• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <inttypes.h>
18 #include <string.h>
19 
20 #include <functional>
21 #include <iomanip>
22 #include <mutex>
23 #include <sstream>
24 #include <string>
25 #include <unordered_map>
26 
27 #include <android-base/macros.h>
28 #include <android-base/strings.h>
29 #include <backtrace.h>
30 
31 #include "Allocator.h"
32 #include "Binder.h"
33 #include "HeapWalker.h"
34 #include "Leak.h"
35 #include "LeakFolding.h"
36 #include "LeakPipe.h"
37 #include "ProcessMappings.h"
38 #include "PtracerThread.h"
39 #include "ScopedDisableMalloc.h"
40 #include "Semaphore.h"
41 #include "ThreadCapture.h"
42 
43 #include "bionic.h"
44 #include "log.h"
45 #include "memunreachable/memunreachable.h"
46 
47 using namespace std::chrono_literals;
48 
49 namespace android {
50 
51 const size_t Leak::contents_length;
52 
53 class MemUnreachable {
54  public:
MemUnreachable(pid_t pid,Allocator<void> allocator)55   MemUnreachable(pid_t pid, Allocator<void> allocator)
56       : pid_(pid), allocator_(allocator), heap_walker_(allocator_) {}
57   bool CollectAllocations(const allocator::vector<ThreadInfo>& threads,
58                           const allocator::vector<Mapping>& mappings,
59                           const allocator::vector<uintptr_t>& refs);
60   bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, size_t* num_leaks,
61                             size_t* leak_bytes);
Allocations()62   size_t Allocations() { return heap_walker_.Allocations(); }
AllocationBytes()63   size_t AllocationBytes() { return heap_walker_.AllocationBytes(); }
64 
65  private:
66   bool ClassifyMappings(const allocator::vector<Mapping>& mappings,
67                         allocator::vector<Mapping>& heap_mappings,
68                         allocator::vector<Mapping>& anon_mappings,
69                         allocator::vector<Mapping>& globals_mappings,
70                         allocator::vector<Mapping>& stack_mappings);
71   DISALLOW_COPY_AND_ASSIGN(MemUnreachable);
72   pid_t pid_;
73   Allocator<void> allocator_;
74   HeapWalker heap_walker_;
75 };
76 
HeapIterate(const Mapping & heap_mapping,const std::function<void (uintptr_t,size_t)> & func)77 static void HeapIterate(const Mapping& heap_mapping,
78                         const std::function<void(uintptr_t, size_t)>& func) {
79   malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin,
80                  [](uintptr_t base, size_t size, void* arg) {
81                    auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg);
82                    (*f)(base, size);
83                  },
84                  const_cast<void*>(reinterpret_cast<const void*>(&func)));
85 }
86 
CollectAllocations(const allocator::vector<ThreadInfo> & threads,const allocator::vector<Mapping> & mappings,const allocator::vector<uintptr_t> & refs)87 bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads,
88                                         const allocator::vector<Mapping>& mappings,
89                                         const allocator::vector<uintptr_t>& refs) {
90   MEM_ALOGI("searching process %d for allocations", pid_);
91 
92   for (auto it = mappings.begin(); it != mappings.end(); it++) {
93     heap_walker_.Mapping(it->begin, it->end);
94   }
95 
96   allocator::vector<Mapping> heap_mappings{mappings};
97   allocator::vector<Mapping> anon_mappings{mappings};
98   allocator::vector<Mapping> globals_mappings{mappings};
99   allocator::vector<Mapping> stack_mappings{mappings};
100   if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, globals_mappings, stack_mappings)) {
101     return false;
102   }
103 
104   for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) {
105     MEM_ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
106     HeapIterate(*it,
107                 [&](uintptr_t base, size_t size) { heap_walker_.Allocation(base, base + size); });
108   }
109 
110   for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) {
111     MEM_ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
112     heap_walker_.Allocation(it->begin, it->end);
113   }
114 
115   for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) {
116     MEM_ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
117     heap_walker_.Root(it->begin, it->end);
118   }
119 
120   for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) {
121     for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) {
122       if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) {
123         MEM_ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name);
124         heap_walker_.Root(thread_it->stack.first, it->end);
125       }
126     }
127     heap_walker_.Root(thread_it->regs);
128   }
129 
130   heap_walker_.Root(refs);
131 
132   MEM_ALOGI("searching done");
133 
134   return true;
135 }
136 
GetUnreachableMemory(allocator::vector<Leak> & leaks,size_t limit,size_t * num_leaks,size_t * leak_bytes)137 bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit,
138                                           size_t* num_leaks, size_t* leak_bytes) {
139   MEM_ALOGI("sweeping process %d for unreachable memory", pid_);
140   leaks.clear();
141 
142   if (!heap_walker_.DetectLeaks()) {
143     return false;
144   }
145 
146   allocator::vector<Range> leaked1{allocator_};
147   heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes);
148 
149   MEM_ALOGI("sweeping done");
150 
151   MEM_ALOGI("folding related leaks");
152 
153   LeakFolding folding(allocator_, heap_walker_);
154   if (!folding.FoldLeaks()) {
155     return false;
156   }
157 
158   allocator::vector<LeakFolding::Leak> leaked{allocator_};
159 
160   if (!folding.Leaked(leaked, num_leaks, leak_bytes)) {
161     return false;
162   }
163 
164   allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_};
165 
166   // Prevent reallocations of backing memory so we can store pointers into it
167   // in backtrace_map.
168   leaks.reserve(leaked.size());
169 
170   for (auto& it : leaked) {
171     leaks.emplace_back();
172     Leak* leak = &leaks.back();
173 
174     ssize_t num_backtrace_frames = malloc_backtrace(
175         reinterpret_cast<void*>(it.range.begin), leak->backtrace.frames, leak->backtrace.max_frames);
176     if (num_backtrace_frames > 0) {
177       leak->backtrace.num_frames = num_backtrace_frames;
178 
179       auto inserted = backtrace_map.emplace(leak->backtrace, leak);
180       if (!inserted.second) {
181         // Leak with same backtrace already exists, drop this one and
182         // increment similar counts on the existing one.
183         leaks.pop_back();
184         Leak* similar_leak = inserted.first->second;
185         similar_leak->similar_count++;
186         similar_leak->similar_size += it.range.size();
187         similar_leak->similar_referenced_count += it.referenced_count;
188         similar_leak->similar_referenced_size += it.referenced_size;
189         similar_leak->total_size += it.range.size();
190         similar_leak->total_size += it.referenced_size;
191         continue;
192       }
193     }
194 
195     leak->begin = it.range.begin;
196     leak->size = it.range.size();
197     leak->referenced_count = it.referenced_count;
198     leak->referenced_size = it.referenced_size;
199     leak->total_size = leak->size + leak->referenced_size;
200     memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin),
201            std::min(leak->size, Leak::contents_length));
202   }
203 
204   MEM_ALOGI("folding done");
205 
206   std::sort(leaks.begin(), leaks.end(),
207             [](const Leak& a, const Leak& b) { return a.total_size > b.total_size; });
208 
209   if (leaks.size() > limit) {
210     leaks.resize(limit);
211   }
212 
213   return true;
214 }
215 
has_prefix(const allocator::string & s,const char * prefix)216 static bool has_prefix(const allocator::string& s, const char* prefix) {
217   int ret = s.compare(0, strlen(prefix), prefix);
218   return ret == 0;
219 }
220 
is_sanitizer_mapping(const allocator::string & s)221 static bool is_sanitizer_mapping(const allocator::string& s) {
222   return s == "[anon:low shadow]" || s == "[anon:high shadow]" || has_prefix(s, "[anon:hwasan");
223 }
224 
ClassifyMappings(const allocator::vector<Mapping> & mappings,allocator::vector<Mapping> & heap_mappings,allocator::vector<Mapping> & anon_mappings,allocator::vector<Mapping> & globals_mappings,allocator::vector<Mapping> & stack_mappings)225 bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings,
226                                       allocator::vector<Mapping>& heap_mappings,
227                                       allocator::vector<Mapping>& anon_mappings,
228                                       allocator::vector<Mapping>& globals_mappings,
229                                       allocator::vector<Mapping>& stack_mappings) {
230   heap_mappings.clear();
231   anon_mappings.clear();
232   globals_mappings.clear();
233   stack_mappings.clear();
234 
235   allocator::string current_lib{allocator_};
236 
237   for (auto it = mappings.begin(); it != mappings.end(); it++) {
238     if (it->execute) {
239       current_lib = it->name;
240       continue;
241     }
242 
243     if (!it->read) {
244       continue;
245     }
246 
247     const allocator::string mapping_name{it->name, allocator_};
248     if (mapping_name == "[anon:.bss]") {
249       // named .bss section
250       globals_mappings.emplace_back(*it);
251     } else if (mapping_name == current_lib) {
252       // .rodata or .data section
253       globals_mappings.emplace_back(*it);
254     } else if (mapping_name == "[anon:libc_malloc]" ||
255                android::base::StartsWith(mapping_name, "[anon:scudo:") ||
256                android::base::StartsWith(mapping_name, "[anon:GWP-ASan")) {
257       // named malloc mapping
258       heap_mappings.emplace_back(*it);
259     } else if (has_prefix(mapping_name, "[anon:dalvik-")) {
260       // named dalvik heap mapping
261       globals_mappings.emplace_back(*it);
262     } else if (has_prefix(mapping_name, "[stack")) {
263       // named stack mapping
264       stack_mappings.emplace_back(*it);
265     } else if (mapping_name.size() == 0) {
266       globals_mappings.emplace_back(*it);
267     } else if (has_prefix(mapping_name, "[anon:") &&
268                mapping_name != "[anon:leak_detector_malloc]" &&
269                !is_sanitizer_mapping(mapping_name)) {
270       // TODO(ccross): it would be nice to treat named anonymous mappings as
271       // possible leaks, but naming something in a .bss or .data section makes
272       // it impossible to distinguish them from mmaped and then named mappings.
273       globals_mappings.emplace_back(*it);
274     }
275   }
276 
277   return true;
278 }
279 
280 template <typename T>
plural(T val)281 static inline const char* plural(T val) {
282   return (val == 1) ? "" : "s";
283 }
284 
GetUnreachableMemory(UnreachableMemoryInfo & info,size_t limit)285 bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) {
286   if (info.version > 0) {
287     MEM_ALOGE("unsupported UnreachableMemoryInfo.version %zu in GetUnreachableMemory",
288               info.version);
289     return false;
290   }
291 
292   int parent_pid = getpid();
293   int parent_tid = gettid();
294 
295   Heap heap;
296 
297   Semaphore continue_parent_sem;
298   LeakPipe pipe;
299 
300   PtracerThread thread{[&]() -> int {
301     /////////////////////////////////////////////
302     // Collection thread
303     /////////////////////////////////////////////
304     MEM_ALOGI("collecting thread info for process %d...", parent_pid);
305 
306     ThreadCapture thread_capture(parent_pid, heap);
307     allocator::vector<ThreadInfo> thread_info(heap);
308     allocator::vector<Mapping> mappings(heap);
309     allocator::vector<uintptr_t> refs(heap);
310 
311     // ptrace all the threads
312     if (!thread_capture.CaptureThreads()) {
313       continue_parent_sem.Post();
314       return 1;
315     }
316 
317     // collect register contents and stacks
318     if (!thread_capture.CapturedThreadInfo(thread_info)) {
319       continue_parent_sem.Post();
320       return 1;
321     }
322 
323     // snapshot /proc/pid/maps
324     if (!ProcessMappings(parent_pid, mappings)) {
325       continue_parent_sem.Post();
326       return 1;
327     }
328 
329     if (!BinderReferences(refs)) {
330       continue_parent_sem.Post();
331       return 1;
332     }
333 
334     // malloc must be enabled to call fork, at_fork handlers take the same
335     // locks as ScopedDisableMalloc.  All threads are paused in ptrace, so
336     // memory state is still consistent.  Unfreeze the original thread so it
337     // can drop the malloc locks, it will block until the collection thread
338     // exits.
339     thread_capture.ReleaseThread(parent_tid);
340     continue_parent_sem.Post();
341 
342     // fork a process to do the heap walking
343     int ret = fork();
344     if (ret < 0) {
345       return 1;
346     } else if (ret == 0) {
347       /////////////////////////////////////////////
348       // Heap walker process
349       /////////////////////////////////////////////
350       // Examine memory state in the child using the data collected above and
351       // the CoW snapshot of the process memory contents.
352 
353       if (!pipe.OpenSender()) {
354         _exit(1);
355       }
356 
357       MemUnreachable unreachable{parent_pid, heap};
358 
359       if (!unreachable.CollectAllocations(thread_info, mappings, refs)) {
360         _exit(2);
361       }
362       size_t num_allocations = unreachable.Allocations();
363       size_t allocation_bytes = unreachable.AllocationBytes();
364 
365       allocator::vector<Leak> leaks{heap};
366 
367       size_t num_leaks = 0;
368       size_t leak_bytes = 0;
369       bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes);
370 
371       ok = ok && pipe.Sender().Send(num_allocations);
372       ok = ok && pipe.Sender().Send(allocation_bytes);
373       ok = ok && pipe.Sender().Send(num_leaks);
374       ok = ok && pipe.Sender().Send(leak_bytes);
375       ok = ok && pipe.Sender().SendVector(leaks);
376 
377       if (!ok) {
378         _exit(3);
379       }
380 
381       _exit(0);
382     } else {
383       // Nothing left to do in the collection thread, return immediately,
384       // releasing all the captured threads.
385       MEM_ALOGI("collection thread done");
386       return 0;
387     }
388   }};
389 
390   /////////////////////////////////////////////
391   // Original thread
392   /////////////////////////////////////////////
393 
394   {
395     // Disable malloc to get a consistent view of memory
396     ScopedDisableMalloc disable_malloc;
397 
398     // Start the collection thread
399     thread.Start();
400 
401     // Wait for the collection thread to signal that it is ready to fork the
402     // heap walker process.
403     continue_parent_sem.Wait(30s);
404 
405     // Re-enable malloc so the collection thread can fork.
406   }
407 
408   // Wait for the collection thread to exit
409   int ret = thread.Join();
410   if (ret != 0) {
411     return false;
412   }
413 
414   // Get a pipe from the heap walker process.  Transferring a new pipe fd
415   // ensures no other forked processes can have it open, so when the heap
416   // walker process dies the remote side of the pipe will close.
417   if (!pipe.OpenReceiver()) {
418     return false;
419   }
420 
421   bool ok = true;
422   ok = ok && pipe.Receiver().Receive(&info.num_allocations);
423   ok = ok && pipe.Receiver().Receive(&info.allocation_bytes);
424   ok = ok && pipe.Receiver().Receive(&info.num_leaks);
425   ok = ok && pipe.Receiver().Receive(&info.leak_bytes);
426   ok = ok && pipe.Receiver().ReceiveVector(info.leaks);
427   if (!ok) {
428     return false;
429   }
430 
431   MEM_ALOGI("unreachable memory detection done");
432   MEM_ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s",
433             info.leak_bytes, info.num_leaks, plural(info.num_leaks), info.allocation_bytes,
434             info.num_allocations, plural(info.num_allocations));
435   return true;
436 }
437 
ToString(bool log_contents) const438 std::string Leak::ToString(bool log_contents) const {
439   std::ostringstream oss;
440 
441   oss << "  " << std::dec << size;
442   oss << " bytes unreachable at ";
443   oss << std::hex << begin;
444   oss << std::endl;
445   if (referenced_count > 0) {
446     oss << std::dec;
447     oss << "   referencing " << referenced_size << " unreachable bytes";
448     oss << " in " << referenced_count << " allocation" << plural(referenced_count);
449     oss << std::endl;
450   }
451   if (similar_count > 0) {
452     oss << std::dec;
453     oss << "   and " << similar_size << " similar unreachable bytes";
454     oss << " in " << similar_count << " allocation" << plural(similar_count);
455     oss << std::endl;
456     if (similar_referenced_count > 0) {
457       oss << "   referencing " << similar_referenced_size << " unreachable bytes";
458       oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count);
459       oss << std::endl;
460     }
461   }
462 
463   if (log_contents) {
464     const int bytes_per_line = 16;
465     const size_t bytes = std::min(size, contents_length);
466 
467     if (bytes == size) {
468       oss << "   contents:" << std::endl;
469     } else {
470       oss << "   first " << bytes << " bytes of contents:" << std::endl;
471     }
472 
473     for (size_t i = 0; i < bytes; i += bytes_per_line) {
474       oss << "   " << std::hex << begin + i << ": ";
475       size_t j;
476       oss << std::setfill('0');
477       for (j = i; j < bytes && j < i + bytes_per_line; j++) {
478         oss << std::setw(2) << static_cast<int>(contents[j]) << " ";
479       }
480       oss << std::setfill(' ');
481       for (; j < i + bytes_per_line; j++) {
482         oss << "   ";
483       }
484       for (j = i; j < bytes && j < i + bytes_per_line; j++) {
485         char c = contents[j];
486         if (c < ' ' || c >= 0x7f) {
487           c = '.';
488         }
489         oss << c;
490       }
491       oss << std::endl;
492     }
493   }
494   if (backtrace.num_frames > 0) {
495     oss << backtrace_string(backtrace.frames, backtrace.num_frames);
496   }
497 
498   return oss.str();
499 }
500 
ToString(bool log_contents) const501 std::string UnreachableMemoryInfo::ToString(bool log_contents) const {
502   std::ostringstream oss;
503   oss << "  " << leak_bytes << " bytes in ";
504   oss << num_leaks << " unreachable allocation" << plural(num_leaks);
505   oss << std::endl;
506   oss << "  ABI: '" ABI_STRING "'" << std::endl;
507   oss << std::endl;
508 
509   for (auto it = leaks.begin(); it != leaks.end(); it++) {
510     oss << it->ToString(log_contents);
511     oss << std::endl;
512   }
513 
514   return oss.str();
515 }
516 
~UnreachableMemoryInfo()517 UnreachableMemoryInfo::~UnreachableMemoryInfo() {
518   // Clear the memory that holds the leaks, otherwise the next attempt to
519   // detect leaks may find the old data (for example in the jemalloc tcache)
520   // and consider all the leaks to be referenced.
521   memset(leaks.data(), 0, leaks.capacity() * sizeof(Leak));
522 
523   std::vector<Leak> tmp;
524   leaks.swap(tmp);
525 
526   // Disable and re-enable malloc to flush the jemalloc tcache to make sure
527   // there are no copies of the leaked pointer addresses there.
528   malloc_disable();
529   malloc_enable();
530 }
531 
GetUnreachableMemoryString(bool log_contents,size_t limit)532 std::string GetUnreachableMemoryString(bool log_contents, size_t limit) {
533   UnreachableMemoryInfo info;
534   if (!GetUnreachableMemory(info, limit)) {
535     return "Failed to get unreachable memory\n"
536            "If you are trying to get unreachable memory from a system app\n"
537            "(like com.android.systemui), disable selinux first using\n"
538            "setenforce 0\n";
539   }
540 
541   return info.ToString(log_contents);
542 }
543 
544 }  // namespace android
545 
LogUnreachableMemory(bool log_contents,size_t limit)546 bool LogUnreachableMemory(bool log_contents, size_t limit) {
547   android::UnreachableMemoryInfo info;
548   if (!android::GetUnreachableMemory(info, limit)) {
549     return false;
550   }
551 
552   for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) {
553     MEM_ALOGE("%s", it->ToString(log_contents).c_str());
554   }
555   return true;
556 }
557 
NoLeaks()558 bool NoLeaks() {
559   android::UnreachableMemoryInfo info;
560   if (!android::GetUnreachableMemory(info, 0)) {
561     return false;
562   }
563 
564   return info.num_leaks == 0;
565 }
566