1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "basicblock-utils"
53
DetatchDeadBlocks(ArrayRef<BasicBlock * > BBs,SmallVectorImpl<DominatorTree::UpdateType> * Updates,bool KeepOneInputPHIs)54 void llvm::DetatchDeadBlocks(
55 ArrayRef<BasicBlock *> BBs,
56 SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57 bool KeepOneInputPHIs) {
58 for (auto *BB : BBs) {
59 // Loop through all of our successors and make sure they know that one
60 // of their predecessors is going away.
61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62 for (BasicBlock *Succ : successors(BB)) {
63 Succ->removePredecessor(BB, KeepOneInputPHIs);
64 if (Updates && UniqueSuccessors.insert(Succ).second)
65 Updates->push_back({DominatorTree::Delete, BB, Succ});
66 }
67
68 // Zap all the instructions in the block.
69 while (!BB->empty()) {
70 Instruction &I = BB->back();
71 // If this instruction is used, replace uses with an arbitrary value.
72 // Because control flow can't get here, we don't care what we replace the
73 // value with. Note that since this block is unreachable, and all values
74 // contained within it must dominate their uses, that all uses will
75 // eventually be removed (they are themselves dead).
76 if (!I.use_empty())
77 I.replaceAllUsesWith(UndefValue::get(I.getType()));
78 BB->getInstList().pop_back();
79 }
80 new UnreachableInst(BB->getContext(), BB);
81 assert(BB->getInstList().size() == 1 &&
82 isa<UnreachableInst>(BB->getTerminator()) &&
83 "The successor list of BB isn't empty before "
84 "applying corresponding DTU updates.");
85 }
86 }
87
DeleteDeadBlock(BasicBlock * BB,DomTreeUpdater * DTU,bool KeepOneInputPHIs)88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89 bool KeepOneInputPHIs) {
90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92
DeleteDeadBlocks(ArrayRef<BasicBlock * > BBs,DomTreeUpdater * DTU,bool KeepOneInputPHIs)93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94 bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96 // Make sure that all predecessors of each dead block is also dead.
97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98 assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99 for (auto *BB : Dead)
100 for (BasicBlock *Pred : predecessors(BB))
101 assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103
104 SmallVector<DominatorTree::UpdateType, 4> Updates;
105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106
107 if (DTU)
108 DTU->applyUpdatesPermissive(Updates);
109
110 for (BasicBlock *BB : BBs)
111 if (DTU)
112 DTU->deleteBB(BB);
113 else
114 BB->eraseFromParent();
115 }
116
EliminateUnreachableBlocks(Function & F,DomTreeUpdater * DTU,bool KeepOneInputPHIs)117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118 bool KeepOneInputPHIs) {
119 df_iterator_default_set<BasicBlock*> Reachable;
120
121 // Mark all reachable blocks.
122 for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123 (void)BB/* Mark all reachable blocks */;
124
125 // Collect all dead blocks.
126 std::vector<BasicBlock*> DeadBlocks;
127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128 if (!Reachable.count(&*I)) {
129 BasicBlock *BB = &*I;
130 DeadBlocks.push_back(BB);
131 }
132
133 // Delete the dead blocks.
134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135
136 return !DeadBlocks.empty();
137 }
138
FoldSingleEntryPHINodes(BasicBlock * BB,MemoryDependenceResults * MemDep)139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140 MemoryDependenceResults *MemDep) {
141 if (!isa<PHINode>(BB->begin())) return;
142
143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144 if (PN->getIncomingValue(0) != PN)
145 PN->replaceAllUsesWith(PN->getIncomingValue(0));
146 else
147 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148
149 if (MemDep)
150 MemDep->removeInstruction(PN); // Memdep updates AA itself.
151
152 PN->eraseFromParent();
153 }
154 }
155
DeleteDeadPHIs(BasicBlock * BB,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU)156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
157 MemorySSAUpdater *MSSAU) {
158 // Recursively deleting a PHI may cause multiple PHIs to be deleted
159 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
160 SmallVector<WeakTrackingVH, 8> PHIs;
161 for (PHINode &PN : BB->phis())
162 PHIs.push_back(&PN);
163
164 bool Changed = false;
165 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
166 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
167 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
168
169 return Changed;
170 }
171
MergeBlockIntoPredecessor(BasicBlock * BB,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,MemoryDependenceResults * MemDep,bool PredecessorWithTwoSuccessors)172 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
173 LoopInfo *LI, MemorySSAUpdater *MSSAU,
174 MemoryDependenceResults *MemDep,
175 bool PredecessorWithTwoSuccessors) {
176 if (BB->hasAddressTaken())
177 return false;
178
179 // Can't merge if there are multiple predecessors, or no predecessors.
180 BasicBlock *PredBB = BB->getUniquePredecessor();
181 if (!PredBB) return false;
182
183 // Don't break self-loops.
184 if (PredBB == BB) return false;
185 // Don't break unwinding instructions.
186 if (PredBB->getTerminator()->isExceptionalTerminator())
187 return false;
188
189 // Can't merge if there are multiple distinct successors.
190 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
191 return false;
192
193 // Currently only allow PredBB to have two predecessors, one being BB.
194 // Update BI to branch to BB's only successor instead of BB.
195 BranchInst *PredBB_BI;
196 BasicBlock *NewSucc = nullptr;
197 unsigned FallThruPath;
198 if (PredecessorWithTwoSuccessors) {
199 if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
200 return false;
201 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
202 if (!BB_JmpI || !BB_JmpI->isUnconditional())
203 return false;
204 NewSucc = BB_JmpI->getSuccessor(0);
205 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
206 }
207
208 // Can't merge if there is PHI loop.
209 for (PHINode &PN : BB->phis())
210 for (Value *IncValue : PN.incoming_values())
211 if (IncValue == &PN)
212 return false;
213
214 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
215 << PredBB->getName() << "\n");
216
217 // Begin by getting rid of unneeded PHIs.
218 SmallVector<AssertingVH<Value>, 4> IncomingValues;
219 if (isa<PHINode>(BB->front())) {
220 for (PHINode &PN : BB->phis())
221 if (!isa<PHINode>(PN.getIncomingValue(0)) ||
222 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
223 IncomingValues.push_back(PN.getIncomingValue(0));
224 FoldSingleEntryPHINodes(BB, MemDep);
225 }
226
227 // DTU update: Collect all the edges that exit BB.
228 // These dominator edges will be redirected from Pred.
229 std::vector<DominatorTree::UpdateType> Updates;
230 if (DTU) {
231 Updates.reserve(1 + (2 * succ_size(BB)));
232 // Add insert edges first. Experimentally, for the particular case of two
233 // blocks that can be merged, with a single successor and single predecessor
234 // respectively, it is beneficial to have all insert updates first. Deleting
235 // edges first may lead to unreachable blocks, followed by inserting edges
236 // making the blocks reachable again. Such DT updates lead to high compile
237 // times. We add inserts before deletes here to reduce compile time.
238 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
239 // This successor of BB may already have PredBB as a predecessor.
240 if (!llvm::is_contained(successors(PredBB), *I))
241 Updates.push_back({DominatorTree::Insert, PredBB, *I});
242 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
243 Updates.push_back({DominatorTree::Delete, BB, *I});
244 Updates.push_back({DominatorTree::Delete, PredBB, BB});
245 }
246
247 Instruction *PTI = PredBB->getTerminator();
248 Instruction *STI = BB->getTerminator();
249 Instruction *Start = &*BB->begin();
250 // If there's nothing to move, mark the starting instruction as the last
251 // instruction in the block. Terminator instruction is handled separately.
252 if (Start == STI)
253 Start = PTI;
254
255 // Move all definitions in the successor to the predecessor...
256 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
257 BB->begin(), STI->getIterator());
258
259 if (MSSAU)
260 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
261
262 // Make all PHI nodes that referred to BB now refer to Pred as their
263 // source...
264 BB->replaceAllUsesWith(PredBB);
265
266 if (PredecessorWithTwoSuccessors) {
267 // Delete the unconditional branch from BB.
268 BB->getInstList().pop_back();
269
270 // Update branch in the predecessor.
271 PredBB_BI->setSuccessor(FallThruPath, NewSucc);
272 } else {
273 // Delete the unconditional branch from the predecessor.
274 PredBB->getInstList().pop_back();
275
276 // Move terminator instruction.
277 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
278
279 // Terminator may be a memory accessing instruction too.
280 if (MSSAU)
281 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
282 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
283 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
284 }
285 // Add unreachable to now empty BB.
286 new UnreachableInst(BB->getContext(), BB);
287
288 // Inherit predecessors name if it exists.
289 if (!PredBB->hasName())
290 PredBB->takeName(BB);
291
292 if (LI)
293 LI->removeBlock(BB);
294
295 if (MemDep)
296 MemDep->invalidateCachedPredecessors();
297
298 // Finally, erase the old block and update dominator info.
299 if (DTU) {
300 assert(BB->getInstList().size() == 1 &&
301 isa<UnreachableInst>(BB->getTerminator()) &&
302 "The successor list of BB isn't empty before "
303 "applying corresponding DTU updates.");
304 DTU->applyUpdatesPermissive(Updates);
305 DTU->deleteBB(BB);
306 } else {
307 BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
308 }
309
310 return true;
311 }
312
MergeBlockSuccessorsIntoGivenBlocks(SmallPtrSetImpl<BasicBlock * > & MergeBlocks,Loop * L,DomTreeUpdater * DTU,LoopInfo * LI)313 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
314 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
315 LoopInfo *LI) {
316 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
317
318 bool BlocksHaveBeenMerged = false;
319 while (!MergeBlocks.empty()) {
320 BasicBlock *BB = *MergeBlocks.begin();
321 BasicBlock *Dest = BB->getSingleSuccessor();
322 if (Dest && (!L || L->contains(Dest))) {
323 BasicBlock *Fold = Dest->getUniquePredecessor();
324 (void)Fold;
325 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
326 assert(Fold == BB &&
327 "Expecting BB to be unique predecessor of the Dest block");
328 MergeBlocks.erase(Dest);
329 BlocksHaveBeenMerged = true;
330 } else
331 MergeBlocks.erase(BB);
332 } else
333 MergeBlocks.erase(BB);
334 }
335 return BlocksHaveBeenMerged;
336 }
337
338 /// Remove redundant instructions within sequences of consecutive dbg.value
339 /// instructions. This is done using a backward scan to keep the last dbg.value
340 /// describing a specific variable/fragment.
341 ///
342 /// BackwardScan strategy:
343 /// ----------------------
344 /// Given a sequence of consecutive DbgValueInst like this
345 ///
346 /// dbg.value ..., "x", FragmentX1 (*)
347 /// dbg.value ..., "y", FragmentY1
348 /// dbg.value ..., "x", FragmentX2
349 /// dbg.value ..., "x", FragmentX1 (**)
350 ///
351 /// then the instruction marked with (*) can be removed (it is guaranteed to be
352 /// obsoleted by the instruction marked with (**) as the latter instruction is
353 /// describing the same variable using the same fragment info).
354 ///
355 /// Possible improvements:
356 /// - Check fully overlapping fragments and not only identical fragments.
357 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
358 /// instructions being part of the sequence of consecutive instructions.
removeRedundantDbgInstrsUsingBackwardScan(BasicBlock * BB)359 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
360 SmallVector<DbgValueInst *, 8> ToBeRemoved;
361 SmallDenseSet<DebugVariable> VariableSet;
362 for (auto &I : reverse(*BB)) {
363 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
364 DebugVariable Key(DVI->getVariable(),
365 DVI->getExpression(),
366 DVI->getDebugLoc()->getInlinedAt());
367 auto R = VariableSet.insert(Key);
368 // If the same variable fragment is described more than once it is enough
369 // to keep the last one (i.e. the first found since we for reverse
370 // iteration).
371 if (!R.second)
372 ToBeRemoved.push_back(DVI);
373 continue;
374 }
375 // Sequence with consecutive dbg.value instrs ended. Clear the map to
376 // restart identifying redundant instructions if case we find another
377 // dbg.value sequence.
378 VariableSet.clear();
379 }
380
381 for (auto &Instr : ToBeRemoved)
382 Instr->eraseFromParent();
383
384 return !ToBeRemoved.empty();
385 }
386
387 /// Remove redundant dbg.value instructions using a forward scan. This can
388 /// remove a dbg.value instruction that is redundant due to indicating that a
389 /// variable has the same value as already being indicated by an earlier
390 /// dbg.value.
391 ///
392 /// ForwardScan strategy:
393 /// ---------------------
394 /// Given two identical dbg.value instructions, separated by a block of
395 /// instructions that isn't describing the same variable, like this
396 ///
397 /// dbg.value X1, "x", FragmentX1 (**)
398 /// <block of instructions, none being "dbg.value ..., "x", ...">
399 /// dbg.value X1, "x", FragmentX1 (*)
400 ///
401 /// then the instruction marked with (*) can be removed. Variable "x" is already
402 /// described as being mapped to the SSA value X1.
403 ///
404 /// Possible improvements:
405 /// - Keep track of non-overlapping fragments.
removeRedundantDbgInstrsUsingForwardScan(BasicBlock * BB)406 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
407 SmallVector<DbgValueInst *, 8> ToBeRemoved;
408 DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
409 for (auto &I : *BB) {
410 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
411 DebugVariable Key(DVI->getVariable(),
412 NoneType(),
413 DVI->getDebugLoc()->getInlinedAt());
414 auto VMI = VariableMap.find(Key);
415 // Update the map if we found a new value/expression describing the
416 // variable, or if the variable wasn't mapped already.
417 if (VMI == VariableMap.end() ||
418 VMI->second.first != DVI->getValue() ||
419 VMI->second.second != DVI->getExpression()) {
420 VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
421 continue;
422 }
423 // Found an identical mapping. Remember the instruction for later removal.
424 ToBeRemoved.push_back(DVI);
425 }
426 }
427
428 for (auto &Instr : ToBeRemoved)
429 Instr->eraseFromParent();
430
431 return !ToBeRemoved.empty();
432 }
433
RemoveRedundantDbgInstrs(BasicBlock * BB)434 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
435 bool MadeChanges = false;
436 // By using the "backward scan" strategy before the "forward scan" strategy we
437 // can remove both dbg.value (2) and (3) in a situation like this:
438 //
439 // (1) dbg.value V1, "x", DIExpression()
440 // ...
441 // (2) dbg.value V2, "x", DIExpression()
442 // (3) dbg.value V1, "x", DIExpression()
443 //
444 // The backward scan will remove (2), it is made obsolete by (3). After
445 // getting (2) out of the way, the foward scan will remove (3) since "x"
446 // already is described as having the value V1 at (1).
447 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
448 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
449
450 if (MadeChanges)
451 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
452 << BB->getName() << "\n");
453 return MadeChanges;
454 }
455
ReplaceInstWithValue(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Value * V)456 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
457 BasicBlock::iterator &BI, Value *V) {
458 Instruction &I = *BI;
459 // Replaces all of the uses of the instruction with uses of the value
460 I.replaceAllUsesWith(V);
461
462 // Make sure to propagate a name if there is one already.
463 if (I.hasName() && !V->hasName())
464 V->takeName(&I);
465
466 // Delete the unnecessary instruction now...
467 BI = BIL.erase(BI);
468 }
469
ReplaceInstWithInst(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Instruction * I)470 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
471 BasicBlock::iterator &BI, Instruction *I) {
472 assert(I->getParent() == nullptr &&
473 "ReplaceInstWithInst: Instruction already inserted into basic block!");
474
475 // Copy debug location to newly added instruction, if it wasn't already set
476 // by the caller.
477 if (!I->getDebugLoc())
478 I->setDebugLoc(BI->getDebugLoc());
479
480 // Insert the new instruction into the basic block...
481 BasicBlock::iterator New = BIL.insert(BI, I);
482
483 // Replace all uses of the old instruction, and delete it.
484 ReplaceInstWithValue(BIL, BI, I);
485
486 // Move BI back to point to the newly inserted instruction
487 BI = New;
488 }
489
ReplaceInstWithInst(Instruction * From,Instruction * To)490 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
491 BasicBlock::iterator BI(From);
492 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
493 }
494
SplitEdge(BasicBlock * BB,BasicBlock * Succ,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU)495 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
496 LoopInfo *LI, MemorySSAUpdater *MSSAU) {
497 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
498
499 // If this is a critical edge, let SplitCriticalEdge do it.
500 Instruction *LatchTerm = BB->getTerminator();
501 if (SplitCriticalEdge(
502 LatchTerm, SuccNum,
503 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
504 return LatchTerm->getSuccessor(SuccNum);
505
506 // If the edge isn't critical, then BB has a single successor or Succ has a
507 // single pred. Split the block.
508 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
509 // If the successor only has a single pred, split the top of the successor
510 // block.
511 assert(SP == BB && "CFG broken");
512 SP = nullptr;
513 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
514 }
515
516 // Otherwise, if BB has a single successor, split it at the bottom of the
517 // block.
518 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
519 "Should have a single succ!");
520 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
521 }
522
523 unsigned
SplitAllCriticalEdges(Function & F,const CriticalEdgeSplittingOptions & Options)524 llvm::SplitAllCriticalEdges(Function &F,
525 const CriticalEdgeSplittingOptions &Options) {
526 unsigned NumBroken = 0;
527 for (BasicBlock &BB : F) {
528 Instruction *TI = BB.getTerminator();
529 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
530 !isa<CallBrInst>(TI))
531 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
532 if (SplitCriticalEdge(TI, i, Options))
533 ++NumBroken;
534 }
535 return NumBroken;
536 }
537
SplitBlock(BasicBlock * Old,Instruction * SplitPt,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName)538 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
539 DominatorTree *DT, LoopInfo *LI,
540 MemorySSAUpdater *MSSAU, const Twine &BBName) {
541 BasicBlock::iterator SplitIt = SplitPt->getIterator();
542 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
543 ++SplitIt;
544 std::string Name = BBName.str();
545 BasicBlock *New = Old->splitBasicBlock(
546 SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
547
548 // The new block lives in whichever loop the old one did. This preserves
549 // LCSSA as well, because we force the split point to be after any PHI nodes.
550 if (LI)
551 if (Loop *L = LI->getLoopFor(Old))
552 L->addBasicBlockToLoop(New, *LI);
553
554 if (DT)
555 // Old dominates New. New node dominates all other nodes dominated by Old.
556 if (DomTreeNode *OldNode = DT->getNode(Old)) {
557 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
558
559 DomTreeNode *NewNode = DT->addNewBlock(New, Old);
560 for (DomTreeNode *I : Children)
561 DT->changeImmediateDominator(I, NewNode);
562 }
563
564 // Move MemoryAccesses still tracked in Old, but part of New now.
565 // Update accesses in successor blocks accordingly.
566 if (MSSAU)
567 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
568
569 return New;
570 }
571
572 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
UpdateAnalysisInformation(BasicBlock * OldBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA,bool & HasLoopExit)573 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
574 ArrayRef<BasicBlock *> Preds,
575 DominatorTree *DT, LoopInfo *LI,
576 MemorySSAUpdater *MSSAU,
577 bool PreserveLCSSA, bool &HasLoopExit) {
578 // Update dominator tree if available.
579 if (DT) {
580 if (OldBB == DT->getRootNode()->getBlock()) {
581 assert(NewBB == &NewBB->getParent()->getEntryBlock());
582 DT->setNewRoot(NewBB);
583 } else {
584 // Split block expects NewBB to have a non-empty set of predecessors.
585 DT->splitBlock(NewBB);
586 }
587 }
588
589 // Update MemoryPhis after split if MemorySSA is available
590 if (MSSAU)
591 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
592
593 // The rest of the logic is only relevant for updating the loop structures.
594 if (!LI)
595 return;
596
597 assert(DT && "DT should be available to update LoopInfo!");
598 Loop *L = LI->getLoopFor(OldBB);
599
600 // If we need to preserve loop analyses, collect some information about how
601 // this split will affect loops.
602 bool IsLoopEntry = !!L;
603 bool SplitMakesNewLoopHeader = false;
604 for (BasicBlock *Pred : Preds) {
605 // Preds that are not reachable from entry should not be used to identify if
606 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
607 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
608 // as true and make the NewBB the header of some loop. This breaks LI.
609 if (!DT->isReachableFromEntry(Pred))
610 continue;
611 // If we need to preserve LCSSA, determine if any of the preds is a loop
612 // exit.
613 if (PreserveLCSSA)
614 if (Loop *PL = LI->getLoopFor(Pred))
615 if (!PL->contains(OldBB))
616 HasLoopExit = true;
617
618 // If we need to preserve LoopInfo, note whether any of the preds crosses
619 // an interesting loop boundary.
620 if (!L)
621 continue;
622 if (L->contains(Pred))
623 IsLoopEntry = false;
624 else
625 SplitMakesNewLoopHeader = true;
626 }
627
628 // Unless we have a loop for OldBB, nothing else to do here.
629 if (!L)
630 return;
631
632 if (IsLoopEntry) {
633 // Add the new block to the nearest enclosing loop (and not an adjacent
634 // loop). To find this, examine each of the predecessors and determine which
635 // loops enclose them, and select the most-nested loop which contains the
636 // loop containing the block being split.
637 Loop *InnermostPredLoop = nullptr;
638 for (BasicBlock *Pred : Preds) {
639 if (Loop *PredLoop = LI->getLoopFor(Pred)) {
640 // Seek a loop which actually contains the block being split (to avoid
641 // adjacent loops).
642 while (PredLoop && !PredLoop->contains(OldBB))
643 PredLoop = PredLoop->getParentLoop();
644
645 // Select the most-nested of these loops which contains the block.
646 if (PredLoop && PredLoop->contains(OldBB) &&
647 (!InnermostPredLoop ||
648 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
649 InnermostPredLoop = PredLoop;
650 }
651 }
652
653 if (InnermostPredLoop)
654 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
655 } else {
656 L->addBasicBlockToLoop(NewBB, *LI);
657 if (SplitMakesNewLoopHeader)
658 L->moveToHeader(NewBB);
659 }
660 }
661
662 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
663 /// This also updates AliasAnalysis, if available.
UpdatePHINodes(BasicBlock * OrigBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,BranchInst * BI,bool HasLoopExit)664 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
665 ArrayRef<BasicBlock *> Preds, BranchInst *BI,
666 bool HasLoopExit) {
667 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
668 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
669 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
670 PHINode *PN = cast<PHINode>(I++);
671
672 // Check to see if all of the values coming in are the same. If so, we
673 // don't need to create a new PHI node, unless it's needed for LCSSA.
674 Value *InVal = nullptr;
675 if (!HasLoopExit) {
676 InVal = PN->getIncomingValueForBlock(Preds[0]);
677 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
678 if (!PredSet.count(PN->getIncomingBlock(i)))
679 continue;
680 if (!InVal)
681 InVal = PN->getIncomingValue(i);
682 else if (InVal != PN->getIncomingValue(i)) {
683 InVal = nullptr;
684 break;
685 }
686 }
687 }
688
689 if (InVal) {
690 // If all incoming values for the new PHI would be the same, just don't
691 // make a new PHI. Instead, just remove the incoming values from the old
692 // PHI.
693
694 // NOTE! This loop walks backwards for a reason! First off, this minimizes
695 // the cost of removal if we end up removing a large number of values, and
696 // second off, this ensures that the indices for the incoming values
697 // aren't invalidated when we remove one.
698 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
699 if (PredSet.count(PN->getIncomingBlock(i)))
700 PN->removeIncomingValue(i, false);
701
702 // Add an incoming value to the PHI node in the loop for the preheader
703 // edge.
704 PN->addIncoming(InVal, NewBB);
705 continue;
706 }
707
708 // If the values coming into the block are not the same, we need a new
709 // PHI.
710 // Create the new PHI node, insert it into NewBB at the end of the block
711 PHINode *NewPHI =
712 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
713
714 // NOTE! This loop walks backwards for a reason! First off, this minimizes
715 // the cost of removal if we end up removing a large number of values, and
716 // second off, this ensures that the indices for the incoming values aren't
717 // invalidated when we remove one.
718 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
719 BasicBlock *IncomingBB = PN->getIncomingBlock(i);
720 if (PredSet.count(IncomingBB)) {
721 Value *V = PN->removeIncomingValue(i, false);
722 NewPHI->addIncoming(V, IncomingBB);
723 }
724 }
725
726 PN->addIncoming(NewPHI, NewBB);
727 }
728 }
729
SplitBlockPredecessors(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)730 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
731 ArrayRef<BasicBlock *> Preds,
732 const char *Suffix, DominatorTree *DT,
733 LoopInfo *LI, MemorySSAUpdater *MSSAU,
734 bool PreserveLCSSA) {
735 // Do not attempt to split that which cannot be split.
736 if (!BB->canSplitPredecessors())
737 return nullptr;
738
739 // For the landingpads we need to act a bit differently.
740 // Delegate this work to the SplitLandingPadPredecessors.
741 if (BB->isLandingPad()) {
742 SmallVector<BasicBlock*, 2> NewBBs;
743 std::string NewName = std::string(Suffix) + ".split-lp";
744
745 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
746 LI, MSSAU, PreserveLCSSA);
747 return NewBBs[0];
748 }
749
750 // Create new basic block, insert right before the original block.
751 BasicBlock *NewBB = BasicBlock::Create(
752 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
753
754 // The new block unconditionally branches to the old block.
755 BranchInst *BI = BranchInst::Create(BB, NewBB);
756
757 Loop *L = nullptr;
758 BasicBlock *OldLatch = nullptr;
759 // Splitting the predecessors of a loop header creates a preheader block.
760 if (LI && LI->isLoopHeader(BB)) {
761 L = LI->getLoopFor(BB);
762 // Using the loop start line number prevents debuggers stepping into the
763 // loop body for this instruction.
764 BI->setDebugLoc(L->getStartLoc());
765
766 // If BB is the header of the Loop, it is possible that the loop is
767 // modified, such that the current latch does not remain the latch of the
768 // loop. If that is the case, the loop metadata from the current latch needs
769 // to be applied to the new latch.
770 OldLatch = L->getLoopLatch();
771 } else
772 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
773
774 // Move the edges from Preds to point to NewBB instead of BB.
775 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
776 // This is slightly more strict than necessary; the minimum requirement
777 // is that there be no more than one indirectbr branching to BB. And
778 // all BlockAddress uses would need to be updated.
779 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
780 "Cannot split an edge from an IndirectBrInst");
781 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
782 "Cannot split an edge from a CallBrInst");
783 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
784 }
785
786 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
787 // node becomes an incoming value for BB's phi node. However, if the Preds
788 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
789 // account for the newly created predecessor.
790 if (Preds.empty()) {
791 // Insert dummy values as the incoming value.
792 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
793 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
794 }
795
796 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
797 bool HasLoopExit = false;
798 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
799 HasLoopExit);
800
801 if (!Preds.empty()) {
802 // Update the PHI nodes in BB with the values coming from NewBB.
803 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
804 }
805
806 if (OldLatch) {
807 BasicBlock *NewLatch = L->getLoopLatch();
808 if (NewLatch != OldLatch) {
809 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
810 NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
811 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
812 }
813 }
814
815 return NewBB;
816 }
817
SplitLandingPadPredecessors(BasicBlock * OrigBB,ArrayRef<BasicBlock * > Preds,const char * Suffix1,const char * Suffix2,SmallVectorImpl<BasicBlock * > & NewBBs,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)818 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
819 ArrayRef<BasicBlock *> Preds,
820 const char *Suffix1, const char *Suffix2,
821 SmallVectorImpl<BasicBlock *> &NewBBs,
822 DominatorTree *DT, LoopInfo *LI,
823 MemorySSAUpdater *MSSAU,
824 bool PreserveLCSSA) {
825 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
826
827 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
828 // it right before the original block.
829 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
830 OrigBB->getName() + Suffix1,
831 OrigBB->getParent(), OrigBB);
832 NewBBs.push_back(NewBB1);
833
834 // The new block unconditionally branches to the old block.
835 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
836 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
837
838 // Move the edges from Preds to point to NewBB1 instead of OrigBB.
839 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
840 // This is slightly more strict than necessary; the minimum requirement
841 // is that there be no more than one indirectbr branching to BB. And
842 // all BlockAddress uses would need to be updated.
843 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
844 "Cannot split an edge from an IndirectBrInst");
845 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
846 }
847
848 bool HasLoopExit = false;
849 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
850 HasLoopExit);
851
852 // Update the PHI nodes in OrigBB with the values coming from NewBB1.
853 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
854
855 // Move the remaining edges from OrigBB to point to NewBB2.
856 SmallVector<BasicBlock*, 8> NewBB2Preds;
857 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
858 i != e; ) {
859 BasicBlock *Pred = *i++;
860 if (Pred == NewBB1) continue;
861 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
862 "Cannot split an edge from an IndirectBrInst");
863 NewBB2Preds.push_back(Pred);
864 e = pred_end(OrigBB);
865 }
866
867 BasicBlock *NewBB2 = nullptr;
868 if (!NewBB2Preds.empty()) {
869 // Create another basic block for the rest of OrigBB's predecessors.
870 NewBB2 = BasicBlock::Create(OrigBB->getContext(),
871 OrigBB->getName() + Suffix2,
872 OrigBB->getParent(), OrigBB);
873 NewBBs.push_back(NewBB2);
874
875 // The new block unconditionally branches to the old block.
876 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
877 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
878
879 // Move the remaining edges from OrigBB to point to NewBB2.
880 for (BasicBlock *NewBB2Pred : NewBB2Preds)
881 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
882
883 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
884 HasLoopExit = false;
885 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
886 PreserveLCSSA, HasLoopExit);
887
888 // Update the PHI nodes in OrigBB with the values coming from NewBB2.
889 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
890 }
891
892 LandingPadInst *LPad = OrigBB->getLandingPadInst();
893 Instruction *Clone1 = LPad->clone();
894 Clone1->setName(Twine("lpad") + Suffix1);
895 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
896
897 if (NewBB2) {
898 Instruction *Clone2 = LPad->clone();
899 Clone2->setName(Twine("lpad") + Suffix2);
900 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
901
902 // Create a PHI node for the two cloned landingpad instructions only
903 // if the original landingpad instruction has some uses.
904 if (!LPad->use_empty()) {
905 assert(!LPad->getType()->isTokenTy() &&
906 "Split cannot be applied if LPad is token type. Otherwise an "
907 "invalid PHINode of token type would be created.");
908 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
909 PN->addIncoming(Clone1, NewBB1);
910 PN->addIncoming(Clone2, NewBB2);
911 LPad->replaceAllUsesWith(PN);
912 }
913 LPad->eraseFromParent();
914 } else {
915 // There is no second clone. Just replace the landing pad with the first
916 // clone.
917 LPad->replaceAllUsesWith(Clone1);
918 LPad->eraseFromParent();
919 }
920 }
921
FoldReturnIntoUncondBranch(ReturnInst * RI,BasicBlock * BB,BasicBlock * Pred,DomTreeUpdater * DTU)922 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
923 BasicBlock *Pred,
924 DomTreeUpdater *DTU) {
925 Instruction *UncondBranch = Pred->getTerminator();
926 // Clone the return and add it to the end of the predecessor.
927 Instruction *NewRet = RI->clone();
928 Pred->getInstList().push_back(NewRet);
929
930 // If the return instruction returns a value, and if the value was a
931 // PHI node in "BB", propagate the right value into the return.
932 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
933 i != e; ++i) {
934 Value *V = *i;
935 Instruction *NewBC = nullptr;
936 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
937 // Return value might be bitcasted. Clone and insert it before the
938 // return instruction.
939 V = BCI->getOperand(0);
940 NewBC = BCI->clone();
941 Pred->getInstList().insert(NewRet->getIterator(), NewBC);
942 *i = NewBC;
943 }
944
945 Instruction *NewEV = nullptr;
946 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
947 V = EVI->getOperand(0);
948 NewEV = EVI->clone();
949 if (NewBC) {
950 NewBC->setOperand(0, NewEV);
951 Pred->getInstList().insert(NewBC->getIterator(), NewEV);
952 } else {
953 Pred->getInstList().insert(NewRet->getIterator(), NewEV);
954 *i = NewEV;
955 }
956 }
957
958 if (PHINode *PN = dyn_cast<PHINode>(V)) {
959 if (PN->getParent() == BB) {
960 if (NewEV) {
961 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
962 } else if (NewBC)
963 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
964 else
965 *i = PN->getIncomingValueForBlock(Pred);
966 }
967 }
968 }
969
970 // Update any PHI nodes in the returning block to realize that we no
971 // longer branch to them.
972 BB->removePredecessor(Pred);
973 UncondBranch->eraseFromParent();
974
975 if (DTU)
976 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
977
978 return cast<ReturnInst>(NewRet);
979 }
980
SplitBlockAndInsertIfThen(Value * Cond,Instruction * SplitBefore,bool Unreachable,MDNode * BranchWeights,DominatorTree * DT,LoopInfo * LI,BasicBlock * ThenBlock)981 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
982 Instruction *SplitBefore,
983 bool Unreachable,
984 MDNode *BranchWeights,
985 DominatorTree *DT, LoopInfo *LI,
986 BasicBlock *ThenBlock) {
987 BasicBlock *Head = SplitBefore->getParent();
988 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
989 Instruction *HeadOldTerm = Head->getTerminator();
990 LLVMContext &C = Head->getContext();
991 Instruction *CheckTerm;
992 bool CreateThenBlock = (ThenBlock == nullptr);
993 if (CreateThenBlock) {
994 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
995 if (Unreachable)
996 CheckTerm = new UnreachableInst(C, ThenBlock);
997 else
998 CheckTerm = BranchInst::Create(Tail, ThenBlock);
999 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1000 } else
1001 CheckTerm = ThenBlock->getTerminator();
1002 BranchInst *HeadNewTerm =
1003 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
1004 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1005 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1006
1007 if (DT) {
1008 if (DomTreeNode *OldNode = DT->getNode(Head)) {
1009 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1010
1011 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1012 for (DomTreeNode *Child : Children)
1013 DT->changeImmediateDominator(Child, NewNode);
1014
1015 // Head dominates ThenBlock.
1016 if (CreateThenBlock)
1017 DT->addNewBlock(ThenBlock, Head);
1018 else
1019 DT->changeImmediateDominator(ThenBlock, Head);
1020 }
1021 }
1022
1023 if (LI) {
1024 if (Loop *L = LI->getLoopFor(Head)) {
1025 L->addBasicBlockToLoop(ThenBlock, *LI);
1026 L->addBasicBlockToLoop(Tail, *LI);
1027 }
1028 }
1029
1030 return CheckTerm;
1031 }
1032
SplitBlockAndInsertIfThenElse(Value * Cond,Instruction * SplitBefore,Instruction ** ThenTerm,Instruction ** ElseTerm,MDNode * BranchWeights)1033 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1034 Instruction **ThenTerm,
1035 Instruction **ElseTerm,
1036 MDNode *BranchWeights) {
1037 BasicBlock *Head = SplitBefore->getParent();
1038 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1039 Instruction *HeadOldTerm = Head->getTerminator();
1040 LLVMContext &C = Head->getContext();
1041 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1042 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1043 *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1044 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1045 *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1046 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1047 BranchInst *HeadNewTerm =
1048 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1049 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1050 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1051 }
1052
GetIfCondition(BasicBlock * BB,BasicBlock * & IfTrue,BasicBlock * & IfFalse)1053 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1054 BasicBlock *&IfFalse) {
1055 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1056 BasicBlock *Pred1 = nullptr;
1057 BasicBlock *Pred2 = nullptr;
1058
1059 if (SomePHI) {
1060 if (SomePHI->getNumIncomingValues() != 2)
1061 return nullptr;
1062 Pred1 = SomePHI->getIncomingBlock(0);
1063 Pred2 = SomePHI->getIncomingBlock(1);
1064 } else {
1065 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1066 if (PI == PE) // No predecessor
1067 return nullptr;
1068 Pred1 = *PI++;
1069 if (PI == PE) // Only one predecessor
1070 return nullptr;
1071 Pred2 = *PI++;
1072 if (PI != PE) // More than two predecessors
1073 return nullptr;
1074 }
1075
1076 // We can only handle branches. Other control flow will be lowered to
1077 // branches if possible anyway.
1078 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1079 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1080 if (!Pred1Br || !Pred2Br)
1081 return nullptr;
1082
1083 // Eliminate code duplication by ensuring that Pred1Br is conditional if
1084 // either are.
1085 if (Pred2Br->isConditional()) {
1086 // If both branches are conditional, we don't have an "if statement". In
1087 // reality, we could transform this case, but since the condition will be
1088 // required anyway, we stand no chance of eliminating it, so the xform is
1089 // probably not profitable.
1090 if (Pred1Br->isConditional())
1091 return nullptr;
1092
1093 std::swap(Pred1, Pred2);
1094 std::swap(Pred1Br, Pred2Br);
1095 }
1096
1097 if (Pred1Br->isConditional()) {
1098 // The only thing we have to watch out for here is to make sure that Pred2
1099 // doesn't have incoming edges from other blocks. If it does, the condition
1100 // doesn't dominate BB.
1101 if (!Pred2->getSinglePredecessor())
1102 return nullptr;
1103
1104 // If we found a conditional branch predecessor, make sure that it branches
1105 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
1106 if (Pred1Br->getSuccessor(0) == BB &&
1107 Pred1Br->getSuccessor(1) == Pred2) {
1108 IfTrue = Pred1;
1109 IfFalse = Pred2;
1110 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1111 Pred1Br->getSuccessor(1) == BB) {
1112 IfTrue = Pred2;
1113 IfFalse = Pred1;
1114 } else {
1115 // We know that one arm of the conditional goes to BB, so the other must
1116 // go somewhere unrelated, and this must not be an "if statement".
1117 return nullptr;
1118 }
1119
1120 return Pred1Br->getCondition();
1121 }
1122
1123 // Ok, if we got here, both predecessors end with an unconditional branch to
1124 // BB. Don't panic! If both blocks only have a single (identical)
1125 // predecessor, and THAT is a conditional branch, then we're all ok!
1126 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1127 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1128 return nullptr;
1129
1130 // Otherwise, if this is a conditional branch, then we can use it!
1131 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1132 if (!BI) return nullptr;
1133
1134 assert(BI->isConditional() && "Two successors but not conditional?");
1135 if (BI->getSuccessor(0) == Pred1) {
1136 IfTrue = Pred1;
1137 IfFalse = Pred2;
1138 } else {
1139 IfTrue = Pred2;
1140 IfFalse = Pred1;
1141 }
1142 return BI->getCondition();
1143 }
1144
1145 // After creating a control flow hub, the operands of PHINodes in an outgoing
1146 // block Out no longer match the predecessors of that block. Predecessors of Out
1147 // that are incoming blocks to the hub are now replaced by just one edge from
1148 // the hub. To match this new control flow, the corresponding values from each
1149 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1150 //
1151 // This operation cannot be performed with SSAUpdater, because it involves one
1152 // new use: If the block Out is in the list of Incoming blocks, then the newly
1153 // created PHI in the Hub will use itself along that edge from Out to Hub.
reconnectPhis(BasicBlock * Out,BasicBlock * GuardBlock,const SetVector<BasicBlock * > & Incoming,BasicBlock * FirstGuardBlock)1154 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1155 const SetVector<BasicBlock *> &Incoming,
1156 BasicBlock *FirstGuardBlock) {
1157 auto I = Out->begin();
1158 while (I != Out->end() && isa<PHINode>(I)) {
1159 auto Phi = cast<PHINode>(I);
1160 auto NewPhi =
1161 PHINode::Create(Phi->getType(), Incoming.size(),
1162 Phi->getName() + ".moved", &FirstGuardBlock->back());
1163 for (auto In : Incoming) {
1164 Value *V = UndefValue::get(Phi->getType());
1165 if (In == Out) {
1166 V = NewPhi;
1167 } else if (Phi->getBasicBlockIndex(In) != -1) {
1168 V = Phi->removeIncomingValue(In, false);
1169 }
1170 NewPhi->addIncoming(V, In);
1171 }
1172 assert(NewPhi->getNumIncomingValues() == Incoming.size());
1173 if (Phi->getNumOperands() == 0) {
1174 Phi->replaceAllUsesWith(NewPhi);
1175 I = Phi->eraseFromParent();
1176 continue;
1177 }
1178 Phi->addIncoming(NewPhi, GuardBlock);
1179 ++I;
1180 }
1181 }
1182
1183 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1184 using BBSetVector = SetVector<BasicBlock *>;
1185
1186 // Redirects the terminator of the incoming block to the first guard
1187 // block in the hub. The condition of the original terminator (if it
1188 // was conditional) and its original successors are returned as a
1189 // tuple <condition, succ0, succ1>. The function additionally filters
1190 // out successors that are not in the set of outgoing blocks.
1191 //
1192 // - condition is non-null iff the branch is conditional.
1193 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1194 // - Succ2 is non-null iff condition is non-null and the fallthrough
1195 // target is an outgoing block.
1196 static std::tuple<Value *, BasicBlock *, BasicBlock *>
redirectToHub(BasicBlock * BB,BasicBlock * FirstGuardBlock,const BBSetVector & Outgoing)1197 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1198 const BBSetVector &Outgoing) {
1199 auto Branch = cast<BranchInst>(BB->getTerminator());
1200 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1201
1202 BasicBlock *Succ0 = Branch->getSuccessor(0);
1203 BasicBlock *Succ1 = nullptr;
1204 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1205
1206 if (Branch->isUnconditional()) {
1207 Branch->setSuccessor(0, FirstGuardBlock);
1208 assert(Succ0);
1209 } else {
1210 Succ1 = Branch->getSuccessor(1);
1211 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1212 assert(Succ0 || Succ1);
1213 if (Succ0 && !Succ1) {
1214 Branch->setSuccessor(0, FirstGuardBlock);
1215 } else if (Succ1 && !Succ0) {
1216 Branch->setSuccessor(1, FirstGuardBlock);
1217 } else {
1218 Branch->eraseFromParent();
1219 BranchInst::Create(FirstGuardBlock, BB);
1220 }
1221 }
1222
1223 assert(Succ0 || Succ1);
1224 return std::make_tuple(Condition, Succ0, Succ1);
1225 }
1226
1227 // Capture the existing control flow as guard predicates, and redirect
1228 // control flow from every incoming block to the first guard block in
1229 // the hub.
1230 //
1231 // There is one guard predicate for each outgoing block OutBB. The
1232 // predicate is a PHINode with one input for each InBB which
1233 // represents whether the hub should transfer control flow to OutBB if
1234 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1235 // evaluates them in the same order as the Outgoing set-vector, and
1236 // control branches to the first outgoing block whose predicate
1237 // evaluates to true.
convertToGuardPredicates(BasicBlock * FirstGuardBlock,BBPredicates & GuardPredicates,SmallVectorImpl<WeakVH> & DeletionCandidates,const BBSetVector & Incoming,const BBSetVector & Outgoing)1238 static void convertToGuardPredicates(
1239 BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1240 SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1241 const BBSetVector &Outgoing) {
1242 auto &Context = Incoming.front()->getContext();
1243 auto BoolTrue = ConstantInt::getTrue(Context);
1244 auto BoolFalse = ConstantInt::getFalse(Context);
1245
1246 // The predicate for the last outgoing is trivially true, and so we
1247 // process only the first N-1 successors.
1248 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1249 auto Out = Outgoing[i];
1250 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1251 auto Phi =
1252 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1253 StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1254 GuardPredicates[Out] = Phi;
1255 }
1256
1257 for (auto In : Incoming) {
1258 Value *Condition;
1259 BasicBlock *Succ0;
1260 BasicBlock *Succ1;
1261 std::tie(Condition, Succ0, Succ1) =
1262 redirectToHub(In, FirstGuardBlock, Outgoing);
1263
1264 // Optimization: Consider an incoming block A with both successors
1265 // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1266 // for Succ0 and Succ1 complement each other. If Succ0 is visited
1267 // first in the loop below, control will branch to Succ0 using the
1268 // corresponding predicate. But if that branch is not taken, then
1269 // control must reach Succ1, which means that the predicate for
1270 // Succ1 is always true.
1271 bool OneSuccessorDone = false;
1272 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1273 auto Out = Outgoing[i];
1274 auto Phi = GuardPredicates[Out];
1275 if (Out != Succ0 && Out != Succ1) {
1276 Phi->addIncoming(BoolFalse, In);
1277 continue;
1278 }
1279 // Optimization: When only one successor is an outgoing block,
1280 // the predicate is always true.
1281 if (!Succ0 || !Succ1 || OneSuccessorDone) {
1282 Phi->addIncoming(BoolTrue, In);
1283 continue;
1284 }
1285 assert(Succ0 && Succ1);
1286 OneSuccessorDone = true;
1287 if (Out == Succ0) {
1288 Phi->addIncoming(Condition, In);
1289 continue;
1290 }
1291 auto Inverted = invertCondition(Condition);
1292 DeletionCandidates.push_back(Condition);
1293 Phi->addIncoming(Inverted, In);
1294 }
1295 }
1296 }
1297
1298 // For each outgoing block OutBB, create a guard block in the Hub. The
1299 // first guard block was already created outside, and available as the
1300 // first element in the vector of guard blocks.
1301 //
1302 // Each guard block terminates in a conditional branch that transfers
1303 // control to the corresponding outgoing block or the next guard
1304 // block. The last guard block has two outgoing blocks as successors
1305 // since the condition for the final outgoing block is trivially
1306 // true. So we create one less block (including the first guard block)
1307 // than the number of outgoing blocks.
createGuardBlocks(SmallVectorImpl<BasicBlock * > & GuardBlocks,Function * F,const BBSetVector & Outgoing,BBPredicates & GuardPredicates,StringRef Prefix)1308 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1309 Function *F, const BBSetVector &Outgoing,
1310 BBPredicates &GuardPredicates, StringRef Prefix) {
1311 for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1312 GuardBlocks.push_back(
1313 BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1314 }
1315 assert(GuardBlocks.size() == GuardPredicates.size());
1316
1317 // To help keep the loop simple, temporarily append the last
1318 // outgoing block to the list of guard blocks.
1319 GuardBlocks.push_back(Outgoing.back());
1320
1321 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1322 auto Out = Outgoing[i];
1323 assert(GuardPredicates.count(Out));
1324 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1325 GuardBlocks[i]);
1326 }
1327
1328 // Remove the last block from the guard list.
1329 GuardBlocks.pop_back();
1330 }
1331
CreateControlFlowHub(DomTreeUpdater * DTU,SmallVectorImpl<BasicBlock * > & GuardBlocks,const BBSetVector & Incoming,const BBSetVector & Outgoing,const StringRef Prefix)1332 BasicBlock *llvm::CreateControlFlowHub(
1333 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1334 const BBSetVector &Incoming, const BBSetVector &Outgoing,
1335 const StringRef Prefix) {
1336 auto F = Incoming.front()->getParent();
1337 auto FirstGuardBlock =
1338 BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1339
1340 SmallVector<DominatorTree::UpdateType, 16> Updates;
1341 if (DTU) {
1342 for (auto In : Incoming) {
1343 for (auto Succ : successors(In)) {
1344 if (Outgoing.count(Succ))
1345 Updates.push_back({DominatorTree::Delete, In, Succ});
1346 }
1347 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1348 }
1349 }
1350
1351 BBPredicates GuardPredicates;
1352 SmallVector<WeakVH, 8> DeletionCandidates;
1353 convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1354 Incoming, Outgoing);
1355
1356 GuardBlocks.push_back(FirstGuardBlock);
1357 createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1358
1359 // Update the PHINodes in each outgoing block to match the new control flow.
1360 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1361 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1362 }
1363 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1364
1365 if (DTU) {
1366 int NumGuards = GuardBlocks.size();
1367 assert((int)Outgoing.size() == NumGuards + 1);
1368 for (int i = 0; i != NumGuards - 1; ++i) {
1369 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1370 Updates.push_back(
1371 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1372 }
1373 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1374 Outgoing[NumGuards - 1]});
1375 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1376 Outgoing[NumGuards]});
1377 DTU->applyUpdates(Updates);
1378 }
1379
1380 for (auto I : DeletionCandidates) {
1381 if (I->use_empty())
1382 if (auto Inst = dyn_cast_or_null<Instruction>(I))
1383 Inst->eraseFromParent();
1384 }
1385
1386 return FirstGuardBlock;
1387 }
1388