• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1TGSI
2====
3
4TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5for describing shaders. Since Gallium is inherently shaderful, shaders are
6an important part of the API. TGSI is the only intermediate representation
7used by all drivers.
8
9Basics
10------
11
12All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13floating-point four-component vectors. An opcode may have up to one
14destination register, known as *dst*, and between zero and three source
15registers, called *src0* through *src2*, or simply *src* if there is only
16one.
17
18Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19components as integers. Other instructions permit using registers as
20two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22When an instruction has a scalar result, the result is usually copied into
23each of the components of *dst*. When this happens, the result is said to be
24*replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26Modifiers
27^^^^^^^^^^^^^^^
28
29TGSI supports modifiers on inputs (as well as saturate and precise modifier
30on instructions).
31
32For arithmetic instruction having a precise modifier certain optimizations
33which may alter the result are disallowed. Example: *add(mul(a,b),c)* can't be
34optimized to TGSI_OPCODE_MAD, because some hardware only supports the fused
35MAD instruction.
36
37For inputs which have a floating point type, both absolute value and
38negation modifiers are supported (with absolute value being applied
39first).  The only source of TGSI_OPCODE_MOV and the second and third
40sources of TGSI_OPCODE_UCMP are considered to have float type for
41applying modifiers.
42
43For inputs which have signed or unsigned type only the negate modifier is
44supported.
45
46Instruction Set
47---------------
48
49Core ISA
50^^^^^^^^^^^^^^^^^^^^^^^^^
51
52These opcodes are guaranteed to be available regardless of the driver being
53used.
54
55.. opcode:: ARL - Address Register Load
56
57.. math::
58
59  dst.x = (int) \lfloor src.x\rfloor
60
61  dst.y = (int) \lfloor src.y\rfloor
62
63  dst.z = (int) \lfloor src.z\rfloor
64
65  dst.w = (int) \lfloor src.w\rfloor
66
67
68.. opcode:: MOV - Move
69
70.. math::
71
72  dst.x = src.x
73
74  dst.y = src.y
75
76  dst.z = src.z
77
78  dst.w = src.w
79
80
81.. opcode:: LIT - Light Coefficients
82
83.. math::
84
85  dst.x &= 1 \\
86  dst.y &= max(src.x, 0) \\
87  dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
88  dst.w &= 1
89
90
91.. opcode:: RCP - Reciprocal
92
93This instruction replicates its result.
94
95.. math::
96
97  dst = \frac{1}{src.x}
98
99
100.. opcode:: RSQ - Reciprocal Square Root
101
102This instruction replicates its result. The results are undefined for src <= 0.
103
104.. math::
105
106  dst = \frac{1}{\sqrt{src.x}}
107
108
109.. opcode:: SQRT - Square Root
110
111This instruction replicates its result. The results are undefined for src < 0.
112
113.. math::
114
115  dst = {\sqrt{src.x}}
116
117
118.. opcode:: EXP - Approximate Exponential Base 2
119
120.. math::
121
122  dst.x &= 2^{\lfloor src.x\rfloor} \\
123  dst.y &= src.x - \lfloor src.x\rfloor \\
124  dst.z &= 2^{src.x} \\
125  dst.w &= 1
126
127
128.. opcode:: LOG - Approximate Logarithm Base 2
129
130.. math::
131
132  dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
133  dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
134  dst.z &= \log_2{|src.x|} \\
135  dst.w &= 1
136
137
138.. opcode:: MUL - Multiply
139
140.. math::
141
142  dst.x = src0.x \times src1.x
143
144  dst.y = src0.y \times src1.y
145
146  dst.z = src0.z \times src1.z
147
148  dst.w = src0.w \times src1.w
149
150
151.. opcode:: ADD - Add
152
153.. math::
154
155  dst.x = src0.x + src1.x
156
157  dst.y = src0.y + src1.y
158
159  dst.z = src0.z + src1.z
160
161  dst.w = src0.w + src1.w
162
163
164.. opcode:: DP3 - 3-component Dot Product
165
166This instruction replicates its result.
167
168.. math::
169
170  dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
171
172
173.. opcode:: DP4 - 4-component Dot Product
174
175This instruction replicates its result.
176
177.. math::
178
179  dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
180
181
182.. opcode:: DST - Distance Vector
183
184.. math::
185
186  dst.x &= 1\\
187  dst.y &= src0.y \times src1.y\\
188  dst.z &= src0.z\\
189  dst.w &= src1.w
190
191
192.. opcode:: MIN - Minimum
193
194.. math::
195
196  dst.x = min(src0.x, src1.x)
197
198  dst.y = min(src0.y, src1.y)
199
200  dst.z = min(src0.z, src1.z)
201
202  dst.w = min(src0.w, src1.w)
203
204
205.. opcode:: MAX - Maximum
206
207.. math::
208
209  dst.x = max(src0.x, src1.x)
210
211  dst.y = max(src0.y, src1.y)
212
213  dst.z = max(src0.z, src1.z)
214
215  dst.w = max(src0.w, src1.w)
216
217
218.. opcode:: SLT - Set On Less Than
219
220.. math::
221
222  dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
223
224  dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
225
226  dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
227
228  dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
229
230
231.. opcode:: SGE - Set On Greater Equal Than
232
233.. math::
234
235  dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
236
237  dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
238
239  dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
240
241  dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
242
243
244.. opcode:: MAD - Multiply And Add
245
246Perform a * b + c. The implementation is free to decide whether there is an
247intermediate rounding step or not.
248
249.. math::
250
251  dst.x = src0.x \times src1.x + src2.x
252
253  dst.y = src0.y \times src1.y + src2.y
254
255  dst.z = src0.z \times src1.z + src2.z
256
257  dst.w = src0.w \times src1.w + src2.w
258
259
260.. opcode:: LRP - Linear Interpolate
261
262.. math::
263
264  dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
265
266  dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
267
268  dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
269
270  dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
271
272
273.. opcode:: FMA - Fused Multiply-Add
274
275Perform a * b + c with no intermediate rounding step.
276
277.. math::
278
279  dst.x = src0.x \times src1.x + src2.x
280
281  dst.y = src0.y \times src1.y + src2.y
282
283  dst.z = src0.z \times src1.z + src2.z
284
285  dst.w = src0.w \times src1.w + src2.w
286
287
288.. opcode:: FRC - Fraction
289
290.. math::
291
292  dst.x = src.x - \lfloor src.x\rfloor
293
294  dst.y = src.y - \lfloor src.y\rfloor
295
296  dst.z = src.z - \lfloor src.z\rfloor
297
298  dst.w = src.w - \lfloor src.w\rfloor
299
300
301.. opcode:: FLR - Floor
302
303.. math::
304
305  dst.x = \lfloor src.x\rfloor
306
307  dst.y = \lfloor src.y\rfloor
308
309  dst.z = \lfloor src.z\rfloor
310
311  dst.w = \lfloor src.w\rfloor
312
313
314.. opcode:: ROUND - Round
315
316.. math::
317
318  dst.x = round(src.x)
319
320  dst.y = round(src.y)
321
322  dst.z = round(src.z)
323
324  dst.w = round(src.w)
325
326
327.. opcode:: EX2 - Exponential Base 2
328
329This instruction replicates its result.
330
331.. math::
332
333  dst = 2^{src.x}
334
335
336.. opcode:: LG2 - Logarithm Base 2
337
338This instruction replicates its result.
339
340.. math::
341
342  dst = \log_2{src.x}
343
344
345.. opcode:: POW - Power
346
347This instruction replicates its result.
348
349.. math::
350
351  dst = src0.x^{src1.x}
352
353
354.. opcode:: LDEXP - Multiply Number by Integral Power of 2
355
356src1 is an integer.
357
358.. math::
359
360  dst.x = src0.x * 2^{src1.x}
361  dst.y = src0.y * 2^{src1.y}
362  dst.z = src0.z * 2^{src1.z}
363  dst.w = src0.w * 2^{src1.w}
364
365
366.. opcode:: COS - Cosine
367
368This instruction replicates its result.
369
370.. math::
371
372  dst = \cos{src.x}
373
374
375.. opcode:: DDX, DDX_FINE - Derivative Relative To X
376
377The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
378advertised. When it is, the fine version guarantees one derivative per row
379while DDX is allowed to be the same for the entire 2x2 quad.
380
381.. math::
382
383  dst.x = partialx(src.x)
384
385  dst.y = partialx(src.y)
386
387  dst.z = partialx(src.z)
388
389  dst.w = partialx(src.w)
390
391
392.. opcode:: DDY, DDY_FINE - Derivative Relative To Y
393
394The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
395advertised. When it is, the fine version guarantees one derivative per column
396while DDY is allowed to be the same for the entire 2x2 quad.
397
398.. math::
399
400  dst.x = partialy(src.x)
401
402  dst.y = partialy(src.y)
403
404  dst.z = partialy(src.z)
405
406  dst.w = partialy(src.w)
407
408
409.. opcode:: PK2H - Pack Two 16-bit Floats
410
411This instruction replicates its result.
412
413.. math::
414
415  dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
416
417
418.. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
419
420This instruction replicates its result.
421
422.. math::
423
424  dst = f32\_to\_unorm16(src.x) | f32\_to\_unorm16(src.y) << 16
425
426
427.. opcode:: PK4B - Pack Four Signed 8-bit Scalars
428
429This instruction replicates its result.
430
431.. math::
432
433  dst = f32\_to\_snorm8(src.x) |
434        (f32\_to\_snorm8(src.y) << 8) |
435        (f32\_to\_snorm8(src.z) << 16) |
436        (f32\_to\_snorm8(src.w) << 24)
437
438
439.. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
440
441This instruction replicates its result.
442
443.. math::
444
445  dst = f32\_to\_unorm8(src.x) |
446        (f32\_to\_unorm8(src.y) << 8) |
447        (f32\_to\_unorm8(src.z) << 16) |
448        (f32\_to\_unorm8(src.w) << 24)
449
450
451.. opcode:: SEQ - Set On Equal
452
453.. math::
454
455  dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
456
457  dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
458
459  dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
460
461  dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
462
463
464.. opcode:: SGT - Set On Greater Than
465
466.. math::
467
468  dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
469
470  dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
471
472  dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
473
474  dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
475
476
477.. opcode:: SIN - Sine
478
479This instruction replicates its result.
480
481.. math::
482
483  dst = \sin{src.x}
484
485
486.. opcode:: SLE - Set On Less Equal Than
487
488.. math::
489
490  dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
491
492  dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
493
494  dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
495
496  dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
497
498
499.. opcode:: SNE - Set On Not Equal
500
501.. math::
502
503  dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
504
505  dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
506
507  dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
508
509  dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
510
511
512.. opcode:: TEX - Texture Lookup
513
514  for array textures src0.y contains the slice for 1D,
515  and src0.z contain the slice for 2D.
516
517  for shadow textures with no arrays (and not cube map),
518  src0.z contains the reference value.
519
520  for shadow textures with arrays, src0.z contains
521  the reference value for 1D arrays, and src0.w contains
522  the reference value for 2D arrays and cube maps.
523
524  for cube map array shadow textures, the reference value
525  cannot be passed in src0.w, and TEX2 must be used instead.
526
527.. math::
528
529  coord = src0
530
531  shadow_ref = src0.z or src0.w (optional)
532
533  unit = src1
534
535  dst = texture\_sample(unit, coord, shadow_ref)
536
537
538.. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
539
540  this is the same as TEX, but uses another reg to encode the
541  reference value.
542
543.. math::
544
545  coord = src0
546
547  shadow_ref = src1.x
548
549  unit = src2
550
551  dst = texture\_sample(unit, coord, shadow_ref)
552
553
554
555
556.. opcode:: TXD - Texture Lookup with Derivatives
557
558.. math::
559
560  coord = src0
561
562  ddx = src1
563
564  ddy = src2
565
566  unit = src3
567
568  dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
569
570
571.. opcode:: TXP - Projective Texture Lookup
572
573.. math::
574
575  coord.x = src0.x / src0.w
576
577  coord.y = src0.y / src0.w
578
579  coord.z = src0.z / src0.w
580
581  coord.w = src0.w
582
583  unit = src1
584
585  dst = texture\_sample(unit, coord)
586
587
588.. opcode:: UP2H - Unpack Two 16-Bit Floats
589
590.. math::
591
592  dst.x = f16\_to\_f32(src0.x \& 0xffff)
593
594  dst.y = f16\_to\_f32(src0.x >> 16)
595
596  dst.z = f16\_to\_f32(src0.x \& 0xffff)
597
598  dst.w = f16\_to\_f32(src0.x >> 16)
599
600.. note::
601
602   Considered for removal.
603
604.. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
605
606  TBD
607
608.. note::
609
610   Considered for removal.
611
612.. opcode:: UP4B - Unpack Four Signed 8-Bit Values
613
614  TBD
615
616.. note::
617
618   Considered for removal.
619
620.. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
621
622  TBD
623
624.. note::
625
626   Considered for removal.
627
628
629.. opcode:: ARR - Address Register Load With Round
630
631.. math::
632
633  dst.x = (int) round(src.x)
634
635  dst.y = (int) round(src.y)
636
637  dst.z = (int) round(src.z)
638
639  dst.w = (int) round(src.w)
640
641
642.. opcode:: SSG - Set Sign
643
644.. math::
645
646  dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
647
648  dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
649
650  dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
651
652  dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
653
654
655.. opcode:: CMP - Compare
656
657.. math::
658
659  dst.x = (src0.x < 0) ? src1.x : src2.x
660
661  dst.y = (src0.y < 0) ? src1.y : src2.y
662
663  dst.z = (src0.z < 0) ? src1.z : src2.z
664
665  dst.w = (src0.w < 0) ? src1.w : src2.w
666
667
668.. opcode:: KILL_IF - Conditional Discard
669
670  Conditional discard.  Allowed in fragment shaders only.
671
672.. math::
673
674  if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
675    discard
676  endif
677
678
679.. opcode:: KILL - Discard
680
681  Unconditional discard.  Allowed in fragment shaders only.
682
683
684.. opcode:: DEMOTE - Demote Invocation to a Helper
685
686  This demotes the current invocation to a helper, but continues
687  execution (while KILL may or may not terminate the
688  invocation). After this runs, all the usual helper invocation rules
689  apply about discarding buffer and render target writes. This is
690  useful for having accurate derivatives in the other invocations
691  which have not been demoted.
692
693  Allowed in fragment shaders only.
694
695
696.. opcode:: READ_HELPER - Reads Invocation Helper Status
697
698  This is identical to ``TGSI_SEMANTIC_HELPER_INVOCATION``, except
699  this will read the current value, which might change as a result of
700  a ``DEMOTE`` instruction.
701
702  Allowed in fragment shaders only.
703
704
705.. opcode:: TXB - Texture Lookup With Bias
706
707  for cube map array textures and shadow cube maps, the bias value
708  cannot be passed in src0.w, and TXB2 must be used instead.
709
710  if the target is a shadow texture, the reference value is always
711  in src.z (this prevents shadow 3d and shadow 2d arrays from
712  using this instruction, but this is not needed).
713
714.. math::
715
716  coord.x = src0.x
717
718  coord.y = src0.y
719
720  coord.z = src0.z
721
722  coord.w = none
723
724  bias = src0.w
725
726  unit = src1
727
728  dst = texture\_sample(unit, coord, bias)
729
730
731.. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
732
733  this is the same as TXB, but uses another reg to encode the
734  lod bias value for cube map arrays and shadow cube maps.
735  Presumably shadow 2d arrays and shadow 3d targets could use
736  this encoding too, but this is not legal.
737
738  if the target is a shadow cube map array, the reference value is in
739  src1.y.
740
741.. math::
742
743  coord = src0
744
745  bias = src1.x
746
747  unit = src2
748
749  dst = texture\_sample(unit, coord, bias)
750
751
752.. opcode:: DIV - Divide
753
754.. math::
755
756  dst.x = \frac{src0.x}{src1.x}
757
758  dst.y = \frac{src0.y}{src1.y}
759
760  dst.z = \frac{src0.z}{src1.z}
761
762  dst.w = \frac{src0.w}{src1.w}
763
764
765.. opcode:: DP2 - 2-component Dot Product
766
767This instruction replicates its result.
768
769.. math::
770
771  dst = src0.x \times src1.x + src0.y \times src1.y
772
773
774.. opcode:: TEX_LZ - Texture Lookup With LOD = 0
775
776  This is the same as TXL with LOD = 0. Like every texture opcode, it obeys
777  pipe_sampler_view::u.tex.first_level and pipe_sampler_state::min_lod.
778  There is no way to override those two in shaders.
779
780.. math::
781
782  coord.x = src0.x
783
784  coord.y = src0.y
785
786  coord.z = src0.z
787
788  coord.w = none
789
790  lod = 0
791
792  unit = src1
793
794  dst = texture\_sample(unit, coord, lod)
795
796
797.. opcode:: TXL - Texture Lookup With explicit LOD
798
799  for cube map array textures, the explicit lod value
800  cannot be passed in src0.w, and TXL2 must be used instead.
801
802  if the target is a shadow texture, the reference value is always
803  in src.z (this prevents shadow 3d / 2d array / cube targets from
804  using this instruction, but this is not needed).
805
806.. math::
807
808  coord.x = src0.x
809
810  coord.y = src0.y
811
812  coord.z = src0.z
813
814  coord.w = none
815
816  lod = src0.w
817
818  unit = src1
819
820  dst = texture\_sample(unit, coord, lod)
821
822
823.. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
824
825  this is the same as TXL, but uses another reg to encode the
826  explicit lod value.
827  Presumably shadow 3d / 2d array / cube targets could use
828  this encoding too, but this is not legal.
829
830  if the target is a shadow cube map array, the reference value is in
831  src1.y.
832
833.. math::
834
835  coord = src0
836
837  lod = src1.x
838
839  unit = src2
840
841  dst = texture\_sample(unit, coord, lod)
842
843
844Compute ISA
845^^^^^^^^^^^^^^^^^^^^^^^^
846
847These opcodes are primarily provided for special-use computational shaders.
848Support for these opcodes indicated by a special pipe capability bit (TBD).
849
850XXX doesn't look like most of the opcodes really belong here.
851
852.. opcode:: CEIL - Ceiling
853
854.. math::
855
856  dst.x = \lceil src.x\rceil
857
858  dst.y = \lceil src.y\rceil
859
860  dst.z = \lceil src.z\rceil
861
862  dst.w = \lceil src.w\rceil
863
864
865.. opcode:: TRUNC - Truncate
866
867.. math::
868
869  dst.x = trunc(src.x)
870
871  dst.y = trunc(src.y)
872
873  dst.z = trunc(src.z)
874
875  dst.w = trunc(src.w)
876
877
878.. opcode:: MOD - Modulus
879
880.. math::
881
882  dst.x = src0.x \bmod src1.x
883
884  dst.y = src0.y \bmod src1.y
885
886  dst.z = src0.z \bmod src1.z
887
888  dst.w = src0.w \bmod src1.w
889
890
891.. opcode:: UARL - Integer Address Register Load
892
893  Moves the contents of the source register, assumed to be an integer, into the
894  destination register, which is assumed to be an address (ADDR) register.
895
896
897.. opcode:: TXF - Texel Fetch
898
899  As per NV_gpu_shader4, extract a single texel from a specified texture
900  image or PIPE_BUFFER resource. The source sampler may not be a CUBE or
901  SHADOW.  src 0 is a
902  four-component signed integer vector used to identify the single texel
903  accessed. 3 components + level.  If the texture is multisampled, then
904  the fourth component indicates the sample, not the mipmap level.
905  Just like texture instructions, an optional
906  offset vector is provided, which is subject to various driver restrictions
907  (regarding range, source of offsets). This instruction ignores the sampler
908  state.
909
910  TXF(uint_vec coord, int_vec offset).
911
912
913.. opcode:: TXQ - Texture Size Query
914
915  As per NV_gpu_program4, retrieve the dimensions of the texture depending on
916  the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
917  depth), 1D array (width, layers), 2D array (width, height, layers).
918  Also return the number of accessible levels (last_level - first_level + 1)
919  in W.
920
921  For components which don't return a resource dimension, their value
922  is undefined.
923
924.. math::
925
926  lod = src0.x
927
928  dst.x = texture\_width(unit, lod)
929
930  dst.y = texture\_height(unit, lod)
931
932  dst.z = texture\_depth(unit, lod)
933
934  dst.w = texture\_levels(unit)
935
936
937.. opcode:: TXQS - Texture Samples Query
938
939  This retrieves the number of samples in the texture, and stores it
940  into the x component as an unsigned integer. The other components are
941  undefined.  If the texture is not multisampled, this function returns
942  (1, undef, undef, undef).
943
944.. math::
945
946  dst.x = texture\_samples(unit)
947
948
949.. opcode:: TG4 - Texture Gather
950
951  As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
952  filtering operation and packs them into a single register.  Only works with
953  2D, 2D array, cubemaps, and cubemaps arrays.  For 2D textures, only the
954  addressing modes of the sampler and the top level of any mip pyramid are
955  used. Set W to zero.  It behaves like the TEX instruction, but a filtered
956  sample is not generated. The four samples that contribute to filtering are
957  placed into xyzw in clockwise order, starting with the (u,v) texture
958  coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
959  where the magnitude of the deltas are half a texel.
960
961  PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
962  depth compares, single component selection, and a non-constant offset. It
963  doesn't allow support for the GL independent offset to get i0,j0. This would
964  require another CAP is hw can do it natively. For now we lower that before
965  TGSI.
966
967  PIPE_CAP_TGSI_TG4_COMPONENT_IN_SWIZZLE changes the encoding so that component
968  is stored in the sampler source swizzle x.
969
970.. math::
971
972   coord = src0
973
974   (without TGSI_TG4_COMPONENT_IN_SWIZZLE)
975   component = src1
976
977   dst = texture\_gather4 (unit, coord, component)
978
979   (with TGSI_TG4_COMPONENT_IN_SWIZZLE)
980   dst = texture\_gather4 (unit, coord)
981   component is encoded in sampler swizzle.
982
983(with SM5 - cube array shadow)
984
985.. math::
986
987   coord = src0
988
989   compare = src1
990
991   dst = texture\_gather (uint, coord, compare)
992
993.. opcode:: LODQ - level of detail query
994
995   Compute the LOD information that the texture pipe would use to access the
996   texture. The Y component contains the computed LOD lambda_prime. The X
997   component contains the LOD that will be accessed, based on min/max lod's
998   and mipmap filters.
999
1000.. math::
1001
1002   coord = src0
1003
1004   dst.xy = lodq(uint, coord);
1005
1006.. opcode:: CLOCK - retrieve the current shader time
1007
1008   Invoking this instruction multiple times in the same shader should
1009   cause monotonically increasing values to be returned. The values
1010   are implicitly 64-bit, so if fewer than 64 bits of precision are
1011   available, to provide expected wraparound semantics, the value
1012   should be shifted up so that the most significant bit of the time
1013   is the most significant bit of the 64-bit value.
1014
1015.. math::
1016
1017   dst.xy = clock()
1018
1019
1020Integer ISA
1021^^^^^^^^^^^^^^^^^^^^^^^^
1022These opcodes are used for integer operations.
1023Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1024
1025
1026.. opcode:: I2F - Signed Integer To Float
1027
1028   Rounding is unspecified (round to nearest even suggested).
1029
1030.. math::
1031
1032  dst.x = (float) src.x
1033
1034  dst.y = (float) src.y
1035
1036  dst.z = (float) src.z
1037
1038  dst.w = (float) src.w
1039
1040
1041.. opcode:: U2F - Unsigned Integer To Float
1042
1043   Rounding is unspecified (round to nearest even suggested).
1044
1045.. math::
1046
1047  dst.x = (float) src.x
1048
1049  dst.y = (float) src.y
1050
1051  dst.z = (float) src.z
1052
1053  dst.w = (float) src.w
1054
1055
1056.. opcode:: F2I - Float to Signed Integer
1057
1058   Rounding is towards zero (truncate).
1059   Values outside signed range (including NaNs) produce undefined results.
1060
1061.. math::
1062
1063  dst.x = (int) src.x
1064
1065  dst.y = (int) src.y
1066
1067  dst.z = (int) src.z
1068
1069  dst.w = (int) src.w
1070
1071
1072.. opcode:: F2U - Float to Unsigned Integer
1073
1074   Rounding is towards zero (truncate).
1075   Values outside unsigned range (including NaNs) produce undefined results.
1076
1077.. math::
1078
1079  dst.x = (unsigned) src.x
1080
1081  dst.y = (unsigned) src.y
1082
1083  dst.z = (unsigned) src.z
1084
1085  dst.w = (unsigned) src.w
1086
1087
1088.. opcode:: UADD - Integer Add
1089
1090   This instruction works the same for signed and unsigned integers.
1091   The low 32bit of the result is returned.
1092
1093.. math::
1094
1095  dst.x = src0.x + src1.x
1096
1097  dst.y = src0.y + src1.y
1098
1099  dst.z = src0.z + src1.z
1100
1101  dst.w = src0.w + src1.w
1102
1103
1104.. opcode:: UMAD - Integer Multiply And Add
1105
1106   This instruction works the same for signed and unsigned integers.
1107   The multiplication returns the low 32bit (as does the result itself).
1108
1109.. math::
1110
1111  dst.x = src0.x \times src1.x + src2.x
1112
1113  dst.y = src0.y \times src1.y + src2.y
1114
1115  dst.z = src0.z \times src1.z + src2.z
1116
1117  dst.w = src0.w \times src1.w + src2.w
1118
1119
1120.. opcode:: UMUL - Integer Multiply
1121
1122   This instruction works the same for signed and unsigned integers.
1123   The low 32bit of the result is returned.
1124
1125.. math::
1126
1127  dst.x = src0.x \times src1.x
1128
1129  dst.y = src0.y \times src1.y
1130
1131  dst.z = src0.z \times src1.z
1132
1133  dst.w = src0.w \times src1.w
1134
1135
1136.. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1137
1138   The high 32bits of the multiplication of 2 signed integers are returned.
1139
1140.. math::
1141
1142  dst.x = (src0.x \times src1.x) >> 32
1143
1144  dst.y = (src0.y \times src1.y) >> 32
1145
1146  dst.z = (src0.z \times src1.z) >> 32
1147
1148  dst.w = (src0.w \times src1.w) >> 32
1149
1150
1151.. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1152
1153   The high 32bits of the multiplication of 2 unsigned integers are returned.
1154
1155.. math::
1156
1157  dst.x = (src0.x \times src1.x) >> 32
1158
1159  dst.y = (src0.y \times src1.y) >> 32
1160
1161  dst.z = (src0.z \times src1.z) >> 32
1162
1163  dst.w = (src0.w \times src1.w) >> 32
1164
1165
1166.. opcode:: IDIV - Signed Integer Division
1167
1168   TBD: behavior for division by zero.
1169
1170.. math::
1171
1172  dst.x = \frac{src0.x}{src1.x}
1173
1174  dst.y = \frac{src0.y}{src1.y}
1175
1176  dst.z = \frac{src0.z}{src1.z}
1177
1178  dst.w = \frac{src0.w}{src1.w}
1179
1180
1181.. opcode:: UDIV - Unsigned Integer Division
1182
1183   For division by zero, 0xffffffff is returned.
1184
1185.. math::
1186
1187  dst.x = \frac{src0.x}{src1.x}
1188
1189  dst.y = \frac{src0.y}{src1.y}
1190
1191  dst.z = \frac{src0.z}{src1.z}
1192
1193  dst.w = \frac{src0.w}{src1.w}
1194
1195
1196.. opcode:: UMOD - Unsigned Integer Remainder
1197
1198   If second arg is zero, 0xffffffff is returned.
1199
1200.. math::
1201
1202  dst.x = src0.x \bmod src1.x
1203
1204  dst.y = src0.y \bmod src1.y
1205
1206  dst.z = src0.z \bmod src1.z
1207
1208  dst.w = src0.w \bmod src1.w
1209
1210
1211.. opcode:: NOT - Bitwise Not
1212
1213.. math::
1214
1215  dst.x = \sim src.x
1216
1217  dst.y = \sim src.y
1218
1219  dst.z = \sim src.z
1220
1221  dst.w = \sim src.w
1222
1223
1224.. opcode:: AND - Bitwise And
1225
1226.. math::
1227
1228  dst.x = src0.x \& src1.x
1229
1230  dst.y = src0.y \& src1.y
1231
1232  dst.z = src0.z \& src1.z
1233
1234  dst.w = src0.w \& src1.w
1235
1236
1237.. opcode:: OR - Bitwise Or
1238
1239.. math::
1240
1241  dst.x = src0.x | src1.x
1242
1243  dst.y = src0.y | src1.y
1244
1245  dst.z = src0.z | src1.z
1246
1247  dst.w = src0.w | src1.w
1248
1249
1250.. opcode:: XOR - Bitwise Xor
1251
1252.. math::
1253
1254  dst.x = src0.x \oplus src1.x
1255
1256  dst.y = src0.y \oplus src1.y
1257
1258  dst.z = src0.z \oplus src1.z
1259
1260  dst.w = src0.w \oplus src1.w
1261
1262
1263.. opcode:: IMAX - Maximum of Signed Integers
1264
1265.. math::
1266
1267  dst.x = max(src0.x, src1.x)
1268
1269  dst.y = max(src0.y, src1.y)
1270
1271  dst.z = max(src0.z, src1.z)
1272
1273  dst.w = max(src0.w, src1.w)
1274
1275
1276.. opcode:: UMAX - Maximum of Unsigned Integers
1277
1278.. math::
1279
1280  dst.x = max(src0.x, src1.x)
1281
1282  dst.y = max(src0.y, src1.y)
1283
1284  dst.z = max(src0.z, src1.z)
1285
1286  dst.w = max(src0.w, src1.w)
1287
1288
1289.. opcode:: IMIN - Minimum of Signed Integers
1290
1291.. math::
1292
1293  dst.x = min(src0.x, src1.x)
1294
1295  dst.y = min(src0.y, src1.y)
1296
1297  dst.z = min(src0.z, src1.z)
1298
1299  dst.w = min(src0.w, src1.w)
1300
1301
1302.. opcode:: UMIN - Minimum of Unsigned Integers
1303
1304.. math::
1305
1306  dst.x = min(src0.x, src1.x)
1307
1308  dst.y = min(src0.y, src1.y)
1309
1310  dst.z = min(src0.z, src1.z)
1311
1312  dst.w = min(src0.w, src1.w)
1313
1314
1315.. opcode:: SHL - Shift Left
1316
1317   The shift count is masked with 0x1f before the shift is applied.
1318
1319.. math::
1320
1321  dst.x = src0.x << (0x1f \& src1.x)
1322
1323  dst.y = src0.y << (0x1f \& src1.y)
1324
1325  dst.z = src0.z << (0x1f \& src1.z)
1326
1327  dst.w = src0.w << (0x1f \& src1.w)
1328
1329
1330.. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1331
1332   The shift count is masked with 0x1f before the shift is applied.
1333
1334.. math::
1335
1336  dst.x = src0.x >> (0x1f \& src1.x)
1337
1338  dst.y = src0.y >> (0x1f \& src1.y)
1339
1340  dst.z = src0.z >> (0x1f \& src1.z)
1341
1342  dst.w = src0.w >> (0x1f \& src1.w)
1343
1344
1345.. opcode:: USHR - Logical Shift Right
1346
1347   The shift count is masked with 0x1f before the shift is applied.
1348
1349.. math::
1350
1351  dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1352
1353  dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1354
1355  dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1356
1357  dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1358
1359
1360.. opcode:: UCMP - Integer Conditional Move
1361
1362.. math::
1363
1364  dst.x = src0.x ? src1.x : src2.x
1365
1366  dst.y = src0.y ? src1.y : src2.y
1367
1368  dst.z = src0.z ? src1.z : src2.z
1369
1370  dst.w = src0.w ? src1.w : src2.w
1371
1372
1373
1374.. opcode:: ISSG - Integer Set Sign
1375
1376.. math::
1377
1378  dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1379
1380  dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1381
1382  dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1383
1384  dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1385
1386
1387
1388.. opcode:: FSLT - Float Set On Less Than (ordered)
1389
1390   Same comparison as SLT but returns integer instead of 1.0/0.0 float
1391
1392.. math::
1393
1394  dst.x = (src0.x < src1.x) ? \sim 0 : 0
1395
1396  dst.y = (src0.y < src1.y) ? \sim 0 : 0
1397
1398  dst.z = (src0.z < src1.z) ? \sim 0 : 0
1399
1400  dst.w = (src0.w < src1.w) ? \sim 0 : 0
1401
1402
1403.. opcode:: ISLT - Signed Integer Set On Less Than
1404
1405.. math::
1406
1407  dst.x = (src0.x < src1.x) ? \sim 0 : 0
1408
1409  dst.y = (src0.y < src1.y) ? \sim 0 : 0
1410
1411  dst.z = (src0.z < src1.z) ? \sim 0 : 0
1412
1413  dst.w = (src0.w < src1.w) ? \sim 0 : 0
1414
1415
1416.. opcode:: USLT - Unsigned Integer Set On Less Than
1417
1418.. math::
1419
1420  dst.x = (src0.x < src1.x) ? \sim 0 : 0
1421
1422  dst.y = (src0.y < src1.y) ? \sim 0 : 0
1423
1424  dst.z = (src0.z < src1.z) ? \sim 0 : 0
1425
1426  dst.w = (src0.w < src1.w) ? \sim 0 : 0
1427
1428
1429.. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1430
1431   Same comparison as SGE but returns integer instead of 1.0/0.0 float
1432
1433.. math::
1434
1435  dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1436
1437  dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1438
1439  dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1440
1441  dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1442
1443
1444.. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1445
1446.. math::
1447
1448  dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1449
1450  dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1451
1452  dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1453
1454  dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1455
1456
1457.. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1458
1459.. math::
1460
1461  dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1462
1463  dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1464
1465  dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1466
1467  dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1468
1469
1470.. opcode:: FSEQ - Float Set On Equal (ordered)
1471
1472   Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1473
1474.. math::
1475
1476  dst.x = (src0.x == src1.x) ? \sim 0 : 0
1477
1478  dst.y = (src0.y == src1.y) ? \sim 0 : 0
1479
1480  dst.z = (src0.z == src1.z) ? \sim 0 : 0
1481
1482  dst.w = (src0.w == src1.w) ? \sim 0 : 0
1483
1484
1485.. opcode:: USEQ - Integer Set On Equal
1486
1487.. math::
1488
1489  dst.x = (src0.x == src1.x) ? \sim 0 : 0
1490
1491  dst.y = (src0.y == src1.y) ? \sim 0 : 0
1492
1493  dst.z = (src0.z == src1.z) ? \sim 0 : 0
1494
1495  dst.w = (src0.w == src1.w) ? \sim 0 : 0
1496
1497
1498.. opcode:: FSNE - Float Set On Not Equal (unordered)
1499
1500   Same comparison as SNE but returns integer instead of 1.0/0.0 float
1501
1502.. math::
1503
1504  dst.x = (src0.x != src1.x) ? \sim 0 : 0
1505
1506  dst.y = (src0.y != src1.y) ? \sim 0 : 0
1507
1508  dst.z = (src0.z != src1.z) ? \sim 0 : 0
1509
1510  dst.w = (src0.w != src1.w) ? \sim 0 : 0
1511
1512
1513.. opcode:: USNE - Integer Set On Not Equal
1514
1515.. math::
1516
1517  dst.x = (src0.x != src1.x) ? \sim 0 : 0
1518
1519  dst.y = (src0.y != src1.y) ? \sim 0 : 0
1520
1521  dst.z = (src0.z != src1.z) ? \sim 0 : 0
1522
1523  dst.w = (src0.w != src1.w) ? \sim 0 : 0
1524
1525
1526.. opcode:: INEG - Integer Negate
1527
1528  Two's complement.
1529
1530.. math::
1531
1532  dst.x = -src.x
1533
1534  dst.y = -src.y
1535
1536  dst.z = -src.z
1537
1538  dst.w = -src.w
1539
1540
1541.. opcode:: IABS - Integer Absolute Value
1542
1543.. math::
1544
1545  dst.x = |src.x|
1546
1547  dst.y = |src.y|
1548
1549  dst.z = |src.z|
1550
1551  dst.w = |src.w|
1552
1553Bitwise ISA
1554^^^^^^^^^^^
1555These opcodes are used for bit-level manipulation of integers.
1556
1557.. opcode:: IBFE - Signed Bitfield Extract
1558
1559  Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1560  sign-extends them if the high bit of the extracted window is set.
1561
1562  Pseudocode::
1563
1564    def ibfe(value, offset, bits):
1565      if offset < 0 or bits < 0 or offset + bits > 32:
1566        return undefined
1567      if bits == 0: return 0
1568      # Note: >> sign-extends
1569      return (value << (32 - offset - bits)) >> (32 - bits)
1570
1571.. opcode:: UBFE - Unsigned Bitfield Extract
1572
1573  Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1574  any sign-extension.
1575
1576  Pseudocode::
1577
1578    def ubfe(value, offset, bits):
1579      if offset < 0 or bits < 0 or offset + bits > 32:
1580        return undefined
1581      if bits == 0: return 0
1582      # Note: >> does not sign-extend
1583      return (value << (32 - offset - bits)) >> (32 - bits)
1584
1585.. opcode:: BFI - Bitfield Insert
1586
1587  Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1588  of 'insert'.
1589
1590  Pseudocode::
1591
1592    def bfi(base, insert, offset, bits):
1593      if offset < 0 or bits < 0 or offset + bits > 32:
1594        return undefined
1595      # << defined such that mask == ~0 when bits == 32, offset == 0
1596      mask = ((1 << bits) - 1) << offset
1597      return ((insert << offset) & mask) | (base & ~mask)
1598
1599.. opcode:: BREV - Bitfield Reverse
1600
1601  See SM5 instruction BFREV. Reverses the bits of the argument.
1602
1603.. opcode:: POPC - Population Count
1604
1605  See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1606
1607.. opcode:: LSB - Index of lowest set bit
1608
1609  See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1610  bit of the argument. Returns -1 if none are set.
1611
1612.. opcode:: IMSB - Index of highest non-sign bit
1613
1614  See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1615  non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1616  highest 1 bit for positive numbers). Returns -1 if all bits are the same
1617  (i.e. for inputs 0 and -1).
1618
1619.. opcode:: UMSB - Index of highest set bit
1620
1621  See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1622  set bit of the argument. Returns -1 if none are set.
1623
1624Geometry ISA
1625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1626
1627These opcodes are only supported in geometry shaders; they have no meaning
1628in any other type of shader.
1629
1630.. opcode:: EMIT - Emit
1631
1632  Generate a new vertex for the current primitive into the specified vertex
1633  stream using the values in the output registers.
1634
1635
1636.. opcode:: ENDPRIM - End Primitive
1637
1638  Complete the current primitive in the specified vertex stream (consisting of
1639  the emitted vertices), and start a new one.
1640
1641
1642GLSL ISA
1643^^^^^^^^^^
1644
1645These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1646opcodes is determined by a special capability bit, ``GLSL``.
1647Some require glsl version 1.30 (UIF/SWITCH/CASE/DEFAULT/ENDSWITCH).
1648
1649.. opcode:: CAL - Subroutine Call
1650
1651  push(pc)
1652  pc = target
1653
1654
1655.. opcode:: RET - Subroutine Call Return
1656
1657  pc = pop()
1658
1659
1660.. opcode:: CONT - Continue
1661
1662  Unconditionally moves the point of execution to the instruction after the
1663  last bgnloop. The instruction must appear within a bgnloop/endloop.
1664
1665.. note::
1666
1667   Support for CONT is determined by a special capability bit,
1668   ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1669
1670
1671.. opcode:: BGNLOOP - Begin a Loop
1672
1673  Start a loop. Must have a matching endloop.
1674
1675
1676.. opcode:: BGNSUB - Begin Subroutine
1677
1678  Starts definition of a subroutine. Must have a matching endsub.
1679
1680
1681.. opcode:: ENDLOOP - End a Loop
1682
1683  End a loop started with bgnloop.
1684
1685
1686.. opcode:: ENDSUB - End Subroutine
1687
1688  Ends definition of a subroutine.
1689
1690
1691.. opcode:: NOP - No Operation
1692
1693  Do nothing.
1694
1695
1696.. opcode:: BRK - Break
1697
1698  Unconditionally moves the point of execution to the instruction after the
1699  next endloop or endswitch. The instruction must appear within a loop/endloop
1700  or switch/endswitch.
1701
1702
1703.. opcode:: IF - Float If
1704
1705  Start an IF ... ELSE .. ENDIF block.  Condition evaluates to true if
1706
1707    src0.x != 0.0
1708
1709  where src0.x is interpreted as a floating point register.
1710
1711
1712.. opcode:: UIF - Bitwise If
1713
1714  Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1715
1716    src0.x != 0
1717
1718  where src0.x is interpreted as an integer register.
1719
1720
1721.. opcode:: ELSE - Else
1722
1723  Starts an else block, after an IF or UIF statement.
1724
1725
1726.. opcode:: ENDIF - End If
1727
1728  Ends an IF or UIF block.
1729
1730
1731.. opcode:: SWITCH - Switch
1732
1733   Starts a C-style switch expression. The switch consists of one or multiple
1734   CASE statements, and at most one DEFAULT statement. Execution of a statement
1735   ends when a BRK is hit, but just like in C falling through to other cases
1736   without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1737   just as last statement, and fallthrough is allowed into/from it.
1738   CASE src arguments are evaluated at bit level against the SWITCH src argument.
1739
1740   Example::
1741
1742     SWITCH src[0].x
1743     CASE src[0].x
1744     (some instructions here)
1745     (optional BRK here)
1746     DEFAULT
1747     (some instructions here)
1748     (optional BRK here)
1749     CASE src[0].x
1750     (some instructions here)
1751     (optional BRK here)
1752     ENDSWITCH
1753
1754
1755.. opcode:: CASE - Switch case
1756
1757   This represents a switch case label. The src arg must be an integer immediate.
1758
1759
1760.. opcode:: DEFAULT - Switch default
1761
1762   This represents the default case in the switch, which is taken if no other
1763   case matches.
1764
1765
1766.. opcode:: ENDSWITCH - End of switch
1767
1768   Ends a switch expression.
1769
1770
1771Interpolation ISA
1772^^^^^^^^^^^^^^^^^
1773
1774The interpolation instructions allow an input to be interpolated in a
1775different way than its declaration. This corresponds to the GLSL 4.00
1776interpolateAt* functions. The first argument of each of these must come from
1777``TGSI_FILE_INPUT``.
1778
1779.. opcode:: INTERP_CENTROID - Interpolate at the centroid
1780
1781   Interpolates the varying specified by src0 at the centroid
1782
1783.. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1784
1785   Interpolates the varying specified by src0 at the sample id specified by
1786   src1.x (interpreted as an integer)
1787
1788.. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1789
1790   Interpolates the varying specified by src0 at the offset src1.xy from the
1791   pixel center (interpreted as floats)
1792
1793
1794.. _doubleopcodes:
1795
1796Double ISA
1797^^^^^^^^^^^^^^^
1798
1799The double-precision opcodes reinterpret four-component vectors into
1800two-component vectors with doubled precision in each component.
1801
1802.. opcode:: DABS - Absolute
1803
1804.. math::
1805
1806  dst.xy = |src0.xy|
1807
1808  dst.zw = |src0.zw|
1809
1810.. opcode:: DADD - Add
1811
1812.. math::
1813
1814  dst.xy = src0.xy + src1.xy
1815
1816  dst.zw = src0.zw + src1.zw
1817
1818.. opcode:: DSEQ - Set on Equal
1819
1820.. math::
1821
1822  dst.x = src0.xy == src1.xy ? \sim 0 : 0
1823
1824  dst.z = src0.zw == src1.zw ? \sim 0 : 0
1825
1826.. opcode:: DSNE - Set on Not Equal
1827
1828.. math::
1829
1830  dst.x = src0.xy != src1.xy ? \sim 0 : 0
1831
1832  dst.z = src0.zw != src1.zw ? \sim 0 : 0
1833
1834.. opcode:: DSLT - Set on Less than
1835
1836.. math::
1837
1838  dst.x = src0.xy < src1.xy ? \sim 0 : 0
1839
1840  dst.z = src0.zw < src1.zw ? \sim 0 : 0
1841
1842.. opcode:: DSGE - Set on Greater equal
1843
1844.. math::
1845
1846  dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1847
1848  dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1849
1850.. opcode:: DFRAC - Fraction
1851
1852.. math::
1853
1854  dst.xy = src.xy - \lfloor src.xy\rfloor
1855
1856  dst.zw = src.zw - \lfloor src.zw\rfloor
1857
1858.. opcode:: DTRUNC - Truncate
1859
1860.. math::
1861
1862  dst.xy = trunc(src.xy)
1863
1864  dst.zw = trunc(src.zw)
1865
1866.. opcode:: DCEIL - Ceiling
1867
1868.. math::
1869
1870  dst.xy = \lceil src.xy\rceil
1871
1872  dst.zw = \lceil src.zw\rceil
1873
1874.. opcode:: DFLR - Floor
1875
1876.. math::
1877
1878  dst.xy = \lfloor src.xy\rfloor
1879
1880  dst.zw = \lfloor src.zw\rfloor
1881
1882.. opcode:: DROUND - Fraction
1883
1884.. math::
1885
1886  dst.xy = round(src.xy)
1887
1888  dst.zw = round(src.zw)
1889
1890.. opcode:: DSSG - Set Sign
1891
1892.. math::
1893
1894  dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1895
1896  dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1897
1898.. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1899
1900Like the ``frexp()`` routine in many math libraries, this opcode stores the
1901exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1902:math:`dst1 \times 2^{dst0} = src` . The results are replicated across
1903channels.
1904
1905.. math::
1906
1907  dst0.xy = dst.zw = frac(src.xy)
1908
1909  dst1 = frac(src.xy)
1910
1911
1912.. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1913
1914This opcode is the inverse of :opcode:`DFRACEXP`. The second
1915source is an integer.
1916
1917.. math::
1918
1919  dst.xy = src0.xy \times 2^{src1.x}
1920
1921  dst.zw = src0.zw \times 2^{src1.z}
1922
1923.. opcode:: DMIN - Minimum
1924
1925.. math::
1926
1927  dst.xy = min(src0.xy, src1.xy)
1928
1929  dst.zw = min(src0.zw, src1.zw)
1930
1931.. opcode:: DMAX - Maximum
1932
1933.. math::
1934
1935  dst.xy = max(src0.xy, src1.xy)
1936
1937  dst.zw = max(src0.zw, src1.zw)
1938
1939.. opcode:: DMUL - Multiply
1940
1941.. math::
1942
1943  dst.xy = src0.xy \times src1.xy
1944
1945  dst.zw = src0.zw \times src1.zw
1946
1947
1948.. opcode:: DMAD - Multiply And Add
1949
1950.. math::
1951
1952  dst.xy = src0.xy \times src1.xy + src2.xy
1953
1954  dst.zw = src0.zw \times src1.zw + src2.zw
1955
1956
1957.. opcode:: DFMA - Fused Multiply-Add
1958
1959Perform a * b + c with no intermediate rounding step.
1960
1961.. math::
1962
1963  dst.xy = src0.xy \times src1.xy + src2.xy
1964
1965  dst.zw = src0.zw \times src1.zw + src2.zw
1966
1967
1968.. opcode:: DDIV - Divide
1969
1970.. math::
1971
1972  dst.xy = \frac{src0.xy}{src1.xy}
1973
1974  dst.zw = \frac{src0.zw}{src1.zw}
1975
1976
1977.. opcode:: DRCP - Reciprocal
1978
1979.. math::
1980
1981   dst.xy = \frac{1}{src.xy}
1982
1983   dst.zw = \frac{1}{src.zw}
1984
1985.. opcode:: DSQRT - Square Root
1986
1987.. math::
1988
1989   dst.xy = \sqrt{src.xy}
1990
1991   dst.zw = \sqrt{src.zw}
1992
1993.. opcode:: DRSQ - Reciprocal Square Root
1994
1995.. math::
1996
1997   dst.xy = \frac{1}{\sqrt{src.xy}}
1998
1999   dst.zw = \frac{1}{\sqrt{src.zw}}
2000
2001.. opcode:: F2D - Float to Double
2002
2003.. math::
2004
2005   dst.xy = double(src0.x)
2006
2007   dst.zw = double(src0.y)
2008
2009.. opcode:: D2F - Double to Float
2010
2011.. math::
2012
2013   dst.x = float(src0.xy)
2014
2015   dst.y = float(src0.zw)
2016
2017.. opcode:: I2D - Int to Double
2018
2019.. math::
2020
2021   dst.xy = double(src0.x)
2022
2023   dst.zw = double(src0.y)
2024
2025.. opcode:: D2I - Double to Int
2026
2027.. math::
2028
2029   dst.x = int(src0.xy)
2030
2031   dst.y = int(src0.zw)
2032
2033.. opcode:: U2D - Unsigned Int to Double
2034
2035.. math::
2036
2037   dst.xy = double(src0.x)
2038
2039   dst.zw = double(src0.y)
2040
2041.. opcode:: D2U - Double to Unsigned Int
2042
2043.. math::
2044
2045   dst.x = unsigned(src0.xy)
2046
2047   dst.y = unsigned(src0.zw)
2048
204964-bit Integer ISA
2050^^^^^^^^^^^^^^^^^^
2051
2052The 64-bit integer opcodes reinterpret four-component vectors into
2053two-component vectors with 64-bits in each component.
2054
2055.. opcode:: I64ABS - 64-bit Integer Absolute Value
2056
2057.. math::
2058
2059  dst.xy = |src0.xy|
2060
2061  dst.zw = |src0.zw|
2062
2063.. opcode:: I64NEG - 64-bit Integer Negate
2064
2065  Two's complement.
2066
2067.. math::
2068
2069  dst.xy = -src.xy
2070
2071  dst.zw = -src.zw
2072
2073.. opcode:: I64SSG - 64-bit Integer Set Sign
2074
2075.. math::
2076
2077  dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2078
2079  dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2080
2081.. opcode:: U64ADD - 64-bit Integer Add
2082
2083.. math::
2084
2085  dst.xy = src0.xy + src1.xy
2086
2087  dst.zw = src0.zw + src1.zw
2088
2089.. opcode:: U64MUL - 64-bit Integer Multiply
2090
2091.. math::
2092
2093  dst.xy = src0.xy * src1.xy
2094
2095  dst.zw = src0.zw * src1.zw
2096
2097.. opcode:: U64SEQ - 64-bit Integer Set on Equal
2098
2099.. math::
2100
2101  dst.x = src0.xy == src1.xy ? \sim 0 : 0
2102
2103  dst.z = src0.zw == src1.zw ? \sim 0 : 0
2104
2105.. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2106
2107.. math::
2108
2109  dst.x = src0.xy != src1.xy ? \sim 0 : 0
2110
2111  dst.z = src0.zw != src1.zw ? \sim 0 : 0
2112
2113.. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2114
2115.. math::
2116
2117  dst.x = src0.xy < src1.xy ? \sim 0 : 0
2118
2119  dst.z = src0.zw < src1.zw ? \sim 0 : 0
2120
2121.. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2122
2123.. math::
2124
2125  dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2126
2127  dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2128
2129.. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2130
2131.. math::
2132
2133  dst.x = src0.xy < src1.xy ? \sim 0 : 0
2134
2135  dst.z = src0.zw < src1.zw ? \sim 0 : 0
2136
2137.. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2138
2139.. math::
2140
2141  dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2142
2143  dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2144
2145.. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2146
2147.. math::
2148
2149  dst.xy = min(src0.xy, src1.xy)
2150
2151  dst.zw = min(src0.zw, src1.zw)
2152
2153.. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2154
2155.. math::
2156
2157  dst.xy = min(src0.xy, src1.xy)
2158
2159  dst.zw = min(src0.zw, src1.zw)
2160
2161.. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2162
2163.. math::
2164
2165  dst.xy = max(src0.xy, src1.xy)
2166
2167  dst.zw = max(src0.zw, src1.zw)
2168
2169.. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2170
2171.. math::
2172
2173  dst.xy = max(src0.xy, src1.xy)
2174
2175  dst.zw = max(src0.zw, src1.zw)
2176
2177.. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2178
2179   The shift count is masked with 0x3f before the shift is applied.
2180
2181.. math::
2182
2183  dst.xy = src0.xy << (0x3f \& src1.x)
2184
2185  dst.zw = src0.zw << (0x3f \& src1.y)
2186
2187.. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2188
2189   The shift count is masked with 0x3f before the shift is applied.
2190
2191.. math::
2192
2193  dst.xy = src0.xy >> (0x3f \& src1.x)
2194
2195  dst.zw = src0.zw >> (0x3f \& src1.y)
2196
2197.. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2198
2199   The shift count is masked with 0x3f before the shift is applied.
2200
2201.. math::
2202
2203  dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2204
2205  dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2206
2207.. opcode:: I64DIV - 64-bit Signed Integer Division
2208
2209.. math::
2210
2211  dst.xy = \frac{src0.xy}{src1.xy}
2212
2213  dst.zw = \frac{src0.zw}{src1.zw}
2214
2215.. opcode:: U64DIV - 64-bit Unsigned Integer Division
2216
2217.. math::
2218
2219  dst.xy = \frac{src0.xy}{src1.xy}
2220
2221  dst.zw = \frac{src0.zw}{src1.zw}
2222
2223.. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2224
2225.. math::
2226
2227  dst.xy = src0.xy \bmod src1.xy
2228
2229  dst.zw = src0.zw \bmod src1.zw
2230
2231.. opcode:: I64MOD - 64-bit Signed Integer Remainder
2232
2233.. math::
2234
2235  dst.xy = src0.xy \bmod src1.xy
2236
2237  dst.zw = src0.zw \bmod src1.zw
2238
2239.. opcode:: F2U64 - Float to 64-bit Unsigned Int
2240
2241.. math::
2242
2243   dst.xy = (uint64_t) src0.x
2244
2245   dst.zw = (uint64_t) src0.y
2246
2247.. opcode:: F2I64 - Float to 64-bit Int
2248
2249.. math::
2250
2251   dst.xy = (int64_t) src0.x
2252
2253   dst.zw = (int64_t) src0.y
2254
2255.. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2256
2257   This is a zero extension.
2258
2259.. math::
2260
2261   dst.xy = (int64_t) src0.x
2262
2263   dst.zw = (int64_t) src0.y
2264
2265.. opcode:: I2I64 - Signed Integer to 64-bit Integer
2266
2267   This is a sign extension.
2268
2269.. math::
2270
2271   dst.xy = (int64_t) src0.x
2272
2273   dst.zw = (int64_t) src0.y
2274
2275.. opcode:: D2U64 - Double to 64-bit Unsigned Int
2276
2277.. math::
2278
2279   dst.xy = (uint64_t) src0.xy
2280
2281   dst.zw = (uint64_t) src0.zw
2282
2283.. opcode:: D2I64 - Double to 64-bit Int
2284
2285.. math::
2286
2287   dst.xy = (int64_t) src0.xy
2288
2289   dst.zw = (int64_t) src0.zw
2290
2291.. opcode:: U642F - 64-bit unsigned integer to float
2292
2293.. math::
2294
2295   dst.x = (float) src0.xy
2296
2297   dst.y = (float) src0.zw
2298
2299.. opcode:: I642F - 64-bit Int to Float
2300
2301.. math::
2302
2303   dst.x = (float) src0.xy
2304
2305   dst.y = (float) src0.zw
2306
2307.. opcode:: U642D - 64-bit unsigned integer to double
2308
2309.. math::
2310
2311   dst.xy = (double) src0.xy
2312
2313   dst.zw = (double) src0.zw
2314
2315.. opcode:: I642D - 64-bit Int to double
2316
2317.. math::
2318
2319   dst.xy = (double) src0.xy
2320
2321   dst.zw = (double) src0.zw
2322
2323.. _samplingopcodes:
2324
2325Resource Sampling Opcodes
2326^^^^^^^^^^^^^^^^^^^^^^^^^
2327
2328Those opcodes follow very closely semantics of the respective Direct3D
2329instructions. If in doubt double check Direct3D documentation.
2330Note that the swizzle on SVIEW (src1) determines texel swizzling
2331after lookup.
2332
2333.. opcode:: SAMPLE
2334
2335  Using provided address, sample data from the specified texture using the
2336  filtering mode identified by the given sampler. The source data may come from
2337  any resource type other than buffers.
2338
2339  Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2340
2341  Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2342
2343.. opcode:: SAMPLE_I
2344
2345  Simplified alternative to the SAMPLE instruction.  Using the provided
2346  integer address, SAMPLE_I fetches data from the specified sampler view
2347  without any filtering.  The source data may come from any resource type
2348  other than CUBE.
2349
2350  Syntax: ``SAMPLE_I dst, address, sampler_view``
2351
2352  Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2353
2354  The 'address' is specified as unsigned integers. If the 'address' is out of
2355  range [0...(# texels - 1)] the result of the fetch is always 0 in all
2356  components.  As such the instruction doesn't honor address wrap modes, in
2357  cases where that behavior is desirable 'SAMPLE' instruction should be used.
2358  address.w always provides an unsigned integer mipmap level. If the value is
2359  out of the range then the instruction always returns 0 in all components.
2360  address.yz are ignored for buffers and 1d textures.  address.z is ignored
2361  for 1d texture arrays and 2d textures.
2362
2363  For 1D texture arrays address.y provides the array index (also as unsigned
2364  integer). If the value is out of the range of available array indices
2365  [0... (array size - 1)] then the opcode always returns 0 in all components.
2366  For 2D texture arrays address.z provides the array index, otherwise it
2367  exhibits the same behavior as in the case for 1D texture arrays.  The exact
2368  semantics of the source address are presented in the table below:
2369
2370  +---------------------------+----+-----+-----+---------+
2371  | resource type             | X  |  Y  |  Z  |    W    |
2372  +===========================+====+=====+=====+=========+
2373  | ``PIPE_BUFFER``           | x  |     |     | ignored |
2374  +---------------------------+----+-----+-----+---------+
2375  | ``PIPE_TEXTURE_1D``       | x  |     |     |   mpl   |
2376  +---------------------------+----+-----+-----+---------+
2377  | ``PIPE_TEXTURE_2D``       | x  |  y  |     |   mpl   |
2378  +---------------------------+----+-----+-----+---------+
2379  | ``PIPE_TEXTURE_3D``       | x  |  y  |  z  |   mpl   |
2380  +---------------------------+----+-----+-----+---------+
2381  | ``PIPE_TEXTURE_RECT``     | x  |  y  |     |   mpl   |
2382  +---------------------------+----+-----+-----+---------+
2383  | ``PIPE_TEXTURE_CUBE``     | not allowed as source    |
2384  +---------------------------+----+-----+-----+---------+
2385  | ``PIPE_TEXTURE_1D_ARRAY`` | x  | idx |     |   mpl   |
2386  +---------------------------+----+-----+-----+---------+
2387  | ``PIPE_TEXTURE_2D_ARRAY`` | x  |  y  | idx |   mpl   |
2388  +---------------------------+----+-----+-----+---------+
2389
2390  Where 'mpl' is a mipmap level and 'idx' is the array index.
2391
2392.. opcode:: SAMPLE_I_MS
2393
2394  Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2395
2396  Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2397
2398.. opcode:: SAMPLE_B
2399
2400  Just like the SAMPLE instruction with the exception that an additional bias
2401  is applied to the level of detail computed as part of the instruction
2402  execution.
2403
2404  Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2405
2406  Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2407
2408.. opcode:: SAMPLE_C
2409
2410  Similar to the SAMPLE instruction but it performs a comparison filter. The
2411  operands to SAMPLE_C are identical to SAMPLE, except that there is an
2412  additional float32 operand, reference value, which must be a register with
2413  single-component, or a scalar literal.  SAMPLE_C makes the hardware use the
2414  current samplers compare_func (in pipe_sampler_state) to compare reference
2415  value against the red component value for the surce resource at each texel
2416  that the currently configured texture filter covers based on the provided
2417  coordinates.
2418
2419  Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2420
2421  Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2422
2423.. opcode:: SAMPLE_C_LZ
2424
2425  Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2426  for level-zero.
2427
2428  Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2429
2430  Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2431
2432
2433.. opcode:: SAMPLE_D
2434
2435  SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2436  the source address in the x direction and the y direction are provided by
2437  extra parameters.
2438
2439  Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2440
2441  Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2442
2443.. opcode:: SAMPLE_L
2444
2445  SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2446  directly as a scalar value, representing no anisotropy.
2447
2448  Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2449
2450  Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2451
2452.. opcode:: GATHER4
2453
2454  Gathers the four texels to be used in a bi-linear filtering operation and
2455  packs them into a single register.  Only works with 2D, 2D array, cubemaps,
2456  and cubemaps arrays.  For 2D textures, only the addressing modes of the
2457  sampler and the top level of any mip pyramid are used. Set W to zero.  It
2458  behaves like the SAMPLE instruction, but a filtered sample is not
2459  generated. The four samples that contribute to filtering are placed into
2460  xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2461  delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2462  magnitude of the deltas are half a texel.
2463
2464
2465.. opcode:: SVIEWINFO
2466
2467  Query the dimensions of a given sampler view.  dst receives width, height,
2468  depth or array size and number of mipmap levels as int4. The dst can have a
2469  writemask which will specify what info is the caller interested in.
2470
2471  Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2472
2473  Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2474
2475  src_mip_level is an unsigned integer scalar. If it's out of range then
2476  returns 0 for width, height and depth/array size but the total number of
2477  mipmap is still returned correctly for the given sampler view.  The returned
2478  width, height and depth values are for the mipmap level selected by the
2479  src_mip_level and are in the number of texels.  For 1d texture array width
2480  is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2481  still in dst.w.  In contrast to d3d10 resinfo, there's no way in the tgsi
2482  instruction encoding to specify the return type (float/rcpfloat/uint), hence
2483  always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2484  resinfo allowing swizzling dst values is ignored (due to the interaction
2485  with rcpfloat modifier which requires some swizzle handling in the state
2486  tracker anyway).
2487
2488.. opcode:: SAMPLE_POS
2489
2490  Query the position of a sample in the given resource or render target
2491  when per-sample fragment shading is in effect.
2492
2493  Syntax: ``SAMPLE_POS dst, source, sample_index``
2494
2495  dst receives float4 (x, y, undef, undef) indicated where the sample is
2496  located. Sample locations are in the range [0, 1] where 0.5 is the center
2497  of the fragment.
2498
2499  source is either a sampler view (to indicate a shader resource) or temp
2500  register (to indicate the render target).  The source register may have
2501  an optional swizzle to apply to the returned result
2502
2503  sample_index is an integer scalar indicating which sample position is to
2504  be queried.
2505
2506  If per-sample shading is not in effect or the source resource or render
2507  target is not multisampled, the result is (0.5, 0.5, undef, undef).
2508
2509  NOTE: no driver has implemented this opcode yet (and no gallium frontend
2510  emits it).  This information is subject to change.
2511
2512.. opcode:: SAMPLE_INFO
2513
2514  Query the number of samples in a multisampled resource or render target.
2515
2516  Syntax: ``SAMPLE_INFO dst, source``
2517
2518  dst receives int4 (n, 0, 0, 0) where n is the number of samples in a
2519  resource or the render target.
2520
2521  source is either a sampler view (to indicate a shader resource) or temp
2522  register (to indicate the render target).  The source register may have
2523  an optional swizzle to apply to the returned result
2524
2525  If per-sample shading is not in effect or the source resource or render
2526  target is not multisampled, the result is (1, 0, 0, 0).
2527
2528  NOTE: no driver has implemented this opcode yet (and no gallium frontend
2529  emits it).  This information is subject to change.
2530
2531.. opcode:: LOD - level of detail
2532
2533   Same syntax as the SAMPLE opcode but instead of performing an actual
2534   texture lookup/filter, return the computed LOD information that the
2535   texture pipe would use to access the texture. The Y component contains
2536   the computed LOD lambda_prime. The X component contains the LOD that will
2537   be accessed, based on min/max lod's and mipmap filters.
2538   The Z and W components are set to 0.
2539
2540   Syntax: ``LOD dst, address, sampler_view, sampler``
2541
2542
2543.. _resourceopcodes:
2544
2545Resource Access Opcodes
2546^^^^^^^^^^^^^^^^^^^^^^^
2547
2548For these opcodes, the resource can be a BUFFER, IMAGE, or MEMORY.
2549
2550.. opcode:: LOAD - Fetch data from a shader buffer or image
2551
2552               Syntax: ``LOAD dst, resource, address``
2553
2554               Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2555
2556               Using the provided integer address, LOAD fetches data
2557               from the specified buffer or texture without any
2558               filtering.
2559
2560               The 'address' is specified as a vector of unsigned
2561               integers.  If the 'address' is out of range the result
2562               is unspecified.
2563
2564               Only the first mipmap level of a resource can be read
2565               from using this instruction.
2566
2567               For 1D or 2D texture arrays, the array index is
2568               provided as an unsigned integer in address.y or
2569               address.z, respectively.  address.yz are ignored for
2570               buffers and 1D textures.  address.z is ignored for 1D
2571               texture arrays and 2D textures.  address.w is always
2572               ignored.
2573
2574               A swizzle suffix may be added to the resource argument
2575               this will cause the resource data to be swizzled accordingly.
2576
2577.. opcode:: STORE - Write data to a shader resource
2578
2579               Syntax: ``STORE resource, address, src``
2580
2581               Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2582
2583               Using the provided integer address, STORE writes data
2584               to the specified buffer or texture.
2585
2586               The 'address' is specified as a vector of unsigned
2587               integers.  If the 'address' is out of range the result
2588               is unspecified.
2589
2590               Only the first mipmap level of a resource can be
2591               written to using this instruction.
2592
2593               For 1D or 2D texture arrays, the array index is
2594               provided as an unsigned integer in address.y or
2595               address.z, respectively.  address.yz are ignored for
2596               buffers and 1D textures.  address.z is ignored for 1D
2597               texture arrays and 2D textures.  address.w is always
2598               ignored.
2599
2600.. opcode:: RESQ - Query information about a resource
2601
2602  Syntax: ``RESQ dst, resource``
2603
2604  Example: ``RESQ TEMP[0], BUFFER[0]``
2605
2606  Returns information about the buffer or image resource. For buffer
2607  resources, the size (in bytes) is returned in the x component. For
2608  image resources, .xyz will contain the width/height/layers of the
2609  image, while .w will contain the number of samples for multi-sampled
2610  images.
2611
2612.. opcode:: FBFETCH - Load data from framebuffer
2613
2614  Syntax: ``FBFETCH dst, output``
2615
2616  Example: ``FBFETCH TEMP[0], OUT[0]``
2617
2618  This is only valid on ``COLOR`` semantic outputs. Returns the color
2619  of the current position in the framebuffer from before this fragment
2620  shader invocation. May return the same value from multiple calls for
2621  a particular output within a single invocation. Note that result may
2622  be undefined if a fragment is drawn multiple times without a blend
2623  barrier in between.
2624
2625
2626.. _bindlessopcodes:
2627
2628Bindless Opcodes
2629^^^^^^^^^^^^^^^^
2630
2631These opcodes are for working with bindless sampler or image handles and
2632require PIPE_CAP_BINDLESS_TEXTURE.
2633
2634.. opcode:: IMG2HND - Get a bindless handle for a image
2635
2636  Syntax: ``IMG2HND dst, image``
2637
2638  Example: ``IMG2HND TEMP[0], IMAGE[0]``
2639
2640  Sets 'dst' to a bindless handle for 'image'.
2641
2642.. opcode:: SAMP2HND - Get a bindless handle for a sampler
2643
2644  Syntax: ``SAMP2HND dst, sampler``
2645
2646  Example: ``SAMP2HND TEMP[0], SAMP[0]``
2647
2648  Sets 'dst' to a bindless handle for 'sampler'.
2649
2650
2651.. _threadsyncopcodes:
2652
2653Inter-thread synchronization opcodes
2654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2655
2656These opcodes are intended for communication between threads running
2657within the same compute grid.  For now they're only valid in compute
2658programs.
2659
2660.. opcode:: BARRIER - Thread group barrier
2661
2662  ``BARRIER``
2663
2664  This opcode suspends the execution of the current thread until all
2665  the remaining threads in the working group reach the same point of
2666  the program.  Results are unspecified if any of the remaining
2667  threads terminates or never reaches an executed BARRIER instruction.
2668
2669.. opcode:: MEMBAR - Memory barrier
2670
2671  ``MEMBAR type``
2672
2673  This opcode waits for the completion of all memory accesses based on
2674  the type passed in. The type is an immediate bitfield with the following
2675  meaning:
2676
2677  Bit 0: Shader storage buffers
2678  Bit 1: Atomic buffers
2679  Bit 2: Images
2680  Bit 3: Shared memory
2681  Bit 4: Thread group
2682
2683  These may be passed in in any combination. An implementation is free to not
2684  distinguish between these as it sees fit. However these map to all the
2685  possibilities made available by GLSL.
2686
2687.. _atomopcodes:
2688
2689Atomic opcodes
2690^^^^^^^^^^^^^^
2691
2692These opcodes provide atomic variants of some common arithmetic and
2693logical operations.  In this context atomicity means that another
2694concurrent memory access operation that affects the same memory
2695location is guaranteed to be performed strictly before or after the
2696entire execution of the atomic operation. The resource may be a BUFFER,
2697IMAGE, HWATOMIC, or MEMORY.  In the case of an image, the offset works
2698the same as for ``LOAD`` and ``STORE``, specified above. For atomic
2699counters, the offset is an immediate index to the base hw atomic
2700counter for this operation.
2701These atomic operations may only be used with 32-bit integer image formats.
2702
2703.. opcode:: ATOMUADD - Atomic integer addition
2704
2705  Syntax: ``ATOMUADD dst, resource, offset, src``
2706
2707  Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2708
2709  The following operation is performed atomically:
2710
2711.. math::
2712
2713  dst_x = resource[offset]
2714
2715  resource[offset] = dst_x + src_x
2716
2717
2718.. opcode:: ATOMFADD - Atomic floating point addition
2719
2720  Syntax: ``ATOMFADD dst, resource, offset, src``
2721
2722  Example: ``ATOMFADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2723
2724  The following operation is performed atomically:
2725
2726.. math::
2727
2728  dst_x = resource[offset]
2729
2730  resource[offset] = dst_x + src_x
2731
2732
2733.. opcode:: ATOMXCHG - Atomic exchange
2734
2735  Syntax: ``ATOMXCHG dst, resource, offset, src``
2736
2737  Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2738
2739  The following operation is performed atomically:
2740
2741.. math::
2742
2743  dst_x = resource[offset]
2744
2745  resource[offset] = src_x
2746
2747
2748.. opcode:: ATOMCAS - Atomic compare-and-exchange
2749
2750  Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2751
2752  Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2753
2754  The following operation is performed atomically:
2755
2756.. math::
2757
2758  dst_x = resource[offset]
2759
2760  resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2761
2762
2763.. opcode:: ATOMAND - Atomic bitwise And
2764
2765  Syntax: ``ATOMAND dst, resource, offset, src``
2766
2767  Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2768
2769  The following operation is performed atomically:
2770
2771.. math::
2772
2773  dst_x = resource[offset]
2774
2775  resource[offset] = dst_x \& src_x
2776
2777
2778.. opcode:: ATOMOR - Atomic bitwise Or
2779
2780  Syntax: ``ATOMOR dst, resource, offset, src``
2781
2782  Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2783
2784  The following operation is performed atomically:
2785
2786.. math::
2787
2788  dst_x = resource[offset]
2789
2790  resource[offset] = dst_x | src_x
2791
2792
2793.. opcode:: ATOMXOR - Atomic bitwise Xor
2794
2795  Syntax: ``ATOMXOR dst, resource, offset, src``
2796
2797  Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2798
2799  The following operation is performed atomically:
2800
2801.. math::
2802
2803  dst_x = resource[offset]
2804
2805  resource[offset] = dst_x \oplus src_x
2806
2807
2808.. opcode:: ATOMUMIN - Atomic unsigned minimum
2809
2810  Syntax: ``ATOMUMIN dst, resource, offset, src``
2811
2812  Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2813
2814  The following operation is performed atomically:
2815
2816.. math::
2817
2818  dst_x = resource[offset]
2819
2820  resource[offset] = (dst_x < src_x ? dst_x : src_x)
2821
2822
2823.. opcode:: ATOMUMAX - Atomic unsigned maximum
2824
2825  Syntax: ``ATOMUMAX dst, resource, offset, src``
2826
2827  Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2828
2829  The following operation is performed atomically:
2830
2831.. math::
2832
2833  dst_x = resource[offset]
2834
2835  resource[offset] = (dst_x > src_x ? dst_x : src_x)
2836
2837
2838.. opcode:: ATOMIMIN - Atomic signed minimum
2839
2840  Syntax: ``ATOMIMIN dst, resource, offset, src``
2841
2842  Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2843
2844  The following operation is performed atomically:
2845
2846.. math::
2847
2848  dst_x = resource[offset]
2849
2850  resource[offset] = (dst_x < src_x ? dst_x : src_x)
2851
2852
2853.. opcode:: ATOMIMAX - Atomic signed maximum
2854
2855  Syntax: ``ATOMIMAX dst, resource, offset, src``
2856
2857  Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2858
2859  The following operation is performed atomically:
2860
2861.. math::
2862
2863  dst_x = resource[offset]
2864
2865  resource[offset] = (dst_x > src_x ? dst_x : src_x)
2866
2867
2868.. opcode:: ATOMINC_WRAP - Atomic increment + wrap around
2869
2870  Syntax: ``ATOMINC_WRAP dst, resource, offset, src``
2871
2872  Example: ``ATOMINC_WRAP TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2873
2874  The following operation is performed atomically:
2875
2876.. math::
2877
2878  dst_x = resource[offset] + 1
2879
2880  resource[offset] = dst_x <= src_x ? dst_x : 0
2881
2882
2883.. opcode:: ATOMDEC_WRAP - Atomic decrement + wrap around
2884
2885  Syntax: ``ATOMDEC_WRAP dst, resource, offset, src``
2886
2887  Example: ``ATOMDEC_WRAP TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2888
2889  The following operation is performed atomically:
2890
2891.. math::
2892
2893  dst_x = resource[offset]
2894
2895  resource[offset] = (dst_x > 0 && dst_x < src_x) ? dst_x - 1 : 0
2896
2897
2898.. _interlaneopcodes:
2899
2900Inter-lane opcodes
2901^^^^^^^^^^^^^^^^^^
2902
2903These opcodes reduce the given value across the shader invocations
2904running in the current SIMD group. Every thread in the subgroup will receive
2905the same result. The BALLOT operations accept a single-channel argument that
2906is treated as a boolean and produce a 64-bit value.
2907
2908.. opcode:: VOTE_ANY - Value is set in any of the active invocations
2909
2910  Syntax: ``VOTE_ANY dst, value``
2911
2912  Example: ``VOTE_ANY TEMP[0].x, TEMP[1].x``
2913
2914
2915.. opcode:: VOTE_ALL - Value is set in all of the active invocations
2916
2917  Syntax: ``VOTE_ALL dst, value``
2918
2919  Example: ``VOTE_ALL TEMP[0].x, TEMP[1].x``
2920
2921
2922.. opcode:: VOTE_EQ - Value is the same in all of the active invocations
2923
2924  Syntax: ``VOTE_EQ dst, value``
2925
2926  Example: ``VOTE_EQ TEMP[0].x, TEMP[1].x``
2927
2928
2929.. opcode:: BALLOT - Lanemask of whether the value is set in each active
2930            invocation
2931
2932  Syntax: ``BALLOT dst, value``
2933
2934  Example: ``BALLOT TEMP[0].xy, TEMP[1].x``
2935
2936  When the argument is a constant true, this produces a bitmask of active
2937  invocations. In fragment shaders, this can include helper invocations
2938  (invocations whose outputs and writes to memory are discarded, but which
2939  are used to compute derivatives).
2940
2941
2942.. opcode:: READ_FIRST - Broadcast the value from the first active
2943            invocation to all active lanes
2944
2945  Syntax: ``READ_FIRST dst, value``
2946
2947  Example: ``READ_FIRST TEMP[0], TEMP[1]``
2948
2949
2950.. opcode:: READ_INVOC - Retrieve the value from the given invocation
2951            (need not be uniform)
2952
2953  Syntax: ``READ_INVOC dst, value, invocation``
2954
2955  Example: ``READ_INVOC TEMP[0].xy, TEMP[1].xy, TEMP[2].x``
2956
2957  invocation.x controls the invocation number to read from for all channels.
2958  The invocation number must be the same across all active invocations in a
2959  sub-group; otherwise, the results are undefined.
2960
2961
2962Explanation of symbols used
2963------------------------------
2964
2965
2966Functions
2967^^^^^^^^^^^^^^
2968
2969
2970  :math:`|x|`       Absolute value of `x`.
2971
2972  :math:`\lceil x \rceil` Ceiling of `x`.
2973
2974  clamp(x,y,z)      Clamp x between y and z.
2975                    (x < y) ? y : (x > z) ? z : x
2976
2977  :math:`\lfloor x\rfloor` Floor of `x`.
2978
2979  :math:`\log_2{x}` Logarithm of `x`, base 2.
2980
2981  max(x,y)          Maximum of x and y.
2982                    (x > y) ? x : y
2983
2984  min(x,y)          Minimum of x and y.
2985                    (x < y) ? x : y
2986
2987  partialx(x)       Derivative of x relative to fragment's X.
2988
2989  partialy(x)       Derivative of x relative to fragment's Y.
2990
2991  pop()             Pop from stack.
2992
2993  :math:`x^y`       `x` to the power `y`.
2994
2995  push(x)           Push x on stack.
2996
2997  round(x)          Round x.
2998
2999  trunc(x)          Truncate x, i.e. drop the fraction bits.
3000
3001
3002Keywords
3003^^^^^^^^^^^^^
3004
3005
3006  discard           Discard fragment.
3007
3008  pc                Program counter.
3009
3010  target            Label of target instruction.
3011
3012
3013Other tokens
3014---------------
3015
3016
3017Declaration
3018^^^^^^^^^^^
3019
3020
3021Declares a register that is will be referenced as an operand in Instruction
3022tokens.
3023
3024File field contains register file that is being declared and is one
3025of TGSI_FILE.
3026
3027UsageMask field specifies which of the register components can be accessed
3028and is one of TGSI_WRITEMASK.
3029
3030The Local flag specifies that a given value isn't intended for
3031subroutine parameter passing and, as a result, the implementation
3032isn't required to give any guarantees of it being preserved across
3033subroutine boundaries.  As it's merely a compiler hint, the
3034implementation is free to ignore it.
3035
3036If Dimension flag is set to 1, a Declaration Dimension token follows.
3037
3038If Semantic flag is set to 1, a Declaration Semantic token follows.
3039
3040If Interpolate flag is set to 1, a Declaration Interpolate token follows.
3041
3042If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
3043
3044If Array flag is set to 1, a Declaration Array token follows.
3045
3046Array Declaration
3047^^^^^^^^^^^^^^^^^^^^^^^^
3048
3049Declarations can optional have an ArrayID attribute which can be referred by
3050indirect addressing operands. An ArrayID of zero is reserved and treated as
3051if no ArrayID is specified.
3052
3053If an indirect addressing operand refers to a specific declaration by using
3054an ArrayID only the registers in this declaration are guaranteed to be
3055accessed, accessing any register outside this declaration results in undefined
3056behavior. Note that for compatibility the effective index is zero-based and
3057not relative to the specified declaration
3058
3059If no ArrayID is specified with an indirect addressing operand the whole
3060register file might be accessed by this operand. This is strongly discouraged
3061and will prevent packing of scalar/vec2 arrays and effective alias analysis.
3062This is only legal for TEMP and CONST register files.
3063
3064Declaration Semantic
3065^^^^^^^^^^^^^^^^^^^^^^^^
3066
3067Vertex and fragment shader input and output registers may be labeled
3068with semantic information consisting of a name and index.
3069
3070Follows Declaration token if Semantic bit is set.
3071
3072Since its purpose is to link a shader with other stages of the pipeline,
3073it is valid to follow only those Declaration tokens that declare a register
3074either in INPUT or OUTPUT file.
3075
3076SemanticName field contains the semantic name of the register being declared.
3077There is no default value.
3078
3079SemanticIndex is an optional subscript that can be used to distinguish
3080different register declarations with the same semantic name. The default value
3081is 0.
3082
3083The meanings of the individual semantic names are explained in the following
3084sections.
3085
3086TGSI_SEMANTIC_POSITION
3087""""""""""""""""""""""
3088
3089For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
3090output register which contains the homogeneous vertex position in the clip
3091space coordinate system.  After clipping, the X, Y and Z components of the
3092vertex will be divided by the W value to get normalized device coordinates.
3093
3094For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
3095fragment shader input (or system value, depending on which one is
3096supported by the driver) contains the fragment's window position.  The X
3097component starts at zero and always increases from left to right.
3098The Y component starts at zero and always increases but Y=0 may either
3099indicate the top of the window or the bottom depending on the fragment
3100coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
3101The Z coordinate ranges from 0 to 1 to represent depth from the front
3102to the back of the Z buffer.  The W component contains the interpolated
3103reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
3104but unlike d3d10 which interpolates the same 1/w but then gives back
3105the reciprocal of the interpolated value).
3106
3107Fragment shaders may also declare an output register with
3108TGSI_SEMANTIC_POSITION.  Only the Z component is writable.  This allows
3109the fragment shader to change the fragment's Z position.
3110
3111
3112
3113TGSI_SEMANTIC_COLOR
3114"""""""""""""""""""
3115
3116For vertex shader outputs or fragment shader inputs/outputs, this
3117label indicates that the register contains an R,G,B,A color.
3118
3119Several shader inputs/outputs may contain colors so the semantic index
3120is used to distinguish them.  For example, color[0] may be the diffuse
3121color while color[1] may be the specular color.
3122
3123This label is needed so that the flat/smooth shading can be applied
3124to the right interpolants during rasterization.
3125
3126
3127
3128TGSI_SEMANTIC_BCOLOR
3129""""""""""""""""""""
3130
3131Back-facing colors are only used for back-facing polygons, and are only valid
3132in vertex shader outputs. After rasterization, all polygons are front-facing
3133and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
3134so all BCOLORs effectively become regular COLORs in the fragment shader.
3135
3136
3137TGSI_SEMANTIC_FOG
3138"""""""""""""""""
3139
3140Vertex shader inputs and outputs and fragment shader inputs may be
3141labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
3142a fog coordinate.  Typically, the fragment shader will use the fog coordinate
3143to compute a fog blend factor which is used to blend the normal fragment color
3144with a constant fog color.  But fog coord really is just an ordinary vec4
3145register like regular semantics.
3146
3147
3148TGSI_SEMANTIC_PSIZE
3149"""""""""""""""""""
3150
3151Vertex shader input and output registers may be labeled with
3152TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3153in the form (S, 0, 0, 1).  The point size controls the width or diameter
3154of points for rasterization.  This label cannot be used in fragment
3155shaders.
3156
3157When using this semantic, be sure to set the appropriate state in the
3158:ref:`rasterizer` first.
3159
3160
3161TGSI_SEMANTIC_TEXCOORD
3162""""""""""""""""""""""
3163
3164Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3165
3166Vertex shader outputs and fragment shader inputs may be labeled with
3167this semantic to make them replaceable by sprite coordinates via the
3168sprite_coord_enable state in the :ref:`rasterizer`.
3169The semantic index permitted with this semantic is limited to <= 7.
3170
3171If the driver does not support TEXCOORD, sprite coordinate replacement
3172applies to inputs with the GENERIC semantic instead.
3173
3174The intended use case for this semantic is gl_TexCoord.
3175
3176
3177TGSI_SEMANTIC_PCOORD
3178""""""""""""""""""""
3179
3180Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3181
3182Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3183that the register contains sprite coordinates in the form (x, y, 0, 1), if
3184the current primitive is a point and point sprites are enabled. Otherwise,
3185the contents of the register are undefined.
3186
3187The intended use case for this semantic is gl_PointCoord.
3188
3189
3190TGSI_SEMANTIC_GENERIC
3191"""""""""""""""""""""
3192
3193All vertex/fragment shader inputs/outputs not labeled with any other
3194semantic label can be considered to be generic attributes.  Typical
3195uses of generic inputs/outputs are texcoords and user-defined values.
3196
3197
3198TGSI_SEMANTIC_NORMAL
3199""""""""""""""""""""
3200
3201Indicates that a vertex shader input is a normal vector.  This is
3202typically only used for legacy graphics APIs.
3203
3204
3205TGSI_SEMANTIC_FACE
3206""""""""""""""""""
3207
3208This label applies to fragment shader inputs (or system values,
3209depending on which one is supported by the driver) and indicates that
3210the register contains front/back-face information.
3211
3212If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3213where F will be positive when the fragment belongs to a front-facing polygon,
3214and negative when the fragment belongs to a back-facing polygon.
3215
3216If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3217where F is 0xffffffff when the fragment belongs to a front-facing polygon and
32180 when the fragment belongs to a back-facing polygon.
3219
3220
3221TGSI_SEMANTIC_EDGEFLAG
3222""""""""""""""""""""""
3223
3224For vertex shaders, this sematic label indicates that an input or
3225output is a boolean edge flag.  The register layout is [F, x, x, x]
3226where F is 0.0 or 1.0 and x = don't care.  Normally, the vertex shader
3227simply copies the edge flag input to the edgeflag output.
3228
3229Edge flags are used to control which lines or points are actually
3230drawn when the polygon mode converts triangles/quads/polygons into
3231points or lines.
3232
3233
3234TGSI_SEMANTIC_STENCIL
3235"""""""""""""""""""""
3236
3237For fragment shaders, this semantic label indicates that an output
3238is a writable stencil reference value. Only the Y component is writable.
3239This allows the fragment shader to change the fragments stencilref value.
3240
3241
3242TGSI_SEMANTIC_VIEWPORT_INDEX
3243""""""""""""""""""""""""""""
3244
3245For geometry shaders, this semantic label indicates that an output
3246contains the index of the viewport (and scissor) to use.
3247This is an integer value, and only the X component is used.
3248
3249If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3250supported, then this semantic label can also be used in vertex or
3251tessellation evaluation shaders, respectively. Only the value written in the
3252last vertex processing stage is used.
3253
3254
3255TGSI_SEMANTIC_LAYER
3256"""""""""""""""""""
3257
3258For geometry shaders, this semantic label indicates that an output
3259contains the layer value to use for the color and depth/stencil surfaces.
3260This is an integer value, and only the X component is used.
3261(Also known as rendertarget array index.)
3262
3263If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3264supported, then this semantic label can also be used in vertex or
3265tessellation evaluation shaders, respectively. Only the value written in the
3266last vertex processing stage is used.
3267
3268
3269TGSI_SEMANTIC_CLIPDIST
3270""""""""""""""""""""""
3271
3272Note this covers clipping and culling distances.
3273
3274When components of vertex elements are identified this way, these
3275values are each assumed to be a float32 signed distance to a plane.
3276
3277For clip distances:
3278Primitive setup only invokes rasterization on pixels for which
3279the interpolated plane distances are >= 0.
3280
3281For cull distances:
3282Primitives will be completely discarded if the plane distance
3283for all of the vertices in the primitive are < 0.
3284If a vertex has a cull distance of NaN, that vertex counts as "out"
3285(as if its < 0);
3286
3287Multiple clip/cull planes can be implemented simultaneously, by
3288annotating multiple components of one or more vertex elements with
3289the above specified semantic.
3290The limits on both clip and cull distances are bound
3291by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3292the maximum number of components that can be used to hold the
3293distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3294which specifies the maximum number of registers which can be
3295annotated with those semantics.
3296The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3297are used to divide up the 2 x vec4 space between clipping and culling.
3298
3299TGSI_SEMANTIC_SAMPLEID
3300""""""""""""""""""""""
3301
3302For fragment shaders, this semantic label indicates that a system value
3303contains the current sample id (i.e. gl_SampleID) as an unsigned int.
3304Only the X component is used.  If per-sample shading is not enabled,
3305the result is (0, undef, undef, undef).
3306
3307Note that if the fragment shader uses this system value, the fragment
3308shader is automatically executed at per sample frequency.
3309
3310TGSI_SEMANTIC_SAMPLEPOS
3311"""""""""""""""""""""""
3312
3313For fragment shaders, this semantic label indicates that a system
3314value contains the current sample's position as float4(x, y, undef, undef)
3315in the render target (i.e.  gl_SamplePosition) when per-fragment shading
3316is in effect.  Position values are in the range [0, 1] where 0.5 is
3317the center of the fragment.
3318
3319Note that if the fragment shader uses this system value, the fragment
3320shader is automatically executed at per sample frequency.
3321
3322TGSI_SEMANTIC_SAMPLEMASK
3323""""""""""""""""""""""""
3324
3325For fragment shaders, this semantic label can be applied to either a
3326shader system value input or output.
3327
3328For a system value, the sample mask indicates the set of samples covered by
3329the current primitive.  If MSAA is not enabled, the value is (1, 0, 0, 0).
3330
3331For an output, the sample mask is used to disable further sample processing.
3332
3333For both, the register type is uint[4] but only the X component is used
3334(i.e. gl_SampleMask[0]). Each bit corresponds to one sample position (up
3335to 32x MSAA is supported).
3336
3337TGSI_SEMANTIC_INVOCATIONID
3338""""""""""""""""""""""""""
3339
3340For geometry shaders, this semantic label indicates that a system value
3341contains the current invocation id (i.e. gl_InvocationID).
3342This is an integer value, and only the X component is used.
3343
3344TGSI_SEMANTIC_INSTANCEID
3345""""""""""""""""""""""""
3346
3347For vertex shaders, this semantic label indicates that a system value contains
3348the current instance id (i.e. gl_InstanceID). It does not include the base
3349instance. This is an integer value, and only the X component is used.
3350
3351TGSI_SEMANTIC_VERTEXID
3352""""""""""""""""""""""
3353
3354For vertex shaders, this semantic label indicates that a system value contains
3355the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3356base vertex. This is an integer value, and only the X component is used.
3357
3358TGSI_SEMANTIC_VERTEXID_NOBASE
3359"""""""""""""""""""""""""""""""
3360
3361For vertex shaders, this semantic label indicates that a system value contains
3362the current vertex id without including the base vertex (this corresponds to
3363d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3364== TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3365is used.
3366
3367TGSI_SEMANTIC_BASEVERTEX
3368""""""""""""""""""""""""
3369
3370For vertex shaders, this semantic label indicates that a system value contains
3371the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3372this contains the first (or start) value instead.
3373This is an integer value, and only the X component is used.
3374
3375TGSI_SEMANTIC_PRIMID
3376""""""""""""""""""""
3377
3378For geometry and fragment shaders, this semantic label indicates the value
3379contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3380and only the X component is used.
3381FIXME: This right now can be either a ordinary input or a system value...
3382
3383
3384TGSI_SEMANTIC_PATCH
3385"""""""""""""""""""
3386
3387For tessellation evaluation/control shaders, this semantic label indicates a
3388generic per-patch attribute. Such semantics will not implicitly be per-vertex
3389arrays.
3390
3391TGSI_SEMANTIC_TESSCOORD
3392"""""""""""""""""""""""
3393
3394For tessellation evaluation shaders, this semantic label indicates the
3395coordinates of the vertex being processed. This is available in XYZ; W is
3396undefined.
3397
3398TGSI_SEMANTIC_TESSOUTER
3399"""""""""""""""""""""""
3400
3401For tessellation evaluation/control shaders, this semantic label indicates the
3402outer tessellation levels of the patch. Isoline tessellation will only have XY
3403defined, triangle will have XYZ and quads will have XYZW defined. This
3404corresponds to gl_TessLevelOuter.
3405
3406TGSI_SEMANTIC_TESSINNER
3407"""""""""""""""""""""""
3408
3409For tessellation evaluation/control shaders, this semantic label indicates the
3410inner tessellation levels of the patch. The X value is only defined for
3411triangle tessellation, while quads will have XY defined. This is entirely
3412undefined for isoline tessellation.
3413
3414TGSI_SEMANTIC_VERTICESIN
3415""""""""""""""""""""""""
3416
3417For tessellation evaluation/control shaders, this semantic label indicates the
3418number of vertices provided in the input patch. Only the X value is defined.
3419
3420TGSI_SEMANTIC_HELPER_INVOCATION
3421"""""""""""""""""""""""""""""""
3422
3423For fragment shaders, this semantic indicates whether the current
3424invocation is covered or not. Helper invocations are created in order
3425to properly compute derivatives, however it may be desirable to skip
3426some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3427
3428TGSI_SEMANTIC_BASEINSTANCE
3429""""""""""""""""""""""""""
3430
3431For vertex shaders, the base instance argument supplied for this
3432draw. This is an integer value, and only the X component is used.
3433
3434TGSI_SEMANTIC_DRAWID
3435""""""""""""""""""""
3436
3437For vertex shaders, the zero-based index of the current draw in a
3438``glMultiDraw*`` invocation. This is an integer value, and only the X
3439component is used.
3440
3441
3442TGSI_SEMANTIC_WORK_DIM
3443""""""""""""""""""""""
3444
3445For compute shaders started via opencl this retrieves the work_dim
3446parameter to the clEnqueueNDRangeKernel call with which the shader
3447was started.
3448
3449
3450TGSI_SEMANTIC_GRID_SIZE
3451"""""""""""""""""""""""
3452
3453For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3454of a grid of thread blocks.
3455
3456
3457TGSI_SEMANTIC_BLOCK_ID
3458""""""""""""""""""""""
3459
3460For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3461current block inside of the grid.
3462
3463
3464TGSI_SEMANTIC_BLOCK_SIZE
3465""""""""""""""""""""""""
3466
3467For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3468of a block in threads.
3469
3470
3471TGSI_SEMANTIC_THREAD_ID
3472"""""""""""""""""""""""
3473
3474For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3475current thread inside of the block.
3476
3477
3478TGSI_SEMANTIC_SUBGROUP_SIZE
3479"""""""""""""""""""""""""""
3480
3481This semantic indicates the subgroup size for the current invocation. This is
3482an integer of at most 64, as it indicates the width of lanemasks. It does not
3483depend on the number of invocations that are active.
3484
3485
3486TGSI_SEMANTIC_SUBGROUP_INVOCATION
3487"""""""""""""""""""""""""""""""""
3488
3489The index of the current invocation within its subgroup.
3490
3491
3492TGSI_SEMANTIC_SUBGROUP_EQ_MASK
3493""""""""""""""""""""""""""""""
3494
3495A bit mask of ``bit index == TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3496``1 << subgroup_invocation`` in arbitrary precision arithmetic.
3497
3498
3499TGSI_SEMANTIC_SUBGROUP_GE_MASK
3500""""""""""""""""""""""""""""""
3501
3502A bit mask of ``bit index >= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3503``((1 << (subgroup_size - subgroup_invocation)) - 1) << subgroup_invocation``
3504in arbitrary precision arithmetic.
3505
3506
3507TGSI_SEMANTIC_SUBGROUP_GT_MASK
3508""""""""""""""""""""""""""""""
3509
3510A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3511``((1 << (subgroup_size - subgroup_invocation - 1)) - 1) << (subgroup_invocation + 1)``
3512in arbitrary precision arithmetic.
3513
3514
3515TGSI_SEMANTIC_SUBGROUP_LE_MASK
3516""""""""""""""""""""""""""""""
3517
3518A bit mask of ``bit index <= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3519``(1 << (subgroup_invocation + 1)) - 1`` in arbitrary precision arithmetic.
3520
3521
3522TGSI_SEMANTIC_SUBGROUP_LT_MASK
3523""""""""""""""""""""""""""""""
3524
3525A bit mask of ``bit index < TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3526``(1 << subgroup_invocation) - 1`` in arbitrary precision arithmetic.
3527
3528
3529TGSI_SEMANTIC_VIEWPORT_MASK
3530"""""""""""""""""""""""""""
3531
3532A bit mask of viewports to broadcast the current primitive to. See
3533GL_NV_viewport_array2 for more details.
3534
3535
3536TGSI_SEMANTIC_TESS_DEFAULT_OUTER_LEVEL
3537""""""""""""""""""""""""""""""""""""""
3538
3539A system value equal to the default_outer_level array set via set_tess_level.
3540
3541
3542TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL
3543""""""""""""""""""""""""""""""""""""""
3544
3545A system value equal to the default_inner_level array set via set_tess_level.
3546
3547
3548Declaration Interpolate
3549^^^^^^^^^^^^^^^^^^^^^^^
3550
3551This token is only valid for fragment shader INPUT declarations.
3552
3553The Interpolate field specifes the way input is being interpolated by
3554the rasteriser and is one of TGSI_INTERPOLATE_*.
3555
3556The Location field specifies the location inside the pixel that the
3557interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3558when per-sample shading is enabled, the implementation may choose to
3559interpolate at the sample irrespective of the Location field.
3560
3561The CylindricalWrap bitfield specifies which register components
3562should be subject to cylindrical wrapping when interpolating by the
3563rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3564should be interpolated according to cylindrical wrapping rules.
3565
3566
3567Declaration Sampler View
3568^^^^^^^^^^^^^^^^^^^^^^^^
3569
3570Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3571
3572DCL SVIEW[#], resource, type(s)
3573
3574Declares a shader input sampler view and assigns it to a SVIEW[#]
3575register.
3576
3577resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3578
3579type must be 1 or 4 entries (if specifying on a per-component
3580level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3581
3582For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3583which take an explicit SVIEW[#] source register), there may be optionally
3584SVIEW[#] declarations.  In this case, the SVIEW index is implied by the
3585SAMP index, and there must be a corresponding SVIEW[#] declaration for
3586each SAMP[#] declaration.  Drivers are free to ignore this if they wish.
3587But note in particular that some drivers need to know the sampler type
3588(float/int/unsigned) in order to generate the correct code, so cases
3589where integer textures are sampled, SVIEW[#] declarations should be
3590used.
3591
3592NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3593in the same shader.
3594
3595Declaration Resource
3596^^^^^^^^^^^^^^^^^^^^
3597
3598Follows Declaration token if file is TGSI_FILE_RESOURCE.
3599
3600DCL RES[#], resource [, WR] [, RAW]
3601
3602Declares a shader input resource and assigns it to a RES[#]
3603register.
3604
3605resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
36062DArray.
3607
3608If the RAW keyword is not specified, the texture data will be
3609subject to conversion, swizzling and scaling as required to yield
3610the specified data type from the physical data format of the bound
3611resource.
3612
3613If the RAW keyword is specified, no channel conversion will be
3614performed: the values read for each of the channels (X,Y,Z,W) will
3615correspond to consecutive words in the same order and format
3616they're found in memory.  No element-to-address conversion will be
3617performed either: the value of the provided X coordinate will be
3618interpreted in byte units instead of texel units.  The result of
3619accessing a misaligned address is undefined.
3620
3621Usage of the STORE opcode is only allowed if the WR (writable) flag
3622is set.
3623
3624Hardware Atomic Register File
3625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3626
3627Hardware atomics are declared as a 2D array with an optional array id.
3628
3629The first member of the dimension is the buffer resource the atomic
3630is located in.
3631The second member is a range into the buffer resource, either for
3632one or multiple counters. If this is an array, the declaration will have
3633an unique array id.
3634
3635Each counter is 4 bytes in size, and index and ranges are in counters not bytes.
3636DCL HWATOMIC[0][0]
3637DCL HWATOMIC[0][1]
3638
3639This declares two atomics, one at the start of the buffer and one in the
3640second 4 bytes.
3641
3642DCL HWATOMIC[0][0]
3643DCL HWATOMIC[1][0]
3644DCL HWATOMIC[1][1..3], ARRAY(1)
3645
3646This declares 5 atomics, one in buffer 0 at 0,
3647one in buffer 1 at 0, and an array of 3 atomics in
3648the buffer 1, starting at 1.
3649
3650Properties
3651^^^^^^^^^^^^^^^^^^^^^^^^
3652
3653Properties are general directives that apply to the whole TGSI program.
3654
3655FS_COORD_ORIGIN
3656"""""""""""""""
3657
3658Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3659The default value is UPPER_LEFT.
3660
3661If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3662increase downward and rightward.
3663If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3664increase upward and rightward.
3665
3666OpenGL defaults to LOWER_LEFT, and is configurable with the
3667GL_ARB_fragment_coord_conventions extension.
3668
3669DirectX 9/10 use UPPER_LEFT.
3670
3671FS_COORD_PIXEL_CENTER
3672"""""""""""""""""""""
3673
3674Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3675The default value is HALF_INTEGER.
3676
3677If HALF_INTEGER, the fractionary part of the position will be 0.5
3678If INTEGER, the fractionary part of the position will be 0.0
3679
3680Note that this does not affect the set of fragments generated by
3681rasterization, which is instead controlled by half_pixel_center in the
3682rasterizer.
3683
3684OpenGL defaults to HALF_INTEGER, and is configurable with the
3685GL_ARB_fragment_coord_conventions extension.
3686
3687DirectX 9 uses INTEGER.
3688DirectX 10 uses HALF_INTEGER.
3689
3690FS_COLOR0_WRITES_ALL_CBUFS
3691""""""""""""""""""""""""""
3692Specifies that writes to the fragment shader color 0 are replicated to all
3693bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3694fragData is directed to a single color buffer, but fragColor is broadcast.
3695
3696VS_PROHIBIT_UCPS
3697""""""""""""""""""""""""""
3698If this property is set on the program bound to the shader stage before the
3699fragment shader, user clip planes should have no effect (be disabled) even if
3700that shader does not write to any clip distance outputs and the rasterizer's
3701clip_plane_enable is non-zero.
3702This property is only supported by drivers that also support shader clip
3703distance outputs.
3704This is useful for APIs that don't have UCPs and where clip distances written
3705by a shader cannot be disabled.
3706
3707GS_INVOCATIONS
3708""""""""""""""
3709
3710Specifies the number of times a geometry shader should be executed for each
3711input primitive. Each invocation will have a different
3712TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3713be 1.
3714
3715VS_WINDOW_SPACE_POSITION
3716""""""""""""""""""""""""""
3717If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3718is assumed to contain window space coordinates.
3719Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3720directly taken from the 4-th component of the shader output.
3721Naturally, clipping is not performed on window coordinates either.
3722The effect of this property is undefined if a geometry or tessellation shader
3723are in use.
3724
3725TCS_VERTICES_OUT
3726""""""""""""""""
3727
3728The number of vertices written by the tessellation control shader. This
3729effectively defines the patch input size of the tessellation evaluation shader
3730as well.
3731
3732TES_PRIM_MODE
3733"""""""""""""
3734
3735This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3736``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3737separate isolines settings, the regular lines is assumed to mean isolines.)
3738
3739TES_SPACING
3740"""""""""""
3741
3742This sets the spacing mode of the tessellation generator, one of
3743``PIPE_TESS_SPACING_*``.
3744
3745TES_VERTEX_ORDER_CW
3746"""""""""""""""""""
3747
3748This sets the vertex order to be clockwise if the value is 1, or
3749counter-clockwise if set to 0.
3750
3751TES_POINT_MODE
3752""""""""""""""
3753
3754If set to a non-zero value, this turns on point mode for the tessellator,
3755which means that points will be generated instead of primitives.
3756
3757NUM_CLIPDIST_ENABLED
3758""""""""""""""""""""
3759
3760How many clip distance scalar outputs are enabled.
3761
3762NUM_CULLDIST_ENABLED
3763""""""""""""""""""""
3764
3765How many cull distance scalar outputs are enabled.
3766
3767FS_EARLY_DEPTH_STENCIL
3768""""""""""""""""""""""
3769
3770Whether depth test, stencil test, and occlusion query should run before
3771the fragment shader (regardless of fragment shader side effects). Corresponds
3772to GLSL early_fragment_tests.
3773
3774NEXT_SHADER
3775"""""""""""
3776
3777Which shader stage will MOST LIKELY follow after this shader when the shader
3778is bound. This is only a hint to the driver and doesn't have to be precise.
3779Only set for VS and TES.
3780
3781CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3782"""""""""""""""""""""""""""""""""""""
3783
3784Threads per block in each dimension, if known at compile time. If the block size
3785is known all three should be at least 1. If it is unknown they should all be set
3786to 0 or not set.
3787
3788MUL_ZERO_WINS
3789"""""""""""""
3790
3791The MUL TGSI operation (FP32 multiplication) will return 0 if either
3792of the operands are equal to 0. That means that 0 * Inf = 0. This
3793should be set the same way for an entire pipeline. Note that this
3794applies not only to the literal MUL TGSI opcode, but all FP32
3795multiplications implied by other operations, such as MAD, FMA, DP2,
3796DP3, DP4, DST, LOG, LRP, and possibly others. If there is a
3797mismatch between shaders, then it is unspecified whether this behavior
3798will be enabled.
3799
3800FS_POST_DEPTH_COVERAGE
3801""""""""""""""""""""""
3802
3803When enabled, the input for TGSI_SEMANTIC_SAMPLEMASK will exclude samples
3804that have failed the depth/stencil tests. This is only valid when
3805FS_EARLY_DEPTH_STENCIL is also specified.
3806
3807LAYER_VIEWPORT_RELATIVE
3808"""""""""""""""""""""""
3809
3810When enabled, the TGSI_SEMATNIC_LAYER output value is relative to the
3811current viewport. This is especially useful in conjunction with
3812TGSI_SEMANTIC_VIEWPORT_MASK.
3813
3814
3815Texture Sampling and Texture Formats
3816------------------------------------
3817
3818This table shows how texture image components are returned as (x,y,z,w) tuples
3819by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3820:opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3821well.
3822
3823+--------------------+--------------+--------------------+--------------+
3824| Texture Components | Gallium      | OpenGL             | Direct3D 9   |
3825+====================+==============+====================+==============+
3826| R                  | (r, 0, 0, 1) | (r, 0, 0, 1)       | (r, 1, 1, 1) |
3827+--------------------+--------------+--------------------+--------------+
3828| RG                 | (r, g, 0, 1) | (r, g, 0, 1)       | (r, g, 1, 1) |
3829+--------------------+--------------+--------------------+--------------+
3830| RGB                | (r, g, b, 1) | (r, g, b, 1)       | (r, g, b, 1) |
3831+--------------------+--------------+--------------------+--------------+
3832| RGBA               | (r, g, b, a) | (r, g, b, a)       | (r, g, b, a) |
3833+--------------------+--------------+--------------------+--------------+
3834| A                  | (0, 0, 0, a) | (0, 0, 0, a)       | (0, 0, 0, a) |
3835+--------------------+--------------+--------------------+--------------+
3836| L                  | (l, l, l, 1) | (l, l, l, 1)       | (l, l, l, 1) |
3837+--------------------+--------------+--------------------+--------------+
3838| LA                 | (l, l, l, a) | (l, l, l, a)       | (l, l, l, a) |
3839+--------------------+--------------+--------------------+--------------+
3840| I                  | (i, i, i, i) | (i, i, i, i)       | N/A          |
3841+--------------------+--------------+--------------------+--------------+
3842| UV                 | XXX TBD      | (0, 0, 0, 1)       | (u, v, 1, 1) |
3843|                    |              | [#envmap-bumpmap]_ |              |
3844+--------------------+--------------+--------------------+--------------+
3845| Z                  | XXX TBD      | (z, z, z, 1)       | (0, z, 0, 1) |
3846|                    |              | [#depth-tex-mode]_ |              |
3847+--------------------+--------------+--------------------+--------------+
3848| S                  | (s, s, s, s) | unknown            | unknown      |
3849+--------------------+--------------+--------------------+--------------+
3850
3851.. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3852.. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3853   or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.
3854