• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Benchmark function --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // This file mainly defines a `Benchmark` function.
10 //
11 // The benchmarking process is as follows:
12 // - We start by measuring the time it takes to run the function
13 // `InitialIterations` times. This is called a Sample. From this we can derive
14 // the time it took to run a single iteration.
15 //
16 // - We repeat the previous step with a greater number of iterations to lower
17 // the impact of the measurement. We can derive a more precise estimation of the
18 // runtime for a single iteration.
19 //
20 // - Each sample gives a more accurate estimation of the runtime for a single
21 // iteration but also takes more time to run. We stop the process when:
22 //   * The measure stabilize under a certain precision (Epsilon),
23 //   * The overall benchmarking time is greater than MaxDuration,
24 //   * The overall sample count is greater than MaxSamples,
25 //   * The last sample used more than MaxIterations iterations.
26 //
27 // - We also makes sure that the benchmark doesn't run for a too short period of
28 // time by defining MinDuration and MinSamples.
29 
30 #ifndef LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
31 #define LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
32 
33 #include "benchmark/benchmark.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/Optional.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include <array>
38 #include <chrono>
39 #include <cstdint>
40 
41 namespace llvm {
42 namespace libc_benchmarks {
43 
44 // Makes sure the binary was compiled in release mode and that frequency
45 // governor is set on performance.
46 void checkRequirements();
47 
48 using Duration = std::chrono::duration<double>;
49 
50 enum class BenchmarkLog {
51   None, // Don't keep the internal state of the benchmark.
52   Last, // Keep only the last batch.
53   Full  // Keep all iterations states, useful for testing or debugging.
54 };
55 
56 // An object to configure the benchmark stopping conditions.
57 // See documentation at the beginning of the file for the overall algorithm and
58 // meaning of each field.
59 struct BenchmarkOptions {
60   // The minimum time for which the benchmark is running.
61   Duration MinDuration = std::chrono::seconds(0);
62   // The maximum time for which the benchmark is running.
63   Duration MaxDuration = std::chrono::seconds(10);
64   // The number of iterations in the first sample.
65   uint32_t InitialIterations = 1;
66   // The maximum number of iterations for any given sample.
67   uint32_t MaxIterations = 10000000;
68   // The minimum number of samples.
69   uint32_t MinSamples = 4;
70   // The maximum number of samples.
71   uint32_t MaxSamples = 1000;
72   // The benchmark will stop if the relative difference between the current and
73   // the last estimation is less than epsilon. This is 1% by default.
74   double Epsilon = 0.01;
75   // The number of iterations grows exponentially between each sample.
76   // Must be greater or equal to 1.
77   double ScalingFactor = 1.4;
78   BenchmarkLog Log = BenchmarkLog::None;
79 };
80 
81 // The state of a benchmark.
82 enum class BenchmarkStatus {
83   Running,
84   MaxDurationReached,
85   MaxIterationsReached,
86   MaxSamplesReached,
87   PrecisionReached,
88 };
89 
90 // The internal state of the benchmark, useful to debug, test or report
91 // statistics.
92 struct BenchmarkState {
93   size_t LastSampleIterations;
94   Duration LastBatchElapsed;
95   BenchmarkStatus CurrentStatus;
96   Duration CurrentBestGuess; // The time estimation for a single run of `foo`.
97   double ChangeRatio; // The change in time estimation between previous and
98                       // current samples.
99 };
100 
101 // A lightweight result for a benchmark.
102 struct BenchmarkResult {
103   BenchmarkStatus TerminationStatus = BenchmarkStatus::Running;
104   Duration BestGuess = {};
105   llvm::Optional<llvm::SmallVector<BenchmarkState, 16>> MaybeBenchmarkLog;
106 };
107 
108 // Stores information about a cache in the host memory system.
109 struct CacheInfo {
110   std::string Type; //  e.g. "Instruction", "Data", "Unified".
111   int Level;        // 0 is closest to processing unit.
112   int Size;         // In bytes.
113   int NumSharing;   // The number of processing units (Hyper-Threading Thread)
114                     // with which this cache is shared.
115 };
116 
117 // Stores information about the host.
118 struct HostState {
119   std::string CpuName; // returns a string compatible with the -march option.
120   double CpuFrequency; // in Hertz.
121   std::vector<CacheInfo> Caches;
122 
123   static HostState get();
124 };
125 
126 namespace internal {
127 
128 struct Measurement {
129   size_t Iterations = 0;
130   Duration Elapsed = {};
131 };
132 
133 // Updates the estimation of the elapsed time for a single iteration.
134 class RefinableRuntimeEstimation {
135   Duration TotalTime = {};
136   size_t TotalIterations = 0;
137 
138 public:
update(const Measurement & M)139   Duration update(const Measurement &M) {
140     assert(M.Iterations > 0);
141     // Duration is encoded as a double (see definition).
142     // `TotalTime` and `M.Elapsed` are of the same magnitude so we don't expect
143     // loss of precision due to radically different scales.
144     TotalTime += M.Elapsed;
145     TotalIterations += M.Iterations;
146     return TotalTime / TotalIterations;
147   }
148 };
149 
150 // This class tracks the progression of the runtime estimation.
151 class RuntimeEstimationProgression {
152   RefinableRuntimeEstimation RRE;
153 
154 public:
155   Duration CurrentEstimation = {};
156 
157   // Returns the change ratio between our best guess so far and the one from the
158   // new measurement.
computeImprovement(const Measurement & M)159   double computeImprovement(const Measurement &M) {
160     const Duration NewEstimation = RRE.update(M);
161     const double Ratio = fabs(((CurrentEstimation / NewEstimation) - 1.0));
162     CurrentEstimation = NewEstimation;
163     return Ratio;
164   }
165 };
166 
167 } // namespace internal
168 
169 // Measures the runtime of `foo` until conditions defined by `Options` are met.
170 //
171 // To avoid measurement's imprecisions we measure batches of `foo`.
172 // The batch size is growing by `ScalingFactor` to minimize the effect of
173 // measuring.
174 //
175 // Note: The benchmark is not responsible for serializing the executions of
176 // `foo`. It is not suitable for measuring, very small & side effect free
177 // functions, as the processor is free to execute several executions in
178 // parallel.
179 //
180 // - Options: A set of parameters controlling the stopping conditions for the
181 //     benchmark.
182 // - foo: The function under test. It takes one value and returns one value.
183 //     The input value is used to randomize the execution of `foo` as part of a
184 //     batch to mitigate the effect of the branch predictor. Signature:
185 //     `ProductType foo(ParameterProvider::value_type value);`
186 //     The output value is a product of the execution of `foo` and prevents the
187 //     compiler from optimizing out foo's body.
188 // - ParameterProvider: An object responsible for providing a range of
189 //     `Iterations` values to use as input for `foo`. The `value_type` of the
190 //     returned container has to be compatible with `foo` argument.
191 //     Must implement one of:
192 //     `Container<ParameterType> generateBatch(size_t Iterations);`
193 //     `const Container<ParameterType>& generateBatch(size_t Iterations);`
194 // - Clock: An object providing the current time. Must implement:
195 //     `std::chrono::time_point now();`
196 template <typename Function, typename ParameterProvider,
197           typename BenchmarkClock = const std::chrono::high_resolution_clock>
198 BenchmarkResult benchmark(const BenchmarkOptions &Options,
199                           ParameterProvider &PP, Function foo,
200                           BenchmarkClock &Clock = BenchmarkClock()) {
201   BenchmarkResult Result;
202   internal::RuntimeEstimationProgression REP;
203   Duration TotalBenchmarkDuration = {};
204   size_t Iterations = std::max(Options.InitialIterations, uint32_t(1));
205   size_t Samples = 0;
206   if (Options.ScalingFactor < 1.0)
207     report_fatal_error("ScalingFactor should be >= 1");
208   if (Options.Log != BenchmarkLog::None)
209     Result.MaybeBenchmarkLog.emplace();
210   for (;;) {
211     // Request a new Batch of size `Iterations`.
212     const auto &Batch = PP.generateBatch(Iterations);
213 
214     // Measuring this Batch.
215     const auto StartTime = Clock.now();
216     for (const auto Parameter : Batch) {
217       const auto Production = foo(Parameter);
218       benchmark::DoNotOptimize(Production);
219     }
220     const auto EndTime = Clock.now();
221     const Duration Elapsed = EndTime - StartTime;
222 
223     // Updating statistics.
224     ++Samples;
225     TotalBenchmarkDuration += Elapsed;
226     const double ChangeRatio = REP.computeImprovement({Iterations, Elapsed});
227     Result.BestGuess = REP.CurrentEstimation;
228 
229     // Stopping condition.
230     if (TotalBenchmarkDuration >= Options.MinDuration &&
231         Samples >= Options.MinSamples && ChangeRatio < Options.Epsilon)
232       Result.TerminationStatus = BenchmarkStatus::PrecisionReached;
233     else if (Samples >= Options.MaxSamples)
234       Result.TerminationStatus = BenchmarkStatus::MaxSamplesReached;
235     else if (TotalBenchmarkDuration >= Options.MaxDuration)
236       Result.TerminationStatus = BenchmarkStatus::MaxDurationReached;
237     else if (Iterations >= Options.MaxIterations)
238       Result.TerminationStatus = BenchmarkStatus::MaxIterationsReached;
239 
240     if (Result.MaybeBenchmarkLog) {
241       auto &BenchmarkLog = *Result.MaybeBenchmarkLog;
242       if (Options.Log == BenchmarkLog::Last && !BenchmarkLog.empty())
243         BenchmarkLog.pop_back();
244       BenchmarkState BS;
245       BS.LastSampleIterations = Iterations;
246       BS.LastBatchElapsed = Elapsed;
247       BS.CurrentStatus = Result.TerminationStatus;
248       BS.CurrentBestGuess = Result.BestGuess;
249       BS.ChangeRatio = ChangeRatio;
250       BenchmarkLog.push_back(BS);
251     }
252 
253     if (Result.TerminationStatus != BenchmarkStatus::Running)
254       return Result;
255 
256     if (Options.ScalingFactor > 1 &&
257         Iterations * Options.ScalingFactor == Iterations)
258       report_fatal_error(
259           "`Iterations *= ScalingFactor` is idempotent, increase ScalingFactor "
260           "or InitialIterations.");
261 
262     Iterations *= Options.ScalingFactor;
263   }
264 }
265 
266 // Interprets `Array` as a circular buffer of `Size` elements.
267 template <typename T> class CircularArrayRef {
268   llvm::ArrayRef<T> Array;
269   size_t Size;
270 
271 public:
272   using value_type = T;
273   using reference = T &;
274   using const_reference = const T &;
275   using difference_type = ssize_t;
276   using size_type = size_t;
277 
278   class const_iterator
279       : public std::iterator<std::input_iterator_tag, T, ssize_t> {
280     llvm::ArrayRef<T> Array;
281     size_t Index;
282 
283   public:
284     explicit const_iterator(llvm::ArrayRef<T> Array, size_t Index = 0)
Array(Array)285         : Array(Array), Index(Index) {}
286     const_iterator &operator++() {
287       ++Index;
288       return *this;
289     }
290     bool operator==(const_iterator Other) const { return Index == Other.Index; }
291     bool operator!=(const_iterator Other) const { return !(*this == Other); }
292     const T &operator*() const { return Array[Index % Array.size()]; }
293   };
294 
CircularArrayRef(llvm::ArrayRef<T> Array,size_t Size)295   CircularArrayRef(llvm::ArrayRef<T> Array, size_t Size)
296       : Array(Array), Size(Size) {
297     assert(Array.size() > 0);
298   }
299 
begin()300   const_iterator begin() const { return const_iterator(Array); }
end()301   const_iterator end() const { return const_iterator(Array, Size); }
302 };
303 
304 // A convenient helper to produce a CircularArrayRef from an ArrayRef.
305 template <typename T>
cycle(llvm::ArrayRef<T> Array,size_t Size)306 CircularArrayRef<T> cycle(llvm::ArrayRef<T> Array, size_t Size) {
307   return {Array, Size};
308 }
309 
310 // Creates an std::array which storage size is constrained under `Bytes`.
311 template <typename T, size_t Bytes>
312 using ByteConstrainedArray = std::array<T, Bytes / sizeof(T)>;
313 
314 // A convenient helper to produce a CircularArrayRef from a
315 // ByteConstrainedArray.
316 template <typename T, size_t N>
cycle(const std::array<T,N> & Container,size_t Size)317 CircularArrayRef<T> cycle(const std::array<T, N> &Container, size_t Size) {
318   return {llvm::ArrayRef<T>(Container.cbegin(), Container.cend()), Size};
319 }
320 
321 } // namespace libc_benchmarks
322 } // namespace llvm
323 
324 #endif // LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
325