1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/TargetFolder.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/DebugCounter.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/InstCombine/InstCombiner.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <functional>
49 #include <tuple>
50 #include <type_traits>
51 #include <utility>
52
53 namespace llvm {
54 class AssumptionCache;
55 class DataLayout;
56 class DominatorTree;
57 class LLVMContext;
58 } // namespace llvm
59
60 using namespace llvm;
61
62 #define DEBUG_TYPE "instcombine"
63
64 STATISTIC(NegatorTotalNegationsAttempted,
65 "Negator: Number of negations attempted to be sinked");
66 STATISTIC(NegatorNumTreesNegated,
67 "Negator: Number of negations successfully sinked");
68 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
69 "reached while attempting to sink negation");
70 STATISTIC(NegatorTimesDepthLimitReached,
71 "Negator: How many times did the traversal depth limit was reached "
72 "during sinking");
73 STATISTIC(
74 NegatorNumValuesVisited,
75 "Negator: Total number of values visited during attempts to sink negation");
76 STATISTIC(NegatorNumNegationsFoundInCache,
77 "Negator: How many negations did we retrieve/reuse from cache");
78 STATISTIC(NegatorMaxTotalValuesVisited,
79 "Negator: Maximal number of values ever visited while attempting to "
80 "sink negation");
81 STATISTIC(NegatorNumInstructionsCreatedTotal,
82 "Negator: Number of new negated instructions created, total");
83 STATISTIC(NegatorMaxInstructionsCreated,
84 "Negator: Maximal number of new instructions created during negation "
85 "attempt");
86 STATISTIC(NegatorNumInstructionsNegatedSuccess,
87 "Negator: Number of new negated instructions created in successful "
88 "negation sinking attempts");
89
90 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
91 "Controls Negator transformations in InstCombine pass");
92
93 static cl::opt<bool>
94 NegatorEnabled("instcombine-negator-enabled", cl::init(true),
95 cl::desc("Should we attempt to sink negations?"));
96
97 static cl::opt<unsigned>
98 NegatorMaxDepth("instcombine-negator-max-depth",
99 cl::init(NegatorDefaultMaxDepth),
100 cl::desc("What is the maximal lookup depth when trying to "
101 "check for viability of negation sinking."));
102
Negator(LLVMContext & C,const DataLayout & DL_,AssumptionCache & AC_,const DominatorTree & DT_,bool IsTrulyNegation_)103 Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
104 const DominatorTree &DT_, bool IsTrulyNegation_)
105 : Builder(C, TargetFolder(DL_),
106 IRBuilderCallbackInserter([&](Instruction *I) {
107 ++NegatorNumInstructionsCreatedTotal;
108 NewInstructions.push_back(I);
109 })),
110 DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
111
112 #if LLVM_ENABLE_STATS
~Negator()113 Negator::~Negator() {
114 NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
115 }
116 #endif
117
118 // Due to the InstCombine's worklist management, there are no guarantees that
119 // each instruction we'll encounter has been visited by InstCombine already.
120 // In particular, most importantly for us, that means we have to canonicalize
121 // constants to RHS ourselves, since that is helpful sometimes.
getSortedOperandsOfBinOp(Instruction * I)122 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
123 assert(I->getNumOperands() == 2 && "Only for binops!");
124 std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
125 if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
126 InstCombiner::getComplexity(I->getOperand(1)))
127 std::swap(Ops[0], Ops[1]);
128 return Ops;
129 }
130
131 // FIXME: can this be reworked into a worklist-based algorithm while preserving
132 // the depth-first, early bailout traversal?
visitImpl(Value * V,unsigned Depth)133 LLVM_NODISCARD Value *Negator::visitImpl(Value *V, unsigned Depth) {
134 // -(undef) -> undef.
135 if (match(V, m_Undef()))
136 return V;
137
138 // In i1, negation can simply be ignored.
139 if (V->getType()->isIntOrIntVectorTy(1))
140 return V;
141
142 Value *X;
143
144 // -(-(X)) -> X.
145 if (match(V, m_Neg(m_Value(X))))
146 return X;
147
148 // Integral constants can be freely negated.
149 if (match(V, m_AnyIntegralConstant()))
150 return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
151 /*HasNSW=*/false);
152
153 // If we have a non-instruction, then give up.
154 if (!isa<Instruction>(V))
155 return nullptr;
156
157 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
158 // got instruction that does not require recursive reasoning, we can still
159 // negate it even if it has other uses, without increasing instruction count.
160 if (!V->hasOneUse() && !IsTrulyNegation)
161 return nullptr;
162
163 auto *I = cast<Instruction>(V);
164 unsigned BitWidth = I->getType()->getScalarSizeInBits();
165
166 // We must preserve the insertion point and debug info that is set in the
167 // builder at the time this function is called.
168 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
169 // And since we are trying to negate instruction I, that tells us about the
170 // insertion point and the debug info that we need to keep.
171 Builder.SetInsertPoint(I);
172
173 // In some cases we can give the answer without further recursion.
174 switch (I->getOpcode()) {
175 case Instruction::Add: {
176 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
177 // `inc` is always negatible.
178 if (match(Ops[1], m_One()))
179 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
180 break;
181 }
182 case Instruction::Xor:
183 // `not` is always negatible.
184 if (match(I, m_Not(m_Value(X))))
185 return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
186 I->getName() + ".neg");
187 break;
188 case Instruction::AShr:
189 case Instruction::LShr: {
190 // Right-shift sign bit smear is negatible.
191 const APInt *Op1Val;
192 if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
193 Value *BO = I->getOpcode() == Instruction::AShr
194 ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
195 : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
196 if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
197 NewInstr->copyIRFlags(I);
198 NewInstr->setName(I->getName() + ".neg");
199 }
200 return BO;
201 }
202 // While we could negate exact arithmetic shift:
203 // ashr exact %x, C --> sdiv exact i8 %x, -1<<C
204 // iff C != 0 and C u< bitwidth(%x), we don't want to,
205 // because division is *THAT* much worse than a shift.
206 break;
207 }
208 case Instruction::SExt:
209 case Instruction::ZExt:
210 // `*ext` of i1 is always negatible
211 if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
212 return I->getOpcode() == Instruction::SExt
213 ? Builder.CreateZExt(I->getOperand(0), I->getType(),
214 I->getName() + ".neg")
215 : Builder.CreateSExt(I->getOperand(0), I->getType(),
216 I->getName() + ".neg");
217 break;
218 default:
219 break; // Other instructions require recursive reasoning.
220 }
221
222 if (I->getOpcode() == Instruction::Sub &&
223 (I->hasOneUse() || (isa<Constant>(I->getOperand(0)) &&
224 !isa<ConstantExpr>(I->getOperand(0))))) {
225 // `sub` is always negatible.
226 // However, only do this either if the old `sub` doesn't stick around, or
227 // it was subtracting from a constant. Otherwise, this isn't profitable.
228 return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
229 I->getName() + ".neg");
230 }
231
232 // Some other cases, while still don't require recursion,
233 // are restricted to the one-use case.
234 if (!V->hasOneUse())
235 return nullptr;
236
237 switch (I->getOpcode()) {
238 case Instruction::SDiv:
239 // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
240 // While this is normally not behind a use-check,
241 // let's consider division to be special since it's costly.
242 if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
243 if (!Op1C->containsUndefElement() && Op1C->isNotMinSignedValue() &&
244 Op1C->isNotOneValue()) {
245 Value *BO =
246 Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
247 I->getName() + ".neg");
248 if (auto *NewInstr = dyn_cast<Instruction>(BO))
249 NewInstr->setIsExact(I->isExact());
250 return BO;
251 }
252 }
253 break;
254 }
255
256 // Rest of the logic is recursive, so if it's time to give up then it's time.
257 if (Depth > NegatorMaxDepth) {
258 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
259 << *V << ". Giving up.\n");
260 ++NegatorTimesDepthLimitReached;
261 return nullptr;
262 }
263
264 switch (I->getOpcode()) {
265 case Instruction::Freeze: {
266 // `freeze` is negatible if its operand is negatible.
267 Value *NegOp = negate(I->getOperand(0), Depth + 1);
268 if (!NegOp) // Early return.
269 return nullptr;
270 return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
271 }
272 case Instruction::PHI: {
273 // `phi` is negatible if all the incoming values are negatible.
274 auto *PHI = cast<PHINode>(I);
275 SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
276 for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
277 if (!(std::get<1>(I) =
278 negate(std::get<0>(I), Depth + 1))) // Early return.
279 return nullptr;
280 }
281 // All incoming values are indeed negatible. Create negated PHI node.
282 PHINode *NegatedPHI = Builder.CreatePHI(
283 PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
284 for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
285 NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
286 return NegatedPHI;
287 }
288 case Instruction::Select: {
289 if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
290 // Of one hand of select is known to be negation of another hand,
291 // just swap the hands around.
292 auto *NewSelect = cast<SelectInst>(I->clone());
293 // Just swap the operands of the select.
294 NewSelect->swapValues();
295 // Don't swap prof metadata, we didn't change the branch behavior.
296 NewSelect->setName(I->getName() + ".neg");
297 Builder.Insert(NewSelect);
298 return NewSelect;
299 }
300 // `select` is negatible if both hands of `select` are negatible.
301 Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
302 if (!NegOp1) // Early return.
303 return nullptr;
304 Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
305 if (!NegOp2)
306 return nullptr;
307 // Do preserve the metadata!
308 return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
309 I->getName() + ".neg", /*MDFrom=*/I);
310 }
311 case Instruction::ShuffleVector: {
312 // `shufflevector` is negatible if both operands are negatible.
313 auto *Shuf = cast<ShuffleVectorInst>(I);
314 Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
315 if (!NegOp0) // Early return.
316 return nullptr;
317 Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
318 if (!NegOp1)
319 return nullptr;
320 return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
321 I->getName() + ".neg");
322 }
323 case Instruction::ExtractElement: {
324 // `extractelement` is negatible if source operand is negatible.
325 auto *EEI = cast<ExtractElementInst>(I);
326 Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
327 if (!NegVector) // Early return.
328 return nullptr;
329 return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
330 I->getName() + ".neg");
331 }
332 case Instruction::InsertElement: {
333 // `insertelement` is negatible if both the source vector and
334 // element-to-be-inserted are negatible.
335 auto *IEI = cast<InsertElementInst>(I);
336 Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
337 if (!NegVector) // Early return.
338 return nullptr;
339 Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
340 if (!NegNewElt) // Early return.
341 return nullptr;
342 return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
343 I->getName() + ".neg");
344 }
345 case Instruction::Trunc: {
346 // `trunc` is negatible if its operand is negatible.
347 Value *NegOp = negate(I->getOperand(0), Depth + 1);
348 if (!NegOp) // Early return.
349 return nullptr;
350 return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
351 }
352 case Instruction::Shl: {
353 // `shl` is negatible if the first operand is negatible.
354 if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1))
355 return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
356 // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
357 auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
358 if (!Op1C) // Early return.
359 return nullptr;
360 return Builder.CreateMul(
361 I->getOperand(0),
362 ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
363 I->getName() + ".neg");
364 }
365 case Instruction::Or: {
366 if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
367 &DT))
368 return nullptr; // Don't know how to handle `or` in general.
369 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
370 // `or`/`add` are interchangeable when operands have no common bits set.
371 // `inc` is always negatible.
372 if (match(Ops[1], m_One()))
373 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
374 // Else, just defer to Instruction::Add handling.
375 LLVM_FALLTHROUGH;
376 }
377 case Instruction::Add: {
378 // `add` is negatible if both of its operands are negatible.
379 SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
380 for (Value *Op : I->operands()) {
381 // Can we sink the negation into this operand?
382 if (Value *NegOp = negate(Op, Depth + 1)) {
383 NegatedOps.emplace_back(NegOp); // Successfully negated operand!
384 continue;
385 }
386 // Failed to sink negation into this operand. IFF we started from negation
387 // and we manage to sink negation into one operand, we can still do this.
388 if (!IsTrulyNegation)
389 return nullptr;
390 NonNegatedOps.emplace_back(Op); // Just record which operand that was.
391 }
392 assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
393 "Internal consistency sanity check.");
394 // Did we manage to sink negation into both of the operands?
395 if (NegatedOps.size() == 2) // Then we get to keep the `add`!
396 return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
397 I->getName() + ".neg");
398 assert(IsTrulyNegation && "We should have early-exited then.");
399 // Completely failed to sink negation?
400 if (NonNegatedOps.size() == 2)
401 return nullptr;
402 // 0-(a+b) --> (-a)-b
403 return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
404 I->getName() + ".neg");
405 }
406 case Instruction::Xor: {
407 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
408 // `xor` is negatible if one of its operands is invertible.
409 // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
410 if (auto *C = dyn_cast<Constant>(Ops[1])) {
411 Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
412 return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
413 I->getName() + ".neg");
414 }
415 return nullptr;
416 }
417 case Instruction::Mul: {
418 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
419 // `mul` is negatible if one of its operands is negatible.
420 Value *NegatedOp, *OtherOp;
421 // First try the second operand, in case it's a constant it will be best to
422 // just invert it instead of sinking the `neg` deeper.
423 if (Value *NegOp1 = negate(Ops[1], Depth + 1)) {
424 NegatedOp = NegOp1;
425 OtherOp = Ops[0];
426 } else if (Value *NegOp0 = negate(Ops[0], Depth + 1)) {
427 NegatedOp = NegOp0;
428 OtherOp = Ops[1];
429 } else
430 // Can't negate either of them.
431 return nullptr;
432 return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
433 }
434 default:
435 return nullptr; // Don't know, likely not negatible for free.
436 }
437
438 llvm_unreachable("Can't get here. We always return from switch.");
439 }
440
negate(Value * V,unsigned Depth)441 LLVM_NODISCARD Value *Negator::negate(Value *V, unsigned Depth) {
442 NegatorMaxDepthVisited.updateMax(Depth);
443 ++NegatorNumValuesVisited;
444
445 #if LLVM_ENABLE_STATS
446 ++NumValuesVisitedInThisNegator;
447 #endif
448
449 #ifndef NDEBUG
450 // We can't ever have a Value with such an address.
451 Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
452 #endif
453
454 // Did we already try to negate this value?
455 auto NegationsCacheIterator = NegationsCache.find(V);
456 if (NegationsCacheIterator != NegationsCache.end()) {
457 ++NegatorNumNegationsFoundInCache;
458 Value *NegatedV = NegationsCacheIterator->second;
459 assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
460 return NegatedV;
461 }
462
463 #ifndef NDEBUG
464 // We did not find a cached result for negation of V. While there,
465 // let's temporairly cache a placeholder value, with the idea that if later
466 // during negation we fetch it from cache, we'll know we're in a cycle.
467 NegationsCache[V] = Placeholder;
468 #endif
469
470 // No luck. Try negating it for real.
471 Value *NegatedV = visitImpl(V, Depth);
472 // And cache the (real) result for the future.
473 NegationsCache[V] = NegatedV;
474
475 return NegatedV;
476 }
477
run(Value * Root)478 LLVM_NODISCARD Optional<Negator::Result> Negator::run(Value *Root) {
479 Value *Negated = negate(Root, /*Depth=*/0);
480 if (!Negated) {
481 // We must cleanup newly-inserted instructions, to avoid any potential
482 // endless combine looping.
483 llvm::for_each(llvm::reverse(NewInstructions),
484 [&](Instruction *I) { I->eraseFromParent(); });
485 return llvm::None;
486 }
487 return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
488 }
489
Negate(bool LHSIsZero,Value * Root,InstCombinerImpl & IC)490 LLVM_NODISCARD Value *Negator::Negate(bool LHSIsZero, Value *Root,
491 InstCombinerImpl &IC) {
492 ++NegatorTotalNegationsAttempted;
493 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
494 << "\n");
495
496 if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
497 return nullptr;
498
499 Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
500 IC.getDominatorTree(), LHSIsZero);
501 Optional<Result> Res = N.run(Root);
502 if (!Res) { // Negation failed.
503 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
504 << "\n");
505 return nullptr;
506 }
507
508 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
509 << "\n NEW: " << *Res->second << "\n");
510 ++NegatorNumTreesNegated;
511
512 // We must temporarily unset the 'current' insertion point and DebugLoc of the
513 // InstCombine's IRBuilder so that it won't interfere with the ones we have
514 // already specified when producing negated instructions.
515 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
516 IC.Builder.ClearInsertionPoint();
517 IC.Builder.SetCurrentDebugLocation(DebugLoc());
518
519 // And finally, we must add newly-created instructions into the InstCombine's
520 // worklist (in a proper order!) so it can attempt to combine them.
521 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
522 << " instrs to InstCombine\n");
523 NegatorMaxInstructionsCreated.updateMax(Res->first.size());
524 NegatorNumInstructionsNegatedSuccess += Res->first.size();
525
526 // They are in def-use order, so nothing fancy, just insert them in order.
527 llvm::for_each(Res->first,
528 [&](Instruction *I) { IC.Builder.Insert(I, I->getName()); });
529
530 // And return the new root.
531 return Res->second;
532 }
533