• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/lite/delegates/gpu/gl/kernels/depthwise_conv.h"
17 
18 #include <memory>
19 #include <vector>
20 
21 #include "absl/memory/memory.h"
22 #include "tensorflow/lite/delegates/gpu/common/convert.h"
23 #include "tensorflow/lite/delegates/gpu/common/operations.h"
24 #include "tensorflow/lite/delegates/gpu/common/shape.h"
25 #include "tensorflow/lite/delegates/gpu/common/status.h"
26 #include "tensorflow/lite/delegates/gpu/common/types.h"
27 #include "tensorflow/lite/delegates/gpu/common/util.h"
28 #include "tensorflow/lite/delegates/gpu/gl/node_shader.h"
29 #include "tensorflow/lite/delegates/gpu/gl/variable.h"
30 #include "tensorflow/lite/delegates/gpu/gl/workgroups/ideal_workgroup_picker.h"
31 
32 namespace tflite {
33 namespace gpu {
34 namespace gl {
35 namespace {
36 
37 class DepthwiseConvolution : public NodeShader {
38  public:
GenerateCode(const GenerationContext & ctx,GeneratedCode * generated_code) const39   absl::Status GenerateCode(const GenerationContext& ctx,
40                             GeneratedCode* generated_code) const final {
41     if (ctx.input_shapes.size() != 1) {
42       return absl::UnimplementedError(
43           "DepthWise Convolution does not support more than 1 runtime tensor");
44     }
45     const auto& attr =
46         absl::any_cast<const DepthwiseConvolution2DAttributes&>(ctx.op_attr);
47     auto weights = attr.weights.shape;
48     const int offsets_count = weights.h * weights.w;
49     const bool offsets_count_too_large = offsets_count > kMaxConstArraySize;
50     std::vector<Variable> parameters;
51     if (offsets_count_too_large) {
52       parameters = {
53           {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])},
54           {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])},
55           {"padding_w", attr.padding.prepended.w},
56           {"padding_h", attr.padding.prepended.h},
57           {"dilation_w", attr.dilations.w},
58           {"dilation_h", attr.dilations.h},
59           {"kernel_w", weights.w},
60           {"kernel_h", weights.h},
61           {"src_depth", DivideRoundUp(weights.i, 4)},
62           {"channel_multiplier", weights.o},
63           {"stride", int2(attr.strides.w, attr.strides.h)},
64       };
65     } else {
66       std::vector<int2> offsets;
67       for (int h = 0; h < weights.h; ++h) {
68         for (int w = 0; w < weights.w; ++w) {
69           offsets.emplace_back(w * attr.dilations.w - attr.padding.prepended.w,
70                                h * attr.dilations.h - attr.padding.prepended.h);
71         }
72       }
73       parameters = {
74           {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])},
75           {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])},
76           {"offsets_count", offsets_count},
77           {"offsets", offsets},
78           {"src_depth", DivideRoundUp(weights.i, 4)},
79           {"channel_multiplier", weights.o},
80           {"stride", int2(attr.strides.w, attr.strides.h)},
81       };
82     }
83     bool non_empty_padding =
84         attr.padding.appended.h != 0 || attr.padding.appended.w != 0 ||
85         attr.padding.prepended.h != 0 || attr.padding.prepended.w != 0;
86 
87     std::vector<std::pair<std::string, Object>> objects = {
88         {"weights", MakeReadonlyObject(ConvertToPIOHW4(attr.weights))}};
89 
90     std::string source;
91     if (offsets_count_too_large) {
92       source = R"(
93         int offsets_count = $kernel_w$ * $kernel_h$;
94         int src_layer_offset = (gid.z % $channel_multiplier$) * 4;
95         int filter_offset = gid.z * $src_depth$ * offsets_count * 4;
96         int i = 0;
97         for (int ky = 0; ky < $kernel_h$; ky++) {
98           for (int kx = 0; kx < $kernel_w$; kx++, i++) {
99             ivec2 coord = gid.xy * $stride$ + ivec2(kx * $dilation_w$ - $padding_w$, ky * $dilation_h$ - $padding_h$);)";
100     } else {
101       source = R"(
102         int offsets_count = $offsets_count$;
103         int src_layer_offset = (gid.z % $channel_multiplier$) * 4;
104         int filter_offset = gid.z * $src_depth$ * offsets_count * 4;
105         for (int i = 0; i < offsets_count; ++i) {
106           ivec2 coord = gid.xy * $stride$ + $offsets[i]$;)";
107     }
108     if (non_empty_padding) {
109       source += R"(
110         if (coord.x < 0 || coord.y < 0 ||
111             coord.x >= $input_data_0_w$ || coord.y >= $input_data_0_h$) {
112           continue;
113         })";
114     }
115     source += R"(
116         int src_layer = gid.z / $channel_multiplier$;
117         vec4 input_ = $input_data_0[coord.x, coord.y, src_layer]$;
118         vec4 input_shifted = vec4(
119           input_[(src_layer_offset + 0) / $channel_multiplier$],
120           input_[(src_layer_offset + 1) / $channel_multiplier$],
121           input_[(src_layer_offset + 2) / $channel_multiplier$],
122           input_[(src_layer_offset + 3) / $channel_multiplier$]
123         );
124         int filter_offset = gid.z * offsets_count + i;
125         value_0 += input_shifted * $weights[filter_offset]$;
126       }
127 )";
128     if (offsets_count_too_large) {
129       source += R"(
130       }
131 )";
132     }
133     if (!attr.bias.data.empty()) {
134       source += "value_0 += $bias[gid.z]$;\n";
135       objects.push_back({"bias", MakeReadonlyObject(attr.bias.data)});
136     }
137     *generated_code = {
138         /*parameters=*/std::move(parameters),
139         /*objects=*/std::move(objects),
140         /*shared_variables=*/{},
141         /*workload=*/uint3(),
142         /*workgroup=*/
143         GetIdealWorkgroupIfPossible(
144             *ctx.gpu_info, OperationType::DEPTHWISE_CONVOLUTION,
145             HW(attr.weights.shape.h, attr.weights.shape.w), attr.strides,
146             OHWI(attr.weights.shape.o, ctx.input_shapes[0][1],
147                  ctx.input_shapes[0][2], ctx.input_shapes[0][3])),
148         /*source_code=*/std::move(source),
149         /*input=*/IOStructure::ONLY_DEFINITIONS,
150         /*output=*/IOStructure::AUTO,
151     };
152     return absl::OkStatus();
153   }
154 };
155 
156 }  // namespace
157 
NewDepthwiseConvolutionNodeShader()158 std::unique_ptr<NodeShader> NewDepthwiseConvolutionNodeShader() {
159   return absl::make_unique<DepthwiseConvolution>();
160 }
161 
162 }  // namespace gl
163 }  // namespace gpu
164 }  // namespace tflite
165