1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 #include "protobuf.h"
32
33 // -----------------------------------------------------------------------------
34 // Basic map operations on top of upb's strtable.
35 //
36 // Note that we roll our own `Map` container here because, as for
37 // `RepeatedField`, we want a strongly-typed container. This is so that any user
38 // errors due to incorrect map key or value types are raised as close as
39 // possible to the error site, rather than at some deferred point (e.g.,
40 // serialization).
41 //
42 // We build our `Map` on top of upb_strtable so that we're able to take
43 // advantage of the native_slot storage abstraction, as RepeatedField does.
44 // (This is not quite a perfect mapping -- see the key conversions below -- but
45 // gives us full support and error-checking for all value types for free.)
46 // -----------------------------------------------------------------------------
47
48 // Map values are stored using the native_slot abstraction (as with repeated
49 // field values), but keys are a bit special. Since we use a strtable, we need
50 // to store keys as sequences of bytes such that equality of those bytes maps
51 // one-to-one to equality of keys. We store strings directly (i.e., they map to
52 // their own bytes) and integers as native integers (using the native_slot
53 // abstraction).
54
55 // Note that there is another tradeoff here in keeping string keys as native
56 // strings rather than Ruby strings: traversing the Map requires conversion to
57 // Ruby string values on every traversal, potentially creating more garbage. We
58 // should consider ways to cache a Ruby version of the key if this becomes an
59 // issue later.
60
61 // Forms a key to use with the underlying strtable from a Ruby key value. |buf|
62 // must point to TABLE_KEY_BUF_LENGTH bytes of temporary space, used to
63 // construct a key byte sequence if needed. |out_key| and |out_length| provide
64 // the resulting key data/length.
65 #define TABLE_KEY_BUF_LENGTH 8 // sizeof(uint64_t)
table_key(Map * self,VALUE key,char * buf,const char ** out_key,size_t * out_length)66 static VALUE table_key(Map* self, VALUE key,
67 char* buf,
68 const char** out_key,
69 size_t* out_length) {
70 switch (self->key_type) {
71 case UPB_TYPE_BYTES:
72 case UPB_TYPE_STRING:
73 // Strings: use string content directly.
74 Check_Type(key, T_STRING);
75 key = native_slot_encode_and_freeze_string(self->key_type, key);
76 *out_key = RSTRING_PTR(key);
77 *out_length = RSTRING_LEN(key);
78 break;
79
80 case UPB_TYPE_BOOL:
81 case UPB_TYPE_INT32:
82 case UPB_TYPE_INT64:
83 case UPB_TYPE_UINT32:
84 case UPB_TYPE_UINT64:
85 native_slot_set("", self->key_type, Qnil, buf, key);
86 *out_key = buf;
87 *out_length = native_slot_size(self->key_type);
88 break;
89
90 default:
91 // Map constructor should not allow a Map with another key type to be
92 // constructed.
93 assert(false);
94 break;
95 }
96
97 return key;
98 }
99
table_key_to_ruby(Map * self,const char * buf,size_t length)100 static VALUE table_key_to_ruby(Map* self, const char* buf, size_t length) {
101 switch (self->key_type) {
102 case UPB_TYPE_BYTES:
103 case UPB_TYPE_STRING: {
104 VALUE ret = rb_str_new(buf, length);
105 rb_enc_associate(ret,
106 (self->key_type == UPB_TYPE_BYTES) ?
107 kRubyString8bitEncoding : kRubyStringUtf8Encoding);
108 return ret;
109 }
110
111 case UPB_TYPE_BOOL:
112 case UPB_TYPE_INT32:
113 case UPB_TYPE_INT64:
114 case UPB_TYPE_UINT32:
115 case UPB_TYPE_UINT64:
116 return native_slot_get(self->key_type, Qnil, buf);
117
118 default:
119 assert(false);
120 return Qnil;
121 }
122 }
123
value_memory(upb_value * v)124 static void* value_memory(upb_value* v) {
125 return (void*)(&v->val);
126 }
127
128 // -----------------------------------------------------------------------------
129 // Map container type.
130 // -----------------------------------------------------------------------------
131
132 const rb_data_type_t Map_type = {
133 "Google::Protobuf::Map",
134 { Map_mark, Map_free, NULL },
135 };
136
137 VALUE cMap;
138
ruby_to_Map(VALUE _self)139 Map* ruby_to_Map(VALUE _self) {
140 Map* self;
141 TypedData_Get_Struct(_self, Map, &Map_type, self);
142 return self;
143 }
144
Map_mark(void * _self)145 void Map_mark(void* _self) {
146 Map* self = _self;
147
148 rb_gc_mark(self->value_type_class);
149 rb_gc_mark(self->parse_frame);
150
151 if (self->value_type == UPB_TYPE_STRING ||
152 self->value_type == UPB_TYPE_BYTES ||
153 self->value_type == UPB_TYPE_MESSAGE) {
154 upb_strtable_iter it;
155 for (upb_strtable_begin(&it, &self->table);
156 !upb_strtable_done(&it);
157 upb_strtable_next(&it)) {
158 upb_value v = upb_strtable_iter_value(&it);
159 void* mem = value_memory(&v);
160 native_slot_mark(self->value_type, mem);
161 }
162 }
163 }
164
Map_free(void * _self)165 void Map_free(void* _self) {
166 Map* self = _self;
167 upb_strtable_uninit(&self->table);
168 xfree(self);
169 }
170
Map_alloc(VALUE klass)171 VALUE Map_alloc(VALUE klass) {
172 Map* self = ALLOC(Map);
173 memset(self, 0, sizeof(Map));
174 self->value_type_class = Qnil;
175 return TypedData_Wrap_Struct(klass, &Map_type, self);
176 }
177
Map_set_frame(VALUE map,VALUE val)178 VALUE Map_set_frame(VALUE map, VALUE val) {
179 Map* self = ruby_to_Map(map);
180 self->parse_frame = val;
181 return val;
182 }
183
needs_typeclass(upb_fieldtype_t type)184 static bool needs_typeclass(upb_fieldtype_t type) {
185 switch (type) {
186 case UPB_TYPE_MESSAGE:
187 case UPB_TYPE_ENUM:
188 return true;
189 default:
190 return false;
191 }
192 }
193
194 /*
195 * call-seq:
196 * Map.new(key_type, value_type, value_typeclass = nil, init_hashmap = {})
197 * => new map
198 *
199 * Allocates a new Map container. This constructor may be called with 2, 3, or 4
200 * arguments. The first two arguments are always present and are symbols (taking
201 * on the same values as field-type symbols in message descriptors) that
202 * indicate the type of the map key and value fields.
203 *
204 * The supported key types are: :int32, :int64, :uint32, :uint64, :bool,
205 * :string, :bytes.
206 *
207 * The supported value types are: :int32, :int64, :uint32, :uint64, :bool,
208 * :string, :bytes, :enum, :message.
209 *
210 * The third argument, value_typeclass, must be present if value_type is :enum
211 * or :message. As in RepeatedField#new, this argument must be a message class
212 * (for :message) or enum module (for :enum).
213 *
214 * The last argument, if present, provides initial content for map. Note that
215 * this may be an ordinary Ruby hashmap or another Map instance with identical
216 * key and value types. Also note that this argument may be present whether or
217 * not value_typeclass is present (and it is unambiguously separate from
218 * value_typeclass because value_typeclass's presence is strictly determined by
219 * value_type). The contents of this initial hashmap or Map instance are
220 * shallow-copied into the new Map: the original map is unmodified, but
221 * references to underlying objects will be shared if the value type is a
222 * message type.
223 */
Map_init(int argc,VALUE * argv,VALUE _self)224 VALUE Map_init(int argc, VALUE* argv, VALUE _self) {
225 Map* self = ruby_to_Map(_self);
226 int init_value_arg;
227
228 // We take either two args (:key_type, :value_type), three args (:key_type,
229 // :value_type, "ValueMessageType"), or four args (the above plus an initial
230 // hashmap).
231 if (argc < 2 || argc > 4) {
232 rb_raise(rb_eArgError, "Map constructor expects 2, 3 or 4 arguments.");
233 }
234
235 self->key_type = ruby_to_fieldtype(argv[0]);
236 self->value_type = ruby_to_fieldtype(argv[1]);
237 self->parse_frame = Qnil;
238
239 // Check that the key type is an allowed type.
240 switch (self->key_type) {
241 case UPB_TYPE_INT32:
242 case UPB_TYPE_INT64:
243 case UPB_TYPE_UINT32:
244 case UPB_TYPE_UINT64:
245 case UPB_TYPE_BOOL:
246 case UPB_TYPE_STRING:
247 case UPB_TYPE_BYTES:
248 // These are OK.
249 break;
250 default:
251 rb_raise(rb_eArgError, "Invalid key type for map.");
252 }
253
254 init_value_arg = 2;
255 if (needs_typeclass(self->value_type) && argc > 2) {
256 self->value_type_class = argv[2];
257 validate_type_class(self->value_type, self->value_type_class);
258 init_value_arg = 3;
259 }
260
261 // Table value type is always UINT64: this ensures enough space to store the
262 // native_slot value.
263 if (!upb_strtable_init(&self->table, UPB_CTYPE_UINT64)) {
264 rb_raise(rb_eRuntimeError, "Could not allocate table.");
265 }
266
267 if (argc > init_value_arg) {
268 Map_merge_into_self(_self, argv[init_value_arg]);
269 }
270
271 return Qnil;
272 }
273
274 /*
275 * call-seq:
276 * Map.each(&block)
277 *
278 * Invokes &block on each |key, value| pair in the map, in unspecified order.
279 * Note that Map also includes Enumerable; map thus acts like a normal Ruby
280 * sequence.
281 */
Map_each(VALUE _self)282 VALUE Map_each(VALUE _self) {
283 Map* self = ruby_to_Map(_self);
284
285 upb_strtable_iter it;
286 for (upb_strtable_begin(&it, &self->table);
287 !upb_strtable_done(&it);
288 upb_strtable_next(&it)) {
289
290 VALUE key = table_key_to_ruby(
291 self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));
292
293 upb_value v = upb_strtable_iter_value(&it);
294 void* mem = value_memory(&v);
295 VALUE value = native_slot_get(self->value_type,
296 self->value_type_class,
297 mem);
298
299 rb_yield_values(2, key, value);
300 }
301
302 return Qnil;
303 }
304
305 /*
306 * call-seq:
307 * Map.keys => [list_of_keys]
308 *
309 * Returns the list of keys contained in the map, in unspecified order.
310 */
Map_keys(VALUE _self)311 VALUE Map_keys(VALUE _self) {
312 Map* self = ruby_to_Map(_self);
313
314 VALUE ret = rb_ary_new();
315 upb_strtable_iter it;
316 for (upb_strtable_begin(&it, &self->table);
317 !upb_strtable_done(&it);
318 upb_strtable_next(&it)) {
319
320 VALUE key = table_key_to_ruby(
321 self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));
322
323 rb_ary_push(ret, key);
324 }
325
326 return ret;
327 }
328
329 /*
330 * call-seq:
331 * Map.values => [list_of_values]
332 *
333 * Returns the list of values contained in the map, in unspecified order.
334 */
Map_values(VALUE _self)335 VALUE Map_values(VALUE _self) {
336 Map* self = ruby_to_Map(_self);
337
338 VALUE ret = rb_ary_new();
339 upb_strtable_iter it;
340 for (upb_strtable_begin(&it, &self->table);
341 !upb_strtable_done(&it);
342 upb_strtable_next(&it)) {
343
344 upb_value v = upb_strtable_iter_value(&it);
345 void* mem = value_memory(&v);
346 VALUE value = native_slot_get(self->value_type,
347 self->value_type_class,
348 mem);
349
350 rb_ary_push(ret, value);
351 }
352
353 return ret;
354 }
355
356 /*
357 * call-seq:
358 * Map.[](key) => value
359 *
360 * Accesses the element at the given key. Throws an exception if the key type is
361 * incorrect. Returns nil when the key is not present in the map.
362 */
Map_index(VALUE _self,VALUE key)363 VALUE Map_index(VALUE _self, VALUE key) {
364 Map* self = ruby_to_Map(_self);
365
366 char keybuf[TABLE_KEY_BUF_LENGTH];
367 const char* keyval = NULL;
368 size_t length = 0;
369 upb_value v;
370 key = table_key(self, key, keybuf, &keyval, &length);
371
372 if (upb_strtable_lookup2(&self->table, keyval, length, &v)) {
373 void* mem = value_memory(&v);
374 return native_slot_get(self->value_type, self->value_type_class, mem);
375 } else {
376 return Qnil;
377 }
378 }
379
380 /*
381 * call-seq:
382 * Map.[]=(key, value) => value
383 *
384 * Inserts or overwrites the value at the given key with the given new value.
385 * Throws an exception if the key type is incorrect. Returns the new value that
386 * was just inserted.
387 */
Map_index_set(VALUE _self,VALUE key,VALUE value)388 VALUE Map_index_set(VALUE _self, VALUE key, VALUE value) {
389 rb_check_frozen(_self);
390
391 Map* self = ruby_to_Map(_self);
392
393 char keybuf[TABLE_KEY_BUF_LENGTH];
394 const char* keyval = NULL;
395 size_t length = 0;
396 upb_value v;
397 void* mem;
398 key = table_key(self, key, keybuf, &keyval, &length);
399
400 mem = value_memory(&v);
401 native_slot_set("", self->value_type, self->value_type_class, mem, value);
402
403 // Replace any existing value by issuing a 'remove' operation first.
404 upb_strtable_remove2(&self->table, keyval, length, NULL);
405 if (!upb_strtable_insert2(&self->table, keyval, length, v)) {
406 rb_raise(rb_eRuntimeError, "Could not insert into table");
407 }
408
409 // Ruby hashmap's :[]= method also returns the inserted value.
410 return value;
411 }
412
413 /*
414 * call-seq:
415 * Map.has_key?(key) => bool
416 *
417 * Returns true if the given key is present in the map. Throws an exception if
418 * the key has the wrong type.
419 */
Map_has_key(VALUE _self,VALUE key)420 VALUE Map_has_key(VALUE _self, VALUE key) {
421 Map* self = ruby_to_Map(_self);
422
423 char keybuf[TABLE_KEY_BUF_LENGTH];
424 const char* keyval = NULL;
425 size_t length = 0;
426 key = table_key(self, key, keybuf, &keyval, &length);
427
428 if (upb_strtable_lookup2(&self->table, keyval, length, NULL)) {
429 return Qtrue;
430 } else {
431 return Qfalse;
432 }
433 }
434
435 /*
436 * call-seq:
437 * Map.delete(key) => old_value
438 *
439 * Deletes the value at the given key, if any, returning either the old value or
440 * nil if none was present. Throws an exception if the key is of the wrong type.
441 */
Map_delete(VALUE _self,VALUE key)442 VALUE Map_delete(VALUE _self, VALUE key) {
443 rb_check_frozen(_self);
444
445 Map* self = ruby_to_Map(_self);
446
447 char keybuf[TABLE_KEY_BUF_LENGTH];
448 const char* keyval = NULL;
449 size_t length = 0;
450 upb_value v;
451 key = table_key(self, key, keybuf, &keyval, &length);
452
453 if (upb_strtable_remove2(&self->table, keyval, length, &v)) {
454 void* mem = value_memory(&v);
455 return native_slot_get(self->value_type, self->value_type_class, mem);
456 } else {
457 return Qnil;
458 }
459 }
460
461 /*
462 * call-seq:
463 * Map.clear
464 *
465 * Removes all entries from the map.
466 */
Map_clear(VALUE _self)467 VALUE Map_clear(VALUE _self) {
468 rb_check_frozen(_self);
469
470 Map* self = ruby_to_Map(_self);
471
472 // Uninit and reinit the table -- this is faster than iterating and doing a
473 // delete-lookup on each key.
474 upb_strtable_uninit(&self->table);
475 if (!upb_strtable_init(&self->table, UPB_CTYPE_INT64)) {
476 rb_raise(rb_eRuntimeError, "Unable to re-initialize table");
477 }
478 return Qnil;
479 }
480
481 /*
482 * call-seq:
483 * Map.length
484 *
485 * Returns the number of entries (key-value pairs) in the map.
486 */
Map_length(VALUE _self)487 VALUE Map_length(VALUE _self) {
488 Map* self = ruby_to_Map(_self);
489 return ULL2NUM(upb_strtable_count(&self->table));
490 }
491
Map_new_this_type(VALUE _self)492 static VALUE Map_new_this_type(VALUE _self) {
493 Map* self = ruby_to_Map(_self);
494 VALUE new_map = Qnil;
495 VALUE key_type = fieldtype_to_ruby(self->key_type);
496 VALUE value_type = fieldtype_to_ruby(self->value_type);
497 if (self->value_type_class != Qnil) {
498 new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 3,
499 key_type, value_type, self->value_type_class);
500 } else {
501 new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 2,
502 key_type, value_type);
503 }
504 return new_map;
505 }
506
507 /*
508 * call-seq:
509 * Map.dup => new_map
510 *
511 * Duplicates this map with a shallow copy. References to all non-primitive
512 * element objects (e.g., submessages) are shared.
513 */
Map_dup(VALUE _self)514 VALUE Map_dup(VALUE _self) {
515 Map* self = ruby_to_Map(_self);
516 VALUE new_map = Map_new_this_type(_self);
517 Map* new_self = ruby_to_Map(new_map);
518
519 upb_strtable_iter it;
520 for (upb_strtable_begin(&it, &self->table);
521 !upb_strtable_done(&it);
522 upb_strtable_next(&it)) {
523
524 upb_value v = upb_strtable_iter_value(&it);
525 void* mem = value_memory(&v);
526 upb_value dup;
527 void* dup_mem = value_memory(&dup);
528 native_slot_dup(self->value_type, dup_mem, mem);
529
530 if (!upb_strtable_insert2(&new_self->table,
531 upb_strtable_iter_key(&it),
532 upb_strtable_iter_keylength(&it),
533 dup)) {
534 rb_raise(rb_eRuntimeError, "Error inserting value into new table");
535 }
536 }
537
538 return new_map;
539 }
540
541 // Used by Google::Protobuf.deep_copy but not exposed directly.
Map_deep_copy(VALUE _self)542 VALUE Map_deep_copy(VALUE _self) {
543 Map* self = ruby_to_Map(_self);
544 VALUE new_map = Map_new_this_type(_self);
545 Map* new_self = ruby_to_Map(new_map);
546
547 upb_strtable_iter it;
548 for (upb_strtable_begin(&it, &self->table);
549 !upb_strtable_done(&it);
550 upb_strtable_next(&it)) {
551
552 upb_value v = upb_strtable_iter_value(&it);
553 void* mem = value_memory(&v);
554 upb_value dup;
555 void* dup_mem = value_memory(&dup);
556 native_slot_deep_copy(self->value_type, dup_mem, mem);
557
558 if (!upb_strtable_insert2(&new_self->table,
559 upb_strtable_iter_key(&it),
560 upb_strtable_iter_keylength(&it),
561 dup)) {
562 rb_raise(rb_eRuntimeError, "Error inserting value into new table");
563 }
564 }
565
566 return new_map;
567 }
568
569 /*
570 * call-seq:
571 * Map.==(other) => boolean
572 *
573 * Compares this map to another. Maps are equal if they have identical key sets,
574 * and for each key, the values in both maps compare equal. Elements are
575 * compared as per normal Ruby semantics, by calling their :== methods (or
576 * performing a more efficient comparison for primitive types).
577 *
578 * Maps with dissimilar key types or value types/typeclasses are never equal,
579 * even if value comparison (for example, between integers and floats) would
580 * have otherwise indicated that every element has equal value.
581 */
Map_eq(VALUE _self,VALUE _other)582 VALUE Map_eq(VALUE _self, VALUE _other) {
583 Map* self = ruby_to_Map(_self);
584 Map* other;
585 upb_strtable_iter it;
586
587 // Allow comparisons to Ruby hashmaps by converting to a temporary Map
588 // instance. Slow, but workable.
589 if (TYPE(_other) == T_HASH) {
590 VALUE other_map = Map_new_this_type(_self);
591 Map_merge_into_self(other_map, _other);
592 _other = other_map;
593 }
594
595 other = ruby_to_Map(_other);
596
597 if (self == other) {
598 return Qtrue;
599 }
600 if (self->key_type != other->key_type ||
601 self->value_type != other->value_type ||
602 self->value_type_class != other->value_type_class) {
603 return Qfalse;
604 }
605 if (upb_strtable_count(&self->table) != upb_strtable_count(&other->table)) {
606 return Qfalse;
607 }
608
609 // For each member of self, check that an equal member exists at the same key
610 // in other.
611 for (upb_strtable_begin(&it, &self->table);
612 !upb_strtable_done(&it);
613 upb_strtable_next(&it)) {
614
615 upb_value v = upb_strtable_iter_value(&it);
616 void* mem = value_memory(&v);
617 upb_value other_v;
618 void* other_mem = value_memory(&other_v);
619
620 if (!upb_strtable_lookup2(&other->table,
621 upb_strtable_iter_key(&it),
622 upb_strtable_iter_keylength(&it),
623 &other_v)) {
624 // Not present in other map.
625 return Qfalse;
626 }
627
628 if (!native_slot_eq(self->value_type, mem, other_mem)) {
629 // Present, but value not equal.
630 return Qfalse;
631 }
632 }
633
634 return Qtrue;
635 }
636
637 /*
638 * call-seq:
639 * Map.hash => hash_value
640 *
641 * Returns a hash value based on this map's contents.
642 */
Map_hash(VALUE _self)643 VALUE Map_hash(VALUE _self) {
644 Map* self = ruby_to_Map(_self);
645
646 st_index_t h = rb_hash_start(0);
647 VALUE hash_sym = rb_intern("hash");
648
649 upb_strtable_iter it;
650 for (upb_strtable_begin(&it, &self->table);
651 !upb_strtable_done(&it);
652 upb_strtable_next(&it)) {
653 VALUE key = table_key_to_ruby(
654 self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));
655
656 upb_value v = upb_strtable_iter_value(&it);
657 void* mem = value_memory(&v);
658 VALUE value = native_slot_get(self->value_type,
659 self->value_type_class,
660 mem);
661
662 h = rb_hash_uint(h, NUM2LONG(rb_funcall(key, hash_sym, 0)));
663 h = rb_hash_uint(h, NUM2LONG(rb_funcall(value, hash_sym, 0)));
664 }
665
666 return INT2FIX(h);
667 }
668
669 /*
670 * call-seq:
671 * Map.to_h => {}
672 *
673 * Returns a Ruby Hash object containing all the values within the map
674 */
Map_to_h(VALUE _self)675 VALUE Map_to_h(VALUE _self) {
676 Map* self = ruby_to_Map(_self);
677 VALUE hash = rb_hash_new();
678 upb_strtable_iter it;
679 for (upb_strtable_begin(&it, &self->table);
680 !upb_strtable_done(&it);
681 upb_strtable_next(&it)) {
682 VALUE key = table_key_to_ruby(
683 self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));
684 upb_value v = upb_strtable_iter_value(&it);
685 void* mem = value_memory(&v);
686 VALUE value = native_slot_get(self->value_type,
687 self->value_type_class,
688 mem);
689
690 if (self->value_type == UPB_TYPE_MESSAGE) {
691 value = Message_to_h(value);
692 }
693 rb_hash_aset(hash, key, value);
694 }
695 return hash;
696 }
697
698 /*
699 * call-seq:
700 * Map.inspect => string
701 *
702 * Returns a string representing this map's elements. It will be formatted as
703 * "{key => value, key => value, ...}", with each key and value string
704 * representation computed by its own #inspect method.
705 */
Map_inspect(VALUE _self)706 VALUE Map_inspect(VALUE _self) {
707 Map* self = ruby_to_Map(_self);
708
709 VALUE str = rb_str_new2("{");
710
711 bool first = true;
712 VALUE inspect_sym = rb_intern("inspect");
713
714 upb_strtable_iter it;
715 for (upb_strtable_begin(&it, &self->table);
716 !upb_strtable_done(&it);
717 upb_strtable_next(&it)) {
718 VALUE key = table_key_to_ruby(
719 self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));
720
721 upb_value v = upb_strtable_iter_value(&it);
722 void* mem = value_memory(&v);
723 VALUE value = native_slot_get(self->value_type,
724 self->value_type_class,
725 mem);
726
727 if (!first) {
728 str = rb_str_cat2(str, ", ");
729 } else {
730 first = false;
731 }
732 str = rb_str_append(str, rb_funcall(key, inspect_sym, 0));
733 str = rb_str_cat2(str, "=>");
734 str = rb_str_append(str, rb_funcall(value, inspect_sym, 0));
735 }
736
737 str = rb_str_cat2(str, "}");
738 return str;
739 }
740
741 /*
742 * call-seq:
743 * Map.merge(other_map) => map
744 *
745 * Copies key/value pairs from other_map into a copy of this map. If a key is
746 * set in other_map and this map, the value from other_map overwrites the value
747 * in the new copy of this map. Returns the new copy of this map with merged
748 * contents.
749 */
Map_merge(VALUE _self,VALUE hashmap)750 VALUE Map_merge(VALUE _self, VALUE hashmap) {
751 VALUE dupped = Map_dup(_self);
752 return Map_merge_into_self(dupped, hashmap);
753 }
754
merge_into_self_callback(VALUE key,VALUE value,VALUE self)755 static int merge_into_self_callback(VALUE key, VALUE value, VALUE self) {
756 Map_index_set(self, key, value);
757 return ST_CONTINUE;
758 }
759
760 // Used only internally -- shared by #merge and #initialize.
Map_merge_into_self(VALUE _self,VALUE hashmap)761 VALUE Map_merge_into_self(VALUE _self, VALUE hashmap) {
762 if (TYPE(hashmap) == T_HASH) {
763 rb_hash_foreach(hashmap, merge_into_self_callback, _self);
764 } else if (RB_TYPE_P(hashmap, T_DATA) && RTYPEDDATA_P(hashmap) &&
765 RTYPEDDATA_TYPE(hashmap) == &Map_type) {
766
767 Map* self = ruby_to_Map(_self);
768 Map* other = ruby_to_Map(hashmap);
769 upb_strtable_iter it;
770
771 if (self->key_type != other->key_type ||
772 self->value_type != other->value_type ||
773 self->value_type_class != other->value_type_class) {
774 rb_raise(rb_eArgError, "Attempt to merge Map with mismatching types");
775 }
776
777 for (upb_strtable_begin(&it, &other->table);
778 !upb_strtable_done(&it);
779 upb_strtable_next(&it)) {
780
781 // Replace any existing value by issuing a 'remove' operation first.
782 upb_value v;
783 upb_value oldv;
784 upb_strtable_remove2(&self->table,
785 upb_strtable_iter_key(&it),
786 upb_strtable_iter_keylength(&it),
787 &oldv);
788
789 v = upb_strtable_iter_value(&it);
790 upb_strtable_insert2(&self->table,
791 upb_strtable_iter_key(&it),
792 upb_strtable_iter_keylength(&it),
793 v);
794 }
795 } else {
796 rb_raise(rb_eArgError, "Unknown type merging into Map");
797 }
798 return _self;
799 }
800
801 // Internal method: map iterator initialization (used for serialization).
Map_begin(VALUE _self,Map_iter * iter)802 void Map_begin(VALUE _self, Map_iter* iter) {
803 Map* self = ruby_to_Map(_self);
804 iter->self = self;
805 upb_strtable_begin(&iter->it, &self->table);
806 }
807
Map_next(Map_iter * iter)808 void Map_next(Map_iter* iter) {
809 upb_strtable_next(&iter->it);
810 }
811
Map_done(Map_iter * iter)812 bool Map_done(Map_iter* iter) {
813 return upb_strtable_done(&iter->it);
814 }
815
Map_iter_key(Map_iter * iter)816 VALUE Map_iter_key(Map_iter* iter) {
817 return table_key_to_ruby(
818 iter->self,
819 upb_strtable_iter_key(&iter->it),
820 upb_strtable_iter_keylength(&iter->it));
821 }
822
Map_iter_value(Map_iter * iter)823 VALUE Map_iter_value(Map_iter* iter) {
824 upb_value v = upb_strtable_iter_value(&iter->it);
825 void* mem = value_memory(&v);
826 return native_slot_get(iter->self->value_type,
827 iter->self->value_type_class,
828 mem);
829 }
830
Map_register(VALUE module)831 void Map_register(VALUE module) {
832 VALUE klass = rb_define_class_under(module, "Map", rb_cObject);
833 rb_define_alloc_func(klass, Map_alloc);
834 rb_gc_register_address(&cMap);
835 cMap = klass;
836
837 rb_define_method(klass, "initialize", Map_init, -1);
838 rb_define_method(klass, "each", Map_each, 0);
839 rb_define_method(klass, "keys", Map_keys, 0);
840 rb_define_method(klass, "values", Map_values, 0);
841 rb_define_method(klass, "[]", Map_index, 1);
842 rb_define_method(klass, "[]=", Map_index_set, 2);
843 rb_define_method(klass, "has_key?", Map_has_key, 1);
844 rb_define_method(klass, "delete", Map_delete, 1);
845 rb_define_method(klass, "clear", Map_clear, 0);
846 rb_define_method(klass, "length", Map_length, 0);
847 rb_define_method(klass, "dup", Map_dup, 0);
848 rb_define_method(klass, "==", Map_eq, 1);
849 rb_define_method(klass, "hash", Map_hash, 0);
850 rb_define_method(klass, "to_h", Map_to_h, 0);
851 rb_define_method(klass, "inspect", Map_inspect, 0);
852 rb_define_method(klass, "merge", Map_merge, 1);
853 rb_include_module(klass, rb_mEnumerable);
854 }
855