1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/threading/thread_local_storage.h"
6
7 #include "base/atomicops.h"
8 #include "base/logging.h"
9 #include "base/synchronization/lock.h"
10 #include "build/build_config.h"
11
12 using base::internal::PlatformThreadLocalStorage;
13
14 // Chrome Thread Local Storage (TLS)
15 //
16 // This TLS system allows Chrome to use a single OS level TLS slot process-wide,
17 // and allows us to control the slot limits instead of being at the mercy of the
18 // platform. To do this, Chrome TLS replicates an array commonly found in the OS
19 // thread metadata.
20 //
21 // Overview:
22 //
23 // OS TLS Slots Per-Thread Per-Process Global
24 // ...
25 // [] Chrome TLS Array Chrome TLS Metadata
26 // [] ----------> [][][][][ ][][][][] [][][][][ ][][][][]
27 // [] | |
28 // ... V V
29 // Metadata Version Slot Information
30 // Your Data!
31 //
32 // Using a single OS TLS slot, Chrome TLS allocates an array on demand for the
33 // lifetime of each thread that requests Chrome TLS data. Each per-thread TLS
34 // array matches the length of the per-process global metadata array.
35 //
36 // A per-process global TLS metadata array tracks information about each item in
37 // the per-thread array:
38 // * Status: Tracks if the slot is allocated or free to assign.
39 // * Destructor: An optional destructor to call on thread destruction for that
40 // specific slot.
41 // * Version: Tracks the current version of the TLS slot. Each TLS slot
42 // allocation is associated with a unique version number.
43 //
44 // Most OS TLS APIs guarantee that a newly allocated TLS slot is
45 // initialized to 0 for all threads. The Chrome TLS system provides
46 // this guarantee by tracking the version for each TLS slot here
47 // on each per-thread Chrome TLS array entry. Threads that access
48 // a slot with a mismatched version will receive 0 as their value.
49 // The metadata version is incremented when the client frees a
50 // slot. The per-thread metadata version is updated when a client
51 // writes to the slot. This scheme allows for constant time
52 // invalidation and avoids the need to iterate through each Chrome
53 // TLS array to mark the slot as zero.
54 //
55 // Just like an OS TLS API, clients of the Chrome TLS are responsible for
56 // managing any necessary lifetime of the data in their slots. The only
57 // convenience provided is automatic destruction when a thread ends. If a client
58 // frees a slot, that client is responsible for destroying the data in the slot.
59
60 namespace {
61 // In order to make TLS destructors work, we need to keep around a function
62 // pointer to the destructor for each slot. We keep this array of pointers in a
63 // global (static) array.
64 // We use the single OS-level TLS slot (giving us one pointer per thread) to
65 // hold a pointer to a per-thread array (table) of slots that we allocate to
66 // Chromium consumers.
67
68 // g_native_tls_key is the one native TLS that we use. It stores our table.
69 base::subtle::Atomic32 g_native_tls_key =
70 PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES;
71
72 // The OS TLS slot has three states:
73 // * kUninitialized: Any call to Slot::Get()/Set() will create the base
74 // per-thread TLS state. On POSIX, kUninitialized must be 0.
75 // * [Memory Address]: Raw pointer to the base per-thread TLS state.
76 // * kDestroyed: The base per-thread TLS state has been freed.
77 //
78 // Final States:
79 // * Windows: kDestroyed. Windows does not iterate through the OS TLS to clean
80 // up the values.
81 // * POSIX: kUninitialized. POSIX iterates through TLS until all slots contain
82 // nullptr.
83 //
84 // More details on this design:
85 // We need some type of thread-local state to indicate that the TLS system has
86 // been destroyed. To do so, we leverage the multi-pass nature of destruction
87 // of pthread_key.
88 //
89 // a) After destruction of TLS system, we set the pthread_key to a sentinel
90 // kDestroyed.
91 // b) All calls to Slot::Get() DCHECK that the state is not kDestroyed, and
92 // any system which might potentially invoke Slot::Get() after destruction
93 // of TLS must check ThreadLocalStorage::ThreadIsBeingDestroyed().
94 // c) After a full pass of the pthread_keys, on the next invocation of
95 // ConstructTlsVector(), we'll then set the key to nullptr.
96 // d) At this stage, the TLS system is back in its uninitialized state.
97 // e) If in the second pass of destruction of pthread_keys something were to
98 // re-initialize TLS [this should never happen! Since the only code which
99 // uses Chrome TLS is Chrome controlled, we should really be striving for
100 // single-pass destruction], then TLS will be re-initialized and then go
101 // through the 2-pass destruction system again. Everything should just
102 // work (TM).
103
104 // The consumers of kUninitialized and kDestroyed expect void*, since that's
105 // what the API exposes on both POSIX and Windows.
106 void* const kUninitialized = nullptr;
107
108 // A sentinel value to indicate that the TLS system has been destroyed.
109 void* const kDestroyed = reinterpret_cast<void*>(1);
110
111 // The maximum number of slots in our thread local storage stack.
112 constexpr int kThreadLocalStorageSize = 256;
113
114 enum TlsStatus {
115 FREE,
116 IN_USE,
117 };
118
119 struct TlsMetadata {
120 TlsStatus status;
121 base::ThreadLocalStorage::TLSDestructorFunc destructor;
122 uint32_t version;
123 };
124
125 struct TlsVectorEntry {
126 void* data;
127 uint32_t version;
128 };
129
130 // This lock isn't needed until after we've constructed the per-thread TLS
131 // vector, so it's safe to use.
GetTLSMetadataLock()132 base::Lock* GetTLSMetadataLock() {
133 static auto* lock = new base::Lock();
134 return lock;
135 }
136 TlsMetadata g_tls_metadata[kThreadLocalStorageSize];
137 size_t g_last_assigned_slot = 0;
138
139 // The maximum number of times to try to clear slots by calling destructors.
140 // Use pthread naming convention for clarity.
141 constexpr int kMaxDestructorIterations = kThreadLocalStorageSize;
142
143 // This function is called to initialize our entire Chromium TLS system.
144 // It may be called very early, and we need to complete most all of the setup
145 // (initialization) before calling *any* memory allocator functions, which may
146 // recursively depend on this initialization.
147 // As a result, we use Atomics, and avoid anything (like a singleton) that might
148 // require memory allocations.
ConstructTlsVector()149 TlsVectorEntry* ConstructTlsVector() {
150 PlatformThreadLocalStorage::TLSKey key =
151 base::subtle::NoBarrier_Load(&g_native_tls_key);
152 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
153 CHECK(PlatformThreadLocalStorage::AllocTLS(&key));
154
155 // The TLS_KEY_OUT_OF_INDEXES is used to find out whether the key is set or
156 // not in NoBarrier_CompareAndSwap, but Posix doesn't have invalid key, we
157 // define an almost impossible value be it.
158 // If we really get TLS_KEY_OUT_OF_INDEXES as value of key, just alloc
159 // another TLS slot.
160 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
161 PlatformThreadLocalStorage::TLSKey tmp = key;
162 CHECK(PlatformThreadLocalStorage::AllocTLS(&key) &&
163 key != PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES);
164 PlatformThreadLocalStorage::FreeTLS(tmp);
165 }
166 // Atomically test-and-set the tls_key. If the key is
167 // TLS_KEY_OUT_OF_INDEXES, go ahead and set it. Otherwise, do nothing, as
168 // another thread already did our dirty work.
169 if (PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES !=
170 static_cast<PlatformThreadLocalStorage::TLSKey>(
171 base::subtle::NoBarrier_CompareAndSwap(
172 &g_native_tls_key,
173 PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES, key))) {
174 // We've been shortcut. Another thread replaced g_native_tls_key first so
175 // we need to destroy our index and use the one the other thread got
176 // first.
177 PlatformThreadLocalStorage::FreeTLS(key);
178 key = base::subtle::NoBarrier_Load(&g_native_tls_key);
179 }
180 }
181 CHECK_EQ(PlatformThreadLocalStorage::GetTLSValue(key), kUninitialized);
182
183 // Some allocators, such as TCMalloc, make use of thread local storage. As a
184 // result, any attempt to call new (or malloc) will lazily cause such a system
185 // to initialize, which will include registering for a TLS key. If we are not
186 // careful here, then that request to create a key will call new back, and
187 // we'll have an infinite loop. We avoid that as follows: Use a stack
188 // allocated vector, so that we don't have dependence on our allocator until
189 // our service is in place. (i.e., don't even call new until after we're
190 // setup)
191 TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
192 memset(stack_allocated_tls_data, 0, sizeof(stack_allocated_tls_data));
193 // Ensure that any rentrant calls change the temp version.
194 PlatformThreadLocalStorage::SetTLSValue(key, stack_allocated_tls_data);
195
196 // Allocate an array to store our data.
197 TlsVectorEntry* tls_data = new TlsVectorEntry[kThreadLocalStorageSize];
198 memcpy(tls_data, stack_allocated_tls_data, sizeof(stack_allocated_tls_data));
199 PlatformThreadLocalStorage::SetTLSValue(key, tls_data);
200 return tls_data;
201 }
202
OnThreadExitInternal(TlsVectorEntry * tls_data)203 void OnThreadExitInternal(TlsVectorEntry* tls_data) {
204 // This branch is for POSIX, where this function is called twice. The first
205 // pass calls dtors and sets state to kDestroyed. The second pass sets
206 // kDestroyed to kUninitialized.
207 if (tls_data == kDestroyed) {
208 PlatformThreadLocalStorage::TLSKey key =
209 base::subtle::NoBarrier_Load(&g_native_tls_key);
210 PlatformThreadLocalStorage::SetTLSValue(key, kUninitialized);
211 return;
212 }
213
214 DCHECK(tls_data);
215 // Some allocators, such as TCMalloc, use TLS. As a result, when a thread
216 // terminates, one of the destructor calls we make may be to shut down an
217 // allocator. We have to be careful that after we've shutdown all of the known
218 // destructors (perchance including an allocator), that we don't call the
219 // allocator and cause it to resurrect itself (with no possibly destructor
220 // call to follow). We handle this problem as follows: Switch to using a stack
221 // allocated vector, so that we don't have dependence on our allocator after
222 // we have called all g_tls_metadata destructors. (i.e., don't even call
223 // delete[] after we're done with destructors.)
224 TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
225 memcpy(stack_allocated_tls_data, tls_data, sizeof(stack_allocated_tls_data));
226 // Ensure that any re-entrant calls change the temp version.
227 PlatformThreadLocalStorage::TLSKey key =
228 base::subtle::NoBarrier_Load(&g_native_tls_key);
229 PlatformThreadLocalStorage::SetTLSValue(key, stack_allocated_tls_data);
230 delete[] tls_data; // Our last dependence on an allocator.
231
232 // Snapshot the TLS Metadata so we don't have to lock on every access.
233 TlsMetadata tls_metadata[kThreadLocalStorageSize];
234 {
235 base::AutoLock auto_lock(*GetTLSMetadataLock());
236 memcpy(tls_metadata, g_tls_metadata, sizeof(g_tls_metadata));
237 }
238
239 int remaining_attempts = kMaxDestructorIterations;
240 bool need_to_scan_destructors = true;
241 while (need_to_scan_destructors) {
242 need_to_scan_destructors = false;
243 // Try to destroy the first-created-slot (which is slot 1) in our last
244 // destructor call. That user was able to function, and define a slot with
245 // no other services running, so perhaps it is a basic service (like an
246 // allocator) and should also be destroyed last. If we get the order wrong,
247 // then we'll iterate several more times, so it is really not that critical
248 // (but it might help).
249 for (int slot = 0; slot < kThreadLocalStorageSize ; ++slot) {
250 void* tls_value = stack_allocated_tls_data[slot].data;
251 if (!tls_value || tls_metadata[slot].status == TlsStatus::FREE ||
252 stack_allocated_tls_data[slot].version != tls_metadata[slot].version)
253 continue;
254
255 base::ThreadLocalStorage::TLSDestructorFunc destructor =
256 tls_metadata[slot].destructor;
257 if (!destructor)
258 continue;
259 stack_allocated_tls_data[slot].data = nullptr; // pre-clear the slot.
260 destructor(tls_value);
261 // Any destructor might have called a different service, which then set a
262 // different slot to a non-null value. Hence we need to check the whole
263 // vector again. This is a pthread standard.
264 need_to_scan_destructors = true;
265 }
266 if (--remaining_attempts <= 0) {
267 NOTREACHED(); // Destructors might not have been called.
268 break;
269 }
270 }
271
272 // Remove our stack allocated vector.
273 PlatformThreadLocalStorage::SetTLSValue(key, kDestroyed);
274 }
275
276 } // namespace
277
278 namespace base {
279
280 namespace internal {
281
282 #if defined(OS_WIN)
OnThreadExit()283 void PlatformThreadLocalStorage::OnThreadExit() {
284 PlatformThreadLocalStorage::TLSKey key =
285 base::subtle::NoBarrier_Load(&g_native_tls_key);
286 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
287 return;
288 void *tls_data = GetTLSValue(key);
289
290 // On Windows, thread destruction callbacks are only invoked once per module,
291 // so there should be no way that this could be invoked twice.
292 DCHECK_NE(tls_data, kDestroyed);
293
294 // Maybe we have never initialized TLS for this thread.
295 if (tls_data == kUninitialized)
296 return;
297 OnThreadExitInternal(static_cast<TlsVectorEntry*>(tls_data));
298 }
299 #elif defined(OS_POSIX) || defined(OS_FUCHSIA)
300 void PlatformThreadLocalStorage::OnThreadExit(void* value) {
301 OnThreadExitInternal(static_cast<TlsVectorEntry*>(value));
302 }
303
304 // static
305 void PlatformThreadLocalStorage::ForceFreeTLS() {
306 PlatformThreadLocalStorage::TLSKey key =
307 base::subtle::NoBarrier_AtomicExchange(
308 &g_native_tls_key,
309 PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES);
310 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
311 return;
312 PlatformThreadLocalStorage::FreeTLS(key);
313 }
314 #endif // defined(OS_WIN)
315
316 } // namespace internal
317
HasBeenDestroyed()318 bool ThreadLocalStorage::HasBeenDestroyed() {
319 PlatformThreadLocalStorage::TLSKey key =
320 base::subtle::NoBarrier_Load(&g_native_tls_key);
321 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
322 return false;
323 return PlatformThreadLocalStorage::GetTLSValue(key) == kDestroyed;
324 }
325
Initialize(TLSDestructorFunc destructor)326 void ThreadLocalStorage::Slot::Initialize(TLSDestructorFunc destructor) {
327 PlatformThreadLocalStorage::TLSKey key =
328 base::subtle::NoBarrier_Load(&g_native_tls_key);
329 if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES ||
330 PlatformThreadLocalStorage::GetTLSValue(key) == kUninitialized) {
331 ConstructTlsVector();
332 }
333
334 // Grab a new slot.
335 {
336 base::AutoLock auto_lock(*GetTLSMetadataLock());
337 for (int i = 0; i < kThreadLocalStorageSize; ++i) {
338 // Tracking the last assigned slot is an attempt to find the next
339 // available slot within one iteration. Under normal usage, slots remain
340 // in use for the lifetime of the process (otherwise before we reclaimed
341 // slots, we would have run out of slots). This makes it highly likely the
342 // next slot is going to be a free slot.
343 size_t slot_candidate =
344 (g_last_assigned_slot + 1 + i) % kThreadLocalStorageSize;
345 if (g_tls_metadata[slot_candidate].status == TlsStatus::FREE) {
346 g_tls_metadata[slot_candidate].status = TlsStatus::IN_USE;
347 g_tls_metadata[slot_candidate].destructor = destructor;
348 g_last_assigned_slot = slot_candidate;
349 DCHECK_EQ(kInvalidSlotValue, slot_);
350 slot_ = slot_candidate;
351 version_ = g_tls_metadata[slot_candidate].version;
352 break;
353 }
354 }
355 }
356 CHECK_NE(slot_, kInvalidSlotValue);
357 CHECK_LT(slot_, kThreadLocalStorageSize);
358 }
359
Free()360 void ThreadLocalStorage::Slot::Free() {
361 DCHECK_NE(slot_, kInvalidSlotValue);
362 DCHECK_LT(slot_, kThreadLocalStorageSize);
363 {
364 base::AutoLock auto_lock(*GetTLSMetadataLock());
365 g_tls_metadata[slot_].status = TlsStatus::FREE;
366 g_tls_metadata[slot_].destructor = nullptr;
367 ++(g_tls_metadata[slot_].version);
368 }
369 slot_ = kInvalidSlotValue;
370 }
371
Get() const372 void* ThreadLocalStorage::Slot::Get() const {
373 TlsVectorEntry* tls_data = static_cast<TlsVectorEntry*>(
374 PlatformThreadLocalStorage::GetTLSValue(
375 base::subtle::NoBarrier_Load(&g_native_tls_key)));
376 DCHECK_NE(tls_data, kDestroyed);
377 if (!tls_data)
378 return nullptr;
379 DCHECK_NE(slot_, kInvalidSlotValue);
380 DCHECK_LT(slot_, kThreadLocalStorageSize);
381 // Version mismatches means this slot was previously freed.
382 if (tls_data[slot_].version != version_)
383 return nullptr;
384 return tls_data[slot_].data;
385 }
386
Set(void * value)387 void ThreadLocalStorage::Slot::Set(void* value) {
388 TlsVectorEntry* tls_data = static_cast<TlsVectorEntry*>(
389 PlatformThreadLocalStorage::GetTLSValue(
390 base::subtle::NoBarrier_Load(&g_native_tls_key)));
391 DCHECK_NE(tls_data, kDestroyed);
392 if (!tls_data)
393 tls_data = ConstructTlsVector();
394 DCHECK_NE(slot_, kInvalidSlotValue);
395 DCHECK_LT(slot_, kThreadLocalStorageSize);
396 tls_data[slot_].data = value;
397 tls_data[slot_].version = version_;
398 }
399
Slot(TLSDestructorFunc destructor)400 ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) {
401 Initialize(destructor);
402 }
403
~Slot()404 ThreadLocalStorage::Slot::~Slot() {
405 Free();
406 }
407
408 } // namespace base
409