• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 
24 namespace llvm {
25 
26 namespace X86 {
27   // Enums for memory operand decoding.  Each memory operand is represented with
28   // a 5 operand sequence in the form:
29   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30   // These enums help decode this.
31   enum {
32     AddrBaseReg = 0,
33     AddrScaleAmt = 1,
34     AddrIndexReg = 2,
35     AddrDisp = 3,
36 
37     /// AddrSegmentReg - The operand # of the segment in the memory operand.
38     AddrSegmentReg = 4,
39 
40     /// AddrNumOperands - Total number of operands in a memory reference.
41     AddrNumOperands = 5
42   };
43 
44   /// AVX512 static rounding constants.  These need to match the values in
45   /// avx512fintrin.h.
46   enum STATIC_ROUNDING {
47     TO_NEAREST_INT = 0,
48     TO_NEG_INF = 1,
49     TO_POS_INF = 2,
50     TO_ZERO = 3,
51     CUR_DIRECTION = 4,
52     NO_EXC = 8
53   };
54 
55   /// The constants to describe instr prefixes if there are
56   enum IPREFIXES {
57     IP_NO_PREFIX = 0,
58     IP_HAS_OP_SIZE =   1U << 0,
59     IP_HAS_AD_SIZE =   1U << 1,
60     IP_HAS_REPEAT_NE = 1U << 2,
61     IP_HAS_REPEAT =    1U << 3,
62     IP_HAS_LOCK =      1U << 4,
63     IP_HAS_NOTRACK =   1U << 5,
64     IP_USE_VEX =       1U << 6,
65     IP_USE_VEX2 =      1U << 7,
66     IP_USE_VEX3 =      1U << 8,
67     IP_USE_EVEX =      1U << 9,
68     IP_USE_DISP8 =     1U << 10,
69     IP_USE_DISP32 =    1U << 11,
70   };
71 
72   enum OperandType : unsigned {
73     /// AVX512 embedded rounding control. This should only have values 0-3.
74     OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
75     OPERAND_COND_CODE,
76   };
77 
78   // X86 specific condition code. These correspond to X86_*_COND in
79   // X86InstrInfo.td. They must be kept in synch.
80   enum CondCode {
81     COND_O = 0,
82     COND_NO = 1,
83     COND_B = 2,
84     COND_AE = 3,
85     COND_E = 4,
86     COND_NE = 5,
87     COND_BE = 6,
88     COND_A = 7,
89     COND_S = 8,
90     COND_NS = 9,
91     COND_P = 10,
92     COND_NP = 11,
93     COND_L = 12,
94     COND_GE = 13,
95     COND_LE = 14,
96     COND_G = 15,
97     LAST_VALID_COND = COND_G,
98 
99     // Artificial condition codes. These are used by analyzeBranch
100     // to indicate a block terminated with two conditional branches that together
101     // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
102     // which can't be represented on x86 with a single condition. These
103     // are never used in MachineInstrs and are inverses of one another.
104     COND_NE_OR_P,
105     COND_E_AND_NP,
106 
107     COND_INVALID
108   };
109 
110   // The classification for the first instruction in macro fusion.
111   enum class FirstMacroFusionInstKind {
112     // TEST
113     Test,
114     // CMP
115     Cmp,
116     // AND
117     And,
118     // ADD, SUB
119     AddSub,
120     // INC, DEC
121     IncDec,
122     // Not valid as a first macro fusion instruction
123     Invalid
124   };
125 
126   enum class SecondMacroFusionInstKind {
127     // JA, JB and variants.
128     AB,
129     // JE, JL, JG and variants.
130     ELG,
131     // JS, JP, JO and variants
132     SPO,
133     // Not a fusible jump.
134     Invalid,
135   };
136 
137   /// \returns the type of the first instruction in macro-fusion.
138   inline FirstMacroFusionInstKind
classifyFirstOpcodeInMacroFusion(unsigned Opcode)139   classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
140     switch (Opcode) {
141     default:
142       return FirstMacroFusionInstKind::Invalid;
143     // TEST
144     case X86::TEST16i16:
145     case X86::TEST16mr:
146     case X86::TEST16ri:
147     case X86::TEST16rr:
148     case X86::TEST32i32:
149     case X86::TEST32mr:
150     case X86::TEST32ri:
151     case X86::TEST32rr:
152     case X86::TEST64i32:
153     case X86::TEST64mr:
154     case X86::TEST64ri32:
155     case X86::TEST64rr:
156     case X86::TEST8i8:
157     case X86::TEST8mr:
158     case X86::TEST8ri:
159     case X86::TEST8rr:
160       return FirstMacroFusionInstKind::Test;
161     case X86::AND16i16:
162     case X86::AND16ri:
163     case X86::AND16ri8:
164     case X86::AND16rm:
165     case X86::AND16rr:
166     case X86::AND16rr_REV:
167     case X86::AND32i32:
168     case X86::AND32ri:
169     case X86::AND32ri8:
170     case X86::AND32rm:
171     case X86::AND32rr:
172     case X86::AND32rr_REV:
173     case X86::AND64i32:
174     case X86::AND64ri32:
175     case X86::AND64ri8:
176     case X86::AND64rm:
177     case X86::AND64rr:
178     case X86::AND64rr_REV:
179     case X86::AND8i8:
180     case X86::AND8ri:
181     case X86::AND8ri8:
182     case X86::AND8rm:
183     case X86::AND8rr:
184     case X86::AND8rr_REV:
185       return FirstMacroFusionInstKind::And;
186     // CMP
187     case X86::CMP16i16:
188     case X86::CMP16mr:
189     case X86::CMP16ri:
190     case X86::CMP16ri8:
191     case X86::CMP16rm:
192     case X86::CMP16rr:
193     case X86::CMP16rr_REV:
194     case X86::CMP32i32:
195     case X86::CMP32mr:
196     case X86::CMP32ri:
197     case X86::CMP32ri8:
198     case X86::CMP32rm:
199     case X86::CMP32rr:
200     case X86::CMP32rr_REV:
201     case X86::CMP64i32:
202     case X86::CMP64mr:
203     case X86::CMP64ri32:
204     case X86::CMP64ri8:
205     case X86::CMP64rm:
206     case X86::CMP64rr:
207     case X86::CMP64rr_REV:
208     case X86::CMP8i8:
209     case X86::CMP8mr:
210     case X86::CMP8ri:
211     case X86::CMP8ri8:
212     case X86::CMP8rm:
213     case X86::CMP8rr:
214     case X86::CMP8rr_REV:
215       return FirstMacroFusionInstKind::Cmp;
216     // ADD
217     case X86::ADD16i16:
218     case X86::ADD16ri:
219     case X86::ADD16ri8:
220     case X86::ADD16rm:
221     case X86::ADD16rr:
222     case X86::ADD16rr_REV:
223     case X86::ADD32i32:
224     case X86::ADD32ri:
225     case X86::ADD32ri8:
226     case X86::ADD32rm:
227     case X86::ADD32rr:
228     case X86::ADD32rr_REV:
229     case X86::ADD64i32:
230     case X86::ADD64ri32:
231     case X86::ADD64ri8:
232     case X86::ADD64rm:
233     case X86::ADD64rr:
234     case X86::ADD64rr_REV:
235     case X86::ADD8i8:
236     case X86::ADD8ri:
237     case X86::ADD8ri8:
238     case X86::ADD8rm:
239     case X86::ADD8rr:
240     case X86::ADD8rr_REV:
241     // SUB
242     case X86::SUB16i16:
243     case X86::SUB16ri:
244     case X86::SUB16ri8:
245     case X86::SUB16rm:
246     case X86::SUB16rr:
247     case X86::SUB16rr_REV:
248     case X86::SUB32i32:
249     case X86::SUB32ri:
250     case X86::SUB32ri8:
251     case X86::SUB32rm:
252     case X86::SUB32rr:
253     case X86::SUB32rr_REV:
254     case X86::SUB64i32:
255     case X86::SUB64ri32:
256     case X86::SUB64ri8:
257     case X86::SUB64rm:
258     case X86::SUB64rr:
259     case X86::SUB64rr_REV:
260     case X86::SUB8i8:
261     case X86::SUB8ri:
262     case X86::SUB8ri8:
263     case X86::SUB8rm:
264     case X86::SUB8rr:
265     case X86::SUB8rr_REV:
266       return FirstMacroFusionInstKind::AddSub;
267     // INC
268     case X86::INC16r:
269     case X86::INC16r_alt:
270     case X86::INC32r:
271     case X86::INC32r_alt:
272     case X86::INC64r:
273     case X86::INC8r:
274     // DEC
275     case X86::DEC16r:
276     case X86::DEC16r_alt:
277     case X86::DEC32r:
278     case X86::DEC32r_alt:
279     case X86::DEC64r:
280     case X86::DEC8r:
281       return FirstMacroFusionInstKind::IncDec;
282     }
283   }
284 
285   /// \returns the type of the second instruction in macro-fusion.
286   inline SecondMacroFusionInstKind
classifySecondCondCodeInMacroFusion(X86::CondCode CC)287   classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
288     if (CC == X86::COND_INVALID)
289       return SecondMacroFusionInstKind::Invalid;
290 
291     switch (CC) {
292     default:
293       return SecondMacroFusionInstKind::Invalid;
294     // JE,JZ
295     case X86::COND_E:
296     // JNE,JNZ
297     case X86::COND_NE:
298     // JL,JNGE
299     case X86::COND_L:
300     // JLE,JNG
301     case X86::COND_LE:
302     // JG,JNLE
303     case X86::COND_G:
304     // JGE,JNL
305     case X86::COND_GE:
306       return SecondMacroFusionInstKind::ELG;
307     // JB,JC
308     case X86::COND_B:
309     // JNA,JBE
310     case X86::COND_BE:
311     // JA,JNBE
312     case X86::COND_A:
313     // JAE,JNC,JNB
314     case X86::COND_AE:
315       return SecondMacroFusionInstKind::AB;
316     // JS
317     case X86::COND_S:
318     // JNS
319     case X86::COND_NS:
320     // JP,JPE
321     case X86::COND_P:
322     // JNP,JPO
323     case X86::COND_NP:
324     // JO
325     case X86::COND_O:
326     // JNO
327     case X86::COND_NO:
328       return SecondMacroFusionInstKind::SPO;
329     }
330   }
331 
332   /// \param FirstKind kind of the first instruction in macro fusion.
333   /// \param SecondKind kind of the second instruction in macro fusion.
334   ///
335   /// \returns true if the two instruction can be macro fused.
isMacroFused(FirstMacroFusionInstKind FirstKind,SecondMacroFusionInstKind SecondKind)336   inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
337                            SecondMacroFusionInstKind SecondKind) {
338     switch (FirstKind) {
339     case X86::FirstMacroFusionInstKind::Test:
340     case X86::FirstMacroFusionInstKind::And:
341       return true;
342     case X86::FirstMacroFusionInstKind::Cmp:
343     case X86::FirstMacroFusionInstKind::AddSub:
344       return SecondKind == X86::SecondMacroFusionInstKind::AB ||
345              SecondKind == X86::SecondMacroFusionInstKind::ELG;
346     case X86::FirstMacroFusionInstKind::IncDec:
347       return SecondKind == X86::SecondMacroFusionInstKind::ELG;
348     case X86::FirstMacroFusionInstKind::Invalid:
349       return false;
350     }
351     llvm_unreachable("unknown fusion type");
352   }
353 
354   /// Defines the possible values of the branch boundary alignment mask.
355   enum AlignBranchBoundaryKind : uint8_t {
356     AlignBranchNone = 0,
357     AlignBranchFused = 1U << 0,
358     AlignBranchJcc = 1U << 1,
359     AlignBranchJmp = 1U << 2,
360     AlignBranchCall = 1U << 3,
361     AlignBranchRet = 1U << 4,
362     AlignBranchIndirect = 1U << 5
363   };
364 
365   /// Defines the encoding values for segment override prefix.
366   enum EncodingOfSegmentOverridePrefix : uint8_t {
367     CS_Encoding = 0x2E,
368     DS_Encoding = 0x3E,
369     ES_Encoding = 0x26,
370     FS_Encoding = 0x64,
371     GS_Encoding = 0x65,
372     SS_Encoding = 0x36
373   };
374 
375   /// Given a segment register, return the encoding of the segment override
376   /// prefix for it.
377   inline EncodingOfSegmentOverridePrefix
getSegmentOverridePrefixForReg(unsigned Reg)378   getSegmentOverridePrefixForReg(unsigned Reg) {
379     switch (Reg) {
380     default:
381       llvm_unreachable("Unknown segment register!");
382     case X86::CS:
383       return CS_Encoding;
384     case X86::DS:
385       return DS_Encoding;
386     case X86::ES:
387       return ES_Encoding;
388     case X86::FS:
389       return FS_Encoding;
390     case X86::GS:
391       return GS_Encoding;
392     case X86::SS:
393       return SS_Encoding;
394     }
395   }
396 
397 } // end namespace X86;
398 
399 /// X86II - This namespace holds all of the target specific flags that
400 /// instruction info tracks.
401 ///
402 namespace X86II {
403   /// Target Operand Flag enum.
404   enum TOF {
405     //===------------------------------------------------------------------===//
406     // X86 Specific MachineOperand flags.
407 
408     MO_NO_FLAG,
409 
410     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
411     /// relocation of:
412     ///    SYMBOL_LABEL + [. - PICBASELABEL]
413     MO_GOT_ABSOLUTE_ADDRESS,
414 
415     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
416     /// immediate should get the value of the symbol minus the PIC base label:
417     ///    SYMBOL_LABEL - PICBASELABEL
418     MO_PIC_BASE_OFFSET,
419 
420     /// MO_GOT - On a symbol operand this indicates that the immediate is the
421     /// offset to the GOT entry for the symbol name from the base of the GOT.
422     ///
423     /// See the X86-64 ELF ABI supplement for more details.
424     ///    SYMBOL_LABEL @GOT
425     MO_GOT,
426 
427     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
428     /// the offset to the location of the symbol name from the base of the GOT.
429     ///
430     /// See the X86-64 ELF ABI supplement for more details.
431     ///    SYMBOL_LABEL @GOTOFF
432     MO_GOTOFF,
433 
434     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
435     /// offset to the GOT entry for the symbol name from the current code
436     /// location.
437     ///
438     /// See the X86-64 ELF ABI supplement for more details.
439     ///    SYMBOL_LABEL @GOTPCREL
440     MO_GOTPCREL,
441 
442     /// MO_PLT - On a symbol operand this indicates that the immediate is
443     /// offset to the PLT entry of symbol name from the current code location.
444     ///
445     /// See the X86-64 ELF ABI supplement for more details.
446     ///    SYMBOL_LABEL @PLT
447     MO_PLT,
448 
449     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
450     /// the offset of the GOT entry with the TLS index structure that contains
451     /// the module number and variable offset for the symbol. Used in the
452     /// general dynamic TLS access model.
453     ///
454     /// See 'ELF Handling for Thread-Local Storage' for more details.
455     ///    SYMBOL_LABEL @TLSGD
456     MO_TLSGD,
457 
458     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
459     /// the offset of the GOT entry with the TLS index for the module that
460     /// contains the symbol. When this index is passed to a call to
461     /// __tls_get_addr, the function will return the base address of the TLS
462     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
463     ///
464     /// See 'ELF Handling for Thread-Local Storage' for more details.
465     ///    SYMBOL_LABEL @TLSLD
466     MO_TLSLD,
467 
468     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
469     /// the offset of the GOT entry with the TLS index for the module that
470     /// contains the symbol. When this index is passed to a call to
471     /// ___tls_get_addr, the function will return the base address of the TLS
472     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
473     ///
474     /// See 'ELF Handling for Thread-Local Storage' for more details.
475     ///    SYMBOL_LABEL @TLSLDM
476     MO_TLSLDM,
477 
478     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
479     /// the offset of the GOT entry with the thread-pointer offset for the
480     /// symbol. Used in the x86-64 initial exec TLS access model.
481     ///
482     /// See 'ELF Handling for Thread-Local Storage' for more details.
483     ///    SYMBOL_LABEL @GOTTPOFF
484     MO_GOTTPOFF,
485 
486     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
487     /// the absolute address of the GOT entry with the negative thread-pointer
488     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
489     /// model.
490     ///
491     /// See 'ELF Handling for Thread-Local Storage' for more details.
492     ///    SYMBOL_LABEL @INDNTPOFF
493     MO_INDNTPOFF,
494 
495     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
496     /// the thread-pointer offset for the symbol. Used in the x86-64 local
497     /// exec TLS access model.
498     ///
499     /// See 'ELF Handling for Thread-Local Storage' for more details.
500     ///    SYMBOL_LABEL @TPOFF
501     MO_TPOFF,
502 
503     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
504     /// the offset of the GOT entry with the TLS offset of the symbol. Used
505     /// in the local dynamic TLS access model.
506     ///
507     /// See 'ELF Handling for Thread-Local Storage' for more details.
508     ///    SYMBOL_LABEL @DTPOFF
509     MO_DTPOFF,
510 
511     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
512     /// the negative thread-pointer offset for the symbol. Used in the IA32
513     /// local exec TLS access model.
514     ///
515     /// See 'ELF Handling for Thread-Local Storage' for more details.
516     ///    SYMBOL_LABEL @NTPOFF
517     MO_NTPOFF,
518 
519     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
520     /// the offset of the GOT entry with the negative thread-pointer offset for
521     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
522     ///
523     /// See 'ELF Handling for Thread-Local Storage' for more details.
524     ///    SYMBOL_LABEL @GOTNTPOFF
525     MO_GOTNTPOFF,
526 
527     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
528     /// reference is actually to the "__imp_FOO" symbol.  This is used for
529     /// dllimport linkage on windows.
530     MO_DLLIMPORT,
531 
532     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
533     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
534     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
535     MO_DARWIN_NONLAZY,
536 
537     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
538     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
539     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
540     MO_DARWIN_NONLAZY_PIC_BASE,
541 
542     /// MO_TLVP - On a symbol operand this indicates that the immediate is
543     /// some TLS offset.
544     ///
545     /// This is the TLS offset for the Darwin TLS mechanism.
546     MO_TLVP,
547 
548     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
549     /// is some TLS offset from the picbase.
550     ///
551     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
552     MO_TLVP_PIC_BASE,
553 
554     /// MO_SECREL - On a symbol operand this indicates that the immediate is
555     /// the offset from beginning of section.
556     ///
557     /// This is the TLS offset for the COFF/Windows TLS mechanism.
558     MO_SECREL,
559 
560     /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
561     /// to be an absolute symbol in range [0,128), so we can use the @ABS8
562     /// symbol modifier.
563     MO_ABS8,
564 
565     /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
566     /// reference is actually to the ".refptr.FOO" symbol.  This is used for
567     /// stub symbols on windows.
568     MO_COFFSTUB,
569   };
570 
571   enum : uint64_t {
572     //===------------------------------------------------------------------===//
573     // Instruction encodings.  These are the standard/most common forms for X86
574     // instructions.
575     //
576 
577     // PseudoFrm - This represents an instruction that is a pseudo instruction
578     // or one that has not been implemented yet.  It is illegal to code generate
579     // it, but tolerated for intermediate implementation stages.
580     Pseudo         = 0,
581 
582     /// Raw - This form is for instructions that don't have any operands, so
583     /// they are just a fixed opcode value, like 'leave'.
584     RawFrm         = 1,
585 
586     /// AddRegFrm - This form is used for instructions like 'push r32' that have
587     /// their one register operand added to their opcode.
588     AddRegFrm      = 2,
589 
590     /// RawFrmMemOffs - This form is for instructions that store an absolute
591     /// memory offset as an immediate with a possible segment override.
592     RawFrmMemOffs  = 3,
593 
594     /// RawFrmSrc - This form is for instructions that use the source index
595     /// register SI/ESI/RSI with a possible segment override.
596     RawFrmSrc      = 4,
597 
598     /// RawFrmDst - This form is for instructions that use the destination index
599     /// register DI/EDI/RDI.
600     RawFrmDst      = 5,
601 
602     /// RawFrmDstSrc - This form is for instructions that use the source index
603     /// register SI/ESI/RSI with a possible segment override, and also the
604     /// destination index register DI/EDI/RDI.
605     RawFrmDstSrc   = 6,
606 
607     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
608     /// immediates, the first of which is a 16-bit immediate (specified by
609     /// the imm encoding) and the second is a 8-bit fixed value.
610     RawFrmImm8 = 7,
611 
612     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
613     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
614     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
615     /// manual, this operand is described as pntr16:32 and pntr16:16
616     RawFrmImm16 = 8,
617 
618     /// AddCCFrm - This form is used for Jcc that encode the condition code
619     /// in the lower 4 bits of the opcode.
620     AddCCFrm = 9,
621 
622     /// PrefixByte - This form is used for instructions that represent a prefix
623     /// byte like data16 or rep.
624     PrefixByte = 10,
625 
626     /// MRM[0-7][rm] - These forms are used to represent instructions that use
627     /// a Mod/RM byte, and use the middle field to hold extended opcode
628     /// information.  In the intel manual these are represented as /0, /1, ...
629     ///
630 
631     // Instructions operate on a register Reg/Opcode operand not the r/m field.
632     MRMr0 = 21,
633 
634     /// MRMSrcMem - But force to use the SIB field.
635     MRMSrcMemFSIB  = 22,
636 
637     /// MRMDestMem - But force to use the SIB field.
638     MRMDestMemFSIB = 23,
639 
640     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
641     /// to specify a destination, which in this case is memory.
642     ///
643     MRMDestMem     = 24,
644 
645     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
646     /// to specify a source, which in this case is memory.
647     ///
648     MRMSrcMem      = 25,
649 
650     /// MRMSrcMem4VOp3 - This form is used for instructions that encode
651     /// operand 3 with VEX.VVVV and load from memory.
652     ///
653     MRMSrcMem4VOp3 = 26,
654 
655     /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
656     /// byte to specify the fourth source, which in this case is memory.
657     ///
658     MRMSrcMemOp4   = 27,
659 
660     /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
661     /// byte to specify the operands and also encodes a condition code.
662     ///
663     MRMSrcMemCC    = 28,
664 
665     /// MRMXm - This form is used for instructions that use the Mod/RM byte
666     /// to specify a memory source, but doesn't use the middle field. And has
667     /// a condition code.
668     ///
669     MRMXmCC = 30,
670 
671     /// MRMXm - This form is used for instructions that use the Mod/RM byte
672     /// to specify a memory source, but doesn't use the middle field.
673     ///
674     MRMXm = 31,
675 
676     // Next, instructions that operate on a memory r/m operand...
677     MRM0m = 32,  MRM1m = 33,  MRM2m = 34,  MRM3m = 35, // Format /0 /1 /2 /3
678     MRM4m = 36,  MRM5m = 37,  MRM6m = 38,  MRM7m = 39, // Format /4 /5 /6 /7
679 
680     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
681     /// to specify a destination, which in this case is a register.
682     ///
683     MRMDestReg     = 40,
684 
685     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
686     /// to specify a source, which in this case is a register.
687     ///
688     MRMSrcReg      = 41,
689 
690     /// MRMSrcReg4VOp3 - This form is used for instructions that encode
691     /// operand 3 with VEX.VVVV and do not load from memory.
692     ///
693     MRMSrcReg4VOp3 = 42,
694 
695     /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
696     /// byte to specify the fourth source, which in this case is a register.
697     ///
698     MRMSrcRegOp4   = 43,
699 
700     /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
701     /// byte to specify the operands and also encodes a condition code
702     ///
703     MRMSrcRegCC    = 44,
704 
705     /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
706     /// to specify a register source, but doesn't use the middle field. And has
707     /// a condition code.
708     ///
709     MRMXrCC = 46,
710 
711     /// MRMXr - This form is used for instructions that use the Mod/RM byte
712     /// to specify a register source, but doesn't use the middle field.
713     ///
714     MRMXr = 47,
715 
716     // Instructions that operate on a register r/m operand...
717     MRM0r = 48,  MRM1r = 49,  MRM2r = 50,  MRM3r = 51, // Format /0 /1 /2 /3
718     MRM4r = 52,  MRM5r = 53,  MRM6r = 54,  MRM7r = 55, // Format /4 /5 /6 /7
719 
720     // Instructions that operate that have mod=11 and an opcode but ignore r/m.
721     MRM0X = 56,  MRM1X = 57,  MRM2X = 58,  MRM3X = 59, // Format /0 /1 /2 /3
722     MRM4X = 60,  MRM5X = 61,  MRM6X = 62,  MRM7X = 63, // Format /4 /5 /6 /7
723 
724     /// MRM_XX - A mod/rm byte of exactly 0xXX.
725     MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
726     MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
727     MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
728     MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
729     MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
730     MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
731     MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
732     MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
733     MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
734     MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
735     MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
736     MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
737     MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
738     MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
739     MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
740     MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
741 
742     FormMask       = 127,
743 
744     //===------------------------------------------------------------------===//
745     // Actual flags...
746 
747     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
748     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
749     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
750     // prefix in 16-bit mode.
751     OpSizeShift = 7,
752     OpSizeMask = 0x3 << OpSizeShift,
753 
754     OpSizeFixed  = 0 << OpSizeShift,
755     OpSize16     = 1 << OpSizeShift,
756     OpSize32     = 2 << OpSizeShift,
757 
758     // AsSize - AdSizeX implies this instruction determines its need of 0x67
759     // prefix from a normal ModRM memory operand. The other types indicate that
760     // an operand is encoded with a specific width and a prefix is needed if
761     // it differs from the current mode.
762     AdSizeShift = OpSizeShift + 2,
763     AdSizeMask  = 0x3 << AdSizeShift,
764 
765     AdSizeX  = 0 << AdSizeShift,
766     AdSize16 = 1 << AdSizeShift,
767     AdSize32 = 2 << AdSizeShift,
768     AdSize64 = 3 << AdSizeShift,
769 
770     //===------------------------------------------------------------------===//
771     // OpPrefix - There are several prefix bytes that are used as opcode
772     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
773     // no prefix.
774     //
775     OpPrefixShift = AdSizeShift + 2,
776     OpPrefixMask  = 0x3 << OpPrefixShift,
777 
778     // PD - Prefix code for packed double precision vector floating point
779     // operations performed in the SSE registers.
780     PD = 1 << OpPrefixShift,
781 
782     // XS, XD - These prefix codes are for single and double precision scalar
783     // floating point operations performed in the SSE registers.
784     XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
785 
786     //===------------------------------------------------------------------===//
787     // OpMap - This field determines which opcode map this instruction
788     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
789     //
790     OpMapShift = OpPrefixShift + 2,
791     OpMapMask  = 0x7 << OpMapShift,
792 
793     // OB - OneByte - Set if this instruction has a one byte opcode.
794     OB = 0 << OpMapShift,
795 
796     // TB - TwoByte - Set if this instruction has a two byte opcode, which
797     // starts with a 0x0F byte before the real opcode.
798     TB = 1 << OpMapShift,
799 
800     // T8, TA - Prefix after the 0x0F prefix.
801     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
802 
803     // XOP8 - Prefix to include use of imm byte.
804     XOP8 = 4 << OpMapShift,
805 
806     // XOP9 - Prefix to exclude use of imm byte.
807     XOP9 = 5 << OpMapShift,
808 
809     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
810     XOPA = 6 << OpMapShift,
811 
812     /// ThreeDNow - This indicates that the instruction uses the
813     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
814     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
815     /// storing a classifier in the imm8 field.  To simplify our implementation,
816     /// we handle this by storeing the classifier in the opcode field and using
817     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
818     ThreeDNow = 7 << OpMapShift,
819 
820     //===------------------------------------------------------------------===//
821     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
822     // They are used to specify GPRs and SSE registers, 64-bit operand size,
823     // etc. We only cares about REX.W and REX.R bits and only the former is
824     // statically determined.
825     //
826     REXShift    = OpMapShift + 3,
827     REX_W       = 1 << REXShift,
828 
829     //===------------------------------------------------------------------===//
830     // This three-bit field describes the size of an immediate operand.  Zero is
831     // unused so that we can tell if we forgot to set a value.
832     ImmShift = REXShift + 1,
833     ImmMask    = 15 << ImmShift,
834     Imm8       = 1 << ImmShift,
835     Imm8PCRel  = 2 << ImmShift,
836     Imm8Reg    = 3 << ImmShift,
837     Imm16      = 4 << ImmShift,
838     Imm16PCRel = 5 << ImmShift,
839     Imm32      = 6 << ImmShift,
840     Imm32PCRel = 7 << ImmShift,
841     Imm32S     = 8 << ImmShift,
842     Imm64      = 9 << ImmShift,
843 
844     //===------------------------------------------------------------------===//
845     // FP Instruction Classification...  Zero is non-fp instruction.
846 
847     // FPTypeMask - Mask for all of the FP types...
848     FPTypeShift = ImmShift + 4,
849     FPTypeMask  = 7 << FPTypeShift,
850 
851     // NotFP - The default, set for instructions that do not use FP registers.
852     NotFP      = 0 << FPTypeShift,
853 
854     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
855     ZeroArgFP  = 1 << FPTypeShift,
856 
857     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
858     OneArgFP   = 2 << FPTypeShift,
859 
860     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
861     // result back to ST(0).  For example, fcos, fsqrt, etc.
862     //
863     OneArgFPRW = 3 << FPTypeShift,
864 
865     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
866     // explicit argument, storing the result to either ST(0) or the implicit
867     // argument.  For example: fadd, fsub, fmul, etc...
868     TwoArgFP   = 4 << FPTypeShift,
869 
870     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
871     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
872     CompareFP  = 5 << FPTypeShift,
873 
874     // CondMovFP - "2 operand" floating point conditional move instructions.
875     CondMovFP  = 6 << FPTypeShift,
876 
877     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
878     SpecialFP  = 7 << FPTypeShift,
879 
880     // Lock prefix
881     LOCKShift = FPTypeShift + 3,
882     LOCK = 1 << LOCKShift,
883 
884     // REP prefix
885     REPShift = LOCKShift + 1,
886     REP = 1 << REPShift,
887 
888     // Execution domain for SSE instructions.
889     // 0 means normal, non-SSE instruction.
890     SSEDomainShift = REPShift + 1,
891 
892     // Encoding
893     EncodingShift = SSEDomainShift + 2,
894     EncodingMask = 0x3 << EncodingShift,
895 
896     // VEX - encoding using 0xC4/0xC5
897     VEX = 1 << EncodingShift,
898 
899     /// XOP - Opcode prefix used by XOP instructions.
900     XOP = 2 << EncodingShift,
901 
902     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
903     // syntax support up to 32 512-bit register operands and up to 7 16-bit
904     // mask operands as well as source operand data swizzling/memory operand
905     // conversion, eviction hint, and rounding mode.
906     EVEX = 3 << EncodingShift,
907 
908     // Opcode
909     OpcodeShift   = EncodingShift + 2,
910 
911     /// VEX_W - Has a opcode specific functionality, but is used in the same
912     /// way as REX_W is for regular SSE instructions.
913     VEX_WShift  = OpcodeShift + 8,
914     VEX_W       = 1ULL << VEX_WShift,
915 
916     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
917     /// address instructions in SSE are represented as 3 address ones in AVX
918     /// and the additional register is encoded in VEX_VVVV prefix.
919     VEX_4VShift = VEX_WShift + 1,
920     VEX_4V      = 1ULL << VEX_4VShift,
921 
922     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
923     /// instruction uses 256-bit wide registers. This is usually auto detected
924     /// if a VR256 register is used, but some AVX instructions also have this
925     /// field marked when using a f256 memory references.
926     VEX_LShift = VEX_4VShift + 1,
927     VEX_L       = 1ULL << VEX_LShift,
928 
929     // EVEX_K - Set if this instruction requires masking
930     EVEX_KShift = VEX_LShift + 1,
931     EVEX_K      = 1ULL << EVEX_KShift,
932 
933     // EVEX_Z - Set if this instruction has EVEX.Z field set.
934     EVEX_ZShift = EVEX_KShift + 1,
935     EVEX_Z      = 1ULL << EVEX_ZShift,
936 
937     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
938     EVEX_L2Shift = EVEX_ZShift + 1,
939     EVEX_L2     = 1ULL << EVEX_L2Shift,
940 
941     // EVEX_B - Set if this instruction has EVEX.B field set.
942     EVEX_BShift = EVEX_L2Shift + 1,
943     EVEX_B      = 1ULL << EVEX_BShift,
944 
945     // The scaling factor for the AVX512's 8-bit compressed displacement.
946     CD8_Scale_Shift = EVEX_BShift + 1,
947     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
948 
949     /// Explicitly specified rounding control
950     EVEX_RCShift = CD8_Scale_Shift + 7,
951     EVEX_RC = 1ULL << EVEX_RCShift,
952 
953     // NOTRACK prefix
954     NoTrackShift = EVEX_RCShift + 1,
955     NOTRACK = 1ULL << NoTrackShift,
956 
957     // Force VEX encoding
958     ExplicitVEXShift = NoTrackShift + 1,
959     ExplicitVEXPrefix = 1ULL << ExplicitVEXShift
960   };
961 
962   /// \returns true if the instruction with given opcode is a prefix.
isPrefix(uint64_t TSFlags)963   inline bool isPrefix(uint64_t TSFlags) {
964     return (TSFlags & X86II::FormMask) == PrefixByte;
965   }
966 
967   /// \returns true if the instruction with given opcode is a pseudo.
isPseudo(uint64_t TSFlags)968   inline bool isPseudo(uint64_t TSFlags) {
969     return (TSFlags & X86II::FormMask) == Pseudo;
970   }
971 
972   /// \returns the "base" X86 opcode for the specified machine
973   /// instruction.
getBaseOpcodeFor(uint64_t TSFlags)974   inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
975     return TSFlags >> X86II::OpcodeShift;
976   }
977 
hasImm(uint64_t TSFlags)978   inline bool hasImm(uint64_t TSFlags) {
979     return (TSFlags & X86II::ImmMask) != 0;
980   }
981 
982   /// Decode the "size of immediate" field from the TSFlags field of the
983   /// specified instruction.
getSizeOfImm(uint64_t TSFlags)984   inline unsigned getSizeOfImm(uint64_t TSFlags) {
985     switch (TSFlags & X86II::ImmMask) {
986     default: llvm_unreachable("Unknown immediate size");
987     case X86II::Imm8:
988     case X86II::Imm8PCRel:
989     case X86II::Imm8Reg:    return 1;
990     case X86II::Imm16:
991     case X86II::Imm16PCRel: return 2;
992     case X86II::Imm32:
993     case X86II::Imm32S:
994     case X86II::Imm32PCRel: return 4;
995     case X86II::Imm64:      return 8;
996     }
997   }
998 
999   /// \returns true if the immediate of the specified instruction's TSFlags
1000   /// indicates that it is pc relative.
isImmPCRel(uint64_t TSFlags)1001   inline bool isImmPCRel(uint64_t TSFlags) {
1002     switch (TSFlags & X86II::ImmMask) {
1003     default: llvm_unreachable("Unknown immediate size");
1004     case X86II::Imm8PCRel:
1005     case X86II::Imm16PCRel:
1006     case X86II::Imm32PCRel:
1007       return true;
1008     case X86II::Imm8:
1009     case X86II::Imm8Reg:
1010     case X86II::Imm16:
1011     case X86II::Imm32:
1012     case X86II::Imm32S:
1013     case X86II::Imm64:
1014       return false;
1015     }
1016   }
1017 
1018   /// \returns true if the immediate of the specified instruction's
1019   /// TSFlags indicates that it is signed.
isImmSigned(uint64_t TSFlags)1020   inline bool isImmSigned(uint64_t TSFlags) {
1021     switch (TSFlags & X86II::ImmMask) {
1022     default: llvm_unreachable("Unknown immediate signedness");
1023     case X86II::Imm32S:
1024       return true;
1025     case X86II::Imm8:
1026     case X86II::Imm8PCRel:
1027     case X86II::Imm8Reg:
1028     case X86II::Imm16:
1029     case X86II::Imm16PCRel:
1030     case X86II::Imm32:
1031     case X86II::Imm32PCRel:
1032     case X86II::Imm64:
1033       return false;
1034     }
1035   }
1036 
1037   /// Compute whether all of the def operands are repeated in the uses and
1038   /// therefore should be skipped.
1039   /// This determines the start of the unique operand list. We need to determine
1040   /// if all of the defs have a corresponding tied operand in the uses.
1041   /// Unfortunately, the tied operand information is encoded in the uses not
1042   /// the defs so we have to use some heuristics to find which operands to
1043   /// query.
getOperandBias(const MCInstrDesc & Desc)1044   inline unsigned getOperandBias(const MCInstrDesc& Desc) {
1045     unsigned NumDefs = Desc.getNumDefs();
1046     unsigned NumOps = Desc.getNumOperands();
1047     switch (NumDefs) {
1048     default: llvm_unreachable("Unexpected number of defs");
1049     case 0:
1050       return 0;
1051     case 1:
1052       // Common two addr case.
1053       if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
1054         return 1;
1055       // Check for AVX-512 scatter which has a TIED_TO in the second to last
1056       // operand.
1057       if (NumOps == 8 &&
1058           Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
1059         return 1;
1060       return 0;
1061     case 2:
1062       // XCHG/XADD have two destinations and two sources.
1063       if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1064           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
1065         return 2;
1066       // Check for gather. AVX-512 has the second tied operand early. AVX2
1067       // has it as the last op.
1068       if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1069           (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
1070            Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
1071         return 2;
1072       return 0;
1073     }
1074   }
1075 
1076   /// The function returns the MCInst operand # for the first field of the
1077   /// memory operand.  If the instruction doesn't have a
1078   /// memory operand, this returns -1.
1079   ///
1080   /// Note that this ignores tied operands.  If there is a tied register which
1081   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
1082   /// counted as one operand.
1083   ///
getMemoryOperandNo(uint64_t TSFlags)1084   inline int getMemoryOperandNo(uint64_t TSFlags) {
1085     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1086     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1087 
1088     switch (TSFlags & X86II::FormMask) {
1089     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1090     case X86II::Pseudo:
1091     case X86II::RawFrm:
1092     case X86II::AddRegFrm:
1093     case X86II::RawFrmImm8:
1094     case X86II::RawFrmImm16:
1095     case X86II::RawFrmMemOffs:
1096     case X86II::RawFrmSrc:
1097     case X86II::RawFrmDst:
1098     case X86II::RawFrmDstSrc:
1099     case X86II::AddCCFrm:
1100     case X86II::PrefixByte:
1101       return -1;
1102     case X86II::MRMDestMem:
1103     case X86II::MRMDestMemFSIB:
1104       return 0;
1105     case X86II::MRMSrcMem:
1106     case X86II::MRMSrcMemFSIB:
1107       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1108       // mask register.
1109       return 1 + HasVEX_4V + HasEVEX_K;
1110     case X86II::MRMSrcMem4VOp3:
1111       // Skip registers encoded in reg.
1112       return 1 + HasEVEX_K;
1113     case X86II::MRMSrcMemOp4:
1114       // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1115       return 3;
1116     case X86II::MRMSrcMemCC:
1117       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1118       // mask register.
1119       return 1;
1120     case X86II::MRMDestReg:
1121     case X86II::MRMSrcReg:
1122     case X86II::MRMSrcReg4VOp3:
1123     case X86II::MRMSrcRegOp4:
1124     case X86II::MRMSrcRegCC:
1125     case X86II::MRMXrCC:
1126     case X86II::MRMr0:
1127     case X86II::MRMXr:
1128     case X86II::MRM0r: case X86II::MRM1r:
1129     case X86II::MRM2r: case X86II::MRM3r:
1130     case X86II::MRM4r: case X86II::MRM5r:
1131     case X86II::MRM6r: case X86II::MRM7r:
1132       return -1;
1133     case X86II::MRM0X: case X86II::MRM1X:
1134     case X86II::MRM2X: case X86II::MRM3X:
1135     case X86II::MRM4X: case X86II::MRM5X:
1136     case X86II::MRM6X: case X86II::MRM7X:
1137       return -1;
1138     case X86II::MRMXmCC:
1139     case X86II::MRMXm:
1140     case X86II::MRM0m: case X86II::MRM1m:
1141     case X86II::MRM2m: case X86II::MRM3m:
1142     case X86II::MRM4m: case X86II::MRM5m:
1143     case X86II::MRM6m: case X86II::MRM7m:
1144       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1145       return 0 + HasVEX_4V + HasEVEX_K;
1146     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1147     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1148     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1149     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1150     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1151     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1152     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1153     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1154     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1155     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1156     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1157     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1158     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1159     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1160     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1161     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1162     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1163     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1164     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1165     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1166     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1167     case X86II::MRM_FF:
1168       return -1;
1169     }
1170   }
1171 
1172   /// \returns true if the MachineOperand is a x86-64 extended (r8 or
1173   /// higher) register,  e.g. r8, xmm8, xmm13, etc.
isX86_64ExtendedReg(unsigned RegNo)1174   inline bool isX86_64ExtendedReg(unsigned RegNo) {
1175     if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
1176         (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
1177         (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1178       return true;
1179 
1180     switch (RegNo) {
1181     default: break;
1182     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
1183     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
1184     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
1185     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
1186     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
1187     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
1188     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
1189     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
1190     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
1191     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
1192     case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
1193     case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
1194       return true;
1195     }
1196     return false;
1197   }
1198 
1199   /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1200   /// registers, e.g. zmm21, etc.
is32ExtendedReg(unsigned RegNo)1201   static inline bool is32ExtendedReg(unsigned RegNo) {
1202     return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1203             (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1204             (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1205   }
1206 
1207 
isX86_64NonExtLowByteReg(unsigned reg)1208   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1209     return (reg == X86::SPL || reg == X86::BPL ||
1210             reg == X86::SIL || reg == X86::DIL);
1211   }
1212 
1213   /// \returns true if this is a masked instruction.
isKMasked(uint64_t TSFlags)1214   inline bool isKMasked(uint64_t TSFlags) {
1215     return (TSFlags & X86II::EVEX_K) != 0;
1216   }
1217 
1218   /// \returns true if this is a merge masked instruction.
isKMergeMasked(uint64_t TSFlags)1219   inline bool isKMergeMasked(uint64_t TSFlags) {
1220     return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1221   }
1222 }
1223 
1224 } // end namespace llvm;
1225 
1226 #endif
1227