1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "VelocityTracker"
18 //#define LOG_NDEBUG 0
19
20 // Log debug messages about velocity tracking.
21 #define DEBUG_VELOCITY 0
22
23 // Log debug messages about the progress of the algorithm itself.
24 #define DEBUG_STRATEGY 0
25
26 #include <array>
27 #include <inttypes.h>
28 #include <limits.h>
29 #include <math.h>
30 #include <optional>
31
32 #include <android-base/stringprintf.h>
33 #include <cutils/properties.h>
34 #include <input/VelocityTracker.h>
35 #include <utils/BitSet.h>
36 #include <utils/Timers.h>
37
38 namespace android {
39
40 // Nanoseconds per milliseconds.
41 static const nsecs_t NANOS_PER_MS = 1000000;
42
43 // Threshold for determining that a pointer has stopped moving.
44 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
45 // stopped. We need to detect this case so that we can accurately predict the
46 // velocity after the pointer starts moving again.
47 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
48
49
vectorDot(const float * a,const float * b,uint32_t m)50 static float vectorDot(const float* a, const float* b, uint32_t m) {
51 float r = 0;
52 for (size_t i = 0; i < m; i++) {
53 r += *(a++) * *(b++);
54 }
55 return r;
56 }
57
vectorNorm(const float * a,uint32_t m)58 static float vectorNorm(const float* a, uint32_t m) {
59 float r = 0;
60 for (size_t i = 0; i < m; i++) {
61 float t = *(a++);
62 r += t * t;
63 }
64 return sqrtf(r);
65 }
66
67 #if DEBUG_STRATEGY || DEBUG_VELOCITY
vectorToString(const float * a,uint32_t m)68 static std::string vectorToString(const float* a, uint32_t m) {
69 std::string str;
70 str += "[";
71 for (size_t i = 0; i < m; i++) {
72 if (i) {
73 str += ",";
74 }
75 str += android::base::StringPrintf(" %f", *(a++));
76 }
77 str += " ]";
78 return str;
79 }
80 #endif
81
82 #if DEBUG_STRATEGY
matrixToString(const float * a,uint32_t m,uint32_t n,bool rowMajor)83 static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
84 std::string str;
85 str = "[";
86 for (size_t i = 0; i < m; i++) {
87 if (i) {
88 str += ",";
89 }
90 str += " [";
91 for (size_t j = 0; j < n; j++) {
92 if (j) {
93 str += ",";
94 }
95 str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]);
96 }
97 str += " ]";
98 }
99 str += " ]";
100 return str;
101 }
102 #endif
103
104
105 // --- VelocityTracker ---
106
VelocityTracker(const Strategy strategy)107 VelocityTracker::VelocityTracker(const Strategy strategy)
108 : mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
109 // Configure the strategy.
110 if (!configureStrategy(strategy)) {
111 ALOGE("Unrecognized velocity tracker strategy %" PRId32 ".", strategy);
112 if (!configureStrategy(VelocityTracker::DEFAULT_STRATEGY)) {
113 LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%" PRId32
114 "'!",
115 strategy);
116 }
117 }
118 }
119
~VelocityTracker()120 VelocityTracker::~VelocityTracker() {
121 }
122
configureStrategy(Strategy strategy)123 bool VelocityTracker::configureStrategy(Strategy strategy) {
124 if (strategy == VelocityTracker::Strategy::DEFAULT) {
125 mStrategy = createStrategy(VelocityTracker::DEFAULT_STRATEGY);
126 } else {
127 mStrategy = createStrategy(strategy);
128 }
129 return mStrategy != nullptr;
130 }
131
createStrategy(VelocityTracker::Strategy strategy)132 std::unique_ptr<VelocityTrackerStrategy> VelocityTracker::createStrategy(
133 VelocityTracker::Strategy strategy) {
134 switch (strategy) {
135 case VelocityTracker::Strategy::IMPULSE:
136 return std::make_unique<ImpulseVelocityTrackerStrategy>();
137
138 case VelocityTracker::Strategy::LSQ1:
139 return std::make_unique<LeastSquaresVelocityTrackerStrategy>(1);
140
141 case VelocityTracker::Strategy::LSQ2:
142 return std::make_unique<LeastSquaresVelocityTrackerStrategy>(2);
143
144 case VelocityTracker::Strategy::LSQ3:
145 return std::make_unique<LeastSquaresVelocityTrackerStrategy>(3);
146
147 case VelocityTracker::Strategy::WLSQ2_DELTA:
148 return std::make_unique<
149 LeastSquaresVelocityTrackerStrategy>(2,
150 LeastSquaresVelocityTrackerStrategy::
151 WEIGHTING_DELTA);
152 case VelocityTracker::Strategy::WLSQ2_CENTRAL:
153 return std::make_unique<
154 LeastSquaresVelocityTrackerStrategy>(2,
155 LeastSquaresVelocityTrackerStrategy::
156 WEIGHTING_CENTRAL);
157 case VelocityTracker::Strategy::WLSQ2_RECENT:
158 return std::make_unique<
159 LeastSquaresVelocityTrackerStrategy>(2,
160 LeastSquaresVelocityTrackerStrategy::
161 WEIGHTING_RECENT);
162
163 case VelocityTracker::Strategy::INT1:
164 return std::make_unique<IntegratingVelocityTrackerStrategy>(1);
165
166 case VelocityTracker::Strategy::INT2:
167 return std::make_unique<IntegratingVelocityTrackerStrategy>(2);
168
169 case VelocityTracker::Strategy::LEGACY:
170 return std::make_unique<LegacyVelocityTrackerStrategy>();
171
172 default:
173 break;
174 }
175 return nullptr;
176 }
177
clear()178 void VelocityTracker::clear() {
179 mCurrentPointerIdBits.clear();
180 mActivePointerId = -1;
181
182 mStrategy->clear();
183 }
184
clearPointers(BitSet32 idBits)185 void VelocityTracker::clearPointers(BitSet32 idBits) {
186 BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
187 mCurrentPointerIdBits = remainingIdBits;
188
189 if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
190 mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
191 }
192
193 mStrategy->clearPointers(idBits);
194 }
195
addMovement(nsecs_t eventTime,BitSet32 idBits,const std::vector<VelocityTracker::Position> & positions)196 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits,
197 const std::vector<VelocityTracker::Position>& positions) {
198 LOG_ALWAYS_FATAL_IF(idBits.count() != positions.size(),
199 "Mismatching number of pointers, idBits=%" PRIu32 ", positions=%zu",
200 idBits.count(), positions.size());
201 while (idBits.count() > MAX_POINTERS) {
202 idBits.clearLastMarkedBit();
203 }
204
205 if ((mCurrentPointerIdBits.value & idBits.value)
206 && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
207 #if DEBUG_VELOCITY
208 ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
209 (eventTime - mLastEventTime) * 0.000001f);
210 #endif
211 // We have not received any movements for too long. Assume that all pointers
212 // have stopped.
213 mStrategy->clear();
214 }
215 mLastEventTime = eventTime;
216
217 mCurrentPointerIdBits = idBits;
218 if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
219 mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
220 }
221
222 mStrategy->addMovement(eventTime, idBits, positions);
223
224 #if DEBUG_VELOCITY
225 ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d",
226 eventTime, idBits.value, mActivePointerId);
227 for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
228 uint32_t id = iterBits.firstMarkedBit();
229 uint32_t index = idBits.getIndexOfBit(id);
230 iterBits.clearBit(id);
231 Estimator estimator;
232 getEstimator(id, &estimator);
233 ALOGD(" %d: position (%0.3f, %0.3f), "
234 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
235 id, positions[index].x, positions[index].y,
236 int(estimator.degree),
237 vectorToString(estimator.xCoeff, estimator.degree + 1).c_str(),
238 vectorToString(estimator.yCoeff, estimator.degree + 1).c_str(),
239 estimator.confidence);
240 }
241 #endif
242 }
243
addMovement(const MotionEvent * event)244 void VelocityTracker::addMovement(const MotionEvent* event) {
245 int32_t actionMasked = event->getActionMasked();
246
247 switch (actionMasked) {
248 case AMOTION_EVENT_ACTION_DOWN:
249 case AMOTION_EVENT_ACTION_HOVER_ENTER:
250 // Clear all pointers on down before adding the new movement.
251 clear();
252 break;
253 case AMOTION_EVENT_ACTION_POINTER_DOWN: {
254 // Start a new movement trace for a pointer that just went down.
255 // We do this on down instead of on up because the client may want to query the
256 // final velocity for a pointer that just went up.
257 BitSet32 downIdBits;
258 downIdBits.markBit(event->getPointerId(event->getActionIndex()));
259 clearPointers(downIdBits);
260 break;
261 }
262 case AMOTION_EVENT_ACTION_MOVE:
263 case AMOTION_EVENT_ACTION_HOVER_MOVE:
264 break;
265 default:
266 // Ignore all other actions because they do not convey any new information about
267 // pointer movement. We also want to preserve the last known velocity of the pointers.
268 // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
269 // of the pointers that went up. ACTION_POINTER_UP does include the new position of
270 // pointers that remained down but we will also receive an ACTION_MOVE with this
271 // information if any of them actually moved. Since we don't know how many pointers
272 // will be going up at once it makes sense to just wait for the following ACTION_MOVE
273 // before adding the movement.
274 return;
275 }
276
277 size_t pointerCount = event->getPointerCount();
278 if (pointerCount > MAX_POINTERS) {
279 pointerCount = MAX_POINTERS;
280 }
281
282 BitSet32 idBits;
283 for (size_t i = 0; i < pointerCount; i++) {
284 idBits.markBit(event->getPointerId(i));
285 }
286
287 uint32_t pointerIndex[MAX_POINTERS];
288 for (size_t i = 0; i < pointerCount; i++) {
289 pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
290 }
291
292 std::vector<Position> positions;
293 positions.resize(pointerCount);
294
295 size_t historySize = event->getHistorySize();
296 for (size_t h = 0; h <= historySize; h++) {
297 nsecs_t eventTime = event->getHistoricalEventTime(h);
298 for (size_t i = 0; i < pointerCount; i++) {
299 uint32_t index = pointerIndex[i];
300 positions[index].x = event->getHistoricalX(i, h);
301 positions[index].y = event->getHistoricalY(i, h);
302 }
303 addMovement(eventTime, idBits, positions);
304 }
305 }
306
getVelocity(uint32_t id,float * outVx,float * outVy) const307 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
308 Estimator estimator;
309 if (getEstimator(id, &estimator) && estimator.degree >= 1) {
310 *outVx = estimator.xCoeff[1];
311 *outVy = estimator.yCoeff[1];
312 return true;
313 }
314 *outVx = 0;
315 *outVy = 0;
316 return false;
317 }
318
getEstimator(uint32_t id,Estimator * outEstimator) const319 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
320 return mStrategy->getEstimator(id, outEstimator);
321 }
322
323
324 // --- LeastSquaresVelocityTrackerStrategy ---
325
LeastSquaresVelocityTrackerStrategy(uint32_t degree,Weighting weighting)326 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
327 uint32_t degree, Weighting weighting) :
328 mDegree(degree), mWeighting(weighting) {
329 clear();
330 }
331
~LeastSquaresVelocityTrackerStrategy()332 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
333 }
334
clear()335 void LeastSquaresVelocityTrackerStrategy::clear() {
336 mIndex = 0;
337 mMovements[0].idBits.clear();
338 }
339
clearPointers(BitSet32 idBits)340 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
341 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
342 mMovements[mIndex].idBits = remainingIdBits;
343 }
344
addMovement(nsecs_t eventTime,BitSet32 idBits,const std::vector<VelocityTracker::Position> & positions)345 void LeastSquaresVelocityTrackerStrategy::addMovement(
346 nsecs_t eventTime, BitSet32 idBits,
347 const std::vector<VelocityTracker::Position>& positions) {
348 if (mMovements[mIndex].eventTime != eventTime) {
349 // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
350 // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
351 // the new pointer. If the eventtimes for both events are identical, just update the data
352 // for this time.
353 // We only compare against the last value, as it is likely that addMovement is called
354 // in chronological order as events occur.
355 mIndex++;
356 }
357 if (mIndex == HISTORY_SIZE) {
358 mIndex = 0;
359 }
360
361 Movement& movement = mMovements[mIndex];
362 movement.eventTime = eventTime;
363 movement.idBits = idBits;
364 uint32_t count = idBits.count();
365 for (uint32_t i = 0; i < count; i++) {
366 movement.positions[i] = positions[i];
367 }
368 }
369
370 /**
371 * Solves a linear least squares problem to obtain a N degree polynomial that fits
372 * the specified input data as nearly as possible.
373 *
374 * Returns true if a solution is found, false otherwise.
375 *
376 * The input consists of two vectors of data points X and Y with indices 0..m-1
377 * along with a weight vector W of the same size.
378 *
379 * The output is a vector B with indices 0..n that describes a polynomial
380 * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
381 * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
382 *
383 * Accordingly, the weight vector W should be initialized by the caller with the
384 * reciprocal square root of the variance of the error in each input data point.
385 * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
386 * The weights express the relative importance of each data point. If the weights are
387 * all 1, then the data points are considered to be of equal importance when fitting
388 * the polynomial. It is a good idea to choose weights that diminish the importance
389 * of data points that may have higher than usual error margins.
390 *
391 * Errors among data points are assumed to be independent. W is represented here
392 * as a vector although in the literature it is typically taken to be a diagonal matrix.
393 *
394 * That is to say, the function that generated the input data can be approximated
395 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
396 *
397 * The coefficient of determination (R^2) is also returned to describe the goodness
398 * of fit of the model for the given data. It is a value between 0 and 1, where 1
399 * indicates perfect correspondence.
400 *
401 * This function first expands the X vector to a m by n matrix A such that
402 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
403 * multiplies it by w[i]./
404 *
405 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
406 * and an m by n upper triangular matrix R. Because R is upper triangular (lower
407 * part is all zeroes), we can simplify the decomposition into an m by n matrix
408 * Q1 and a n by n matrix R1 such that A = Q1 R1.
409 *
410 * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
411 * to find B.
412 *
413 * For efficiency, we lay out A and Q column-wise in memory because we frequently
414 * operate on the column vectors. Conversely, we lay out R row-wise.
415 *
416 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
417 * http://en.wikipedia.org/wiki/Gram-Schmidt
418 */
solveLeastSquares(const std::vector<float> & x,const std::vector<float> & y,const std::vector<float> & w,uint32_t n,float * outB,float * outDet)419 static bool solveLeastSquares(const std::vector<float>& x, const std::vector<float>& y,
420 const std::vector<float>& w, uint32_t n, float* outB, float* outDet) {
421 const size_t m = x.size();
422 #if DEBUG_STRATEGY
423 ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
424 vectorToString(x, m).c_str(), vectorToString(y, m).c_str(),
425 vectorToString(w, m).c_str());
426 #endif
427 LOG_ALWAYS_FATAL_IF(m != y.size() || m != w.size(), "Mismatched vector sizes");
428
429 // Expand the X vector to a matrix A, pre-multiplied by the weights.
430 float a[n][m]; // column-major order
431 for (uint32_t h = 0; h < m; h++) {
432 a[0][h] = w[h];
433 for (uint32_t i = 1; i < n; i++) {
434 a[i][h] = a[i - 1][h] * x[h];
435 }
436 }
437 #if DEBUG_STRATEGY
438 ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).c_str());
439 #endif
440
441 // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
442 float q[n][m]; // orthonormal basis, column-major order
443 float r[n][n]; // upper triangular matrix, row-major order
444 for (uint32_t j = 0; j < n; j++) {
445 for (uint32_t h = 0; h < m; h++) {
446 q[j][h] = a[j][h];
447 }
448 for (uint32_t i = 0; i < j; i++) {
449 float dot = vectorDot(&q[j][0], &q[i][0], m);
450 for (uint32_t h = 0; h < m; h++) {
451 q[j][h] -= dot * q[i][h];
452 }
453 }
454
455 float norm = vectorNorm(&q[j][0], m);
456 if (norm < 0.000001f) {
457 // vectors are linearly dependent or zero so no solution
458 #if DEBUG_STRATEGY
459 ALOGD(" - no solution, norm=%f", norm);
460 #endif
461 return false;
462 }
463
464 float invNorm = 1.0f / norm;
465 for (uint32_t h = 0; h < m; h++) {
466 q[j][h] *= invNorm;
467 }
468 for (uint32_t i = 0; i < n; i++) {
469 r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
470 }
471 }
472 #if DEBUG_STRATEGY
473 ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).c_str());
474 ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).c_str());
475
476 // calculate QR, if we factored A correctly then QR should equal A
477 float qr[n][m];
478 for (uint32_t h = 0; h < m; h++) {
479 for (uint32_t i = 0; i < n; i++) {
480 qr[i][h] = 0;
481 for (uint32_t j = 0; j < n; j++) {
482 qr[i][h] += q[j][h] * r[j][i];
483 }
484 }
485 }
486 ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).c_str());
487 #endif
488
489 // Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
490 // We just work from bottom-right to top-left calculating B's coefficients.
491 float wy[m];
492 for (uint32_t h = 0; h < m; h++) {
493 wy[h] = y[h] * w[h];
494 }
495 for (uint32_t i = n; i != 0; ) {
496 i--;
497 outB[i] = vectorDot(&q[i][0], wy, m);
498 for (uint32_t j = n - 1; j > i; j--) {
499 outB[i] -= r[i][j] * outB[j];
500 }
501 outB[i] /= r[i][i];
502 }
503 #if DEBUG_STRATEGY
504 ALOGD(" - b=%s", vectorToString(outB, n).c_str());
505 #endif
506
507 // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
508 // SSerr is the residual sum of squares (variance of the error),
509 // and SStot is the total sum of squares (variance of the data) where each
510 // has been weighted.
511 float ymean = 0;
512 for (uint32_t h = 0; h < m; h++) {
513 ymean += y[h];
514 }
515 ymean /= m;
516
517 float sserr = 0;
518 float sstot = 0;
519 for (uint32_t h = 0; h < m; h++) {
520 float err = y[h] - outB[0];
521 float term = 1;
522 for (uint32_t i = 1; i < n; i++) {
523 term *= x[h];
524 err -= term * outB[i];
525 }
526 sserr += w[h] * w[h] * err * err;
527 float var = y[h] - ymean;
528 sstot += w[h] * w[h] * var * var;
529 }
530 *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
531 #if DEBUG_STRATEGY
532 ALOGD(" - sserr=%f", sserr);
533 ALOGD(" - sstot=%f", sstot);
534 ALOGD(" - det=%f", *outDet);
535 #endif
536 return true;
537 }
538
539 /*
540 * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to
541 * the default implementation
542 */
solveUnweightedLeastSquaresDeg2(const std::vector<float> & x,const std::vector<float> & y)543 static std::optional<std::array<float, 3>> solveUnweightedLeastSquaresDeg2(
544 const std::vector<float>& x, const std::vector<float>& y) {
545 const size_t count = x.size();
546 LOG_ALWAYS_FATAL_IF(count != y.size(), "Mismatching array sizes");
547 // Solving y = a*x^2 + b*x + c
548 float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0;
549
550 for (size_t i = 0; i < count; i++) {
551 float xi = x[i];
552 float yi = y[i];
553 float xi2 = xi*xi;
554 float xi3 = xi2*xi;
555 float xi4 = xi3*xi;
556 float xiyi = xi*yi;
557 float xi2yi = xi2*yi;
558
559 sxi += xi;
560 sxi2 += xi2;
561 sxiyi += xiyi;
562 sxi2yi += xi2yi;
563 syi += yi;
564 sxi3 += xi3;
565 sxi4 += xi4;
566 }
567
568 float Sxx = sxi2 - sxi*sxi / count;
569 float Sxy = sxiyi - sxi*syi / count;
570 float Sxx2 = sxi3 - sxi*sxi2 / count;
571 float Sx2y = sxi2yi - sxi2*syi / count;
572 float Sx2x2 = sxi4 - sxi2*sxi2 / count;
573
574 float denominator = Sxx*Sx2x2 - Sxx2*Sxx2;
575 if (denominator == 0) {
576 ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2);
577 return std::nullopt;
578 }
579 // Compute a
580 float numerator = Sx2y*Sxx - Sxy*Sxx2;
581 float a = numerator / denominator;
582
583 // Compute b
584 numerator = Sxy*Sx2x2 - Sx2y*Sxx2;
585 float b = numerator / denominator;
586
587 // Compute c
588 float c = syi/count - b * sxi/count - a * sxi2/count;
589
590 return std::make_optional(std::array<float, 3>({c, b, a}));
591 }
592
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const593 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
594 VelocityTracker::Estimator* outEstimator) const {
595 outEstimator->clear();
596
597 // Iterate over movement samples in reverse time order and collect samples.
598 std::vector<float> x;
599 std::vector<float> y;
600 std::vector<float> w;
601 std::vector<float> time;
602
603 uint32_t index = mIndex;
604 const Movement& newestMovement = mMovements[mIndex];
605 do {
606 const Movement& movement = mMovements[index];
607 if (!movement.idBits.hasBit(id)) {
608 break;
609 }
610
611 nsecs_t age = newestMovement.eventTime - movement.eventTime;
612 if (age > HORIZON) {
613 break;
614 }
615
616 const VelocityTracker::Position& position = movement.getPosition(id);
617 x.push_back(position.x);
618 y.push_back(position.y);
619 w.push_back(chooseWeight(index));
620 time.push_back(-age * 0.000000001f);
621 index = (index == 0 ? HISTORY_SIZE : index) - 1;
622 } while (x.size() < HISTORY_SIZE);
623
624 const size_t m = x.size();
625 if (m == 0) {
626 return false; // no data
627 }
628
629 // Calculate a least squares polynomial fit.
630 uint32_t degree = mDegree;
631 if (degree > m - 1) {
632 degree = m - 1;
633 }
634
635 if (degree == 2 && mWeighting == WEIGHTING_NONE) {
636 // Optimize unweighted, quadratic polynomial fit
637 std::optional<std::array<float, 3>> xCoeff = solveUnweightedLeastSquaresDeg2(time, x);
638 std::optional<std::array<float, 3>> yCoeff = solveUnweightedLeastSquaresDeg2(time, y);
639 if (xCoeff && yCoeff) {
640 outEstimator->time = newestMovement.eventTime;
641 outEstimator->degree = 2;
642 outEstimator->confidence = 1;
643 for (size_t i = 0; i <= outEstimator->degree; i++) {
644 outEstimator->xCoeff[i] = (*xCoeff)[i];
645 outEstimator->yCoeff[i] = (*yCoeff)[i];
646 }
647 return true;
648 }
649 } else if (degree >= 1) {
650 // General case for an Nth degree polynomial fit
651 float xdet, ydet;
652 uint32_t n = degree + 1;
653 if (solveLeastSquares(time, x, w, n, outEstimator->xCoeff, &xdet) &&
654 solveLeastSquares(time, y, w, n, outEstimator->yCoeff, &ydet)) {
655 outEstimator->time = newestMovement.eventTime;
656 outEstimator->degree = degree;
657 outEstimator->confidence = xdet * ydet;
658 #if DEBUG_STRATEGY
659 ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
660 int(outEstimator->degree),
661 vectorToString(outEstimator->xCoeff, n).c_str(),
662 vectorToString(outEstimator->yCoeff, n).c_str(),
663 outEstimator->confidence);
664 #endif
665 return true;
666 }
667 }
668
669 // No velocity data available for this pointer, but we do have its current position.
670 outEstimator->xCoeff[0] = x[0];
671 outEstimator->yCoeff[0] = y[0];
672 outEstimator->time = newestMovement.eventTime;
673 outEstimator->degree = 0;
674 outEstimator->confidence = 1;
675 return true;
676 }
677
chooseWeight(uint32_t index) const678 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
679 switch (mWeighting) {
680 case WEIGHTING_DELTA: {
681 // Weight points based on how much time elapsed between them and the next
682 // point so that points that "cover" a shorter time span are weighed less.
683 // delta 0ms: 0.5
684 // delta 10ms: 1.0
685 if (index == mIndex) {
686 return 1.0f;
687 }
688 uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
689 float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
690 * 0.000001f;
691 if (deltaMillis < 0) {
692 return 0.5f;
693 }
694 if (deltaMillis < 10) {
695 return 0.5f + deltaMillis * 0.05;
696 }
697 return 1.0f;
698 }
699
700 case WEIGHTING_CENTRAL: {
701 // Weight points based on their age, weighing very recent and very old points less.
702 // age 0ms: 0.5
703 // age 10ms: 1.0
704 // age 50ms: 1.0
705 // age 60ms: 0.5
706 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
707 * 0.000001f;
708 if (ageMillis < 0) {
709 return 0.5f;
710 }
711 if (ageMillis < 10) {
712 return 0.5f + ageMillis * 0.05;
713 }
714 if (ageMillis < 50) {
715 return 1.0f;
716 }
717 if (ageMillis < 60) {
718 return 0.5f + (60 - ageMillis) * 0.05;
719 }
720 return 0.5f;
721 }
722
723 case WEIGHTING_RECENT: {
724 // Weight points based on their age, weighing older points less.
725 // age 0ms: 1.0
726 // age 50ms: 1.0
727 // age 100ms: 0.5
728 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
729 * 0.000001f;
730 if (ageMillis < 50) {
731 return 1.0f;
732 }
733 if (ageMillis < 100) {
734 return 0.5f + (100 - ageMillis) * 0.01f;
735 }
736 return 0.5f;
737 }
738
739 case WEIGHTING_NONE:
740 default:
741 return 1.0f;
742 }
743 }
744
745
746 // --- IntegratingVelocityTrackerStrategy ---
747
IntegratingVelocityTrackerStrategy(uint32_t degree)748 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
749 mDegree(degree) {
750 }
751
~IntegratingVelocityTrackerStrategy()752 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
753 }
754
clear()755 void IntegratingVelocityTrackerStrategy::clear() {
756 mPointerIdBits.clear();
757 }
758
clearPointers(BitSet32 idBits)759 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
760 mPointerIdBits.value &= ~idBits.value;
761 }
762
addMovement(nsecs_t eventTime,BitSet32 idBits,const std::vector<VelocityTracker::Position> & positions)763 void IntegratingVelocityTrackerStrategy::addMovement(
764 nsecs_t eventTime, BitSet32 idBits,
765 const std::vector<VelocityTracker::Position>& positions) {
766 uint32_t index = 0;
767 for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
768 uint32_t id = iterIdBits.clearFirstMarkedBit();
769 State& state = mPointerState[id];
770 const VelocityTracker::Position& position = positions[index++];
771 if (mPointerIdBits.hasBit(id)) {
772 updateState(state, eventTime, position.x, position.y);
773 } else {
774 initState(state, eventTime, position.x, position.y);
775 }
776 }
777
778 mPointerIdBits = idBits;
779 }
780
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const781 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
782 VelocityTracker::Estimator* outEstimator) const {
783 outEstimator->clear();
784
785 if (mPointerIdBits.hasBit(id)) {
786 const State& state = mPointerState[id];
787 populateEstimator(state, outEstimator);
788 return true;
789 }
790
791 return false;
792 }
793
initState(State & state,nsecs_t eventTime,float xpos,float ypos) const794 void IntegratingVelocityTrackerStrategy::initState(State& state,
795 nsecs_t eventTime, float xpos, float ypos) const {
796 state.updateTime = eventTime;
797 state.degree = 0;
798
799 state.xpos = xpos;
800 state.xvel = 0;
801 state.xaccel = 0;
802 state.ypos = ypos;
803 state.yvel = 0;
804 state.yaccel = 0;
805 }
806
updateState(State & state,nsecs_t eventTime,float xpos,float ypos) const807 void IntegratingVelocityTrackerStrategy::updateState(State& state,
808 nsecs_t eventTime, float xpos, float ypos) const {
809 const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
810 const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
811
812 if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
813 return;
814 }
815
816 float dt = (eventTime - state.updateTime) * 0.000000001f;
817 state.updateTime = eventTime;
818
819 float xvel = (xpos - state.xpos) / dt;
820 float yvel = (ypos - state.ypos) / dt;
821 if (state.degree == 0) {
822 state.xvel = xvel;
823 state.yvel = yvel;
824 state.degree = 1;
825 } else {
826 float alpha = dt / (FILTER_TIME_CONSTANT + dt);
827 if (mDegree == 1) {
828 state.xvel += (xvel - state.xvel) * alpha;
829 state.yvel += (yvel - state.yvel) * alpha;
830 } else {
831 float xaccel = (xvel - state.xvel) / dt;
832 float yaccel = (yvel - state.yvel) / dt;
833 if (state.degree == 1) {
834 state.xaccel = xaccel;
835 state.yaccel = yaccel;
836 state.degree = 2;
837 } else {
838 state.xaccel += (xaccel - state.xaccel) * alpha;
839 state.yaccel += (yaccel - state.yaccel) * alpha;
840 }
841 state.xvel += (state.xaccel * dt) * alpha;
842 state.yvel += (state.yaccel * dt) * alpha;
843 }
844 }
845 state.xpos = xpos;
846 state.ypos = ypos;
847 }
848
populateEstimator(const State & state,VelocityTracker::Estimator * outEstimator) const849 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
850 VelocityTracker::Estimator* outEstimator) const {
851 outEstimator->time = state.updateTime;
852 outEstimator->confidence = 1.0f;
853 outEstimator->degree = state.degree;
854 outEstimator->xCoeff[0] = state.xpos;
855 outEstimator->xCoeff[1] = state.xvel;
856 outEstimator->xCoeff[2] = state.xaccel / 2;
857 outEstimator->yCoeff[0] = state.ypos;
858 outEstimator->yCoeff[1] = state.yvel;
859 outEstimator->yCoeff[2] = state.yaccel / 2;
860 }
861
862
863 // --- LegacyVelocityTrackerStrategy ---
864
LegacyVelocityTrackerStrategy()865 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
866 clear();
867 }
868
~LegacyVelocityTrackerStrategy()869 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
870 }
871
clear()872 void LegacyVelocityTrackerStrategy::clear() {
873 mIndex = 0;
874 mMovements[0].idBits.clear();
875 }
876
clearPointers(BitSet32 idBits)877 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
878 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
879 mMovements[mIndex].idBits = remainingIdBits;
880 }
881
addMovement(nsecs_t eventTime,BitSet32 idBits,const std::vector<VelocityTracker::Position> & positions)882 void LegacyVelocityTrackerStrategy::addMovement(
883 nsecs_t eventTime, BitSet32 idBits,
884 const std::vector<VelocityTracker::Position>& positions) {
885 if (++mIndex == HISTORY_SIZE) {
886 mIndex = 0;
887 }
888
889 Movement& movement = mMovements[mIndex];
890 movement.eventTime = eventTime;
891 movement.idBits = idBits;
892 uint32_t count = idBits.count();
893 for (uint32_t i = 0; i < count; i++) {
894 movement.positions[i] = positions[i];
895 }
896 }
897
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const898 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
899 VelocityTracker::Estimator* outEstimator) const {
900 outEstimator->clear();
901
902 const Movement& newestMovement = mMovements[mIndex];
903 if (!newestMovement.idBits.hasBit(id)) {
904 return false; // no data
905 }
906
907 // Find the oldest sample that contains the pointer and that is not older than HORIZON.
908 nsecs_t minTime = newestMovement.eventTime - HORIZON;
909 uint32_t oldestIndex = mIndex;
910 uint32_t numTouches = 1;
911 do {
912 uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
913 const Movement& nextOldestMovement = mMovements[nextOldestIndex];
914 if (!nextOldestMovement.idBits.hasBit(id)
915 || nextOldestMovement.eventTime < minTime) {
916 break;
917 }
918 oldestIndex = nextOldestIndex;
919 } while (++numTouches < HISTORY_SIZE);
920
921 // Calculate an exponentially weighted moving average of the velocity estimate
922 // at different points in time measured relative to the oldest sample.
923 // This is essentially an IIR filter. Newer samples are weighted more heavily
924 // than older samples. Samples at equal time points are weighted more or less
925 // equally.
926 //
927 // One tricky problem is that the sample data may be poorly conditioned.
928 // Sometimes samples arrive very close together in time which can cause us to
929 // overestimate the velocity at that time point. Most samples might be measured
930 // 16ms apart but some consecutive samples could be only 0.5sm apart because
931 // the hardware or driver reports them irregularly or in bursts.
932 float accumVx = 0;
933 float accumVy = 0;
934 uint32_t index = oldestIndex;
935 uint32_t samplesUsed = 0;
936 const Movement& oldestMovement = mMovements[oldestIndex];
937 const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
938 nsecs_t lastDuration = 0;
939
940 while (numTouches-- > 1) {
941 if (++index == HISTORY_SIZE) {
942 index = 0;
943 }
944 const Movement& movement = mMovements[index];
945 nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
946
947 // If the duration between samples is small, we may significantly overestimate
948 // the velocity. Consequently, we impose a minimum duration constraint on the
949 // samples that we include in the calculation.
950 if (duration >= MIN_DURATION) {
951 const VelocityTracker::Position& position = movement.getPosition(id);
952 float scale = 1000000000.0f / duration; // one over time delta in seconds
953 float vx = (position.x - oldestPosition.x) * scale;
954 float vy = (position.y - oldestPosition.y) * scale;
955 accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
956 accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
957 lastDuration = duration;
958 samplesUsed += 1;
959 }
960 }
961
962 // Report velocity.
963 const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
964 outEstimator->time = newestMovement.eventTime;
965 outEstimator->confidence = 1;
966 outEstimator->xCoeff[0] = newestPosition.x;
967 outEstimator->yCoeff[0] = newestPosition.y;
968 if (samplesUsed) {
969 outEstimator->xCoeff[1] = accumVx;
970 outEstimator->yCoeff[1] = accumVy;
971 outEstimator->degree = 1;
972 } else {
973 outEstimator->degree = 0;
974 }
975 return true;
976 }
977
978 // --- ImpulseVelocityTrackerStrategy ---
979
ImpulseVelocityTrackerStrategy()980 ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy() {
981 clear();
982 }
983
~ImpulseVelocityTrackerStrategy()984 ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() {
985 }
986
clear()987 void ImpulseVelocityTrackerStrategy::clear() {
988 mIndex = 0;
989 mMovements[0].idBits.clear();
990 }
991
clearPointers(BitSet32 idBits)992 void ImpulseVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
993 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
994 mMovements[mIndex].idBits = remainingIdBits;
995 }
996
addMovement(nsecs_t eventTime,BitSet32 idBits,const std::vector<VelocityTracker::Position> & positions)997 void ImpulseVelocityTrackerStrategy::addMovement(
998 nsecs_t eventTime, BitSet32 idBits,
999 const std::vector<VelocityTracker::Position>& positions) {
1000 if (mMovements[mIndex].eventTime != eventTime) {
1001 // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
1002 // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
1003 // the new pointer. If the eventtimes for both events are identical, just update the data
1004 // for this time.
1005 // We only compare against the last value, as it is likely that addMovement is called
1006 // in chronological order as events occur.
1007 mIndex++;
1008 }
1009 if (mIndex == HISTORY_SIZE) {
1010 mIndex = 0;
1011 }
1012
1013 Movement& movement = mMovements[mIndex];
1014 movement.eventTime = eventTime;
1015 movement.idBits = idBits;
1016 uint32_t count = idBits.count();
1017 for (uint32_t i = 0; i < count; i++) {
1018 movement.positions[i] = positions[i];
1019 }
1020 }
1021
1022 /**
1023 * Calculate the total impulse provided to the screen and the resulting velocity.
1024 *
1025 * The touchscreen is modeled as a physical object.
1026 * Initial condition is discussed below, but for now suppose that v(t=0) = 0
1027 *
1028 * The kinetic energy of the object at the release is E=0.5*m*v^2
1029 * Then vfinal = sqrt(2E/m). The goal is to calculate E.
1030 *
1031 * The kinetic energy at the release is equal to the total work done on the object by the finger.
1032 * The total work W is the sum of all dW along the path.
1033 *
1034 * dW = F*dx, where dx is the piece of path traveled.
1035 * Force is change of momentum over time, F = dp/dt = m dv/dt.
1036 * Then substituting:
1037 * dW = m (dv/dt) * dx = m * v * dv
1038 *
1039 * Summing along the path, we get:
1040 * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv)
1041 * Since the mass stays constant, the equation for final velocity is:
1042 * vfinal = sqrt(2*sum(v * dv))
1043 *
1044 * Here,
1045 * dv : change of velocity = (v[i+1]-v[i])
1046 * dx : change of distance = (x[i+1]-x[i])
1047 * dt : change of time = (t[i+1]-t[i])
1048 * v : instantaneous velocity = dx/dt
1049 *
1050 * The final formula is:
1051 * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i
1052 * The absolute value is needed to properly account for the sign. If the velocity over a
1053 * particular segment descreases, then this indicates braking, which means that negative
1054 * work was done. So for two positive, but decreasing, velocities, this contribution would be
1055 * negative and will cause a smaller final velocity.
1056 *
1057 * Initial condition
1058 * There are two ways to deal with initial condition:
1059 * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest.
1060 * This is not entirely accurate. We are only taking the past X ms of touch data, where X is
1061 * currently equal to 100. However, a touch event that created a fling probably lasted for longer
1062 * than that, which would mean that the user has already been interacting with the touchscreen
1063 * and it has probably already been moving.
1064 * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this
1065 * initial velocity and the equivalent energy, and start with this initial energy.
1066 * Consider an example where we have the following data, consisting of 3 points:
1067 * time: t0, t1, t2
1068 * x : x0, x1, x2
1069 * v : 0 , v1, v2
1070 * Here is what will happen in each of these scenarios:
1071 * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get
1072 * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0
1073 * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1)))
1074 * since velocity is a real number
1075 * 2) If we treat the screen as already moving, then it must already have an energy (per mass)
1076 * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment
1077 * will contribute to the total kinetic energy (since we can effectively consider that v0=v1).
1078 * This will give the following expression for the final velocity:
1079 * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1)))
1080 * This analysis can be generalized to an arbitrary number of samples.
1081 *
1082 *
1083 * Comparing the two equations above, we see that the only mathematical difference
1084 * is the factor of 1/2 in front of the first velocity term.
1085 * This boundary condition would allow for the "proper" calculation of the case when all of the
1086 * samples are equally spaced in time and distance, which should suggest a constant velocity.
1087 *
1088 * Note that approach 2) is sensitive to the proper ordering of the data in time, since
1089 * the boundary condition must be applied to the oldest sample to be accurate.
1090 */
kineticEnergyToVelocity(float work)1091 static float kineticEnergyToVelocity(float work) {
1092 static constexpr float sqrt2 = 1.41421356237;
1093 return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2;
1094 }
1095
calculateImpulseVelocity(const nsecs_t * t,const float * x,size_t count)1096 static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count) {
1097 // The input should be in reversed time order (most recent sample at index i=0)
1098 // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function
1099 static constexpr float SECONDS_PER_NANO = 1E-9;
1100
1101 if (count < 2) {
1102 return 0; // if 0 or 1 points, velocity is zero
1103 }
1104 if (t[1] > t[0]) { // Algorithm will still work, but not perfectly
1105 ALOGE("Samples provided to calculateImpulseVelocity in the wrong order");
1106 }
1107 if (count == 2) { // if 2 points, basic linear calculation
1108 if (t[1] == t[0]) {
1109 ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]);
1110 return 0;
1111 }
1112 return (x[1] - x[0]) / (SECONDS_PER_NANO * (t[1] - t[0]));
1113 }
1114 // Guaranteed to have at least 3 points here
1115 float work = 0;
1116 for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time
1117 if (t[i] == t[i-1]) {
1118 ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]);
1119 continue;
1120 }
1121 float vprev = kineticEnergyToVelocity(work); // v[i-1]
1122 float vcurr = (x[i] - x[i-1]) / (SECONDS_PER_NANO * (t[i] - t[i-1])); // v[i]
1123 work += (vcurr - vprev) * fabsf(vcurr);
1124 if (i == count - 1) {
1125 work *= 0.5; // initial condition, case 2) above
1126 }
1127 }
1128 return kineticEnergyToVelocity(work);
1129 }
1130
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const1131 bool ImpulseVelocityTrackerStrategy::getEstimator(uint32_t id,
1132 VelocityTracker::Estimator* outEstimator) const {
1133 outEstimator->clear();
1134
1135 // Iterate over movement samples in reverse time order and collect samples.
1136 float x[HISTORY_SIZE];
1137 float y[HISTORY_SIZE];
1138 nsecs_t time[HISTORY_SIZE];
1139 size_t m = 0; // number of points that will be used for fitting
1140 size_t index = mIndex;
1141 const Movement& newestMovement = mMovements[mIndex];
1142 do {
1143 const Movement& movement = mMovements[index];
1144 if (!movement.idBits.hasBit(id)) {
1145 break;
1146 }
1147
1148 nsecs_t age = newestMovement.eventTime - movement.eventTime;
1149 if (age > HORIZON) {
1150 break;
1151 }
1152
1153 const VelocityTracker::Position& position = movement.getPosition(id);
1154 x[m] = position.x;
1155 y[m] = position.y;
1156 time[m] = movement.eventTime;
1157 index = (index == 0 ? HISTORY_SIZE : index) - 1;
1158 } while (++m < HISTORY_SIZE);
1159
1160 if (m == 0) {
1161 return false; // no data
1162 }
1163 outEstimator->xCoeff[0] = 0;
1164 outEstimator->yCoeff[0] = 0;
1165 outEstimator->xCoeff[1] = calculateImpulseVelocity(time, x, m);
1166 outEstimator->yCoeff[1] = calculateImpulseVelocity(time, y, m);
1167 outEstimator->xCoeff[2] = 0;
1168 outEstimator->yCoeff[2] = 0;
1169 outEstimator->time = newestMovement.eventTime;
1170 outEstimator->degree = 2; // similar results to 2nd degree fit
1171 outEstimator->confidence = 1;
1172 #if DEBUG_STRATEGY
1173 ALOGD("velocity: (%f, %f)", outEstimator->xCoeff[1], outEstimator->yCoeff[1]);
1174 #endif
1175 return true;
1176 }
1177
1178 } // namespace android
1179