• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <android-base/properties.h>
18 #include <gtest/gtest.h>
19 
20 #include <algorithm>
21 #include <map>
22 #include <memory>
23 #include <set>
24 #include <string>
25 #include <utility>
26 
27 #include "GeneratedTestUtils.h"
28 #include "TestHarness.h"
29 #include "TestNeuralNetworksWrapper.h"
30 #include "fuzzing/OperationManager.h"
31 #include "fuzzing/RandomGraphGenerator.h"
32 #include "fuzzing/RandomGraphGeneratorUtils.h"
33 
34 #ifndef NNTEST_CTS
35 #include <HalInterfaces.h>
36 #include <SampleDriverFull.h>
37 #include <memunreachable/memunreachable.h>
38 
39 #include <vector>
40 
41 #include "HalUtils.h"
42 #include "Manager.h"
43 
44 using android::nn::sample_driver::SampleDriverFull;
45 
46 #endif
47 
48 namespace android {
49 namespace nn {
50 namespace fuzzing_test {
51 
52 using namespace test_helper;
53 using test_wrapper::Result;
54 constexpr char kRefDeviceName[] = "nnapi-reference";
55 
56 #ifndef NNTEST_CTS
57 class TestDriverV1_2 : public SampleDriverFull {
58    public:
TestDriverV1_2()59     TestDriverV1_2() : SampleDriverFull(name, {.execTime = 0.9f, .powerUsage = 0.9f}) {}
60     static constexpr char name[] = "TestDriverV1_2";
61 };
62 
63 // Like SampleDriverFull, but implementing 1.1
64 class TestDriverV1_1 : public V1_1::IDevice {
65    public:
TestDriverV1_1()66     TestDriverV1_1()
67         : mDriverV1_2(new SampleDriverFull(name, {.execTime = 0.8f, .powerUsage = 0.8f})) {}
68     static constexpr char name[] = "TestDriverV1_1";
getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb)69     hardware::Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override {
70         return mDriverV1_2->getCapabilities_1_1(_hidl_cb);
71     }
getSupportedOperations_1_1(const V1_1::Model & model,getSupportedOperations_1_1_cb _hidl_cb)72     hardware::Return<void> getSupportedOperations_1_1(
73             const V1_1::Model& model, getSupportedOperations_1_1_cb _hidl_cb) override {
74         return mDriverV1_2->getSupportedOperations_1_1(model, _hidl_cb);
75     }
prepareModel_1_1(const V1_1::Model & model,V1_1::ExecutionPreference preference,const sp<V1_0::IPreparedModelCallback> & actualCallback)76     hardware::Return<V1_0::ErrorStatus> prepareModel_1_1(
77             const V1_1::Model& model, V1_1::ExecutionPreference preference,
78             const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
79         return mDriverV1_2->prepareModel_1_1(model, preference, actualCallback);
80     }
getStatus()81     hardware::Return<V1_0::DeviceStatus> getStatus() override { return mDriverV1_2->getStatus(); }
getCapabilities(getCapabilities_cb _hidl_cb)82     hardware::Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
83         return mDriverV1_2->getCapabilities(_hidl_cb);
84     }
getSupportedOperations(const V1_0::Model & model,getSupportedOperations_cb _hidl_cb)85     hardware::Return<void> getSupportedOperations(const V1_0::Model& model,
86                                                   getSupportedOperations_cb _hidl_cb) override {
87         return mDriverV1_2->getSupportedOperations(model, _hidl_cb);
88     }
prepareModel(const V1_0::Model & model,const sp<V1_0::IPreparedModelCallback> & actualCallback)89     hardware::Return<V1_0::ErrorStatus> prepareModel(
90             const V1_0::Model& model,
91             const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
92         return mDriverV1_2->prepareModel(model, actualCallback);
93     }
94 
95    private:
96     const sp<V1_2::IDevice> mDriverV1_2;
97 };
98 
99 // Like SampleDriverFull, but implementing 1.0
100 class TestDriverV1_0 : public V1_0::IDevice {
101    public:
TestDriverV1_0()102     TestDriverV1_0()
103         : mDriverV1_2(new SampleDriverFull(name, {.execTime = 0.7f, .powerUsage = 0.7f})) {}
104     static constexpr char name[] = "TestDriverV1_0";
getCapabilities(getCapabilities_cb _hidl_cb)105     hardware::Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
106         return mDriverV1_2->getCapabilities(_hidl_cb);
107     }
getSupportedOperations(const V1_0::Model & model,getSupportedOperations_cb _hidl_cb)108     hardware::Return<void> getSupportedOperations(const V1_0::Model& model,
109                                                   getSupportedOperations_cb _hidl_cb) override {
110         return mDriverV1_2->getSupportedOperations(model, _hidl_cb);
111     }
prepareModel(const V1_0::Model & model,const sp<V1_0::IPreparedModelCallback> & actualCallback)112     hardware::Return<V1_0::ErrorStatus> prepareModel(
113             const V1_0::Model& model,
114             const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
115         return mDriverV1_2->prepareModel(model, actualCallback);
116     }
getStatus()117     hardware::Return<V1_0::DeviceStatus> getStatus() override { return mDriverV1_2->getStatus(); }
118 
119    private:
120     const sp<V1_2::IDevice> mDriverV1_2;
121 };
122 
123 #endif
124 
125 // NN API fuzzer logging setting comes from system property debug.nn.fuzzer.log and
126 // debug.nn.fuzzer.dumpspec.
127 // * setprop debug.nn.fuzzer.log 1 : enable logging.
128 // * setprop debug.nn.fuzzer.log 0 : silence logging.
129 // * setprop debug.nn.fuzzer.dumpspec 1 : dump the randomly generated graph to a spec file.
130 // * setprop debug.nn.fuzzer.dumpspec 0 : do not dump the graph.
131 //
132 // Logs and spec files are dumped to /data/local/tmp/${testname}.{log,mod.py},
133 // e.g. for test case TestRandomGraph/RandomGraphTest/Large/0,
134 //      log : /data/local/tmp/TestRandomGraph_RandomGraphTest_Large_0.log
135 //      spec: /data/local/tmp/TestRandomGraph_RandomGraphTest_Large_0.mod.py
136 //
137 class RandomGraphTest : public ::testing::TestWithParam<uint32_t> {
138    public:
SetUpTestCase()139     static void SetUpTestCase() {
140 #ifndef NNTEST_CTS
141         mEnableLog = ::android::base::GetProperty("debug.nn.fuzzer.log", "") == "1";
142         mDumpSpec = ::android::base::GetProperty("debug.nn.fuzzer.dumpspec", "") == "1";
143         mDetectMemoryLeak = ::android::base::GetProperty("debug.nn.fuzzer.detectleak", "") == "1";
144 
145         mStandardDevices = DeviceManager::get()->forTest_getDevices();
146         mSyntheticDevices.push_back(DeviceManager::forTest_makeDriverDevice(
147                 makeSharedDevice(TestDriverV1_2::name, new TestDriverV1_2)));
148         mSyntheticDevices.push_back(DeviceManager::forTest_makeDriverDevice(
149                 makeSharedDevice(TestDriverV1_1::name, new TestDriverV1_1)));
150         mSyntheticDevices.push_back(DeviceManager::forTest_makeDriverDevice(
151                 makeSharedDevice(TestDriverV1_0::name, new TestDriverV1_0)));
152 #endif
153         mVndkVersion = ::android::base::GetIntProperty("ro.vndk.version", __ANDROID_API_FUTURE__);
154 
155         // Get all the devices and device names.
156         mStandardDevicesFeatureLevel = __ANDROID_API_FUTURE__;
157         uint32_t numDevices = 0;
158         ASSERT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR);
159         for (uint32_t i = 0; i < numDevices; i++) {
160             ANeuralNetworksDevice* device = nullptr;
161             const char* name = nullptr;
162             int64_t featureLevel;
163             ASSERT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR);
164             ASSERT_EQ(ANeuralNetworksDevice_getName(device, &name), ANEURALNETWORKS_NO_ERROR);
165             ASSERT_EQ(ANeuralNetworksDevice_getFeatureLevel(device, &featureLevel),
166                       ANEURALNETWORKS_NO_ERROR);
167             mDevices.emplace(name, device);
168             mStandardDevicesFeatureLevel = std::min(mStandardDevicesFeatureLevel, featureLevel);
169         }
170     }
171 
172    protected:
SetUp()173     virtual void SetUp() override {
174         // Initialize logging.
175         const ::testing::TestInfo* const testInfo =
176                 ::testing::UnitTest::GetInstance()->current_test_info();
177         mTestName = mTestName + testInfo->test_case_name() + "_" + testInfo->name();
178         std::replace(mTestName.begin(), mTestName.end(), '/', '_');
179         if (mEnableLog) NN_FUZZER_LOG_INIT("/data/local/tmp/" + mTestName + ".log");
180     }
181 
TearDown()182     virtual void TearDown() override {
183         NN_FUZZER_LOG_CLOSE;
184         // Dump test results on failure for debugging.
185         if (::testing::Test::HasFailure() || mDumpSpec) {
186             dumpTestResults();
187         }
188 #ifndef NNTEST_CTS
189         if (mDetectMemoryLeak) {
190             ASSERT_TRUE(NoLeaks());
191         }
192 #endif
193     }
194 
shouldSkipTest(int64_t featureLevel)195     bool shouldSkipTest(int64_t featureLevel) {
196         static const std::set<std::string> kDisabledTests = {
197                 // In this test, the RGG produces a non-sensible graph with extreme large output
198                 // gain and highly clamped output range.
199                 // TODO: Currently quantized buffer values are uniformly distributed within
200                 //       [0, 255]. We should investigate on a better buffer value generation
201                 //       algorithm that represents the real-world cases.
202                 "TestRandomGraph_SingleOperationTest_CONV_2D_V1_2_40",
203                 "TestRandomGraph_SingleOperationTest_DEPTHWISE_CONV_2D_V1_0_32",
204         };
205         if (kDisabledTests.find(mTestName) != kDisabledTests.end()) return true;
206         for (const auto& op : mTestModel.main.operations) {
207             // Skip if testing BATCH_TO_SPACE_ND with batch dimension == 1.
208             if (op.type == TestOperationType::BATCH_TO_SPACE_ND &&
209                 mTestModel.main.operands[op.inputs[0]].dimensions[0] == 1 &&
210                 featureLevel <= __ANDROID_API_Q__) {
211                 return true;
212             }
213             // L2_NORMALIZATION on axis of all zeros is undefined before R.
214             if (op.type == TestOperationType::L2_NORMALIZATION &&
215                 featureLevel <= __ANDROID_API_Q__) {
216                 return true;
217             }
218             // Skip the following operations for 1.2 and earlier devices.
219             if ((op.type == TestOperationType::ADD || op.type == TestOperationType::SUB ||
220                  op.type == TestOperationType::MAXIMUM || op.type == TestOperationType::MINIMUM ||
221                  op.type == TestOperationType::ROI_ALIGN) &&
222                 mTestModel.main.operands[op.inputs[0]].type ==
223                         TestOperandType::TENSOR_QUANT8_ASYMM &&
224                 featureLevel <= __ANDROID_API_Q__) {
225                 return true;
226             }
227             // Skip the following operations when the VNDK version is earlier than R.
228             if (mVndkVersion < __ANDROID_API_R__ &&
229                 op.type == TestOperationType::HEATMAP_MAX_KEYPOINT) {
230                 return true;
231             }
232         }
233         return false;
234     }
235 
236     // Compute the golden output results of the test model on nnapi-reference. If possible, the
237     // golden results will be computed from an equivalent float32 model to avoid bias avoid bias
238     // from quantized CPU implementation.
computeGoldenResults()239     void computeGoldenResults() {
240         SCOPED_TRACE("computeGoldenResults");
241 
242         // Convert the test model to an equivalent float32 model if possible.
243         auto fpModel = convertToFloat32Model(mTestModel);
244         const TestModel& goldenModel = fpModel.has_value() ? fpModel.value() : mTestModel;
245 
246         // Create model.
247         generated_tests::GeneratedModel model;
248         generated_tests::createModel(goldenModel, &model);
249         ASSERT_TRUE(model.isValid());
250         ASSERT_EQ(model.finish(), Result::NO_ERROR);
251 
252         // Create compilation for nnapi-reference.
253         ASSERT_TRUE(mDevices.find(kRefDeviceName) != mDevices.end());
254         const auto refDevice = mDevices[kRefDeviceName];
255         auto [result, compilation] = test_wrapper::Compilation::createForDevice(&model, refDevice);
256         ASSERT_EQ(result, Result::NO_ERROR);
257         ASSERT_EQ(compilation.finish(), Result::NO_ERROR);
258 
259         // Create request.
260         test_wrapper::Execution execution(&compilation);
261         std::vector<TestBuffer> outputs;
262         generated_tests::createRequest(goldenModel, &execution, &outputs);
263 
264         // Compute result.
265         ASSERT_EQ(execution.compute(), Result::NO_ERROR);
266 
267         if (fpModel.has_value()) {
268             // Quantize the execution results as golden values.
269             setExpectedOutputsFromFloat32Results(outputs, &mTestModel);
270         } else {
271             for (uint32_t i = 0; i < outputs.size(); i++) {
272                 auto outputIndex = mTestModel.main.outputIndexes[i];
273                 mTestModel.main.operands[outputIndex].data = outputs[i];
274             }
275         }
276     }
277 
278     // Compile and execute the generated graph on a device selected by name.
computeAndVerifyResultsForDevice(const test_wrapper::Model * model,uint32_t numOps,const std::string & name)279     void computeAndVerifyResultsForDevice(const test_wrapper::Model* model, uint32_t numOps,
280                                           const std::string& name) {
281         SCOPED_TRACE("Device: " + name);
282         std::cout << "[          ] - RUN:  " << name << "\n";
283         ASSERT_TRUE(mDevices.find(name) != mDevices.end());
284         const auto device = mDevices[name];
285 
286         // Check if the device fully supports the graph.
287         constexpr int kMaxNumberOperations = 1000;
288         ASSERT_TRUE(numOps <= kMaxNumberOperations);
289         bool supported[kMaxNumberOperations] = {false};
290         ASSERT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(model->getHandle(), &device,
291                                                                         1, supported),
292                   ANEURALNETWORKS_NO_ERROR);
293         if (!std::all_of(supported, supported + numOps, [](bool v) { return v; })) {
294             std::cout << "[          ]   SKIP: " << name << " does not support the graph.\n";
295             return;
296         }
297 
298         // Since this test is introduced in Android Q, we only check the accuracy of output results
299         // if the device has feature level >= Q (API level 29). For pre-Q devices, we allow
300         // them to produce less accurate results, but must not hang or crash.
301         int64_t featureLevel;
302         ASSERT_EQ(ANeuralNetworksDevice_getFeatureLevel(device, &featureLevel),
303                   ANEURALNETWORKS_NO_ERROR);
304         if (shouldSkipTest(featureLevel)) return;
305 
306         // Create compilation for device.
307         auto [result, compilation] = test_wrapper::Compilation::createForDevice(model, device);
308         ASSERT_EQ(result, Result::NO_ERROR);
309         Result compileReturn = compilation.finish();
310         // Even if the model is fully supported, the compilation may still fail, e.g. each operation
311         // is supported, but model is too big (too many operations and/or too-large constants) for
312         // device.
313         if (compileReturn == Result::OP_FAILED) {
314             std::cout << "[          ]   SKIP: " << name << " failed at compilation step.\n";
315             return;
316         }
317         ASSERT_EQ(compileReturn, Result::NO_ERROR);
318 
319         // Create request.
320         test_wrapper::Execution execution(&compilation);
321         std::vector<TestBuffer> outputs;
322         generated_tests::createRequest(mTestModel, &execution, &outputs);
323 
324         // Compute result.
325         Result executeReturn = execution.compute();
326         // Even if the model is fully supported and the compilation succeeds, the execution may
327         // still fail, e.g. there may be operand shapes that are unknown until execution time, and
328         // at execution time turn out to be too big.
329         if (executeReturn == Result::OP_FAILED) {
330             std::cout << "[          ]   SKIP: " << name << " failed at execution step.\n";
331             return;
332         }
333         ASSERT_EQ(executeReturn, Result::NO_ERROR);
334 
335         if (featureLevel >= __ANDROID_API_Q__) {
336             checkResults(mTestModel, outputs, mCriteria);
337             mResults.emplace_back(name, std::move(outputs));
338         }
339     }
340 
341     // Compile and execute the generated graph normally (i.e., allow runtime to
342     // distribute across devices).
computeAndVerifyResults(const std::string & name,const test_wrapper::Model * model,bool shouldCheckResults)343     void computeAndVerifyResults(const std::string& name, const test_wrapper::Model* model,
344                                  bool shouldCheckResults) {
345         // Because we're not using the introspection/control API, the CpuDevice
346         // is available as a fallback, and hence we assume that compilation and
347         // execution will succeed.
348         SCOPED_TRACE(name);
349         std::cout << "[          ] - RUN:  " << name << "\n";
350 
351         // Create compilation.
352         test_wrapper::Compilation compilation(model);
353         ASSERT_EQ(compilation.finish(), Result::NO_ERROR);
354 
355         // Create request.
356         test_wrapper::Execution execution(&compilation);
357         std::vector<TestBuffer> outputs;
358         generated_tests::createRequest(mTestModel, &execution, &outputs);
359 
360         // Compute and verify result.
361         ASSERT_EQ(execution.compute(), Result::NO_ERROR);
362         if (shouldCheckResults) {
363             checkResults(mTestModel, outputs, mCriteria);
364             mResults.emplace_back(name, std::move(outputs));
365         }
366     }
367 
368     // Main test entrance.
testRandomGraph(uint32_t numOperations,uint32_t dimensionRange)369     void testRandomGraph(uint32_t numOperations, uint32_t dimensionRange) {
370         // Generate a random graph.
371         RandomGraph graph;
372         ASSERT_TRUE(graph.generate(kSeed, numOperations, dimensionRange));
373 
374         // Create a model from the random graph.
375         mTestModel = graph.createTestModel();
376 
377         generated_tests::GeneratedModel model;
378         generated_tests::createModel(mTestModel, &model);
379         ASSERT_TRUE(model.isValid());
380         ASSERT_EQ(model.finish(), Result::NO_ERROR);
381 
382         // Compute reference results.
383         computeGoldenResults();
384 
385         // Compute on each available device.
386         for (auto& pair : mDevices) {
387             computeAndVerifyResultsForDevice(&model, numOperations, pair.first);
388         }
389 
390         if (numOperations > 1) {
391             if (!shouldSkipTest(mStandardDevicesFeatureLevel)) {
392                 // Compute normally (i.e., allow runtime to distribute across devices).
393                 computeAndVerifyResults("Compute normally", &model,
394                                         mStandardDevicesFeatureLevel >= __ANDROID_API_Q__);
395             }
396 
397 #ifndef NNTEST_CTS
398             {
399                 // Stress partitioner by allowing runtime to distribute across
400                 // three synthetic devices.  The synthetic devices use the
401                 // CpuExecutor for execution, so we always check results, even
402                 // though some are of feature level < __ANDROID_API_Q__: In this
403                 // case, we don't take feature level as an indication of
404                 // reliability, as we do with real devices.
405                 DeviceManager::get()->forTest_setDevices(mSyntheticDevices);
406                 computeAndVerifyResults("Compute across synthetic devices", &model, true);
407                 DeviceManager::get()->forTest_setDevices(mStandardDevices);
408             }
409 #endif
410         }
411     }
412 
dumpTestResults()413     void dumpTestResults() {
414         std::ofstream os("/data/local/tmp/" + mTestName + ".mod.py");
415         ASSERT_TRUE(os.is_open());
416         os << "# Generated from " << mTestName << ". Do not edit.\n\n";
417         SpecDumper dumper(mTestModel, os);
418         dumper.dumpTestModel();
419         for (const auto& [name, results] : mResults) {
420             dumper.dumpResults(name, results);
421         }
422     }
423 
424     enum GraphSize : uint32_t { SINGLE = 1, SMALL = 5, LARGE = 40 };
425     enum DimensionRange : uint32_t { NARROW = 10, WIDE = 1000 };
426 
427     static bool mEnableLog;
428     static bool mDumpSpec;
429     static bool mDetectMemoryLeak;
430     static std::map<std::string, ANeuralNetworksDevice*> mDevices;
431 
432     const uint32_t kSeed = GetParam();
433     std::string mTestName;
434     TestModel mTestModel;
435     AccuracyCriteria mCriteria;
436 
437     // A vector of {name, output_results}.
438     std::vector<std::pair<std::string, std::vector<TestBuffer>>> mResults;
439 
440     static int mVndkVersion;
441     static int64_t mStandardDevicesFeatureLevel;  // minimum across all devices
442 #ifndef NNTEST_CTS
443     static std::vector<std::shared_ptr<Device>> mStandardDevices;
444     static std::vector<std::shared_ptr<Device>> mSyntheticDevices;
445 #endif
446 };
447 
448 bool RandomGraphTest::mEnableLog = false;
449 bool RandomGraphTest::mDumpSpec = false;
450 bool RandomGraphTest::mDetectMemoryLeak = false;
451 std::map<std::string, ANeuralNetworksDevice*> RandomGraphTest::mDevices;
452 
453 int RandomGraphTest::mVndkVersion = __ANDROID_API_FUTURE__;
454 int64_t RandomGraphTest::mStandardDevicesFeatureLevel;
455 #ifndef NNTEST_CTS
456 std::vector<std::shared_ptr<Device>> RandomGraphTest::mStandardDevices;
457 std::vector<std::shared_ptr<Device>> RandomGraphTest::mSyntheticDevices;
458 #endif
459 
460 // Single-op graph with dimensions in range [1, 1000].
461 class SingleOperationTest : public RandomGraphTest {};
462 #define TEST_SINGLE_OPERATION(operation, halVersion, criteria)               \
463     TEST_P(SingleOperationTest, operation##_##halVersion) {                  \
464         OperationFilter filter = {.opcodes = {TestOperationType::operation}, \
465                                   .versions = {TestHalVersion::halVersion}}; \
466         OperationManager::get()->applyFilter(filter);                        \
467         mCriteria = (criteria);                                              \
468         testRandomGraph(GraphSize::SINGLE, DimensionRange::WIDE);            \
469     }
470 
471 // TODO: Adjust the accuracy criteria based on testing.
472 // We define three sets of accuracy criteria for single-operation tests.
473 
474 // This is for operations that only copy buffers around without any computation on buffer values.
475 // Most of these operations fall into categories of reshape or selection, e.g. RESHAPE, GATHER.
476 // Additionally, operations with only logical or comparison arithmetic also use this criteria, e.g.
477 // EQUAL, ARGMAX, TOPK_V2.
478 const AccuracyCriteria kStrictCriteria = {
479         .float32 = {.bias = 1e-7f, .mse = 1e-10f, .atol = 1e-6f, .rtol = 1e-6f},
480         .float16 = {.bias = 1e-4f, .mse = 1e-8f, .atol = 1e-3f, .rtol = 1e-3f},
481         .int32 = {.atol = 1},
482         .quant8Asymm = {.bias = 0.1f, .mse = 0.1f, .atol = 1},
483         .quant8AsymmSigned = {.bias = 0.1f, .mse = 0.1f, .atol = 1},
484         .quant8Symm = {.bias = 0.1f, .mse = 0.1f, .atol = 1},
485         .quant16Asymm = {.bias = 0.1f, .mse = 0.1f, .atol = 1},
486         .quant16Symm = {.bias = 0.1f, .mse = 0.1f, .atol = 1},
487 };
488 
489 // This is for operations that only do simple and single computation on buffer values, such as
490 // addition, multiplication, or requantization. Most of these operations fall into categories of
491 // broadcast or elementwise, e.g ADD, FLOOR.
492 const AccuracyCriteria kMediumCriteria = {
493         .float32 = {.bias = 1e-6f, .mse = 1e-8f, .atol = 1e-5f, .rtol = 1e-5f},
494         .float16 = {.bias = 1e-3f, .mse = 1e-5f, .atol = 1e-2f, .rtol = 1e-2f},
495         .int32 = {.atol = 1},
496         .quant8Asymm = {.bias = 1.2, .mse = 1.2, .atol = 2},
497         .quant8AsymmSigned = {.bias = 1.2, .mse = 1.2, .atol = 2},
498         .quant8Symm = {.bias = 1.2, .mse = 1.2, .atol = 2},
499         .quant16Asymm = {.bias = 1.2, .mse = 1.2, .atol = 2},
500         .quant16Symm = {.bias = 1.2, .mse = 1.2, .atol = 2},
501 };
502 
503 // This is for operations that involve sophisticated computations on buffer values, either a single
504 // but complex transformation, e.g. LOGISTIC, or multiple transformations with accumulated errors,
505 // e.g. L2_NORMALIZATION, REDUCE_*.
506 const AccuracyCriteria kRelaxedCriteria = {
507         .float32 = {.bias = 3e-5f, .mse = 1e-6f, .atol = 1e-3f, .rtol = 1e-3f},
508         .float16 = {.bias = 5e-3f, .mse = 1e-3f, .atol = 1.0f, .rtol = 1.0f},
509         .int32 = {.atol = 1},
510         .quant8Asymm = {.bias = 1.5, .mse = 1.5, .atol = 10},
511         .quant8AsymmSigned = {.bias = 1.5, .mse = 1.5, .atol = 10},
512         .quant8Symm = {.bias = 1.5, .mse = 1.5, .atol = 10},
513         .quant16Asymm = {.bias = 1.5, .mse = 1.5, .atol = 10},
514         .quant16Symm = {.bias = 1.5, .mse = 1.5, .atol = 10},
515 };
516 
517 // This is for convolution operations with potentially large kernel size.
518 const AccuracyCriteria kConvCriteria = {
519         .float32 = {.bias = 4e-4f, .mse = 1e-5f, .atol = 2e-2f, .rtol = 2e-2f},
520         .float16 = {.bias = 5e-2f, .mse = 1e-2f, .atol = 1.0f, .rtol = 1.0f},
521         .int32 = {.atol = 1},
522         .quant8Asymm = {.bias = 1.5, .mse = 1.5, .atol = 10},
523         .quant8AsymmSigned = {.bias = 1.5, .mse = 1.5, .atol = 10},
524         .quant8Symm = {.bias = 1.5, .mse = 1.5, .atol = 10},
525         .quant16Asymm = {.bias = 1.5, .mse = 1.5, .atol = 10},
526         .quant16Symm = {.bias = 1.5, .mse = 1.5, .atol = 10},
527 };
528 
529 /*-- NNAPI 1.0 Operations ---------------------------------------------------*/
530 
531 // TODO: The following 1.0 operation signatures are currently not defined:
532 // - ANEURALNETWORKS_LSH_PROJECTION
533 // - ANEURALNETWORKS_LSTM
534 // - ANEURALNETWORKS_RNN
535 // - ANEURALNETWORKS_SVDF
536 
537 TEST_SINGLE_OPERATION(ADD, V1_0, kMediumCriteria);
538 TEST_SINGLE_OPERATION(MUL, V1_0, kMediumCriteria);
539 TEST_SINGLE_OPERATION(FLOOR, V1_0, kMediumCriteria);
540 TEST_SINGLE_OPERATION(LOGISTIC, V1_0, kRelaxedCriteria);
541 TEST_SINGLE_OPERATION(RELU, V1_0, kMediumCriteria);
542 TEST_SINGLE_OPERATION(RELU1, V1_0, kMediumCriteria);
543 TEST_SINGLE_OPERATION(RELU6, V1_0, kMediumCriteria);
544 TEST_SINGLE_OPERATION(TANH, V1_0, kRelaxedCriteria);
545 TEST_SINGLE_OPERATION(SOFTMAX, V1_0, kRelaxedCriteria);
546 TEST_SINGLE_OPERATION(L2_NORMALIZATION, V1_0, kRelaxedCriteria);
547 TEST_SINGLE_OPERATION(LOCAL_RESPONSE_NORMALIZATION, V1_0, kRelaxedCriteria);
548 TEST_SINGLE_OPERATION(AVERAGE_POOL_2D, V1_0, kRelaxedCriteria);
549 TEST_SINGLE_OPERATION(L2_POOL_2D, V1_0, kRelaxedCriteria);
550 TEST_SINGLE_OPERATION(MAX_POOL_2D, V1_0, kRelaxedCriteria);
551 TEST_SINGLE_OPERATION(CONV_2D, V1_0, kConvCriteria);
552 TEST_SINGLE_OPERATION(DEPTHWISE_CONV_2D, V1_0, kConvCriteria);
553 TEST_SINGLE_OPERATION(CONCATENATION, V1_0, kMediumCriteria);
554 TEST_SINGLE_OPERATION(RESIZE_BILINEAR, V1_0, kRelaxedCriteria);
555 TEST_SINGLE_OPERATION(DEPTH_TO_SPACE, V1_0, kStrictCriteria);
556 TEST_SINGLE_OPERATION(SPACE_TO_DEPTH, V1_0, kStrictCriteria);
557 TEST_SINGLE_OPERATION(EMBEDDING_LOOKUP, V1_0, kStrictCriteria);
558 TEST_SINGLE_OPERATION(HASHTABLE_LOOKUP, V1_0, kStrictCriteria);
559 TEST_SINGLE_OPERATION(FULLY_CONNECTED, V1_0, kRelaxedCriteria);
560 TEST_SINGLE_OPERATION(RESHAPE, V1_0, kStrictCriteria);
561 TEST_SINGLE_OPERATION(DEQUANTIZE, V1_0, kMediumCriteria);
562 
563 /*-- NNAPI 1.1 Operations ---------------------------------------------------*/
564 
565 TEST_SINGLE_OPERATION(SUB, V1_1, kMediumCriteria);
566 TEST_SINGLE_OPERATION(DIV, V1_1, kRelaxedCriteria);
567 TEST_SINGLE_OPERATION(BATCH_TO_SPACE_ND, V1_1, kStrictCriteria);
568 TEST_SINGLE_OPERATION(SPACE_TO_BATCH_ND, V1_1, kStrictCriteria);
569 TEST_SINGLE_OPERATION(MEAN, V1_1, kRelaxedCriteria);
570 TEST_SINGLE_OPERATION(PAD, V1_1, kStrictCriteria);
571 TEST_SINGLE_OPERATION(TRANSPOSE, V1_1, kStrictCriteria);
572 TEST_SINGLE_OPERATION(SQUEEZE, V1_1, kStrictCriteria);
573 TEST_SINGLE_OPERATION(STRIDED_SLICE, V1_1, kStrictCriteria);
574 
575 /*-- NNAPI 1.0 and 1.1 Operations with Extended Behavior in 1.2 -------------*/
576 
577 TEST_SINGLE_OPERATION(ADD, V1_2, kMediumCriteria);
578 TEST_SINGLE_OPERATION(MUL, V1_2, kMediumCriteria);
579 TEST_SINGLE_OPERATION(SUB, V1_2, kMediumCriteria);
580 TEST_SINGLE_OPERATION(DIV, V1_2, kRelaxedCriteria);
581 TEST_SINGLE_OPERATION(FLOOR, V1_2, kMediumCriteria);
582 TEST_SINGLE_OPERATION(LOGISTIC, V1_2, kRelaxedCriteria);
583 TEST_SINGLE_OPERATION(RELU, V1_2, kMediumCriteria);
584 TEST_SINGLE_OPERATION(RELU1, V1_2, kMediumCriteria);
585 TEST_SINGLE_OPERATION(RELU6, V1_2, kMediumCriteria);
586 TEST_SINGLE_OPERATION(TANH, V1_2, kRelaxedCriteria);
587 TEST_SINGLE_OPERATION(CONCATENATION, V1_2, kMediumCriteria);
588 TEST_SINGLE_OPERATION(DEPTH_TO_SPACE, V1_2, kStrictCriteria);
589 TEST_SINGLE_OPERATION(SPACE_TO_DEPTH, V1_2, kStrictCriteria);
590 TEST_SINGLE_OPERATION(BATCH_TO_SPACE_ND, V1_2, kStrictCriteria);
591 TEST_SINGLE_OPERATION(SPACE_TO_BATCH_ND, V1_2, kStrictCriteria);
592 TEST_SINGLE_OPERATION(FULLY_CONNECTED, V1_2, kRelaxedCriteria);
593 TEST_SINGLE_OPERATION(RESHAPE, V1_2, kStrictCriteria);
594 TEST_SINGLE_OPERATION(MEAN, V1_2, kRelaxedCriteria);
595 TEST_SINGLE_OPERATION(PAD, V1_2, kStrictCriteria);
596 TEST_SINGLE_OPERATION(TRANSPOSE, V1_2, kStrictCriteria);
597 TEST_SINGLE_OPERATION(CONV_2D, V1_2, kConvCriteria);
598 TEST_SINGLE_OPERATION(DEPTHWISE_CONV_2D, V1_2, kConvCriteria);
599 TEST_SINGLE_OPERATION(AVERAGE_POOL_2D, V1_2, kRelaxedCriteria);
600 TEST_SINGLE_OPERATION(L2_POOL_2D, V1_2, kRelaxedCriteria);
601 TEST_SINGLE_OPERATION(MAX_POOL_2D, V1_2, kRelaxedCriteria);
602 TEST_SINGLE_OPERATION(RESIZE_BILINEAR, V1_2, kRelaxedCriteria);
603 TEST_SINGLE_OPERATION(SOFTMAX, V1_2, kRelaxedCriteria);
604 TEST_SINGLE_OPERATION(L2_NORMALIZATION, V1_2, kRelaxedCriteria);
605 TEST_SINGLE_OPERATION(LOCAL_RESPONSE_NORMALIZATION, V1_2, kRelaxedCriteria);
606 TEST_SINGLE_OPERATION(DEQUANTIZE, V1_2, kMediumCriteria);
607 TEST_SINGLE_OPERATION(SQUEEZE, V1_2, kStrictCriteria);
608 TEST_SINGLE_OPERATION(STRIDED_SLICE, V1_2, kStrictCriteria);
609 TEST_SINGLE_OPERATION(EMBEDDING_LOOKUP, V1_2, kStrictCriteria);
610 
611 /*-- NNAPI 1.2 Operations ---------------------------------------------------*/
612 
613 // TODO: The following 1.2 operation signatures are currently not defined:
614 // - ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM
615 // - ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM
616 // - ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN
617 // - ANEURALNETWORKS_BOX_WITH_NMS_LIMIT
618 // - ANEURALNETWORKS_DETECTION_POSTPROCESSING
619 // - ANEURALNETWORKS_GENERATE_PROPOSALS
620 // - ANEURALNETWORKS_QUANTIZED_16BIT_LSTM
621 // - ANEURALNETWORKS_RANDOM_MULTINOMIAL
622 // - ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM
623 // - ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN
624 
625 TEST_SINGLE_OPERATION(ABS, V1_2, kMediumCriteria);
626 TEST_SINGLE_OPERATION(EXP, V1_2, kRelaxedCriteria);
627 TEST_SINGLE_OPERATION(LOG, V1_2, kRelaxedCriteria);
628 TEST_SINGLE_OPERATION(NEG, V1_2, kMediumCriteria);
629 TEST_SINGLE_OPERATION(RSQRT, V1_2, kRelaxedCriteria);
630 TEST_SINGLE_OPERATION(SIN, V1_2, kRelaxedCriteria);
631 TEST_SINGLE_OPERATION(SQRT, V1_2, kRelaxedCriteria);
632 TEST_SINGLE_OPERATION(ARGMAX, V1_2, kStrictCriteria);
633 TEST_SINGLE_OPERATION(ARGMIN, V1_2, kStrictCriteria);
634 TEST_SINGLE_OPERATION(EQUAL, V1_2, kStrictCriteria);
635 TEST_SINGLE_OPERATION(GREATER, V1_2, kStrictCriteria);
636 TEST_SINGLE_OPERATION(GREATER_EQUAL, V1_2, kStrictCriteria);
637 TEST_SINGLE_OPERATION(LESS, V1_2, kStrictCriteria);
638 TEST_SINGLE_OPERATION(LESS_EQUAL, V1_2, kStrictCriteria);
639 TEST_SINGLE_OPERATION(LOGICAL_AND, V1_2, kStrictCriteria);
640 TEST_SINGLE_OPERATION(LOGICAL_NOT, V1_2, kStrictCriteria);
641 TEST_SINGLE_OPERATION(LOGICAL_OR, V1_2, kStrictCriteria);
642 TEST_SINGLE_OPERATION(NOT_EQUAL, V1_2, kStrictCriteria);
643 TEST_SINGLE_OPERATION(MAXIMUM, V1_2, kMediumCriteria);
644 TEST_SINGLE_OPERATION(MINIMUM, V1_2, kMediumCriteria);
645 TEST_SINGLE_OPERATION(POW, V1_2, kRelaxedCriteria);
646 TEST_SINGLE_OPERATION(PRELU, V1_2, kMediumCriteria);
647 TEST_SINGLE_OPERATION(REDUCE_ALL, V1_2, kRelaxedCriteria);
648 TEST_SINGLE_OPERATION(REDUCE_ANY, V1_2, kRelaxedCriteria);
649 TEST_SINGLE_OPERATION(REDUCE_MAX, V1_2, kRelaxedCriteria);
650 TEST_SINGLE_OPERATION(REDUCE_MIN, V1_2, kRelaxedCriteria);
651 TEST_SINGLE_OPERATION(REDUCE_PROD, V1_2, kRelaxedCriteria);
652 TEST_SINGLE_OPERATION(REDUCE_SUM, V1_2, kRelaxedCriteria);
653 TEST_SINGLE_OPERATION(CHANNEL_SHUFFLE, V1_2, kStrictCriteria);
654 TEST_SINGLE_OPERATION(INSTANCE_NORMALIZATION, V1_2, kRelaxedCriteria);
655 TEST_SINGLE_OPERATION(LOG_SOFTMAX, V1_2, kRelaxedCriteria);
656 TEST_SINGLE_OPERATION(GROUPED_CONV_2D, V1_2, kConvCriteria);
657 TEST_SINGLE_OPERATION(TRANSPOSE_CONV_2D, V1_2, kConvCriteria);
658 TEST_SINGLE_OPERATION(RESIZE_NEAREST_NEIGHBOR, V1_2, kRelaxedCriteria);
659 TEST_SINGLE_OPERATION(PAD_V2, V1_2, kStrictCriteria);
660 TEST_SINGLE_OPERATION(QUANTIZE, V1_2, kMediumCriteria);
661 TEST_SINGLE_OPERATION(CAST, V1_2, kMediumCriteria);
662 TEST_SINGLE_OPERATION(EXPAND_DIMS, V1_2, kStrictCriteria);
663 TEST_SINGLE_OPERATION(TILE, V1_2, kStrictCriteria);
664 TEST_SINGLE_OPERATION(GATHER, V1_2, kStrictCriteria);
665 TEST_SINGLE_OPERATION(SELECT, V1_2, kStrictCriteria);
666 TEST_SINGLE_OPERATION(TOPK_V2, V1_2, kStrictCriteria);
667 TEST_SINGLE_OPERATION(SLICE, V1_2, kStrictCriteria);
668 TEST_SINGLE_OPERATION(SPLIT, V1_2, kMediumCriteria);
669 TEST_SINGLE_OPERATION(ROI_ALIGN, V1_2, kRelaxedCriteria);
670 TEST_SINGLE_OPERATION(ROI_POOLING, V1_2, kRelaxedCriteria);
671 TEST_SINGLE_OPERATION(HEATMAP_MAX_KEYPOINT, V1_2, kRelaxedCriteria);
672 
673 /*-- NNAPI 1.0, 1.1, and 1.2 Operations with Extended Behavior in 1.3 -------------*/
674 
675 TEST_SINGLE_OPERATION(ADD, V1_3, kMediumCriteria);
676 TEST_SINGLE_OPERATION(AVERAGE_POOL_2D, V1_3, kRelaxedCriteria);
677 TEST_SINGLE_OPERATION(CONCATENATION, V1_3, kMediumCriteria);
678 TEST_SINGLE_OPERATION(CONV_2D, V1_3, kConvCriteria);
679 TEST_SINGLE_OPERATION(DEPTHWISE_CONV_2D, V1_3, kConvCriteria);
680 TEST_SINGLE_OPERATION(DEPTH_TO_SPACE, V1_3, kStrictCriteria);
681 TEST_SINGLE_OPERATION(DEQUANTIZE, V1_3, kMediumCriteria);
682 TEST_SINGLE_OPERATION(EMBEDDING_LOOKUP, V1_3, kStrictCriteria);
683 TEST_SINGLE_OPERATION(FULLY_CONNECTED, V1_3, kRelaxedCriteria);
684 TEST_SINGLE_OPERATION(L2_NORMALIZATION, V1_3, kRelaxedCriteria);
685 TEST_SINGLE_OPERATION(LOGISTIC, V1_3, kRelaxedCriteria);
686 TEST_SINGLE_OPERATION(MAX_POOL_2D, V1_3, kRelaxedCriteria);
687 TEST_SINGLE_OPERATION(MUL, V1_3, kMediumCriteria);
688 TEST_SINGLE_OPERATION(RELU, V1_3, kMediumCriteria);
689 TEST_SINGLE_OPERATION(RELU1, V1_3, kMediumCriteria);
690 TEST_SINGLE_OPERATION(RELU6, V1_3, kMediumCriteria);
691 TEST_SINGLE_OPERATION(RESHAPE, V1_3, kStrictCriteria);
692 TEST_SINGLE_OPERATION(RESIZE_BILINEAR, V1_3, kRelaxedCriteria);
693 TEST_SINGLE_OPERATION(SOFTMAX, V1_3, kRelaxedCriteria);
694 TEST_SINGLE_OPERATION(SPACE_TO_DEPTH, V1_3, kStrictCriteria);
695 TEST_SINGLE_OPERATION(TANH, V1_3, kRelaxedCriteria);
696 TEST_SINGLE_OPERATION(BATCH_TO_SPACE_ND, V1_3, kStrictCriteria);
697 TEST_SINGLE_OPERATION(DIV, V1_3, kMediumCriteria);
698 TEST_SINGLE_OPERATION(MEAN, V1_3, kRelaxedCriteria);
699 TEST_SINGLE_OPERATION(PAD, V1_3, kStrictCriteria);
700 TEST_SINGLE_OPERATION(SPACE_TO_BATCH_ND, V1_3, kStrictCriteria);
701 TEST_SINGLE_OPERATION(SQUEEZE, V1_3, kStrictCriteria);
702 TEST_SINGLE_OPERATION(STRIDED_SLICE, V1_3, kStrictCriteria);
703 TEST_SINGLE_OPERATION(SUB, V1_3, kMediumCriteria);
704 TEST_SINGLE_OPERATION(TRANSPOSE, V1_3, kStrictCriteria);
705 TEST_SINGLE_OPERATION(ABS, V1_3, kMediumCriteria);
706 TEST_SINGLE_OPERATION(ARGMAX, V1_3, kStrictCriteria);
707 TEST_SINGLE_OPERATION(ARGMIN, V1_3, kStrictCriteria);
708 TEST_SINGLE_OPERATION(CAST, V1_3, kMediumCriteria);
709 TEST_SINGLE_OPERATION(CHANNEL_SHUFFLE, V1_3, kStrictCriteria);
710 TEST_SINGLE_OPERATION(EQUAL, V1_3, kStrictCriteria);
711 TEST_SINGLE_OPERATION(EXPAND_DIMS, V1_3, kStrictCriteria);
712 TEST_SINGLE_OPERATION(GATHER, V1_3, kStrictCriteria);
713 TEST_SINGLE_OPERATION(GREATER, V1_3, kStrictCriteria);
714 TEST_SINGLE_OPERATION(GREATER_EQUAL, V1_3, kStrictCriteria);
715 TEST_SINGLE_OPERATION(GROUPED_CONV_2D, V1_3, kConvCriteria);
716 TEST_SINGLE_OPERATION(HEATMAP_MAX_KEYPOINT, V1_3, kRelaxedCriteria);
717 TEST_SINGLE_OPERATION(LESS, V1_3, kStrictCriteria);
718 TEST_SINGLE_OPERATION(LESS_EQUAL, V1_3, kStrictCriteria);
719 TEST_SINGLE_OPERATION(MAXIMUM, V1_3, kMediumCriteria);
720 TEST_SINGLE_OPERATION(MINIMUM, V1_3, kMediumCriteria);
721 TEST_SINGLE_OPERATION(NOT_EQUAL, V1_3, kStrictCriteria);
722 TEST_SINGLE_OPERATION(PAD_V2, V1_3, kStrictCriteria);
723 TEST_SINGLE_OPERATION(PRELU, V1_3, kMediumCriteria);
724 TEST_SINGLE_OPERATION(QUANTIZE, V1_3, kMediumCriteria);
725 TEST_SINGLE_OPERATION(REDUCE_MAX, V1_3, kRelaxedCriteria);
726 TEST_SINGLE_OPERATION(REDUCE_MIN, V1_3, kRelaxedCriteria);
727 TEST_SINGLE_OPERATION(ROI_ALIGN, V1_3, kRelaxedCriteria);
728 TEST_SINGLE_OPERATION(ROI_POOLING, V1_3, kRelaxedCriteria);
729 TEST_SINGLE_OPERATION(SELECT, V1_3, kStrictCriteria);
730 TEST_SINGLE_OPERATION(SLICE, V1_3, kStrictCriteria);
731 TEST_SINGLE_OPERATION(SPLIT, V1_3, kMediumCriteria);
732 TEST_SINGLE_OPERATION(TILE, V1_3, kStrictCriteria);
733 TEST_SINGLE_OPERATION(TOPK_V2, V1_3, kStrictCriteria);
734 TEST_SINGLE_OPERATION(TRANSPOSE_CONV_2D, V1_3, kConvCriteria);
735 TEST_SINGLE_OPERATION(RESIZE_NEAREST_NEIGHBOR, V1_3, kRelaxedCriteria);
736 
737 /*-- NNAPI 1.3 Operations ---------------------------------------------------*/
738 
739 // TODO: The following 1.3 operation signatures are currently not defined:
740 // - ANEURALNETWORKS_QUANTIZED_LSTM
741 // - ANEURALNETWORKS_IF
742 // - ANEURALNETWORKS_WHILE
743 
744 TEST_SINGLE_OPERATION(ELU, V1_3, kMediumCriteria);
745 TEST_SINGLE_OPERATION(HARD_SWISH, V1_3, kMediumCriteria);
746 TEST_SINGLE_OPERATION(FILL, V1_3, kStrictCriteria);
747 TEST_SINGLE_OPERATION(RANK, V1_3, kStrictCriteria);
748 
749 const AccuracyCriteria kSmallGraphCriteria = {
750         .float32 = {.bias = 4e-4f, .mse = 1e-5f, .atol = 1e-2f, .rtol = 1e-2f},
751         .float16 = {.bias = 5e-2f, .mse = 1e-2f, .atol = 1.0f, .rtol = 1.0f},
752         .int32 = {.atol = 1},
753         .quant8Asymm = {.bias = 2, .mse = 2, .atol = 12},
754         .quant8AsymmSigned = {.bias = 2, .mse = 2, .atol = 12},
755         .quant8Symm = {.bias = 2, .mse = 2, .atol = 12},
756         .quant16Asymm = {.bias = 2, .mse = 2, .atol = 12},
757         .quant16Symm = {.bias = 2, .mse = 2, .atol = 12},
758 };
759 
760 const AccuracyCriteria kLargeGraphCriteria = {
761         .float32 = {.bias = 1e-2f, .mse = 1e-4f, .atol = 1e-1f, .rtol = 1e-1f},
762         .float16 = {.bias = 1e-1f, .mse = 5e-2f, .atol = 1.0f, .rtol = 1.0f},
763         .int32 = {.atol = 1},
764         .quant8Asymm = {.bias = 2, .mse = 2, .atol = 12},
765         .quant8AsymmSigned = {.bias = 2, .mse = 2, .atol = 12},
766         .quant8Symm = {.bias = 2, .mse = 2, .atol = 12},
767         .quant16Asymm = {.bias = 2, .mse = 2, .atol = 12},
768         .quant16Symm = {.bias = 2, .mse = 2, .atol = 12},
769 };
770 
771 // Due to the limitation of the random graph generator, graphs generated with mixed-type or
772 // mixed-rank operations are likely to result in a disconnected network. Thus, we filter the
773 // operation signatures by primary data type and rank first, then generate random graph tests for
774 // each combination.
775 //
776 // Two parameterized tests are created for each filter:
777 // * 5-op graph with dimensions in range [1, 1000].
778 // * 40-op graph with dimensions in range [1, 10].
779 //
780 #define TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(dataType, rank)                             \
781     TEST_P(RandomGraphTest, SmallGraph_##dataType##_Rank##rank) {                             \
782         OperationFilter filter = {.dataTypes = {TestOperandType::dataType}, .ranks = {rank}}; \
783         OperationManager::get()->applyFilter(filter);                                         \
784         mCriteria = kSmallGraphCriteria;                                                      \
785         testRandomGraph(GraphSize::SMALL, DimensionRange::WIDE);                              \
786     }                                                                                         \
787     TEST_P(RandomGraphTest, LargeGraph_##dataType##_Rank##rank) {                             \
788         OperationFilter filter = {.dataTypes = {TestOperandType::dataType}, .ranks = {rank}}; \
789         OperationManager::get()->applyFilter(filter);                                         \
790         mCriteria = kLargeGraphCriteria;                                                      \
791         testRandomGraph(GraphSize::LARGE, DimensionRange::NARROW);                            \
792     }
793 
794 // Random graph test with TENSOR_QUANT8_ASYMM as the primary data type is currently not defined.
795 // The generated graph with TENSOR_QUANT8_ASYMM as the primary data type will likely to result in
796 // disconnected graphs due to the mismatch between quantized parameters.
797 
798 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 4);
799 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 3);
800 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 2);
801 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 1);
802 
803 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 4);
804 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 3);
805 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 2);
806 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 1);
807 
808 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 4);
809 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 3);
810 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 2);
811 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 1);
812 
813 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 4);
814 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 3);
815 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 2);
816 TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 1);
817 
818 INSTANTIATE_TEST_SUITE_P(TestRandomGraph, SingleOperationTest, ::testing::Range(0u, 50u));
819 INSTANTIATE_TEST_SUITE_P(TestRandomGraph, RandomGraphTest, ::testing::Range(0u, 50u));
820 
821 }  // namespace fuzzing_test
822 }  // namespace nn
823 }  // namespace android
824