the use will be recorded at `actual_user`'s lifetime position.
313   void AddUse(HInstruction* instruction,
314               HEnvironment* environment,
315               size_t input_index,
316               HInstruction* actual_user = nullptr) {
317     bool is_environment = (environment != nullptr);
318     LocationSummary* locations = instruction->GetLocations();
319     if (actual_user == nullptr) {
320       actual_user = instruction;
321     }
322 
323     // Set the use within the instruction.
324     size_t position = actual_user->GetLifetimePosition() + 1;
325     if (!is_environment) {
326       if (locations->IsFixedInput(input_index) || locations->OutputUsesSameAs(input_index)) {
327         // For fixed inputs and output same as input, the register allocator
328         // requires to have inputs die at the instruction, so that input moves use the
329         // location of the input just before that instruction (and not potential moves due
330         // to splitting).
331         DCHECK_EQ(instruction, actual_user);
332         position = actual_user->GetLifetimePosition();
333       } else if (!locations->InAt(input_index).IsValid()) {
334         return;
335       }
336     }
337 
338     if (!is_environment && instruction->IsInLoop()) {
339       AddBackEdgeUses(*instruction->GetBlock());
340     }
341 
342     if ((!uses_.empty()) &&
343         (uses_.front().GetUser() == actual_user) &&
344         (uses_.front().GetPosition() < position)) {
345       // The user uses the instruction multiple times, and one use dies before the other.
346       // We update the use list so that the latter is first.
347       DCHECK(!is_environment);
348       DCHECK(uses_.front().GetPosition() + 1 == position);
349       UsePositionList::iterator next_pos = uses_.begin();
350       UsePositionList::iterator insert_pos;
351       do {
352         insert_pos = next_pos;
353         ++next_pos;
354       } while (next_pos != uses_.end() && next_pos->GetPosition() < position);
355       UsePosition* new_use = new (allocator_) UsePosition(instruction, input_index, position);
356       uses_.insert_after(insert_pos, *new_use);
357       if (first_range_->GetEnd() == uses_.front().GetPosition()) {
358         first_range_->end_ = position;
359       }
360       return;
361     }
362 
363     if (is_environment) {
364       DCHECK(env_uses_.empty() || position <= env_uses_.front().GetPosition());
365       EnvUsePosition* new_env_use =
366           new (allocator_) EnvUsePosition(environment, input_index, position);
367       env_uses_.push_front(*new_env_use);
368     } else {
369       DCHECK(uses_.empty() || position <= uses_.front().GetPosition());
370       UsePosition* new_use = new (allocator_) UsePosition(instruction, input_index, position);
371       uses_.push_front(*new_use);
372     }
373 
374     size_t start_block_position = instruction->GetBlock()->GetLifetimeStart();
375     if (first_range_ == nullptr) {
376       // First time we see a use of that interval.
377       first_range_ = last_range_ = range_search_start_ =
378           new (allocator_) LiveRange(start_block_position, position, nullptr);
379     } else if (first_range_->GetStart() == start_block_position) {
380       // There is a use later in the same block or in a following block.
381       // Note that in such a case, `AddRange` for the whole blocks has been called
382       // before arriving in this method, and this is the reason the start of
383       // `first_range_` is before the given `position`.
384       DCHECK_LE(position, first_range_->GetEnd());
385     } else {
386       DCHECK(first_range_->GetStart() > position);
387       // There is a hole in the interval. Create a new range.
388       // Note that the start of `first_range_` can be equal to `end`: two blocks
389       // having adjacent lifetime positions are not necessarily
390       // predecessor/successor. When two blocks are predecessor/successor, the
391       // liveness algorithm has called `AddRange` before arriving in this method,
392       // and the check line 205 would succeed.
393       first_range_ = range_search_start_ =
394           new (allocator_) LiveRange(start_block_position, position, first_range_);
395     }
396   }
397 
AddPhiUse(HInstruction * instruction,size_t input_index,HBasicBlock * block)398   void AddPhiUse(HInstruction* instruction, size_t input_index, HBasicBlock* block) {
399     DCHECK(instruction->IsPhi());
400     if (block->IsInLoop()) {
401       AddBackEdgeUses(*block);
402     }
403     UsePosition* new_use =
404         new (allocator_) UsePosition(instruction, input_index, block->GetLifetimeEnd());
405     uses_.push_front(*new_use);
406   }
407 
AddRange(size_t start,size_t end)408   ALWAYS_INLINE void AddRange(size_t start, size_t end) {
409     if (first_range_ == nullptr) {
410       first_range_ = last_range_ = range_search_start_ =
411           new (allocator_) LiveRange(start, end, first_range_);
412     } else if (first_range_->GetStart() == end) {
413       // There is a use in the following block.
414       first_range_->start_ = start;
415     } else if (first_range_->GetStart() == start && first_range_->GetEnd() == end) {
416       DCHECK(is_fixed_);
417     } else {
418       DCHECK_GT(first_range_->GetStart(), end);
419       // There is a hole in the interval. Create a new range.
420       first_range_ = range_search_start_ = new (allocator_) LiveRange(start, end, first_range_);
421     }
422   }
423 
AddLoopRange(size_t start,size_t end)424   void AddLoopRange(size_t start, size_t end) {
425     DCHECK(first_range_ != nullptr);
426     DCHECK_LE(start, first_range_->GetStart());
427     // Find the range that covers the positions after the loop.
428     LiveRange* after_loop = first_range_;
429     LiveRange* last_in_loop = nullptr;
430     while (after_loop != nullptr && after_loop->GetEnd() < end) {
431       DCHECK_LE(start, after_loop->GetStart());
432       last_in_loop = after_loop;
433       after_loop = after_loop->GetNext();
434     }
435     if (after_loop == nullptr) {
436       // Uses are only in the loop.
437       first_range_ = last_range_ = range_search_start_ =
438           new (allocator_) LiveRange(start, end, nullptr);
439     } else if (after_loop->GetStart() <= end) {
440       first_range_ = range_search_start_ = after_loop;
441       // There are uses after the loop.
442       first_range_->start_ = start;
443     } else {
444       // The use after the loop is after a lifetime hole.
445       DCHECK(last_in_loop != nullptr);
446       first_range_ = range_search_start_ = last_in_loop;
447       first_range_->start_ = start;
448       first_range_->end_ = end;
449     }
450   }
451 
HasSpillSlot()452   bool HasSpillSlot() const { return spill_slot_ != kNoSpillSlot; }
SetSpillSlot(int slot)453   void SetSpillSlot(int slot) {
454     DCHECK(!is_fixed_);
455     DCHECK(!is_temp_);
456     spill_slot_ = slot;
457   }
GetSpillSlot()458   int GetSpillSlot() const { return spill_slot_; }
459 
SetFrom(size_t from)460   void SetFrom(size_t from) {
461     if (first_range_ != nullptr) {
462       first_range_->start_ = from;
463     } else {
464       // Instruction without uses.
465       DCHECK(uses_.empty());
466       DCHECK(from == defined_by_->GetLifetimePosition());
467       first_range_ = last_range_ = range_search_start_ =
468           new (allocator_) LiveRange(from, from + 2, nullptr);
469     }
470   }
471 
GetParent()472   LiveInterval* GetParent() const { return parent_; }
473 
474   // Returns whether this interval is the parent interval, that is, the interval
475   // that starts where the HInstruction is defined.
IsParent()476   bool IsParent() const { return parent_ == this; }
477 
GetFirstRange()478   LiveRange* GetFirstRange() const { return first_range_; }
GetLastRange()479   LiveRange* GetLastRange() const { return last_range_; }
480 
GetRegister()481   int GetRegister() const { return register_; }
SetRegister(int reg)482   void SetRegister(int reg) { register_ = reg; }
ClearRegister()483   void ClearRegister() { register_ = kNoRegister; }
HasRegister()484   bool HasRegister() const { return register_ != kNoRegister; }
485 
IsDeadAt(size_t position)486   bool IsDeadAt(size_t position) const {
487     return GetEnd() <= position;
488   }
489 
IsDefinedAt(size_t position)490   bool IsDefinedAt(size_t position) const {
491     return GetStart() <= position && !IsDeadAt(position);
492   }
493 
494   // Returns true if the interval contains a LiveRange covering `position`.
495   // The range at or immediately after the current position of linear scan
496   // is cached for better performance. If `position` can be smaller than
497   // that, CoversSlow should be used instead.
Covers(size_t position)498   bool Covers(size_t position) {
499     LiveRange* candidate = FindRangeAtOrAfter(position, range_search_start_);
500     range_search_start_ = candidate;
501     return (candidate != nullptr && candidate->GetStart() <= position);
502   }
503 
504   // Same as Covers but always tests all ranges.
CoversSlow(size_t position)505   bool CoversSlow(size_t position) const {
506     LiveRange* candidate = FindRangeAtOrAfter(position, first_range_);
507     return candidate != nullptr && candidate->GetStart() <= position;
508   }
509 
510   // Returns the first intersection of this interval with `current`, which
511   // must be the interval currently being allocated by linear scan.
FirstIntersectionWith(LiveInterval * current)512   size_t FirstIntersectionWith(LiveInterval* current) const {
513     // Find the first range after the start of `current`. We use the search
514     // cache to improve performance.
515     DCHECK(GetStart() <= current->GetStart() || IsFixed());
516     LiveRange* other_range = current->first_range_;
517     LiveRange* my_range = FindRangeAtOrAfter(other_range->GetStart(), range_search_start_);
518     if (my_range == nullptr) {
519       return kNoLifetime;
520     }
521 
522     // Advance both intervals and find the first matching range start in
523     // this interval.
524     do {
525       if (my_range->IsBefore(*other_range)) {
526         my_range = my_range->GetNext();
527         if (my_range == nullptr) {
528           return kNoLifetime;
529         }
530       } else if (other_range->IsBefore(*my_range)) {
531         other_range = other_range->GetNext();
532         if (other_range == nullptr) {
533           return kNoLifetime;
534         }
535       } else {
536         DCHECK(my_range->IntersectsWith(*other_range));
537         return std::max(my_range->GetStart(), other_range->GetStart());
538       }
539     } while (true);
540   }
541 
GetStart()542   size_t GetStart() const {
543     return first_range_->GetStart();
544   }
545 
GetEnd()546   size_t GetEnd() const {
547     return last_range_->GetEnd();
548   }
549 
GetLength()550   size_t GetLength() const {
551     return GetEnd() - GetStart();
552   }
553 
FirstRegisterUseAfter(size_t position)554   size_t FirstRegisterUseAfter(size_t position) const {
555     if (is_temp_) {
556       return position == GetStart() ? position : kNoLifetime;
557     }
558 
559     if (IsDefiningPosition(position) && DefinitionRequiresRegister()) {
560       return position;
561     }
562 
563     size_t end = GetEnd();
564     for (const UsePosition& use : GetUses()) {
565       size_t use_position = use.GetPosition();
566       if (use_position > end) {
567         break;
568       }
569       if (use_position > position) {
570         if (use.RequiresRegister()) {
571           return use_position;
572         }
573       }
574     }
575     return kNoLifetime;
576   }
577 
578   // Returns the location of the first register use for this live interval,
579   // including a register definition if applicable.
FirstRegisterUse()580   size_t FirstRegisterUse() const {
581     return FirstRegisterUseAfter(GetStart());
582   }
583 
584   // Whether the interval requires a register rather than a stack location.
585   // If needed for performance, this could be cached.
RequiresRegister()586   bool RequiresRegister() const {
587     return !HasRegister() && FirstRegisterUse() != kNoLifetime;
588   }
589 
FirstUseAfter(size_t position)590   size_t FirstUseAfter(size_t position) const {
591     if (is_temp_) {
592       return position == GetStart() ? position : kNoLifetime;
593     }
594 
595     if (IsDefiningPosition(position)) {
596       DCHECK(defined_by_->GetLocations()->Out().IsValid());
597       return position;
598     }
599 
600     size_t end = GetEnd();
601     for (const UsePosition& use : GetUses()) {
602       size_t use_position = use.GetPosition();
603       if (use_position > end) {
604         break;
605       }
606       if (use_position > position) {
607         return use_position;
608       }
609     }
610     return kNoLifetime;
611   }
612 
GetUses()613   const UsePositionList& GetUses() const {
614     return parent_->uses_;
615   }
616 
GetEnvironmentUses()617   const EnvUsePositionList& GetEnvironmentUses() const {
618     return parent_->env_uses_;
619   }
620 
GetType()621   DataType::Type GetType() const {
622     return type_;
623   }
624 
GetDefinedBy()625   HInstruction* GetDefinedBy() const {
626     return defined_by_;
627   }
628 
HasWillCallSafepoint()629   bool HasWillCallSafepoint() const {
630     for (SafepointPosition* safepoint = first_safepoint_;
631          safepoint != nullptr;
632          safepoint = safepoint->GetNext()) {
633       if (safepoint->GetLocations()->WillCall()) return true;
634     }
635     return false;
636   }
637 
FindSafepointJustBefore(size_t position)638   SafepointPosition* FindSafepointJustBefore(size_t position) const {
639     for (SafepointPosition* safepoint = first_safepoint_, *previous = nullptr;
640          safepoint != nullptr;
641          previous = safepoint, safepoint = safepoint->GetNext()) {
642       if (safepoint->GetPosition() >= position) return previous;
643     }
644     return last_safepoint_;
645   }
646 
647   /**
648    * Split this interval at `position`. This interval is changed to:
649    * [start ... position).
650    *
651    * The new interval covers:
652    * [position ... end)
653    */
SplitAt(size_t position)654   LiveInterval* SplitAt(size_t position) {
655     DCHECK(!is_temp_);
656     DCHECK(!is_fixed_);
657     DCHECK_GT(position, GetStart());
658 
659     if (GetEnd() <= position) {
660       // This range dies before `position`, no need to split.
661       return nullptr;
662     }
663 
664     LiveInterval* new_interval = new (allocator_) LiveInterval(allocator_, type_);
665     SafepointPosition* new_last_safepoint = FindSafepointJustBefore(position);
666     if (new_last_safepoint == nullptr) {
667       new_interval->first_safepoint_ = first_safepoint_;
668       new_interval->last_safepoint_ = last_safepoint_;
669       first_safepoint_ = last_safepoint_ = nullptr;
670     } else if (last_safepoint_ != new_last_safepoint) {
671       new_interval->last_safepoint_ = last_safepoint_;
672       new_interval->first_safepoint_ = new_last_safepoint->GetNext();
673       DCHECK(new_interval->first_safepoint_ != nullptr);
674       last_safepoint_ = new_last_safepoint;
675       last_safepoint_->SetNext(nullptr);
676     }
677 
678     new_interval->next_sibling_ = next_sibling_;
679     next_sibling_ = new_interval;
680     new_interval->parent_ = parent_;
681 
682     LiveRange* current = first_range_;
683     LiveRange* previous = nullptr;
684     // Iterate over the ranges, and either find a range that covers this position, or
685     // two ranges in between this position (that is, the position is in a lifetime hole).
686     do {
687       if (position >= current->GetEnd()) {
688         // Move to next range.
689         previous = current;
690         current = current->next_;
691       } else if (position <= current->GetStart()) {
692         // If the previous range did not cover this position, we know position is in
693         // a lifetime hole. We can just break the first_range_ and last_range_ links
694         // and return the new interval.
695         DCHECK(previous != nullptr);
696         DCHECK(current != first_range_);
697         new_interval->last_range_ = last_range_;
698         last_range_ = previous;
699         previous->next_ = nullptr;
700         new_interval->first_range_ = current;
701         if (range_search_start_ != nullptr && range_search_start_->GetEnd() >= current->GetEnd()) {
702           // Search start point is inside `new_interval`. Change it to null
703           // (i.e. the end of the interval) in the original interval.
704           range_search_start_ = nullptr;
705         }
706         new_interval->range_search_start_ = new_interval->first_range_;
707         return new_interval;
708       } else {
709         // This range covers position. We create a new last_range_ for this interval
710         // that covers last_range_->Start() and position. We also shorten the current
711         // range and make it the first range of the new interval.
712         DCHECK(position < current->GetEnd() && position > current->GetStart());
713         new_interval->last_range_ = last_range_;
714         last_range_ = new (allocator_) LiveRange(current->start_, position, nullptr);
715         if (previous != nullptr) {
716           previous->next_ = last_range_;
717         } else {
718           first_range_ = last_range_;
719         }
720         new_interval->first_range_ = current;
721         current->start_ = position;
722         if (range_search_start_ != nullptr && range_search_start_->GetEnd() >= current->GetEnd()) {
723           // Search start point is inside `new_interval`. Change it to `last_range`
724           // in the original interval. This is conservative but always correct.
725           range_search_start_ = last_range_;
726         }
727         new_interval->range_search_start_ = new_interval->first_range_;
728         return new_interval;
729       }
730     } while (current != nullptr);
731 
732     LOG(FATAL) << "Unreachable";
733     return nullptr;
734   }
735 
StartsBeforeOrAt(LiveInterval * other)736   bool StartsBeforeOrAt(LiveInterval* other) const {
737     return GetStart() <= other->GetStart();
738   }
739 
StartsAfter(LiveInterval * other)740   bool StartsAfter(LiveInterval* other) const {
741     return GetStart() > other->GetStart();
742   }
743 
Dump(std::ostream & stream)744   void Dump(std::ostream& stream) const {
745     stream << "ranges: { ";
746     LiveRange* current = first_range_;
747     while (current != nullptr) {
748       current->Dump(stream);
749       stream << " ";
750       current = current->GetNext();
751     }
752     stream << "}, uses: { ";
753     for (const UsePosition& use : GetUses()) {
754       use.Dump(stream);
755       stream << " ";
756     }
757     stream << "}, { ";
758     for (const EnvUsePosition& env_use : GetEnvironmentUses()) {
759       env_use.Dump(stream);
760       stream << " ";
761     }
762     stream << "}";
763     stream << " is_fixed: " << is_fixed_ << ", is_split: " << IsSplit();
764     stream << " is_low: " << IsLowInterval();
765     stream << " is_high: " << IsHighInterval();
766   }
767 
768   // Same as Dump, but adds context such as the instruction defining this interval, and
769   // the register currently assigned to this interval.
770   void DumpWithContext(std::ostream& stream, const CodeGenerator& codegen) const;
771 
GetNextSibling()772   LiveInterval* GetNextSibling() const { return next_sibling_; }
GetLastSibling()773   LiveInterval* GetLastSibling() {
774     LiveInterval* result = this;
775     while (result->next_sibling_ != nullptr) {
776       result = result->next_sibling_;
777     }
778     return result;
779   }
780 
781   // Returns the first register hint that is at least free before
782   // the value contained in `free_until`. If none is found, returns
783   // `kNoRegister`.
784   int FindFirstRegisterHint(size_t* free_until, const SsaLivenessAnalysis& liveness) const;
785 
786   // If there is enough at the definition site to find a register (for example
787   // it uses the same input as the first input), returns the register as a hint.
788   // Returns kNoRegister otherwise.
789   int FindHintAtDefinition() const;
790 
791   // Returns the number of required spilling slots (measured as a multiple of the
792   // Dex virtual register size `kVRegSize`).
793   size_t NumberOfSpillSlotsNeeded() const;
794 
IsFloatingPoint()795   bool IsFloatingPoint() const {
796     return type_ == DataType::Type::kFloat32 || type_ == DataType::Type::kFloat64;
797   }
798 
799   // Converts the location of the interval to a `Location` object.
800   Location ToLocation() const;
801 
802   // Returns the location of the interval following its siblings at `position`.
803   Location GetLocationAt(size_t position);
804 
805   // Finds the sibling that is defined at `position`.
806   LiveInterval* GetSiblingAt(size_t position);
807 
808   // Returns whether `other` and `this` share the same kind of register.
809   bool SameRegisterKind(Location other) const;
SameRegisterKind(const LiveInterval & other)810   bool SameRegisterKind(const LiveInterval& other) const {
811     return IsFloatingPoint() == other.IsFloatingPoint();
812   }
813 
HasHighInterval()814   bool HasHighInterval() const {
815     return IsLowInterval();
816   }
817 
HasLowInterval()818   bool HasLowInterval() const {
819     return IsHighInterval();
820   }
821 
GetLowInterval()822   LiveInterval* GetLowInterval() const {
823     DCHECK(HasLowInterval());
824     return high_or_low_interval_;
825   }
826 
GetHighInterval()827   LiveInterval* GetHighInterval() const {
828     DCHECK(HasHighInterval());
829     return high_or_low_interval_;
830   }
831 
IsHighInterval()832   bool IsHighInterval() const {
833     return GetParent()->is_high_interval_;
834   }
835 
IsLowInterval()836   bool IsLowInterval() const {
837     return !IsHighInterval() && (GetParent()->high_or_low_interval_ != nullptr);
838   }
839 
SetLowInterval(LiveInterval * low)840   void SetLowInterval(LiveInterval* low) {
841     DCHECK(IsHighInterval());
842     high_or_low_interval_ = low;
843   }
844 
SetHighInterval(LiveInterval * high)845   void SetHighInterval(LiveInterval* high) {
846     DCHECK(IsLowInterval());
847     high_or_low_interval_ = high;
848   }
849 
850   void AddHighInterval(bool is_temp = false) {
851     DCHECK(IsParent());
852     DCHECK(!HasHighInterval());
853     DCHECK(!HasLowInterval());
854     high_or_low_interval_ = new (allocator_) LiveInterval(
855         allocator_, type_, defined_by_, false, kNoRegister, is_temp, true);
856     high_or_low_interval_->high_or_low_interval_ = this;
857     if (first_range_ != nullptr) {
858       high_or_low_interval_->first_range_ = first_range_->Dup(allocator_);
859       high_or_low_interval_->last_range_ = high_or_low_interval_->first_range_->GetLastRange();
860       high_or_low_interval_->range_search_start_ = high_or_low_interval_->first_range_;
861     }
862     auto pos = high_or_low_interval_->uses_.before_begin();
863     for (const UsePosition& use : uses_) {
864       UsePosition* new_use = use.Clone(allocator_);
865       pos = high_or_low_interval_->uses_.insert_after(pos, *new_use);
866     }
867 
868     auto env_pos = high_or_low_interval_->env_uses_.before_begin();
869     for (const EnvUsePosition& env_use : env_uses_) {
870       EnvUsePosition* new_env_use = env_use.Clone(allocator_);
871       env_pos = high_or_low_interval_->env_uses_.insert_after(env_pos, *new_env_use);
872     }
873   }
874 
875   // Returns whether an interval, when it is non-split, is using
876   // the same register of one of its input. This function should
877   // be used only for DCHECKs.
IsUsingInputRegister()878   bool IsUsingInputRegister() const {
879     if (defined_by_ != nullptr && !IsSplit()) {
880       for (const HInstruction* input : defined_by_->GetInputs()) {
881         LiveInterval* interval = input->GetLiveInterval();
882 
883         // Find the interval that covers `defined_by`_. Calls to this function
884         // are made outside the linear scan, hence we need to use CoversSlow.
885         while (interval != nullptr && !interval->CoversSlow(defined_by_->GetLifetimePosition())) {
886           interval = interval->GetNextSibling();
887         }
888 
889         // Check if both intervals have the same register of the same kind.
890         if (interval != nullptr
891             && interval->SameRegisterKind(*this)
892             && interval->GetRegister() == GetRegister()) {
893           return true;
894         }
895       }
896     }
897     return false;
898   }
899 
900   // Returns whether an interval, when it is non-split, can safely use
901   // the same register of one of its input. Note that this method requires
902   // IsUsingInputRegister() to be true. This function should be used only
903   // for DCHECKs.
CanUseInputRegister()904   bool CanUseInputRegister() const {
905     DCHECK(IsUsingInputRegister());
906     if (defined_by_ != nullptr && !IsSplit()) {
907       LocationSummary* locations = defined_by_->GetLocations();
908       if (locations->OutputCanOverlapWithInputs()) {
909         return false;
910       }
911       for (const HInstruction* input : defined_by_->GetInputs()) {
912         LiveInterval* interval = input->GetLiveInterval();
913 
914         // Find the interval that covers `defined_by`_. Calls to this function
915         // are made outside the linear scan, hence we need to use CoversSlow.
916         while (interval != nullptr && !interval->CoversSlow(defined_by_->GetLifetimePosition())) {
917           interval = interval->GetNextSibling();
918         }
919 
920         if (interval != nullptr
921             && interval->SameRegisterKind(*this)
922             && interval->GetRegister() == GetRegister()) {
923           // We found the input that has the same register. Check if it is live after
924           // `defined_by`_.
925           return !interval->CoversSlow(defined_by_->GetLifetimePosition() + 1);
926         }
927       }
928     }
929     LOG(FATAL) << "Unreachable";
930     UNREACHABLE();
931   }
932 
AddSafepoint(HInstruction * instruction)933   void AddSafepoint(HInstruction* instruction) {
934     SafepointPosition* safepoint = new (allocator_) SafepointPosition(instruction);
935     if (first_safepoint_ == nullptr) {
936       first_safepoint_ = last_safepoint_ = safepoint;
937     } else {
938       DCHECK_LE(last_safepoint_->GetPosition(), safepoint->GetPosition());
939       last_safepoint_->SetNext(safepoint);
940       last_safepoint_ = safepoint;
941     }
942   }
943 
GetFirstSafepoint()944   SafepointPosition* GetFirstSafepoint() const {
945     return first_safepoint_;
946   }
947 
948   // Resets the starting point for range-searching queries to the first range.
949   // Intervals must be reset prior to starting a new linear scan over them.
ResetSearchCache()950   void ResetSearchCache() {
951     range_search_start_ = first_range_;
952   }
953 
DefinitionRequiresRegister()954   bool DefinitionRequiresRegister() const {
955     DCHECK(IsParent());
956     LocationSummary* locations = defined_by_->GetLocations();
957     Location location = locations->Out();
958     // This interval is the first interval of the instruction. If the output
959     // of the instruction requires a register, we return the position of that instruction
960     // as the first register use.
961     if (location.IsUnallocated()) {
962       if ((location.GetPolicy() == Location::kRequiresRegister)
963            || (location.GetPolicy() == Location::kSameAsFirstInput
964                && (locations->InAt(0).IsRegister()
965                    || locations->InAt(0).IsRegisterPair()
966                    || locations->InAt(0).GetPolicy() == Location::kRequiresRegister))) {
967         return true;
968       } else if ((location.GetPolicy() == Location::kRequiresFpuRegister)
969                  || (location.GetPolicy() == Location::kSameAsFirstInput
970                      && (locations->InAt(0).IsFpuRegister()
971                          || locations->InAt(0).IsFpuRegisterPair()
972                          || locations->InAt(0).GetPolicy() == Location::kRequiresFpuRegister))) {
973         return true;
974       }
975     } else if (location.IsRegister() || location.IsRegisterPair()) {
976       return true;
977     }
978     return false;
979   }
980 
981  private:
982   LiveInterval(ScopedArenaAllocator* allocator,
983                DataType::Type type,
984                HInstruction* defined_by = nullptr,
985                bool is_fixed = false,
986                int reg = kNoRegister,
987                bool is_temp = false,
988                bool is_high_interval = false)
allocator_(allocator)989       : allocator_(allocator),
990         first_range_(nullptr),
991         last_range_(nullptr),
992         range_search_start_(nullptr),
993         first_safepoint_(nullptr),
994         last_safepoint_(nullptr),
995         uses_(),
996         env_uses_(),
997         type_(type),
998         next_sibling_(nullptr),
999         parent_(this),
1000         register_(reg),
1001         spill_slot_(kNoSpillSlot),
1002         is_fixed_(is_fixed),
1003         is_temp_(is_temp),
1004         is_high_interval_(is_high_interval),
1005         high_or_low_interval_(nullptr),
1006         defined_by_(defined_by) {}
1007 
1008   // Searches for a LiveRange that either covers the given position or is the
1009   // first next LiveRange. Returns null if no such LiveRange exists. Ranges
1010   // known to end before `position` can be skipped with `search_start`.
FindRangeAtOrAfter(size_t position,LiveRange * search_start)1011   LiveRange* FindRangeAtOrAfter(size_t position, LiveRange* search_start) const {
1012     if (kIsDebugBuild) {
1013       if (search_start != first_range_) {
1014         // If we are not searching the entire list of ranges, make sure we do
1015         // not skip the range we are searching for.
1016         if (search_start == nullptr) {
1017           DCHECK(IsDeadAt(position));
1018         } else if (search_start->GetStart() > position) {
1019           DCHECK_EQ(search_start, FindRangeAtOrAfter(position, first_range_));
1020         }
1021       }
1022     }
1023 
1024     LiveRange* range;
1025     for (range = search_start;
1026          range != nullptr && range->GetEnd() <= position;
1027          range = range->GetNext()) {
1028       continue;
1029     }
1030     return range;
1031   }
1032 
IsDefiningPosition(size_t position)1033   bool IsDefiningPosition(size_t position) const {
1034     return IsParent() && (position == GetStart());
1035   }
1036 
HasSynthesizeUseAt(size_t position)1037   bool HasSynthesizeUseAt(size_t position) const {
1038     for (const UsePosition& use : GetUses()) {
1039       size_t use_position = use.GetPosition();
1040       if ((use_position == position) && use.IsSynthesized()) {
1041         return true;
1042       }
1043       if (use_position > position) break;
1044     }
1045     return false;
1046   }
1047 
AddBackEdgeUses(const HBasicBlock & block_at_use)1048   void AddBackEdgeUses(const HBasicBlock& block_at_use) {
1049     DCHECK(block_at_use.IsInLoop());
1050     if (block_at_use.GetGraph()->HasIrreducibleLoops()) {
1051       // Linear order may not be well formed when irreducible loops are present,
1052       // i.e. loop blocks may not be adjacent and a back edge may not be last,
1053       // which violates assumptions made in this method.
1054       return;
1055     }
1056 
1057     // Add synthesized uses at the back edge of loops to help the register allocator.
1058     // Note that this method is called in decreasing liveness order, to faciliate adding
1059     // uses at the head of the `uses_` list. Because below
1060     // we iterate from inner-most to outer-most, which is in increasing liveness order,
1061     // we need to add subsequent entries after the last inserted entry.
1062     const UsePositionList::iterator old_begin = uses_.begin();
1063     UsePositionList::iterator insert_pos = uses_.before_begin();
1064     for (HLoopInformationOutwardIterator it(block_at_use);
1065          !it.Done();
1066          it.Advance()) {
1067       HLoopInformation* current = it.Current();
1068       if (GetDefinedBy()->GetLifetimePosition() >= current->GetHeader()->GetLifetimeStart()) {
1069         // This interval is defined in the loop. We can stop going outward.
1070         break;
1071       }
1072 
1073       // We're only adding a synthesized use at the last back edge. Adding synthesized uses on
1074       // all back edges is not necessary: anything used in the loop will have its use at the
1075       // last back edge. If we want branches in a loop to have better register allocation than
1076       // another branch, then it is the linear order we should change.
1077       size_t back_edge_use_position = current->GetLifetimeEnd();
1078       if ((old_begin != uses_.end()) && (old_begin->GetPosition() <= back_edge_use_position)) {
1079         // There was a use already seen in this loop. Therefore the previous call to `AddUse`
1080         // already inserted the backedge use. We can stop going outward.
1081         DCHECK(HasSynthesizeUseAt(back_edge_use_position));
1082         break;
1083       }
1084 
1085       DCHECK(insert_pos != uses_.before_begin()
1086              ? back_edge_use_position > insert_pos->GetPosition()
1087              : current == block_at_use.GetLoopInformation())
1088           << std::distance(uses_.before_begin(), insert_pos);
1089 
1090       UsePosition* new_use = new (allocator_) UsePosition(back_edge_use_position);
1091       insert_pos = uses_.insert_after(insert_pos, *new_use);
1092     }
1093   }
1094 
1095   ScopedArenaAllocator* const allocator_;
1096 
1097   // Ranges of this interval. We need a quick access to the last range to test
1098   // for liveness (see `IsDeadAt`).
1099   LiveRange* first_range_;
1100   LiveRange* last_range_;
1101 
1102   // The first range at or after the current position of a linear scan. It is
1103   // used to optimize range-searching queries.
1104   LiveRange* range_search_start_;
1105 
1106   // Safepoints where this interval is live.
1107   SafepointPosition* first_safepoint_;
1108   SafepointPosition* last_safepoint_;
1109 
1110   // Uses of this interval. Only the parent interval keeps these lists.
1111   UsePositionList uses_;
1112   EnvUsePositionList env_uses_;
1113 
1114   // The instruction type this interval corresponds to.
1115   const DataType::Type type_;
1116 
1117   // Live interval that is the result of a split.
1118   LiveInterval* next_sibling_;
1119 
1120   // The first interval from which split intervals come from.
1121   LiveInterval* parent_;
1122 
1123   // The register allocated to this interval.
1124   int register_;
1125 
1126   // The spill slot allocated to this interval.
1127   int spill_slot_;
1128 
1129   // Whether the interval is for a fixed register.
1130   const bool is_fixed_;
1131 
1132   // Whether the interval is for a temporary.
1133   const bool is_temp_;
1134 
1135   // Whether this interval is a synthesized interval for register pair.
1136   const bool is_high_interval_;
1137 
1138   // If this interval needs a register pair, the high or low equivalent.
1139   // `is_high_interval_` tells whether this holds the low or the high.
1140   LiveInterval* high_or_low_interval_;
1141 
1142   // The instruction represented by this interval.
1143   HInstruction* const defined_by_;
1144 
1145   static constexpr int kNoRegister = -1;
1146   static constexpr int kNoSpillSlot = -1;
1147 
1148   ART_FRIEND_TEST(RegisterAllocatorTest, SpillInactive);
1149 
1150   DISALLOW_COPY_AND_ASSIGN(LiveInterval);
1151 };
1152 
1153 /**
1154  * Analysis that computes the liveness of instructions:
1155  *
1156  * (a) Non-environment uses of an instruction always make
1157  *     the instruction live.
1158  * (b) Environment uses of an instruction whose type is object (that is, non-primitive), make the
1159  *     instruction live, unless the class has an @DeadReferenceSafe annotation.
1160  *     This avoids unexpected premature reference enqueuing or finalization, which could
1161  *     result in premature deletion of native objects.  In the presence of @DeadReferenceSafe,
1162  *     object references are treated like primitive types.
1163  * (c) When the graph has the debuggable property, environment uses
1164  *     of an instruction that has a primitive type make the instruction live.
1165  *     If the graph does not have the debuggable property, the environment
1166  *     use has no effect, and may get a 'none' value after register allocation.
1167  * (d) When compiling in OSR mode, all loops in the compiled method may be entered
1168  *     from the interpreter via SuspendCheck; such use in SuspendCheck makes the instruction
1169  *     live.
1170  *
1171  * (b), (c) and (d) are implemented through SsaLivenessAnalysis::ShouldBeLiveForEnvironment.
1172  */
1173 class SsaLivenessAnalysis : public ValueObject {
1174  public:
SsaLivenessAnalysis(HGraph * graph,CodeGenerator * codegen,ScopedArenaAllocator * allocator)1175   SsaLivenessAnalysis(HGraph* graph, CodeGenerator* codegen, ScopedArenaAllocator* allocator)
1176       : graph_(graph),
1177         codegen_(codegen),
1178         allocator_(allocator),
1179         block_infos_(graph->GetBlocks().size(),
1180                      nullptr,
1181                      allocator_->Adapter(kArenaAllocSsaLiveness)),
1182         instructions_from_ssa_index_(allocator_->Adapter(kArenaAllocSsaLiveness)),
1183         instructions_from_lifetime_position_(allocator_->Adapter(kArenaAllocSsaLiveness)),
1184         number_of_ssa_values_(0) {
1185   }
1186 
1187   void Analyze();
1188 
GetLiveInSet(const HBasicBlock & block)1189   BitVector* GetLiveInSet(const HBasicBlock& block) const {
1190     return &block_infos_[block.GetBlockId()]->live_in_;
1191   }
1192 
GetLiveOutSet(const HBasicBlock & block)1193   BitVector* GetLiveOutSet(const HBasicBlock& block) const {
1194     return &block_infos_[block.GetBlockId()]->live_out_;
1195   }
1196 
GetKillSet(const HBasicBlock & block)1197   BitVector* GetKillSet(const HBasicBlock& block) const {
1198     return &block_infos_[block.GetBlockId()]->kill_;
1199   }
1200 
GetInstructionFromSsaIndex(size_t index)1201   HInstruction* GetInstructionFromSsaIndex(size_t index) const {
1202     return instructions_from_ssa_index_[index];
1203   }
1204 
GetInstructionFromPosition(size_t index)1205   HInstruction* GetInstructionFromPosition(size_t index) const {
1206     return instructions_from_lifetime_position_[index];
1207   }
1208 
GetBlockFromPosition(size_t index)1209   HBasicBlock* GetBlockFromPosition(size_t index) const {
1210     HInstruction* instruction = GetInstructionFromPosition(index);
1211     if (instruction == nullptr) {
1212       // If we are at a block boundary, get the block following.
1213       instruction = GetInstructionFromPosition(index + 1);
1214     }
1215     return instruction->GetBlock();
1216   }
1217 
IsAtBlockBoundary(size_t index)1218   bool IsAtBlockBoundary(size_t index) const {
1219     return GetInstructionFromPosition(index) == nullptr;
1220   }
1221 
GetTempUser(LiveInterval * temp)1222   HInstruction* GetTempUser(LiveInterval* temp) const {
1223     // A temporary shares the same lifetime start as the instruction that requires it.
1224     DCHECK(temp->IsTemp());
1225     HInstruction* user = GetInstructionFromPosition(temp->GetStart() / 2);
1226     DCHECK_EQ(user, temp->GetUses().front().GetUser());
1227     return user;
1228   }
1229 
GetTempIndex(LiveInterval * temp)1230   size_t GetTempIndex(LiveInterval* temp) const {
1231     // We use the input index to store the index of the temporary in the user's temporary list.
1232     DCHECK(temp->IsTemp());
1233     return temp->GetUses().front().GetInputIndex();
1234   }
1235 
GetMaxLifetimePosition()1236   size_t GetMaxLifetimePosition() const {
1237     return instructions_from_lifetime_position_.size() * 2 - 1;
1238   }
1239 
GetNumberOfSsaValues()1240   size_t GetNumberOfSsaValues() const {
1241     return number_of_ssa_values_;
1242   }
1243 
1244   static constexpr const char* kLivenessPassName = "liveness";
1245 
1246  private:
1247   // Give an SSA number to each instruction that defines a value used by another instruction,
1248   // and setup the lifetime information of each instruction and block.
1249   void NumberInstructions();
1250 
1251   // Compute live ranges of instructions, as well as live_in, live_out and kill sets.
1252   void ComputeLiveness();
1253 
1254   // Compute the live ranges of instructions, as well as the initial live_in, live_out and
1255   // kill sets, that do not take into account backward branches.
1256   void ComputeLiveRanges();
1257 
1258   // After computing the initial sets, this method does a fixed point
1259   // calculation over the live_in and live_out set to take into account
1260   // backwards branches.
1261   void ComputeLiveInAndLiveOutSets();
1262 
1263   // Update the live_in set of the block and returns whether it has changed.
1264   bool UpdateLiveIn(const HBasicBlock& block);
1265 
1266   // Update the live_out set of the block and returns whether it has changed.
1267   bool UpdateLiveOut(const HBasicBlock& block);
1268 
1269   static void ProcessEnvironment(HInstruction* instruction,
1270                                  HInstruction* actual_user,
1271                                  BitVector* live_in);
1272   static void RecursivelyProcessInputs(HInstruction* instruction,
1273                                        HInstruction* actual_user,
1274                                        BitVector* live_in);
1275 
1276   // Returns whether `instruction` in an HEnvironment held by `env_holder`
1277   // should be kept live by the HEnvironment.
ShouldBeLiveForEnvironment(HInstruction * env_holder,HInstruction * instruction)1278   static bool ShouldBeLiveForEnvironment(HInstruction* env_holder, HInstruction* instruction) {
1279     DCHECK(instruction != nullptr);
1280     // A value that's not live in compiled code may still be needed in interpreter,
1281     // due to code motion, etc.
1282     if (env_holder->IsDeoptimize()) return true;
1283     // A value live at a throwing instruction in a try block may be copied by
1284     // the exception handler to its location at the top of the catch block.
1285     if (env_holder->CanThrowIntoCatchBlock()) return true;
1286     HGraph* graph = instruction->GetBlock()->GetGraph();
1287     if (graph->IsDebuggable()) return true;
1288     // When compiling in OSR mode, all loops in the compiled method may be entered
1289     // from the interpreter via SuspendCheck; thus we need to preserve the environment.
1290     if (env_holder->IsSuspendCheck() && graph->IsCompilingOsr()) return true;
1291     if (graph -> IsDeadReferenceSafe()) return false;
1292     return instruction->GetType() == DataType::Type::kReference;
1293   }
1294 
CheckNoLiveInIrreducibleLoop(const HBasicBlock & block)1295   void CheckNoLiveInIrreducibleLoop(const HBasicBlock& block) const {
1296     if (!block.IsLoopHeader() || !block.GetLoopInformation()->IsIrreducible()) {
1297       return;
1298     }
1299     BitVector* live_in = GetLiveInSet(block);
1300     // To satisfy our liveness algorithm, we need to ensure loop headers of
1301     // irreducible loops do not have any live-in instructions, except constants
1302     // and the current method, which can be trivially re-materialized.
1303     for (uint32_t idx : live_in->Indexes()) {
1304       HInstruction* instruction = GetInstructionFromSsaIndex(idx);
1305       DCHECK(instruction->GetBlock()->IsEntryBlock()) << instruction->DebugName();
1306       DCHECK(!instruction->IsParameterValue());
1307       DCHECK(instruction->IsCurrentMethod() || instruction->IsConstant())
1308           << instruction->DebugName();
1309     }
1310   }
1311 
1312   HGraph* const graph_;
1313   CodeGenerator* const codegen_;
1314 
1315   // Use a local ScopedArenaAllocator for allocating memory.
1316   // This allocator must remain alive while doing register allocation.
1317   ScopedArenaAllocator* const allocator_;
1318 
1319   ScopedArenaVector<BlockInfo*> block_infos_;
1320 
1321   // Temporary array used when computing live_in, live_out, and kill sets.
1322   ScopedArenaVector<HInstruction*> instructions_from_ssa_index_;
1323 
1324   // Temporary array used when inserting moves in the graph.
1325   ScopedArenaVector<HInstruction*> instructions_from_lifetime_position_;
1326   size_t number_of_ssa_values_;
1327 
1328   ART_FRIEND_TEST(RegisterAllocatorTest, SpillInactive);
1329   ART_FRIEND_TEST(RegisterAllocatorTest, FreeUntil);
1330 
1331   DISALLOW_COPY_AND_ASSIGN(SsaLivenessAnalysis);
1332 };
1333 
1334 }  // namespace art
1335 
1336 #endif  // ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
1337