• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "SIInstrInfo.h"
32 using namespace llvm;
33 
allocateKernArg(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)34 static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
35                             CCValAssign::LocInfo LocInfo,
36                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
37   MachineFunction &MF = State.getMachineFunction();
38   AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
39 
40   uint64_t Offset = MFI->allocateKernArg(ValVT.getStoreSize(),
41                                          ArgFlags.getOrigAlign());
42   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
43   return true;
44 }
45 
46 #include "AMDGPUGenCallingConv.inc"
47 
48 // Find a larger type to do a load / store of a vector with.
getEquivalentMemType(LLVMContext & Ctx,EVT VT)49 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
50   unsigned StoreSize = VT.getStoreSizeInBits();
51   if (StoreSize <= 32)
52     return EVT::getIntegerVT(Ctx, StoreSize);
53 
54   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
55   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
56 }
57 
getEquivalentBitType(LLVMContext & Ctx,EVT VT)58 EVT AMDGPUTargetLowering::getEquivalentBitType(LLVMContext &Ctx, EVT VT) {
59   unsigned StoreSize = VT.getStoreSizeInBits();
60   if (StoreSize <= 32)
61     return EVT::getIntegerVT(Ctx, StoreSize);
62 
63   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
64 }
65 
AMDGPUTargetLowering(const TargetMachine & TM,const AMDGPUSubtarget & STI)66 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
67                                            const AMDGPUSubtarget &STI)
68     : TargetLowering(TM), Subtarget(&STI) {
69   // Lower floating point store/load to integer store/load to reduce the number
70   // of patterns in tablegen.
71   setOperationAction(ISD::LOAD, MVT::f32, Promote);
72   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
73 
74   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
75   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
76 
77   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
78   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
79 
80   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
81   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
82 
83   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
84   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
85 
86   setOperationAction(ISD::LOAD, MVT::i64, Promote);
87   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
88 
89   setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
90   AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
91 
92   setOperationAction(ISD::LOAD, MVT::f64, Promote);
93   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
94 
95   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
96   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
97 
98   // There are no 64-bit extloads. These should be done as a 32-bit extload and
99   // an extension to 64-bit.
100   for (MVT VT : MVT::integer_valuetypes()) {
101     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
102     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
103     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
104   }
105 
106   for (MVT VT : MVT::integer_valuetypes()) {
107     if (VT == MVT::i64)
108       continue;
109 
110     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
111     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
112     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
113     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
114 
115     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
116     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
117     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
118     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
119 
120     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
121     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
122     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
123     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
124   }
125 
126   for (MVT VT : MVT::integer_vector_valuetypes()) {
127     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
128     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
129     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
130     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
131     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
132     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
133     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
134     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
135     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
136     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
137     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
138     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
139   }
140 
141   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
142   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
143   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
144   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
145 
146   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
147   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
148   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
149   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
150 
151   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
152   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
153   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
154   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
155 
156   setOperationAction(ISD::STORE, MVT::f32, Promote);
157   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
158 
159   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
160   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
161 
162   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
163   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
164 
165   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
166   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
167 
168   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
169   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
170 
171   setOperationAction(ISD::STORE, MVT::i64, Promote);
172   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
173 
174   setOperationAction(ISD::STORE, MVT::v2i64, Promote);
175   AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
176 
177   setOperationAction(ISD::STORE, MVT::f64, Promote);
178   AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
179 
180   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
181   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
182 
183   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
184   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
185 
186   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
187   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
188 
189   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
190   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
191   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
192 
193   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
194   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
195   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
196   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
197 
198   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
199   setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
200   setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
201   setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
202 
203   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
204   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
205   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
206   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
207 
208   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
209   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
210 
211   setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
212   setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
213 
214   setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
215   setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
216 
217   setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
218   setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
219 
220 
221   setOperationAction(ISD::Constant, MVT::i32, Legal);
222   setOperationAction(ISD::Constant, MVT::i64, Legal);
223   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
224   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
225 
226   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
227   setOperationAction(ISD::BRIND, MVT::Other, Expand);
228 
229   // This is totally unsupported, just custom lower to produce an error.
230   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
231 
232   // We need to custom lower some of the intrinsics
233   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
234   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
235 
236   // Library functions.  These default to Expand, but we have instructions
237   // for them.
238   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
239   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
240   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
241   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
242   setOperationAction(ISD::FABS,   MVT::f32, Legal);
243   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
244   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
245   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
246   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
247   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
248 
249   setOperationAction(ISD::FROUND, MVT::f32, Custom);
250   setOperationAction(ISD::FROUND, MVT::f64, Custom);
251 
252   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
253   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
254 
255   setOperationAction(ISD::FREM, MVT::f32, Custom);
256   setOperationAction(ISD::FREM, MVT::f64, Custom);
257 
258   // v_mad_f32 does not support denormals according to some sources.
259   if (!Subtarget->hasFP32Denormals())
260     setOperationAction(ISD::FMAD, MVT::f32, Legal);
261 
262   // Expand to fneg + fadd.
263   setOperationAction(ISD::FSUB, MVT::f64, Expand);
264 
265   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
266   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
267   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
268   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
269   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
270   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
271   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
272   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
273   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
274   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
275 
276   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
277     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
278     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
279     setOperationAction(ISD::FRINT, MVT::f64, Custom);
280     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
281   }
282 
283   if (!Subtarget->hasBFI()) {
284     // fcopysign can be done in a single instruction with BFI.
285     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
286     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
287   }
288 
289   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
290 
291   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
292   for (MVT VT : ScalarIntVTs) {
293     // These should use [SU]DIVREM, so set them to expand
294     setOperationAction(ISD::SDIV, VT, Expand);
295     setOperationAction(ISD::UDIV, VT, Expand);
296     setOperationAction(ISD::SREM, VT, Expand);
297     setOperationAction(ISD::UREM, VT, Expand);
298 
299     // GPU does not have divrem function for signed or unsigned.
300     setOperationAction(ISD::SDIVREM, VT, Custom);
301     setOperationAction(ISD::UDIVREM, VT, Custom);
302 
303     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
304     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
305     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
306 
307     setOperationAction(ISD::BSWAP, VT, Expand);
308     setOperationAction(ISD::CTTZ, VT, Expand);
309     setOperationAction(ISD::CTLZ, VT, Expand);
310   }
311 
312   if (!Subtarget->hasBCNT(32))
313     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
314 
315   if (!Subtarget->hasBCNT(64))
316     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
317 
318   // The hardware supports 32-bit ROTR, but not ROTL.
319   setOperationAction(ISD::ROTL, MVT::i32, Expand);
320   setOperationAction(ISD::ROTL, MVT::i64, Expand);
321   setOperationAction(ISD::ROTR, MVT::i64, Expand);
322 
323   setOperationAction(ISD::MUL, MVT::i64, Expand);
324   setOperationAction(ISD::MULHU, MVT::i64, Expand);
325   setOperationAction(ISD::MULHS, MVT::i64, Expand);
326   setOperationAction(ISD::UDIV, MVT::i32, Expand);
327   setOperationAction(ISD::UREM, MVT::i32, Expand);
328   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
329   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
330   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
331   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
332   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
333 
334   setOperationAction(ISD::SMIN, MVT::i32, Legal);
335   setOperationAction(ISD::UMIN, MVT::i32, Legal);
336   setOperationAction(ISD::SMAX, MVT::i32, Legal);
337   setOperationAction(ISD::UMAX, MVT::i32, Legal);
338 
339   if (Subtarget->hasFFBH())
340     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
341 
342   if (Subtarget->hasFFBL())
343     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Legal);
344 
345   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
346   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
347 
348   // We only really have 32-bit BFE instructions (and 16-bit on VI).
349   //
350   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
351   // effort to match them now. We want this to be false for i64 cases when the
352   // extraction isn't restricted to the upper or lower half. Ideally we would
353   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
354   // span the midpoint are probably relatively rare, so don't worry about them
355   // for now.
356   if (Subtarget->hasBFE())
357     setHasExtractBitsInsn(true);
358 
359   static const MVT::SimpleValueType VectorIntTypes[] = {
360     MVT::v2i32, MVT::v4i32
361   };
362 
363   for (MVT VT : VectorIntTypes) {
364     // Expand the following operations for the current type by default.
365     setOperationAction(ISD::ADD,  VT, Expand);
366     setOperationAction(ISD::AND,  VT, Expand);
367     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
368     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
369     setOperationAction(ISD::MUL,  VT, Expand);
370     setOperationAction(ISD::OR,   VT, Expand);
371     setOperationAction(ISD::SHL,  VT, Expand);
372     setOperationAction(ISD::SRA,  VT, Expand);
373     setOperationAction(ISD::SRL,  VT, Expand);
374     setOperationAction(ISD::ROTL, VT, Expand);
375     setOperationAction(ISD::ROTR, VT, Expand);
376     setOperationAction(ISD::SUB,  VT, Expand);
377     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
378     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
379     setOperationAction(ISD::SDIV, VT, Expand);
380     setOperationAction(ISD::UDIV, VT, Expand);
381     setOperationAction(ISD::SREM, VT, Expand);
382     setOperationAction(ISD::UREM, VT, Expand);
383     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
384     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
385     setOperationAction(ISD::SDIVREM, VT, Custom);
386     setOperationAction(ISD::UDIVREM, VT, Expand);
387     setOperationAction(ISD::ADDC, VT, Expand);
388     setOperationAction(ISD::SUBC, VT, Expand);
389     setOperationAction(ISD::ADDE, VT, Expand);
390     setOperationAction(ISD::SUBE, VT, Expand);
391     setOperationAction(ISD::SELECT, VT, Expand);
392     setOperationAction(ISD::VSELECT, VT, Expand);
393     setOperationAction(ISD::SELECT_CC, VT, Expand);
394     setOperationAction(ISD::XOR,  VT, Expand);
395     setOperationAction(ISD::BSWAP, VT, Expand);
396     setOperationAction(ISD::CTPOP, VT, Expand);
397     setOperationAction(ISD::CTTZ, VT, Expand);
398     setOperationAction(ISD::CTLZ, VT, Expand);
399     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
400   }
401 
402   static const MVT::SimpleValueType FloatVectorTypes[] = {
403     MVT::v2f32, MVT::v4f32
404   };
405 
406   for (MVT VT : FloatVectorTypes) {
407     setOperationAction(ISD::FABS, VT, Expand);
408     setOperationAction(ISD::FMINNUM, VT, Expand);
409     setOperationAction(ISD::FMAXNUM, VT, Expand);
410     setOperationAction(ISD::FADD, VT, Expand);
411     setOperationAction(ISD::FCEIL, VT, Expand);
412     setOperationAction(ISD::FCOS, VT, Expand);
413     setOperationAction(ISD::FDIV, VT, Expand);
414     setOperationAction(ISD::FEXP2, VT, Expand);
415     setOperationAction(ISD::FLOG2, VT, Expand);
416     setOperationAction(ISD::FREM, VT, Expand);
417     setOperationAction(ISD::FPOW, VT, Expand);
418     setOperationAction(ISD::FFLOOR, VT, Expand);
419     setOperationAction(ISD::FTRUNC, VT, Expand);
420     setOperationAction(ISD::FMUL, VT, Expand);
421     setOperationAction(ISD::FMA, VT, Expand);
422     setOperationAction(ISD::FRINT, VT, Expand);
423     setOperationAction(ISD::FNEARBYINT, VT, Expand);
424     setOperationAction(ISD::FSQRT, VT, Expand);
425     setOperationAction(ISD::FSIN, VT, Expand);
426     setOperationAction(ISD::FSUB, VT, Expand);
427     setOperationAction(ISD::FNEG, VT, Expand);
428     setOperationAction(ISD::VSELECT, VT, Expand);
429     setOperationAction(ISD::SELECT_CC, VT, Expand);
430     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
431     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
432   }
433 
434   // This causes using an unrolled select operation rather than expansion with
435   // bit operations. This is in general better, but the alternative using BFI
436   // instructions may be better if the select sources are SGPRs.
437   setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
438   AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
439 
440   setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
441   AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
442 
443   setBooleanContents(ZeroOrNegativeOneBooleanContent);
444   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
445 
446   setSchedulingPreference(Sched::RegPressure);
447   setJumpIsExpensive(true);
448 
449   // SI at least has hardware support for floating point exceptions, but no way
450   // of using or handling them is implemented. They are also optional in OpenCL
451   // (Section 7.3)
452   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
453 
454   setSelectIsExpensive(false);
455   PredictableSelectIsExpensive = false;
456 
457   setFsqrtIsCheap(true);
458 
459   // We want to find all load dependencies for long chains of stores to enable
460   // merging into very wide vectors. The problem is with vectors with > 4
461   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
462   // vectors are a legal type, even though we have to split the loads
463   // usually. When we can more precisely specify load legality per address
464   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
465   // smarter so that they can figure out what to do in 2 iterations without all
466   // N > 4 stores on the same chain.
467   GatherAllAliasesMaxDepth = 16;
468 
469   // FIXME: Need to really handle these.
470   MaxStoresPerMemcpy  = 4096;
471   MaxStoresPerMemmove = 4096;
472   MaxStoresPerMemset  = 4096;
473 
474   setTargetDAGCombine(ISD::BITCAST);
475   setTargetDAGCombine(ISD::AND);
476   setTargetDAGCombine(ISD::SHL);
477   setTargetDAGCombine(ISD::SRA);
478   setTargetDAGCombine(ISD::SRL);
479   setTargetDAGCombine(ISD::MUL);
480   setTargetDAGCombine(ISD::SELECT);
481   setTargetDAGCombine(ISD::SELECT_CC);
482   setTargetDAGCombine(ISD::STORE);
483   setTargetDAGCombine(ISD::FADD);
484   setTargetDAGCombine(ISD::FSUB);
485 }
486 
487 //===----------------------------------------------------------------------===//
488 // Target Information
489 //===----------------------------------------------------------------------===//
490 
getVectorIdxTy(const DataLayout &) const491 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
492   return MVT::i32;
493 }
494 
isSelectSupported(SelectSupportKind SelType) const495 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
496   return true;
497 }
498 
499 // The backend supports 32 and 64 bit floating point immediates.
500 // FIXME: Why are we reporting vectors of FP immediates as legal?
isFPImmLegal(const APFloat & Imm,EVT VT) const501 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
502   EVT ScalarVT = VT.getScalarType();
503   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
504 }
505 
506 // We don't want to shrink f64 / f32 constants.
ShouldShrinkFPConstant(EVT VT) const507 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
508   EVT ScalarVT = VT.getScalarType();
509   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
510 }
511 
shouldReduceLoadWidth(SDNode * N,ISD::LoadExtType,EVT NewVT) const512 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
513                                                  ISD::LoadExtType,
514                                                  EVT NewVT) const {
515 
516   unsigned NewSize = NewVT.getStoreSizeInBits();
517 
518   // If we are reducing to a 32-bit load, this is always better.
519   if (NewSize == 32)
520     return true;
521 
522   EVT OldVT = N->getValueType(0);
523   unsigned OldSize = OldVT.getStoreSizeInBits();
524 
525   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
526   // extloads, so doing one requires using a buffer_load. In cases where we
527   // still couldn't use a scalar load, using the wider load shouldn't really
528   // hurt anything.
529 
530   // If the old size already had to be an extload, there's no harm in continuing
531   // to reduce the width.
532   return (OldSize < 32);
533 }
534 
isLoadBitCastBeneficial(EVT LoadTy,EVT CastTy) const535 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
536                                                    EVT CastTy) const {
537 
538   assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
539 
540   if (LoadTy.getScalarType() == MVT::i32)
541     return false;
542 
543   unsigned LScalarSize = LoadTy.getScalarSizeInBits();
544   unsigned CastScalarSize = CastTy.getScalarSizeInBits();
545 
546   return (LScalarSize < CastScalarSize) ||
547          (CastScalarSize >= 32);
548 }
549 
550 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
551 // profitable with the expansion for 64-bit since it's generally good to
552 // speculate things.
553 // FIXME: These should really have the size as a parameter.
isCheapToSpeculateCttz() const554 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
555   return true;
556 }
557 
isCheapToSpeculateCtlz() const558 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
559   return true;
560 }
561 
562 //===---------------------------------------------------------------------===//
563 // Target Properties
564 //===---------------------------------------------------------------------===//
565 
isFAbsFree(EVT VT) const566 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
567   assert(VT.isFloatingPoint());
568   return VT == MVT::f32 || VT == MVT::f64;
569 }
570 
isFNegFree(EVT VT) const571 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
572   assert(VT.isFloatingPoint());
573   return VT == MVT::f32 || VT == MVT::f64;
574 }
575 
storeOfVectorConstantIsCheap(EVT MemVT,unsigned NumElem,unsigned AS) const576 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
577                                                          unsigned NumElem,
578                                                          unsigned AS) const {
579   return true;
580 }
581 
aggressivelyPreferBuildVectorSources(EVT VecVT) const582 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
583   // There are few operations which truly have vector input operands. Any vector
584   // operation is going to involve operations on each component, and a
585   // build_vector will be a copy per element, so it always makes sense to use a
586   // build_vector input in place of the extracted element to avoid a copy into a
587   // super register.
588   //
589   // We should probably only do this if all users are extracts only, but this
590   // should be the common case.
591   return true;
592 }
593 
isTruncateFree(EVT Source,EVT Dest) const594 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
595   // Truncate is just accessing a subregister.
596   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
597 }
598 
isTruncateFree(Type * Source,Type * Dest) const599 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
600   // Truncate is just accessing a subregister.
601   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
602          (Dest->getPrimitiveSizeInBits() % 32 == 0);
603 }
604 
isZExtFree(Type * Src,Type * Dest) const605 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
606   unsigned SrcSize = Src->getScalarSizeInBits();
607   unsigned DestSize = Dest->getScalarSizeInBits();
608 
609   return SrcSize == 32 && DestSize == 64;
610 }
611 
isZExtFree(EVT Src,EVT Dest) const612 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
613   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
614   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
615   // this will enable reducing 64-bit operations the 32-bit, which is always
616   // good.
617   return Src == MVT::i32 && Dest == MVT::i64;
618 }
619 
isZExtFree(SDValue Val,EVT VT2) const620 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
621   return isZExtFree(Val.getValueType(), VT2);
622 }
623 
isNarrowingProfitable(EVT SrcVT,EVT DestVT) const624 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
625   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
626   // limited number of native 64-bit operations. Shrinking an operation to fit
627   // in a single 32-bit register should always be helpful. As currently used,
628   // this is much less general than the name suggests, and is only used in
629   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
630   // not profitable, and may actually be harmful.
631   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
632 }
633 
634 //===---------------------------------------------------------------------===//
635 // TargetLowering Callbacks
636 //===---------------------------------------------------------------------===//
637 
AnalyzeFormalArguments(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins) const638 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
639                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
640 
641   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
642 }
643 
AnalyzeReturn(CCState & State,const SmallVectorImpl<ISD::OutputArg> & Outs) const644 void AMDGPUTargetLowering::AnalyzeReturn(CCState &State,
645                            const SmallVectorImpl<ISD::OutputArg> &Outs) const {
646 
647   State.AnalyzeReturn(Outs, RetCC_SI);
648 }
649 
650 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const651 AMDGPUTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
652                                   bool isVarArg,
653                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
654                                   const SmallVectorImpl<SDValue> &OutVals,
655                                   const SDLoc &DL, SelectionDAG &DAG) const {
656   return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
657 }
658 
659 //===---------------------------------------------------------------------===//
660 // Target specific lowering
661 //===---------------------------------------------------------------------===//
662 
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const663 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
664                                         SmallVectorImpl<SDValue> &InVals) const {
665   SDValue Callee = CLI.Callee;
666   SelectionDAG &DAG = CLI.DAG;
667 
668   const Function &Fn = *DAG.getMachineFunction().getFunction();
669 
670   StringRef FuncName("<unknown>");
671 
672   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
673     FuncName = G->getSymbol();
674   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
675     FuncName = G->getGlobal()->getName();
676 
677   DiagnosticInfoUnsupported NoCalls(
678       Fn, "unsupported call to function " + FuncName, CLI.DL.getDebugLoc());
679   DAG.getContext()->diagnose(NoCalls);
680 
681   for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
682     InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
683 
684   return DAG.getEntryNode();
685 }
686 
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const687 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
688                                                       SelectionDAG &DAG) const {
689   const Function &Fn = *DAG.getMachineFunction().getFunction();
690 
691   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
692                                             SDLoc(Op).getDebugLoc());
693   DAG.getContext()->diagnose(NoDynamicAlloca);
694   auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
695   return DAG.getMergeValues(Ops, SDLoc());
696 }
697 
LowerOperation(SDValue Op,SelectionDAG & DAG) const698 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
699                                              SelectionDAG &DAG) const {
700   switch (Op.getOpcode()) {
701   default:
702     Op->dump(&DAG);
703     llvm_unreachable("Custom lowering code for this"
704                      "instruction is not implemented yet!");
705     break;
706   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
707   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
708   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
709   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
710   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
711   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
712   case ISD::FREM: return LowerFREM(Op, DAG);
713   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
714   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
715   case ISD::FRINT: return LowerFRINT(Op, DAG);
716   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
717   case ISD::FROUND: return LowerFROUND(Op, DAG);
718   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
719   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
720   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
721   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
722   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
723   case ISD::CTLZ:
724   case ISD::CTLZ_ZERO_UNDEF:
725     return LowerCTLZ(Op, DAG);
726   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
727   }
728   return Op;
729 }
730 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const731 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
732                                               SmallVectorImpl<SDValue> &Results,
733                                               SelectionDAG &DAG) const {
734   switch (N->getOpcode()) {
735   case ISD::SIGN_EXTEND_INREG:
736     // Different parts of legalization seem to interpret which type of
737     // sign_extend_inreg is the one to check for custom lowering. The extended
738     // from type is what really matters, but some places check for custom
739     // lowering of the result type. This results in trying to use
740     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
741     // nothing here and let the illegal result integer be handled normally.
742     return;
743   default:
744     return;
745   }
746 }
747 
748 // FIXME: This implements accesses to initialized globals in the constant
749 // address space by copying them to private and accessing that. It does not
750 // properly handle illegal types or vectors. The private vector loads are not
751 // scalarized, and the illegal scalars hit an assertion. This technique will not
752 // work well with large initializers, and this should eventually be
753 // removed. Initialized globals should be placed into a data section that the
754 // runtime will load into a buffer before the kernel is executed. Uses of the
755 // global need to be replaced with a pointer loaded from an implicit kernel
756 // argument into this buffer holding the copy of the data, which will remove the
757 // need for any of this.
LowerConstantInitializer(const Constant * Init,const GlobalValue * GV,const SDValue & InitPtr,SDValue Chain,SelectionDAG & DAG) const758 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
759                                                        const GlobalValue *GV,
760                                                        const SDValue &InitPtr,
761                                                        SDValue Chain,
762                                                        SelectionDAG &DAG) const {
763   const DataLayout &TD = DAG.getDataLayout();
764   SDLoc DL(InitPtr);
765   Type *InitTy = Init->getType();
766 
767   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
768     EVT VT = EVT::getEVT(InitTy);
769     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
770     return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr,
771                         MachinePointerInfo(UndefValue::get(PtrTy)), false,
772                         false, TD.getPrefTypeAlignment(InitTy));
773   }
774 
775   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
776     EVT VT = EVT::getEVT(CFP->getType());
777     PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
778     return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr,
779                         MachinePointerInfo(UndefValue::get(PtrTy)), false,
780                         false, TD.getPrefTypeAlignment(CFP->getType()));
781   }
782 
783   if (StructType *ST = dyn_cast<StructType>(InitTy)) {
784     const StructLayout *SL = TD.getStructLayout(ST);
785 
786     EVT PtrVT = InitPtr.getValueType();
787     SmallVector<SDValue, 8> Chains;
788 
789     for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
790       SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT);
791       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
792 
793       Constant *Elt = Init->getAggregateElement(I);
794       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
795     }
796 
797     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
798   }
799 
800   if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
801     EVT PtrVT = InitPtr.getValueType();
802 
803     unsigned NumElements;
804     if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
805       NumElements = AT->getNumElements();
806     else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
807       NumElements = VT->getNumElements();
808     else
809       llvm_unreachable("Unexpected type");
810 
811     unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType());
812     SmallVector<SDValue, 8> Chains;
813     for (unsigned i = 0; i < NumElements; ++i) {
814       SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT);
815       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
816 
817       Constant *Elt = Init->getAggregateElement(i);
818       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
819     }
820 
821     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
822   }
823 
824   if (isa<UndefValue>(Init)) {
825     EVT VT = EVT::getEVT(InitTy);
826     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
827     return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
828                         MachinePointerInfo(UndefValue::get(PtrTy)), false,
829                         false, TD.getPrefTypeAlignment(InitTy));
830   }
831 
832   Init->dump();
833   llvm_unreachable("Unhandled constant initializer");
834 }
835 
hasDefinedInitializer(const GlobalValue * GV)836 static bool hasDefinedInitializer(const GlobalValue *GV) {
837   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
838   if (!GVar || !GVar->hasInitializer())
839     return false;
840 
841   return !isa<UndefValue>(GVar->getInitializer());
842 }
843 
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const844 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
845                                                  SDValue Op,
846                                                  SelectionDAG &DAG) const {
847 
848   const DataLayout &DL = DAG.getDataLayout();
849   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
850   const GlobalValue *GV = G->getGlobal();
851 
852   switch (G->getAddressSpace()) {
853   case AMDGPUAS::CONSTANT_ADDRESS: {
854     MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
855     SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(G), ConstPtrVT);
856     return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(G), ConstPtrVT, GA);
857   }
858   case AMDGPUAS::LOCAL_ADDRESS: {
859     // XXX: What does the value of G->getOffset() mean?
860     assert(G->getOffset() == 0 &&
861          "Do not know what to do with an non-zero offset");
862 
863     // TODO: We could emit code to handle the initialization somewhere.
864     if (hasDefinedInitializer(GV))
865       break;
866 
867     unsigned Offset;
868     if (MFI->LocalMemoryObjects.count(GV) == 0) {
869       unsigned Align = GV->getAlignment();
870       if (Align == 0)
871         Align = DL.getABITypeAlignment(GV->getValueType());
872 
873       /// TODO: We should sort these to minimize wasted space due to alignment
874       /// padding. Currently the padding is decided by the first encountered use
875       /// during lowering.
876       Offset = MFI->LDSSize = alignTo(MFI->LDSSize, Align);
877       MFI->LocalMemoryObjects[GV] = Offset;
878       MFI->LDSSize += DL.getTypeAllocSize(GV->getValueType());
879     } else {
880       Offset = MFI->LocalMemoryObjects[GV];
881     }
882 
883     return DAG.getConstant(Offset, SDLoc(Op),
884                            getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS));
885   }
886   }
887 
888   const Function &Fn = *DAG.getMachineFunction().getFunction();
889   DiagnosticInfoUnsupported BadInit(
890       Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
891   DAG.getContext()->diagnose(BadInit);
892   return SDValue();
893 }
894 
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const895 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
896                                                   SelectionDAG &DAG) const {
897   SmallVector<SDValue, 8> Args;
898 
899   for (const SDUse &U : Op->ops())
900     DAG.ExtractVectorElements(U.get(), Args);
901 
902   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
903 }
904 
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const905 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
906                                                      SelectionDAG &DAG) const {
907 
908   SmallVector<SDValue, 8> Args;
909   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
910   EVT VT = Op.getValueType();
911   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
912                             VT.getVectorNumElements());
913 
914   return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
915 }
916 
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const917 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
918     SelectionDAG &DAG) const {
919   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
920   SDLoc DL(Op);
921   EVT VT = Op.getValueType();
922 
923   switch (IntrinsicID) {
924     default: return Op;
925     case AMDGPUIntrinsic::AMDGPU_clamp: // Legacy name.
926       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
927                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
928 
929     case Intrinsic::AMDGPU_ldexp: // Legacy name
930       return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
931                                                    Op.getOperand(2));
932 
933     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
934       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
935                          Op.getOperand(1),
936                          Op.getOperand(2),
937                          Op.getOperand(3));
938 
939     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
940       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
941                          Op.getOperand(1),
942                          Op.getOperand(2),
943                          Op.getOperand(3));
944 
945     case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name
946       return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1));
947   }
948 }
949 
950 /// \brief Generate Min/Max node
CombineFMinMaxLegacy(const SDLoc & DL,EVT VT,SDValue LHS,SDValue RHS,SDValue True,SDValue False,SDValue CC,DAGCombinerInfo & DCI) const951 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(const SDLoc &DL, EVT VT,
952                                                    SDValue LHS, SDValue RHS,
953                                                    SDValue True, SDValue False,
954                                                    SDValue CC,
955                                                    DAGCombinerInfo &DCI) const {
956   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
957     return SDValue();
958 
959   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
960     return SDValue();
961 
962   SelectionDAG &DAG = DCI.DAG;
963   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
964   switch (CCOpcode) {
965   case ISD::SETOEQ:
966   case ISD::SETONE:
967   case ISD::SETUNE:
968   case ISD::SETNE:
969   case ISD::SETUEQ:
970   case ISD::SETEQ:
971   case ISD::SETFALSE:
972   case ISD::SETFALSE2:
973   case ISD::SETTRUE:
974   case ISD::SETTRUE2:
975   case ISD::SETUO:
976   case ISD::SETO:
977     break;
978   case ISD::SETULE:
979   case ISD::SETULT: {
980     if (LHS == True)
981       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
982     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
983   }
984   case ISD::SETOLE:
985   case ISD::SETOLT:
986   case ISD::SETLE:
987   case ISD::SETLT: {
988     // Ordered. Assume ordered for undefined.
989 
990     // Only do this after legalization to avoid interfering with other combines
991     // which might occur.
992     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
993         !DCI.isCalledByLegalizer())
994       return SDValue();
995 
996     // We need to permute the operands to get the correct NaN behavior. The
997     // selected operand is the second one based on the failing compare with NaN,
998     // so permute it based on the compare type the hardware uses.
999     if (LHS == True)
1000       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1001     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1002   }
1003   case ISD::SETUGE:
1004   case ISD::SETUGT: {
1005     if (LHS == True)
1006       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1007     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1008   }
1009   case ISD::SETGT:
1010   case ISD::SETGE:
1011   case ISD::SETOGE:
1012   case ISD::SETOGT: {
1013     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1014         !DCI.isCalledByLegalizer())
1015       return SDValue();
1016 
1017     if (LHS == True)
1018       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1019     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1020   }
1021   case ISD::SETCC_INVALID:
1022     llvm_unreachable("Invalid setcc condcode!");
1023   }
1024   return SDValue();
1025 }
1026 
1027 std::pair<SDValue, SDValue>
split64BitValue(SDValue Op,SelectionDAG & DAG) const1028 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1029   SDLoc SL(Op);
1030 
1031   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1032 
1033   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1034   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1035 
1036   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1037   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1038 
1039   return std::make_pair(Lo, Hi);
1040 }
1041 
getLoHalf64(SDValue Op,SelectionDAG & DAG) const1042 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1043   SDLoc SL(Op);
1044 
1045   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1046   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1047   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1048 }
1049 
getHiHalf64(SDValue Op,SelectionDAG & DAG) const1050 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1051   SDLoc SL(Op);
1052 
1053   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1054   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1055   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1056 }
1057 
SplitVectorLoad(const SDValue Op,SelectionDAG & DAG) const1058 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1059                                               SelectionDAG &DAG) const {
1060   LoadSDNode *Load = cast<LoadSDNode>(Op);
1061   EVT VT = Op.getValueType();
1062 
1063 
1064   // If this is a 2 element vector, we really want to scalarize and not create
1065   // weird 1 element vectors.
1066   if (VT.getVectorNumElements() == 2)
1067     return scalarizeVectorLoad(Load, DAG);
1068 
1069   SDValue BasePtr = Load->getBasePtr();
1070   EVT PtrVT = BasePtr.getValueType();
1071   EVT MemVT = Load->getMemoryVT();
1072   SDLoc SL(Op);
1073 
1074   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1075 
1076   EVT LoVT, HiVT;
1077   EVT LoMemVT, HiMemVT;
1078   SDValue Lo, Hi;
1079 
1080   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1081   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1082   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1083 
1084   unsigned Size = LoMemVT.getStoreSize();
1085   unsigned BaseAlign = Load->getAlignment();
1086   unsigned HiAlign = MinAlign(BaseAlign, Size);
1087 
1088   SDValue LoLoad
1089     = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1090                      Load->getChain(), BasePtr,
1091                      SrcValue,
1092                      LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
1093                      Load->isInvariant(), BaseAlign);
1094 
1095   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1096                               DAG.getConstant(Size, SL, PtrVT));
1097 
1098   SDValue HiLoad
1099     = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
1100                      Load->getChain(), HiPtr,
1101                      SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1102                      HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
1103                      Load->isInvariant(), HiAlign);
1104 
1105   SDValue Ops[] = {
1106     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1107     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1108                 LoLoad.getValue(1), HiLoad.getValue(1))
1109   };
1110 
1111   return DAG.getMergeValues(Ops, SL);
1112 }
1113 
1114 // FIXME: This isn't doing anything for SI. This should be used in a target
1115 // combine during type legalization.
MergeVectorStore(const SDValue & Op,SelectionDAG & DAG) const1116 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
1117                                                SelectionDAG &DAG) const {
1118   StoreSDNode *Store = cast<StoreSDNode>(Op);
1119   EVT MemVT = Store->getMemoryVT();
1120   unsigned MemBits = MemVT.getSizeInBits();
1121 
1122   // Byte stores are really expensive, so if possible, try to pack 32-bit vector
1123   // truncating store into an i32 store.
1124   // XXX: We could also handle optimize other vector bitwidths.
1125   if (!MemVT.isVector() || MemBits > 32) {
1126     return SDValue();
1127   }
1128 
1129   SDLoc DL(Op);
1130   SDValue Value = Store->getValue();
1131   EVT VT = Value.getValueType();
1132   EVT ElemVT = VT.getVectorElementType();
1133   SDValue Ptr = Store->getBasePtr();
1134   EVT MemEltVT = MemVT.getVectorElementType();
1135   unsigned MemEltBits = MemEltVT.getSizeInBits();
1136   unsigned MemNumElements = MemVT.getVectorNumElements();
1137   unsigned PackedSize = MemVT.getStoreSizeInBits();
1138   SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32);
1139 
1140   assert(Value.getValueType().getScalarSizeInBits() >= 32);
1141 
1142   SDValue PackedValue;
1143   for (unsigned i = 0; i < MemNumElements; ++i) {
1144     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1145                               DAG.getConstant(i, DL, MVT::i32));
1146     Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1147     Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1148 
1149     SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32);
1150     Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1151 
1152     if (i == 0) {
1153       PackedValue = Elt;
1154     } else {
1155       PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1156     }
1157   }
1158 
1159   if (PackedSize < 32) {
1160     EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1161     return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1162                              Store->getMemOperand()->getPointerInfo(),
1163                              PackedVT,
1164                              Store->isNonTemporal(), Store->isVolatile(),
1165                              Store->getAlignment());
1166   }
1167 
1168   return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1169                       Store->getMemOperand()->getPointerInfo(),
1170                       Store->isVolatile(),  Store->isNonTemporal(),
1171                       Store->getAlignment());
1172 }
1173 
SplitVectorStore(SDValue Op,SelectionDAG & DAG) const1174 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1175                                                SelectionDAG &DAG) const {
1176   StoreSDNode *Store = cast<StoreSDNode>(Op);
1177   SDValue Val = Store->getValue();
1178   EVT VT = Val.getValueType();
1179 
1180   // If this is a 2 element vector, we really want to scalarize and not create
1181   // weird 1 element vectors.
1182   if (VT.getVectorNumElements() == 2)
1183     return scalarizeVectorStore(Store, DAG);
1184 
1185   EVT MemVT = Store->getMemoryVT();
1186   SDValue Chain = Store->getChain();
1187   SDValue BasePtr = Store->getBasePtr();
1188   SDLoc SL(Op);
1189 
1190   EVT LoVT, HiVT;
1191   EVT LoMemVT, HiMemVT;
1192   SDValue Lo, Hi;
1193 
1194   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1195   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1196   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1197 
1198   EVT PtrVT = BasePtr.getValueType();
1199   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1200                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
1201                                               PtrVT));
1202 
1203   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1204   unsigned BaseAlign = Store->getAlignment();
1205   unsigned Size = LoMemVT.getStoreSize();
1206   unsigned HiAlign = MinAlign(BaseAlign, Size);
1207 
1208   SDValue LoStore
1209     = DAG.getTruncStore(Chain, SL, Lo,
1210                         BasePtr,
1211                         SrcValue,
1212                         LoMemVT,
1213                         Store->isNonTemporal(),
1214                         Store->isVolatile(),
1215                         BaseAlign);
1216   SDValue HiStore
1217     = DAG.getTruncStore(Chain, SL, Hi,
1218                         HiPtr,
1219                         SrcValue.getWithOffset(Size),
1220                         HiMemVT,
1221                         Store->isNonTemporal(),
1222                         Store->isVolatile(),
1223                         HiAlign);
1224 
1225   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1226 }
1227 
1228 // This is a shortcut for integer division because we have fast i32<->f32
1229 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1230 // float is enough to accurately represent up to a 24-bit signed integer.
LowerDIVREM24(SDValue Op,SelectionDAG & DAG,bool Sign) const1231 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1232                                             bool Sign) const {
1233   SDLoc DL(Op);
1234   EVT VT = Op.getValueType();
1235   SDValue LHS = Op.getOperand(0);
1236   SDValue RHS = Op.getOperand(1);
1237   MVT IntVT = MVT::i32;
1238   MVT FltVT = MVT::f32;
1239 
1240   unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1241   if (LHSSignBits < 9)
1242     return SDValue();
1243 
1244   unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1245   if (RHSSignBits < 9)
1246     return SDValue();
1247 
1248   unsigned BitSize = VT.getSizeInBits();
1249   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1250   unsigned DivBits = BitSize - SignBits;
1251   if (Sign)
1252     ++DivBits;
1253 
1254   ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1255   ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1256 
1257   SDValue jq = DAG.getConstant(1, DL, IntVT);
1258 
1259   if (Sign) {
1260     // char|short jq = ia ^ ib;
1261     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1262 
1263     // jq = jq >> (bitsize - 2)
1264     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1265                      DAG.getConstant(BitSize - 2, DL, VT));
1266 
1267     // jq = jq | 0x1
1268     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1269   }
1270 
1271   // int ia = (int)LHS;
1272   SDValue ia = LHS;
1273 
1274   // int ib, (int)RHS;
1275   SDValue ib = RHS;
1276 
1277   // float fa = (float)ia;
1278   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1279 
1280   // float fb = (float)ib;
1281   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1282 
1283   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1284                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1285 
1286   // fq = trunc(fq);
1287   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1288 
1289   // float fqneg = -fq;
1290   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1291 
1292   // float fr = mad(fqneg, fb, fa);
1293   SDValue fr = DAG.getNode(ISD::FMAD, DL, FltVT, fqneg, fb, fa);
1294 
1295   // int iq = (int)fq;
1296   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1297 
1298   // fr = fabs(fr);
1299   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1300 
1301   // fb = fabs(fb);
1302   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1303 
1304   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1305 
1306   // int cv = fr >= fb;
1307   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1308 
1309   // jq = (cv ? jq : 0);
1310   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1311 
1312   // dst = iq + jq;
1313   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1314 
1315   // Rem needs compensation, it's easier to recompute it
1316   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1317   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1318 
1319   // Truncate to number of bits this divide really is.
1320   if (Sign) {
1321     SDValue InRegSize
1322       = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1323     Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1324     Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1325   } else {
1326     SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1327     Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1328     Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1329   }
1330 
1331   return DAG.getMergeValues({ Div, Rem }, DL);
1332 }
1333 
LowerUDIVREM64(SDValue Op,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results) const1334 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1335                                       SelectionDAG &DAG,
1336                                       SmallVectorImpl<SDValue> &Results) const {
1337   assert(Op.getValueType() == MVT::i64);
1338 
1339   SDLoc DL(Op);
1340   EVT VT = Op.getValueType();
1341   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1342 
1343   SDValue one = DAG.getConstant(1, DL, HalfVT);
1344   SDValue zero = DAG.getConstant(0, DL, HalfVT);
1345 
1346   //HiLo split
1347   SDValue LHS = Op.getOperand(0);
1348   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1349   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1350 
1351   SDValue RHS = Op.getOperand(1);
1352   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1353   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1354 
1355   if (VT == MVT::i64 &&
1356     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1357     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1358 
1359     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1360                               LHS_Lo, RHS_Lo);
1361 
1362     SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), zero});
1363     SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), zero});
1364 
1365     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1366     Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1367     return;
1368   }
1369 
1370   // Get Speculative values
1371   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1372   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1373 
1374   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1375   SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, zero});
1376   REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1377 
1378   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1379   SDValue DIV_Lo = zero;
1380 
1381   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1382 
1383   for (unsigned i = 0; i < halfBitWidth; ++i) {
1384     const unsigned bitPos = halfBitWidth - i - 1;
1385     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1386     // Get value of high bit
1387     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1388     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1389     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1390 
1391     // Shift
1392     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1393     // Add LHS high bit
1394     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1395 
1396     SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
1397     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1398 
1399     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1400 
1401     // Update REM
1402     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1403     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1404   }
1405 
1406   SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
1407   DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
1408   Results.push_back(DIV);
1409   Results.push_back(REM);
1410 }
1411 
LowerUDIVREM(SDValue Op,SelectionDAG & DAG) const1412 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1413                                            SelectionDAG &DAG) const {
1414   SDLoc DL(Op);
1415   EVT VT = Op.getValueType();
1416 
1417   if (VT == MVT::i64) {
1418     SmallVector<SDValue, 2> Results;
1419     LowerUDIVREM64(Op, DAG, Results);
1420     return DAG.getMergeValues(Results, DL);
1421   }
1422 
1423   if (VT == MVT::i32) {
1424     if (SDValue Res = LowerDIVREM24(Op, DAG, false))
1425       return Res;
1426   }
1427 
1428   SDValue Num = Op.getOperand(0);
1429   SDValue Den = Op.getOperand(1);
1430 
1431   // RCP =  URECIP(Den) = 2^32 / Den + e
1432   // e is rounding error.
1433   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1434 
1435   // RCP_LO = mul(RCP, Den) */
1436   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1437 
1438   // RCP_HI = mulhu (RCP, Den) */
1439   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1440 
1441   // NEG_RCP_LO = -RCP_LO
1442   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
1443                                                      RCP_LO);
1444 
1445   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1446   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1447                                            NEG_RCP_LO, RCP_LO,
1448                                            ISD::SETEQ);
1449   // Calculate the rounding error from the URECIP instruction
1450   // E = mulhu(ABS_RCP_LO, RCP)
1451   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1452 
1453   // RCP_A_E = RCP + E
1454   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1455 
1456   // RCP_S_E = RCP - E
1457   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1458 
1459   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1460   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
1461                                      RCP_A_E, RCP_S_E,
1462                                      ISD::SETEQ);
1463   // Quotient = mulhu(Tmp0, Num)
1464   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1465 
1466   // Num_S_Remainder = Quotient * Den
1467   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1468 
1469   // Remainder = Num - Num_S_Remainder
1470   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1471 
1472   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1473   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1474                                                  DAG.getConstant(-1, DL, VT),
1475                                                  DAG.getConstant(0, DL, VT),
1476                                                  ISD::SETUGE);
1477   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1478   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1479                                                   Num_S_Remainder,
1480                                                   DAG.getConstant(-1, DL, VT),
1481                                                   DAG.getConstant(0, DL, VT),
1482                                                   ISD::SETUGE);
1483   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1484   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1485                                                Remainder_GE_Zero);
1486 
1487   // Calculate Division result:
1488 
1489   // Quotient_A_One = Quotient + 1
1490   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1491                                        DAG.getConstant(1, DL, VT));
1492 
1493   // Quotient_S_One = Quotient - 1
1494   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1495                                        DAG.getConstant(1, DL, VT));
1496 
1497   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1498   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1499                                      Quotient, Quotient_A_One, ISD::SETEQ);
1500 
1501   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1502   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1503                             Quotient_S_One, Div, ISD::SETEQ);
1504 
1505   // Calculate Rem result:
1506 
1507   // Remainder_S_Den = Remainder - Den
1508   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1509 
1510   // Remainder_A_Den = Remainder + Den
1511   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1512 
1513   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1514   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
1515                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1516 
1517   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1518   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
1519                             Remainder_A_Den, Rem, ISD::SETEQ);
1520   SDValue Ops[2] = {
1521     Div,
1522     Rem
1523   };
1524   return DAG.getMergeValues(Ops, DL);
1525 }
1526 
LowerSDIVREM(SDValue Op,SelectionDAG & DAG) const1527 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1528                                            SelectionDAG &DAG) const {
1529   SDLoc DL(Op);
1530   EVT VT = Op.getValueType();
1531 
1532   SDValue LHS = Op.getOperand(0);
1533   SDValue RHS = Op.getOperand(1);
1534 
1535   SDValue Zero = DAG.getConstant(0, DL, VT);
1536   SDValue NegOne = DAG.getConstant(-1, DL, VT);
1537 
1538   if (VT == MVT::i32) {
1539     if (SDValue Res = LowerDIVREM24(Op, DAG, true))
1540       return Res;
1541   }
1542 
1543   if (VT == MVT::i64 &&
1544       DAG.ComputeNumSignBits(LHS) > 32 &&
1545       DAG.ComputeNumSignBits(RHS) > 32) {
1546     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1547 
1548     //HiLo split
1549     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1550     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1551     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1552                                  LHS_Lo, RHS_Lo);
1553     SDValue Res[2] = {
1554       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1555       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1556     };
1557     return DAG.getMergeValues(Res, DL);
1558   }
1559 
1560   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1561   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1562   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1563   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1564 
1565   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1566   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1567 
1568   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1569   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1570 
1571   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1572   SDValue Rem = Div.getValue(1);
1573 
1574   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1575   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1576 
1577   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1578   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1579 
1580   SDValue Res[2] = {
1581     Div,
1582     Rem
1583   };
1584   return DAG.getMergeValues(Res, DL);
1585 }
1586 
1587 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
LowerFREM(SDValue Op,SelectionDAG & DAG) const1588 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1589   SDLoc SL(Op);
1590   EVT VT = Op.getValueType();
1591   SDValue X = Op.getOperand(0);
1592   SDValue Y = Op.getOperand(1);
1593 
1594   // TODO: Should this propagate fast-math-flags?
1595 
1596   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1597   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1598   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1599 
1600   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1601 }
1602 
LowerFCEIL(SDValue Op,SelectionDAG & DAG) const1603 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1604   SDLoc SL(Op);
1605   SDValue Src = Op.getOperand(0);
1606 
1607   // result = trunc(src)
1608   // if (src > 0.0 && src != result)
1609   //   result += 1.0
1610 
1611   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1612 
1613   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1614   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1615 
1616   EVT SetCCVT =
1617       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1618 
1619   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1620   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1621   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1622 
1623   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1624   // TODO: Should this propagate fast-math-flags?
1625   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1626 }
1627 
extractF64Exponent(SDValue Hi,const SDLoc & SL,SelectionDAG & DAG)1628 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
1629                                   SelectionDAG &DAG) {
1630   const unsigned FractBits = 52;
1631   const unsigned ExpBits = 11;
1632 
1633   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1634                                 Hi,
1635                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
1636                                 DAG.getConstant(ExpBits, SL, MVT::i32));
1637   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1638                             DAG.getConstant(1023, SL, MVT::i32));
1639 
1640   return Exp;
1641 }
1642 
LowerFTRUNC(SDValue Op,SelectionDAG & DAG) const1643 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1644   SDLoc SL(Op);
1645   SDValue Src = Op.getOperand(0);
1646 
1647   assert(Op.getValueType() == MVT::f64);
1648 
1649   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1650   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1651 
1652   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1653 
1654   // Extract the upper half, since this is where we will find the sign and
1655   // exponent.
1656   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1657 
1658   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1659 
1660   const unsigned FractBits = 52;
1661 
1662   // Extract the sign bit.
1663   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
1664   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1665 
1666   // Extend back to to 64-bits.
1667   SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
1668   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1669 
1670   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1671   const SDValue FractMask
1672     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
1673 
1674   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1675   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1676   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1677 
1678   EVT SetCCVT =
1679       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1680 
1681   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
1682 
1683   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1684   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1685 
1686   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1687   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1688 
1689   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1690 }
1691 
LowerFRINT(SDValue Op,SelectionDAG & DAG) const1692 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1693   SDLoc SL(Op);
1694   SDValue Src = Op.getOperand(0);
1695 
1696   assert(Op.getValueType() == MVT::f64);
1697 
1698   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1699   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
1700   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1701 
1702   // TODO: Should this propagate fast-math-flags?
1703 
1704   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1705   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1706 
1707   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1708 
1709   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1710   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
1711 
1712   EVT SetCCVT =
1713       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1714   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1715 
1716   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1717 }
1718 
LowerFNEARBYINT(SDValue Op,SelectionDAG & DAG) const1719 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1720   // FNEARBYINT and FRINT are the same, except in their handling of FP
1721   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1722   // rint, so just treat them as equivalent.
1723   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1724 }
1725 
1726 // XXX - May require not supporting f32 denormals?
LowerFROUND32(SDValue Op,SelectionDAG & DAG) const1727 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
1728   SDLoc SL(Op);
1729   SDValue X = Op.getOperand(0);
1730 
1731   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
1732 
1733   // TODO: Should this propagate fast-math-flags?
1734 
1735   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
1736 
1737   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
1738 
1739   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
1740   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1741   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
1742 
1743   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
1744 
1745   EVT SetCCVT =
1746       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1747 
1748   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
1749 
1750   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
1751 
1752   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
1753 }
1754 
LowerFROUND64(SDValue Op,SelectionDAG & DAG) const1755 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
1756   SDLoc SL(Op);
1757   SDValue X = Op.getOperand(0);
1758 
1759   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
1760 
1761   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1762   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1763   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
1764   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
1765   EVT SetCCVT =
1766       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
1767 
1768   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1769 
1770   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
1771 
1772   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1773 
1774   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
1775                                        MVT::i64);
1776 
1777   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
1778   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
1779                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
1780                                           MVT::i64),
1781                           Exp);
1782 
1783   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
1784   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
1785                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
1786                               ISD::SETNE);
1787 
1788   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
1789                              D, DAG.getConstant(0, SL, MVT::i64));
1790   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
1791 
1792   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
1793   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
1794 
1795   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1796   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1797   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
1798 
1799   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
1800                             ExpEqNegOne,
1801                             DAG.getConstantFP(1.0, SL, MVT::f64),
1802                             DAG.getConstantFP(0.0, SL, MVT::f64));
1803 
1804   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
1805 
1806   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
1807   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
1808 
1809   return K;
1810 }
1811 
LowerFROUND(SDValue Op,SelectionDAG & DAG) const1812 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
1813   EVT VT = Op.getValueType();
1814 
1815   if (VT == MVT::f32)
1816     return LowerFROUND32(Op, DAG);
1817 
1818   if (VT == MVT::f64)
1819     return LowerFROUND64(Op, DAG);
1820 
1821   llvm_unreachable("unhandled type");
1822 }
1823 
LowerFFLOOR(SDValue Op,SelectionDAG & DAG) const1824 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1825   SDLoc SL(Op);
1826   SDValue Src = Op.getOperand(0);
1827 
1828   // result = trunc(src);
1829   // if (src < 0.0 && src != result)
1830   //   result += -1.0.
1831 
1832   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1833 
1834   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
1835   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
1836 
1837   EVT SetCCVT =
1838       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
1839 
1840   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1841   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1842   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1843 
1844   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1845   // TODO: Should this propagate fast-math-flags?
1846   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1847 }
1848 
LowerCTLZ(SDValue Op,SelectionDAG & DAG) const1849 SDValue AMDGPUTargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
1850   SDLoc SL(Op);
1851   SDValue Src = Op.getOperand(0);
1852   bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
1853 
1854   if (ZeroUndef && Src.getValueType() == MVT::i32)
1855     return DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Src);
1856 
1857   SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1858 
1859   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1860   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1861 
1862   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1863   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1864 
1865   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1866                                    *DAG.getContext(), MVT::i32);
1867 
1868   SDValue Hi0 = DAG.getSetCC(SL, SetCCVT, Hi, Zero, ISD::SETEQ);
1869 
1870   SDValue CtlzLo = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Lo);
1871   SDValue CtlzHi = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i32, Hi);
1872 
1873   const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
1874   SDValue Add = DAG.getNode(ISD::ADD, SL, MVT::i32, CtlzLo, Bits32);
1875 
1876   // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
1877   SDValue NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0, Add, CtlzHi);
1878 
1879   if (!ZeroUndef) {
1880     // Test if the full 64-bit input is zero.
1881 
1882     // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
1883     // which we probably don't want.
1884     SDValue Lo0 = DAG.getSetCC(SL, SetCCVT, Lo, Zero, ISD::SETEQ);
1885     SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0, Hi0);
1886 
1887     // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
1888     // with the same cycles, otherwise it is slower.
1889     // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
1890     // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
1891 
1892     const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
1893 
1894     // The instruction returns -1 for 0 input, but the defined intrinsic
1895     // behavior is to return the number of bits.
1896     NewCtlz = DAG.getNode(ISD::SELECT, SL, MVT::i32,
1897                           SrcIsZero, Bits32, NewCtlz);
1898   }
1899 
1900   return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewCtlz);
1901 }
1902 
LowerINT_TO_FP32(SDValue Op,SelectionDAG & DAG,bool Signed) const1903 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
1904                                                bool Signed) const {
1905   // Unsigned
1906   // cul2f(ulong u)
1907   //{
1908   //  uint lz = clz(u);
1909   //  uint e = (u != 0) ? 127U + 63U - lz : 0;
1910   //  u = (u << lz) & 0x7fffffffffffffffUL;
1911   //  ulong t = u & 0xffffffffffUL;
1912   //  uint v = (e << 23) | (uint)(u >> 40);
1913   //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
1914   //  return as_float(v + r);
1915   //}
1916   // Signed
1917   // cl2f(long l)
1918   //{
1919   //  long s = l >> 63;
1920   //  float r = cul2f((l + s) ^ s);
1921   //  return s ? -r : r;
1922   //}
1923 
1924   SDLoc SL(Op);
1925   SDValue Src = Op.getOperand(0);
1926   SDValue L = Src;
1927 
1928   SDValue S;
1929   if (Signed) {
1930     const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
1931     S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
1932 
1933     SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
1934     L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
1935   }
1936 
1937   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
1938                                    *DAG.getContext(), MVT::f32);
1939 
1940 
1941   SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
1942   SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
1943   SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
1944   LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
1945 
1946   SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
1947   SDValue E = DAG.getSelect(SL, MVT::i32,
1948     DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
1949     DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
1950     ZeroI32);
1951 
1952   SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
1953     DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
1954     DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
1955 
1956   SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
1957                           DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
1958 
1959   SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
1960                              U, DAG.getConstant(40, SL, MVT::i64));
1961 
1962   SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
1963     DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
1964     DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
1965 
1966   SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
1967   SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
1968   SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
1969 
1970   SDValue One = DAG.getConstant(1, SL, MVT::i32);
1971 
1972   SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
1973 
1974   SDValue R = DAG.getSelect(SL, MVT::i32,
1975     RCmp,
1976     One,
1977     DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
1978   R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
1979   R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
1980 
1981   if (!Signed)
1982     return R;
1983 
1984   SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
1985   return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
1986 }
1987 
LowerINT_TO_FP64(SDValue Op,SelectionDAG & DAG,bool Signed) const1988 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
1989                                                bool Signed) const {
1990   SDLoc SL(Op);
1991   SDValue Src = Op.getOperand(0);
1992 
1993   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1994 
1995   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1996                            DAG.getConstant(0, SL, MVT::i32));
1997   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
1998                            DAG.getConstant(1, SL, MVT::i32));
1999 
2000   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2001                               SL, MVT::f64, Hi);
2002 
2003   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2004 
2005   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2006                               DAG.getConstant(32, SL, MVT::i32));
2007   // TODO: Should this propagate fast-math-flags?
2008   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2009 }
2010 
LowerUINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2011 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2012                                                SelectionDAG &DAG) const {
2013   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2014          "operation should be legal");
2015 
2016   EVT DestVT = Op.getValueType();
2017   if (DestVT == MVT::f64)
2018     return LowerINT_TO_FP64(Op, DAG, false);
2019 
2020   if (DestVT == MVT::f32)
2021     return LowerINT_TO_FP32(Op, DAG, false);
2022 
2023   return SDValue();
2024 }
2025 
LowerSINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2026 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2027                                               SelectionDAG &DAG) const {
2028   assert(Op.getOperand(0).getValueType() == MVT::i64 &&
2029          "operation should be legal");
2030 
2031   EVT DestVT = Op.getValueType();
2032   if (DestVT == MVT::f32)
2033     return LowerINT_TO_FP32(Op, DAG, true);
2034 
2035   if (DestVT == MVT::f64)
2036     return LowerINT_TO_FP64(Op, DAG, true);
2037 
2038   return SDValue();
2039 }
2040 
LowerFP64_TO_INT(SDValue Op,SelectionDAG & DAG,bool Signed) const2041 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2042                                                bool Signed) const {
2043   SDLoc SL(Op);
2044 
2045   SDValue Src = Op.getOperand(0);
2046 
2047   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2048 
2049   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
2050                                  MVT::f64);
2051   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
2052                                  MVT::f64);
2053   // TODO: Should this propagate fast-math-flags?
2054   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2055 
2056   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2057 
2058 
2059   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2060 
2061   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2062                            MVT::i32, FloorMul);
2063   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2064 
2065   SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
2066 
2067   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2068 }
2069 
LowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG) const2070 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2071                                               SelectionDAG &DAG) const {
2072   SDValue Src = Op.getOperand(0);
2073 
2074   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2075     return LowerFP64_TO_INT(Op, DAG, true);
2076 
2077   return SDValue();
2078 }
2079 
LowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG) const2080 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2081                                               SelectionDAG &DAG) const {
2082   SDValue Src = Op.getOperand(0);
2083 
2084   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2085     return LowerFP64_TO_INT(Op, DAG, false);
2086 
2087   return SDValue();
2088 }
2089 
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const2090 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2091                                                      SelectionDAG &DAG) const {
2092   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2093   MVT VT = Op.getSimpleValueType();
2094   MVT ScalarVT = VT.getScalarType();
2095 
2096   if (!VT.isVector())
2097     return SDValue();
2098 
2099   SDValue Src = Op.getOperand(0);
2100   SDLoc DL(Op);
2101 
2102   // TODO: Don't scalarize on Evergreen?
2103   unsigned NElts = VT.getVectorNumElements();
2104   SmallVector<SDValue, 8> Args;
2105   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2106 
2107   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2108   for (unsigned I = 0; I < NElts; ++I)
2109     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2110 
2111   return DAG.getBuildVector(VT, DL, Args);
2112 }
2113 
2114 //===----------------------------------------------------------------------===//
2115 // Custom DAG optimizations
2116 //===----------------------------------------------------------------------===//
2117 
isU24(SDValue Op,SelectionDAG & DAG)2118 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2119   APInt KnownZero, KnownOne;
2120   EVT VT = Op.getValueType();
2121   DAG.computeKnownBits(Op, KnownZero, KnownOne);
2122 
2123   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2124 }
2125 
isI24(SDValue Op,SelectionDAG & DAG)2126 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2127   EVT VT = Op.getValueType();
2128 
2129   // In order for this to be a signed 24-bit value, bit 23, must
2130   // be a sign bit.
2131   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2132                                      // as unsigned 24-bit values.
2133          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2134 }
2135 
simplifyI24(SDValue Op,TargetLowering::DAGCombinerInfo & DCI)2136 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
2137 
2138   SelectionDAG &DAG = DCI.DAG;
2139   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2140   EVT VT = Op.getValueType();
2141 
2142   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2143   APInt KnownZero, KnownOne;
2144   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2145   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
2146     DCI.CommitTargetLoweringOpt(TLO);
2147 }
2148 
2149 template <typename IntTy>
constantFoldBFE(SelectionDAG & DAG,IntTy Src0,uint32_t Offset,uint32_t Width,const SDLoc & DL)2150 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2151                                uint32_t Width, const SDLoc &DL) {
2152   if (Width + Offset < 32) {
2153     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2154     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2155     return DAG.getConstant(Result, DL, MVT::i32);
2156   }
2157 
2158   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2159 }
2160 
hasVolatileUser(SDNode * Val)2161 static bool hasVolatileUser(SDNode *Val) {
2162   for (SDNode *U : Val->uses()) {
2163     if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2164       if (M->isVolatile())
2165         return true;
2166     }
2167   }
2168 
2169   return false;
2170 }
2171 
shouldCombineMemoryType(EVT VT) const2172 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2173   // i32 vectors are the canonical memory type.
2174   if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2175     return false;
2176 
2177   if (!VT.isByteSized())
2178     return false;
2179 
2180   unsigned Size = VT.getStoreSize();
2181 
2182   if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2183     return false;
2184 
2185   if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2186     return false;
2187 
2188   return true;
2189 }
2190 
2191 // Replace load of an illegal type with a store of a bitcast to a friendlier
2192 // type.
performLoadCombine(SDNode * N,DAGCombinerInfo & DCI) const2193 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2194                                                  DAGCombinerInfo &DCI) const {
2195   if (!DCI.isBeforeLegalize())
2196     return SDValue();
2197 
2198   LoadSDNode *LN = cast<LoadSDNode>(N);
2199   if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2200     return SDValue();
2201 
2202   SDLoc SL(N);
2203   SelectionDAG &DAG = DCI.DAG;
2204   EVT VT = LN->getMemoryVT();
2205 
2206   unsigned Size = VT.getStoreSize();
2207   unsigned Align = LN->getAlignment();
2208   if (Align < Size && isTypeLegal(VT)) {
2209     bool IsFast;
2210     unsigned AS = LN->getAddressSpace();
2211 
2212     // Expand unaligned loads earlier than legalization. Due to visitation order
2213     // problems during legalization, the emitted instructions to pack and unpack
2214     // the bytes again are not eliminated in the case of an unaligned copy.
2215     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
2216       SDValue Ops[2];
2217       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2218       return DAG.getMergeValues(Ops, SDLoc(N));
2219     }
2220 
2221     if (!IsFast)
2222       return SDValue();
2223   }
2224 
2225   if (!shouldCombineMemoryType(VT))
2226     return SDValue();
2227 
2228   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2229 
2230   SDValue NewLoad
2231     = DAG.getLoad(NewVT, SL, LN->getChain(),
2232                   LN->getBasePtr(), LN->getMemOperand());
2233 
2234   SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
2235   DCI.CombineTo(N, BC, NewLoad.getValue(1));
2236   return SDValue(N, 0);
2237 }
2238 
2239 // Replace store of an illegal type with a store of a bitcast to a friendlier
2240 // type.
performStoreCombine(SDNode * N,DAGCombinerInfo & DCI) const2241 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2242                                                   DAGCombinerInfo &DCI) const {
2243   if (!DCI.isBeforeLegalize())
2244     return SDValue();
2245 
2246   StoreSDNode *SN = cast<StoreSDNode>(N);
2247   if (SN->isVolatile() || !ISD::isNormalStore(SN))
2248     return SDValue();
2249 
2250   EVT VT = SN->getMemoryVT();
2251   unsigned Size = VT.getStoreSize();
2252 
2253   SDLoc SL(N);
2254   SelectionDAG &DAG = DCI.DAG;
2255   unsigned Align = SN->getAlignment();
2256   if (Align < Size && isTypeLegal(VT)) {
2257     bool IsFast;
2258     unsigned AS = SN->getAddressSpace();
2259 
2260     // Expand unaligned stores earlier than legalization. Due to visitation
2261     // order problems during legalization, the emitted instructions to pack and
2262     // unpack the bytes again are not eliminated in the case of an unaligned
2263     // copy.
2264     if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast))
2265       return expandUnalignedStore(SN, DAG);
2266 
2267     if (!IsFast)
2268       return SDValue();
2269   }
2270 
2271   if (!shouldCombineMemoryType(VT))
2272     return SDValue();
2273 
2274   EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
2275   SDValue Val = SN->getValue();
2276 
2277   //DCI.AddToWorklist(Val.getNode());
2278 
2279   bool OtherUses = !Val.hasOneUse();
2280   SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
2281   if (OtherUses) {
2282     SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
2283     DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
2284   }
2285 
2286   return DAG.getStore(SN->getChain(), SL, CastVal,
2287                       SN->getBasePtr(), SN->getMemOperand());
2288 }
2289 
2290 // TODO: Should repeat for other bit ops.
performAndCombine(SDNode * N,DAGCombinerInfo & DCI) const2291 SDValue AMDGPUTargetLowering::performAndCombine(SDNode *N,
2292                                                 DAGCombinerInfo &DCI) const {
2293   if (N->getValueType(0) != MVT::i64)
2294     return SDValue();
2295 
2296   // Break up 64-bit and of a constant into two 32-bit ands. This will typically
2297   // happen anyway for a VALU 64-bit and. This exposes other 32-bit integer
2298   // combine opportunities since most 64-bit operations are decomposed this way.
2299   // TODO: We won't want this for SALU especially if it is an inline immediate.
2300   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2301   if (!RHS)
2302     return SDValue();
2303 
2304   uint64_t Val = RHS->getZExtValue();
2305   if (Lo_32(Val) != 0 && Hi_32(Val) != 0 && !RHS->hasOneUse()) {
2306     // If either half of the constant is 0, this is really a 32-bit and, so
2307     // split it. If we can re-use the full materialized constant, keep it.
2308     return SDValue();
2309   }
2310 
2311   SDLoc SL(N);
2312   SelectionDAG &DAG = DCI.DAG;
2313 
2314   SDValue Lo, Hi;
2315   std::tie(Lo, Hi) = split64BitValue(N->getOperand(0), DAG);
2316 
2317   SDValue LoRHS = DAG.getConstant(Lo_32(Val), SL, MVT::i32);
2318   SDValue HiRHS = DAG.getConstant(Hi_32(Val), SL, MVT::i32);
2319 
2320   SDValue LoAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Lo, LoRHS);
2321   SDValue HiAnd = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, HiRHS);
2322 
2323   // Re-visit the ands. It's possible we eliminated one of them and it could
2324   // simplify the vector.
2325   DCI.AddToWorklist(Lo.getNode());
2326   DCI.AddToWorklist(Hi.getNode());
2327 
2328   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
2329   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2330 }
2331 
performShlCombine(SDNode * N,DAGCombinerInfo & DCI) const2332 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
2333                                                 DAGCombinerInfo &DCI) const {
2334   if (N->getValueType(0) != MVT::i64)
2335     return SDValue();
2336 
2337   // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
2338 
2339   // On some subtargets, 64-bit shift is a quarter rate instruction. In the
2340   // common case, splitting this into a move and a 32-bit shift is faster and
2341   // the same code size.
2342   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2343   if (!RHS)
2344     return SDValue();
2345 
2346   unsigned RHSVal = RHS->getZExtValue();
2347   if (RHSVal < 32)
2348     return SDValue();
2349 
2350   SDValue LHS = N->getOperand(0);
2351 
2352   SDLoc SL(N);
2353   SelectionDAG &DAG = DCI.DAG;
2354 
2355   SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
2356 
2357   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
2358   SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
2359 
2360   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2361 
2362   SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
2363   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2364 }
2365 
performSraCombine(SDNode * N,DAGCombinerInfo & DCI) const2366 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
2367                                                 DAGCombinerInfo &DCI) const {
2368   if (N->getValueType(0) != MVT::i64)
2369     return SDValue();
2370 
2371   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2372   if (!RHS)
2373     return SDValue();
2374 
2375   SelectionDAG &DAG = DCI.DAG;
2376   SDLoc SL(N);
2377   unsigned RHSVal = RHS->getZExtValue();
2378 
2379   // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
2380   if (RHSVal == 32) {
2381     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2382     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2383                                    DAG.getConstant(31, SL, MVT::i32));
2384 
2385     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
2386     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2387   }
2388 
2389   // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
2390   if (RHSVal == 63) {
2391     SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
2392     SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
2393                                    DAG.getConstant(31, SL, MVT::i32));
2394     SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
2395     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
2396   }
2397 
2398   return SDValue();
2399 }
2400 
performSrlCombine(SDNode * N,DAGCombinerInfo & DCI) const2401 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
2402                                                 DAGCombinerInfo &DCI) const {
2403   if (N->getValueType(0) != MVT::i64)
2404     return SDValue();
2405 
2406   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
2407   if (!RHS)
2408     return SDValue();
2409 
2410   unsigned ShiftAmt = RHS->getZExtValue();
2411   if (ShiftAmt < 32)
2412     return SDValue();
2413 
2414   // srl i64:x, C for C >= 32
2415   // =>
2416   //   build_pair (srl hi_32(x), C - 32), 0
2417 
2418   SelectionDAG &DAG = DCI.DAG;
2419   SDLoc SL(N);
2420 
2421   SDValue One = DAG.getConstant(1, SL, MVT::i32);
2422   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2423 
2424   SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
2425   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
2426                            VecOp, One);
2427 
2428   SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
2429   SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
2430 
2431   SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
2432 
2433   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
2434 }
2435 
performMulCombine(SDNode * N,DAGCombinerInfo & DCI) const2436 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2437                                                 DAGCombinerInfo &DCI) const {
2438   EVT VT = N->getValueType(0);
2439 
2440   if (VT.isVector() || VT.getSizeInBits() > 32)
2441     return SDValue();
2442 
2443   SelectionDAG &DAG = DCI.DAG;
2444   SDLoc DL(N);
2445 
2446   SDValue N0 = N->getOperand(0);
2447   SDValue N1 = N->getOperand(1);
2448   SDValue Mul;
2449 
2450   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2451     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2452     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2453     Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2454   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2455     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2456     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2457     Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2458   } else {
2459     return SDValue();
2460   }
2461 
2462   // We need to use sext even for MUL_U24, because MUL_U24 is used
2463   // for signed multiply of 8 and 16-bit types.
2464   return DAG.getSExtOrTrunc(Mul, DL, VT);
2465 }
2466 
isNegativeOne(SDValue Val)2467 static bool isNegativeOne(SDValue Val) {
2468   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
2469     return C->isAllOnesValue();
2470   return false;
2471 }
2472 
isCtlzOpc(unsigned Opc)2473 static bool isCtlzOpc(unsigned Opc) {
2474   return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2475 }
2476 
2477 // Get FFBH node if the incoming op may have been type legalized from a smaller
2478 // type VT.
2479 // Need to match pre-legalized type because the generic legalization inserts the
2480 // add/sub between the select and compare.
getFFBH_U32(const TargetLowering & TLI,SelectionDAG & DAG,const SDLoc & SL,SDValue Op)2481 static SDValue getFFBH_U32(const TargetLowering &TLI, SelectionDAG &DAG,
2482                            const SDLoc &SL, SDValue Op) {
2483   EVT VT = Op.getValueType();
2484   EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2485   if (LegalVT != MVT::i32)
2486     return SDValue();
2487 
2488   if (VT != MVT::i32)
2489     Op = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Op);
2490 
2491   SDValue FFBH = DAG.getNode(AMDGPUISD::FFBH_U32, SL, MVT::i32, Op);
2492   if (VT != MVT::i32)
2493     FFBH = DAG.getNode(ISD::TRUNCATE, SL, VT, FFBH);
2494 
2495   return FFBH;
2496 }
2497 
2498 // The native instructions return -1 on 0 input. Optimize out a select that
2499 // produces -1 on 0.
2500 //
2501 // TODO: If zero is not undef, we could also do this if the output is compared
2502 // against the bitwidth.
2503 //
2504 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
performCtlzCombine(const SDLoc & SL,SDValue Cond,SDValue LHS,SDValue RHS,DAGCombinerInfo & DCI) const2505 SDValue AMDGPUTargetLowering::performCtlzCombine(const SDLoc &SL, SDValue Cond,
2506                                                  SDValue LHS, SDValue RHS,
2507                                                  DAGCombinerInfo &DCI) const {
2508   ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2509   if (!CmpRhs || !CmpRhs->isNullValue())
2510     return SDValue();
2511 
2512   SelectionDAG &DAG = DCI.DAG;
2513   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2514   SDValue CmpLHS = Cond.getOperand(0);
2515 
2516   // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
2517   if (CCOpcode == ISD::SETEQ &&
2518       isCtlzOpc(RHS.getOpcode()) &&
2519       RHS.getOperand(0) == CmpLHS &&
2520       isNegativeOne(LHS)) {
2521     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2522   }
2523 
2524   // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
2525   if (CCOpcode == ISD::SETNE &&
2526       isCtlzOpc(LHS.getOpcode()) &&
2527       LHS.getOperand(0) == CmpLHS &&
2528       isNegativeOne(RHS)) {
2529     return getFFBH_U32(*this, DAG, SL, CmpLHS);
2530   }
2531 
2532   return SDValue();
2533 }
2534 
performSelectCombine(SDNode * N,DAGCombinerInfo & DCI) const2535 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
2536                                                    DAGCombinerInfo &DCI) const {
2537   SDValue Cond = N->getOperand(0);
2538   if (Cond.getOpcode() != ISD::SETCC)
2539     return SDValue();
2540 
2541   EVT VT = N->getValueType(0);
2542   SDValue LHS = Cond.getOperand(0);
2543   SDValue RHS = Cond.getOperand(1);
2544   SDValue CC = Cond.getOperand(2);
2545 
2546   SDValue True = N->getOperand(1);
2547   SDValue False = N->getOperand(2);
2548 
2549   if (VT == MVT::f32 && Cond.hasOneUse()) {
2550     SDValue MinMax
2551       = CombineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
2552     // Revisit this node so we can catch min3/max3/med3 patterns.
2553     //DCI.AddToWorklist(MinMax.getNode());
2554     return MinMax;
2555   }
2556 
2557   // There's no reason to not do this if the condition has other uses.
2558   return performCtlzCombine(SDLoc(N), Cond, True, False, DCI);
2559 }
2560 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2561 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2562                                                 DAGCombinerInfo &DCI) const {
2563   SelectionDAG &DAG = DCI.DAG;
2564   SDLoc DL(N);
2565 
2566   switch(N->getOpcode()) {
2567   default:
2568     break;
2569   case ISD::BITCAST: {
2570     EVT DestVT = N->getValueType(0);
2571     if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
2572       break;
2573 
2574     // Fold bitcasts of constants.
2575     //
2576     // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
2577     // TODO: Generalize and move to DAGCombiner
2578     SDValue Src = N->getOperand(0);
2579     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
2580       assert(Src.getValueType() == MVT::i64);
2581       SDLoc SL(N);
2582       uint64_t CVal = C->getZExtValue();
2583       return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
2584                          DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2585                          DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2586     }
2587 
2588     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
2589       const APInt &Val = C->getValueAPF().bitcastToAPInt();
2590       SDLoc SL(N);
2591       uint64_t CVal = Val.getZExtValue();
2592       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2593                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
2594                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
2595 
2596       return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
2597     }
2598 
2599     break;
2600   }
2601   case ISD::SHL: {
2602     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2603       break;
2604 
2605     return performShlCombine(N, DCI);
2606   }
2607   case ISD::SRL: {
2608     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2609       break;
2610 
2611     return performSrlCombine(N, DCI);
2612   }
2613   case ISD::SRA: {
2614     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2615       break;
2616 
2617     return performSraCombine(N, DCI);
2618   }
2619   case ISD::AND: {
2620     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2621       break;
2622 
2623     return performAndCombine(N, DCI);
2624   }
2625   case ISD::MUL:
2626     return performMulCombine(N, DCI);
2627   case AMDGPUISD::MUL_I24:
2628   case AMDGPUISD::MUL_U24: {
2629     SDValue N0 = N->getOperand(0);
2630     SDValue N1 = N->getOperand(1);
2631     simplifyI24(N0, DCI);
2632     simplifyI24(N1, DCI);
2633     return SDValue();
2634   }
2635   case ISD::SELECT:
2636     return performSelectCombine(N, DCI);
2637   case AMDGPUISD::BFE_I32:
2638   case AMDGPUISD::BFE_U32: {
2639     assert(!N->getValueType(0).isVector() &&
2640            "Vector handling of BFE not implemented");
2641     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2642     if (!Width)
2643       break;
2644 
2645     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2646     if (WidthVal == 0)
2647       return DAG.getConstant(0, DL, MVT::i32);
2648 
2649     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2650     if (!Offset)
2651       break;
2652 
2653     SDValue BitsFrom = N->getOperand(0);
2654     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2655 
2656     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2657 
2658     if (OffsetVal == 0) {
2659       // This is already sign / zero extended, so try to fold away extra BFEs.
2660       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2661 
2662       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2663       if (OpSignBits >= SignBits)
2664         return BitsFrom;
2665 
2666       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2667       if (Signed) {
2668         // This is a sign_extend_inreg. Replace it to take advantage of existing
2669         // DAG Combines. If not eliminated, we will match back to BFE during
2670         // selection.
2671 
2672         // TODO: The sext_inreg of extended types ends, although we can could
2673         // handle them in a single BFE.
2674         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2675                            DAG.getValueType(SmallVT));
2676       }
2677 
2678       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2679     }
2680 
2681     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2682       if (Signed) {
2683         return constantFoldBFE<int32_t>(DAG,
2684                                         CVal->getSExtValue(),
2685                                         OffsetVal,
2686                                         WidthVal,
2687                                         DL);
2688       }
2689 
2690       return constantFoldBFE<uint32_t>(DAG,
2691                                        CVal->getZExtValue(),
2692                                        OffsetVal,
2693                                        WidthVal,
2694                                        DL);
2695     }
2696 
2697     if ((OffsetVal + WidthVal) >= 32) {
2698       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
2699       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2700                          BitsFrom, ShiftVal);
2701     }
2702 
2703     if (BitsFrom.hasOneUse()) {
2704       APInt Demanded = APInt::getBitsSet(32,
2705                                          OffsetVal,
2706                                          OffsetVal + WidthVal);
2707 
2708       APInt KnownZero, KnownOne;
2709       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2710                                             !DCI.isBeforeLegalizeOps());
2711       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2712       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2713           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2714                                    KnownZero, KnownOne, TLO)) {
2715         DCI.CommitTargetLoweringOpt(TLO);
2716       }
2717     }
2718 
2719     break;
2720   }
2721   case ISD::LOAD:
2722     return performLoadCombine(N, DCI);
2723   case ISD::STORE:
2724     return performStoreCombine(N, DCI);
2725   }
2726   return SDValue();
2727 }
2728 
2729 //===----------------------------------------------------------------------===//
2730 // Helper functions
2731 //===----------------------------------------------------------------------===//
2732 
getOriginalFunctionArgs(SelectionDAG & DAG,const Function * F,const SmallVectorImpl<ISD::InputArg> & Ins,SmallVectorImpl<ISD::InputArg> & OrigIns) const2733 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2734                                SelectionDAG &DAG,
2735                                const Function *F,
2736                                const SmallVectorImpl<ISD::InputArg> &Ins,
2737                                SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2738 
2739   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2740     if (Ins[i].ArgVT == Ins[i].VT) {
2741       OrigIns.push_back(Ins[i]);
2742       continue;
2743     }
2744 
2745     EVT VT;
2746     if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2747       // Vector has been split into scalars.
2748       VT = Ins[i].ArgVT.getVectorElementType();
2749     } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2750                Ins[i].ArgVT.getVectorElementType() !=
2751                Ins[i].VT.getVectorElementType()) {
2752       // Vector elements have been promoted
2753       VT = Ins[i].ArgVT;
2754     } else {
2755       // Vector has been spilt into smaller vectors.
2756       VT = Ins[i].VT;
2757     }
2758 
2759     ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2760                       Ins[i].OrigArgIndex, Ins[i].PartOffset);
2761     OrigIns.push_back(Arg);
2762   }
2763 }
2764 
CreateLiveInRegister(SelectionDAG & DAG,const TargetRegisterClass * RC,unsigned Reg,EVT VT) const2765 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2766                                                   const TargetRegisterClass *RC,
2767                                                    unsigned Reg, EVT VT) const {
2768   MachineFunction &MF = DAG.getMachineFunction();
2769   MachineRegisterInfo &MRI = MF.getRegInfo();
2770   unsigned VirtualRegister;
2771   if (!MRI.isLiveIn(Reg)) {
2772     VirtualRegister = MRI.createVirtualRegister(RC);
2773     MRI.addLiveIn(Reg, VirtualRegister);
2774   } else {
2775     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2776   }
2777   return DAG.getRegister(VirtualRegister, VT);
2778 }
2779 
getImplicitParameterOffset(const AMDGPUMachineFunction * MFI,const ImplicitParameter Param) const2780 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
2781     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
2782   uint64_t ArgOffset = MFI->ABIArgOffset;
2783   switch (Param) {
2784   case GRID_DIM:
2785     return ArgOffset;
2786   case GRID_OFFSET:
2787     return ArgOffset + 4;
2788   }
2789   llvm_unreachable("unexpected implicit parameter type");
2790 }
2791 
2792 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2793 
getTargetNodeName(unsigned Opcode) const2794 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2795   switch ((AMDGPUISD::NodeType)Opcode) {
2796   case AMDGPUISD::FIRST_NUMBER: break;
2797   // AMDIL DAG nodes
2798   NODE_NAME_CASE(CALL);
2799   NODE_NAME_CASE(UMUL);
2800   NODE_NAME_CASE(BRANCH_COND);
2801 
2802   // AMDGPU DAG nodes
2803   NODE_NAME_CASE(ENDPGM)
2804   NODE_NAME_CASE(RETURN)
2805   NODE_NAME_CASE(DWORDADDR)
2806   NODE_NAME_CASE(FRACT)
2807   NODE_NAME_CASE(CLAMP)
2808   NODE_NAME_CASE(COS_HW)
2809   NODE_NAME_CASE(SIN_HW)
2810   NODE_NAME_CASE(FMAX_LEGACY)
2811   NODE_NAME_CASE(FMIN_LEGACY)
2812   NODE_NAME_CASE(FMAX3)
2813   NODE_NAME_CASE(SMAX3)
2814   NODE_NAME_CASE(UMAX3)
2815   NODE_NAME_CASE(FMIN3)
2816   NODE_NAME_CASE(SMIN3)
2817   NODE_NAME_CASE(UMIN3)
2818   NODE_NAME_CASE(FMED3)
2819   NODE_NAME_CASE(SMED3)
2820   NODE_NAME_CASE(UMED3)
2821   NODE_NAME_CASE(URECIP)
2822   NODE_NAME_CASE(DIV_SCALE)
2823   NODE_NAME_CASE(DIV_FMAS)
2824   NODE_NAME_CASE(DIV_FIXUP)
2825   NODE_NAME_CASE(TRIG_PREOP)
2826   NODE_NAME_CASE(RCP)
2827   NODE_NAME_CASE(RSQ)
2828   NODE_NAME_CASE(RSQ_LEGACY)
2829   NODE_NAME_CASE(RSQ_CLAMP)
2830   NODE_NAME_CASE(LDEXP)
2831   NODE_NAME_CASE(FP_CLASS)
2832   NODE_NAME_CASE(DOT4)
2833   NODE_NAME_CASE(CARRY)
2834   NODE_NAME_CASE(BORROW)
2835   NODE_NAME_CASE(BFE_U32)
2836   NODE_NAME_CASE(BFE_I32)
2837   NODE_NAME_CASE(BFI)
2838   NODE_NAME_CASE(BFM)
2839   NODE_NAME_CASE(FFBH_U32)
2840   NODE_NAME_CASE(MUL_U24)
2841   NODE_NAME_CASE(MUL_I24)
2842   NODE_NAME_CASE(MAD_U24)
2843   NODE_NAME_CASE(MAD_I24)
2844   NODE_NAME_CASE(TEXTURE_FETCH)
2845   NODE_NAME_CASE(EXPORT)
2846   NODE_NAME_CASE(CONST_ADDRESS)
2847   NODE_NAME_CASE(REGISTER_LOAD)
2848   NODE_NAME_CASE(REGISTER_STORE)
2849   NODE_NAME_CASE(LOAD_INPUT)
2850   NODE_NAME_CASE(SAMPLE)
2851   NODE_NAME_CASE(SAMPLEB)
2852   NODE_NAME_CASE(SAMPLED)
2853   NODE_NAME_CASE(SAMPLEL)
2854   NODE_NAME_CASE(CVT_F32_UBYTE0)
2855   NODE_NAME_CASE(CVT_F32_UBYTE1)
2856   NODE_NAME_CASE(CVT_F32_UBYTE2)
2857   NODE_NAME_CASE(CVT_F32_UBYTE3)
2858   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2859   NODE_NAME_CASE(CONST_DATA_PTR)
2860   NODE_NAME_CASE(PC_ADD_REL_OFFSET)
2861   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
2862   NODE_NAME_CASE(SENDMSG)
2863   NODE_NAME_CASE(INTERP_MOV)
2864   NODE_NAME_CASE(INTERP_P1)
2865   NODE_NAME_CASE(INTERP_P2)
2866   NODE_NAME_CASE(STORE_MSKOR)
2867   NODE_NAME_CASE(LOAD_CONSTANT)
2868   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2869   NODE_NAME_CASE(ATOMIC_CMP_SWAP)
2870   NODE_NAME_CASE(ATOMIC_INC)
2871   NODE_NAME_CASE(ATOMIC_DEC)
2872   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
2873   }
2874   return nullptr;
2875 }
2876 
getRsqrtEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps,bool & UseOneConstNR) const2877 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2878                                                DAGCombinerInfo &DCI,
2879                                                unsigned &RefinementSteps,
2880                                                bool &UseOneConstNR) const {
2881   SelectionDAG &DAG = DCI.DAG;
2882   EVT VT = Operand.getValueType();
2883 
2884   if (VT == MVT::f32) {
2885     RefinementSteps = 0;
2886     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2887   }
2888 
2889   // TODO: There is also f64 rsq instruction, but the documentation is less
2890   // clear on its precision.
2891 
2892   return SDValue();
2893 }
2894 
getRecipEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps) const2895 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2896                                                DAGCombinerInfo &DCI,
2897                                                unsigned &RefinementSteps) const {
2898   SelectionDAG &DAG = DCI.DAG;
2899   EVT VT = Operand.getValueType();
2900 
2901   if (VT == MVT::f32) {
2902     // Reciprocal, < 1 ulp error.
2903     //
2904     // This reciprocal approximation converges to < 0.5 ulp error with one
2905     // newton rhapson performed with two fused multiple adds (FMAs).
2906 
2907     RefinementSteps = 0;
2908     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2909   }
2910 
2911   // TODO: There is also f64 rcp instruction, but the documentation is less
2912   // clear on its precision.
2913 
2914   return SDValue();
2915 }
2916 
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const2917 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2918   const SDValue Op,
2919   APInt &KnownZero,
2920   APInt &KnownOne,
2921   const SelectionDAG &DAG,
2922   unsigned Depth) const {
2923 
2924   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2925 
2926   APInt KnownZero2;
2927   APInt KnownOne2;
2928   unsigned Opc = Op.getOpcode();
2929 
2930   switch (Opc) {
2931   default:
2932     break;
2933   case AMDGPUISD::CARRY:
2934   case AMDGPUISD::BORROW: {
2935     KnownZero = APInt::getHighBitsSet(32, 31);
2936     break;
2937   }
2938 
2939   case AMDGPUISD::BFE_I32:
2940   case AMDGPUISD::BFE_U32: {
2941     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2942     if (!CWidth)
2943       return;
2944 
2945     unsigned BitWidth = 32;
2946     uint32_t Width = CWidth->getZExtValue() & 0x1f;
2947 
2948     if (Opc == AMDGPUISD::BFE_U32)
2949       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2950 
2951     break;
2952   }
2953   }
2954 }
2955 
ComputeNumSignBitsForTargetNode(SDValue Op,const SelectionDAG & DAG,unsigned Depth) const2956 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2957   SDValue Op,
2958   const SelectionDAG &DAG,
2959   unsigned Depth) const {
2960   switch (Op.getOpcode()) {
2961   case AMDGPUISD::BFE_I32: {
2962     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2963     if (!Width)
2964       return 1;
2965 
2966     unsigned SignBits = 32 - Width->getZExtValue() + 1;
2967     if (!isNullConstant(Op.getOperand(1)))
2968       return SignBits;
2969 
2970     // TODO: Could probably figure something out with non-0 offsets.
2971     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2972     return std::max(SignBits, Op0SignBits);
2973   }
2974 
2975   case AMDGPUISD::BFE_U32: {
2976     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2977     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2978   }
2979 
2980   case AMDGPUISD::CARRY:
2981   case AMDGPUISD::BORROW:
2982     return 31;
2983 
2984   default:
2985     return 1;
2986   }
2987 }
2988