1 /*
2 * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/video_coding/jitter_estimator.h"
12
13 #include <assert.h>
14 #include <math.h>
15 #include <string.h>
16
17 #include <algorithm>
18 #include <cstdint>
19
20 #include "absl/types/optional.h"
21 #include "modules/video_coding/internal_defines.h"
22 #include "modules/video_coding/rtt_filter.h"
23 #include "rtc_base/experiments/jitter_upper_bound_experiment.h"
24 #include "rtc_base/numerics/safe_conversions.h"
25 #include "system_wrappers/include/clock.h"
26 #include "system_wrappers/include/field_trial.h"
27
28 namespace webrtc {
29 namespace {
30 static constexpr uint32_t kStartupDelaySamples = 30;
31 static constexpr int64_t kFsAccuStartupSamples = 5;
32 static constexpr double kMaxFramerateEstimate = 200.0;
33 static constexpr int64_t kNackCountTimeoutMs = 60000;
34 static constexpr double kDefaultMaxTimestampDeviationInSigmas = 3.5;
35 } // namespace
36
VCMJitterEstimator(Clock * clock)37 VCMJitterEstimator::VCMJitterEstimator(Clock* clock)
38 : _phi(0.97),
39 _psi(0.9999),
40 _alphaCountMax(400),
41 _thetaLow(0.000001),
42 _nackLimit(3),
43 _numStdDevDelayOutlier(15),
44 _numStdDevFrameSizeOutlier(3),
45 _noiseStdDevs(2.33), // ~Less than 1% chance
46 // (look up in normal distribution table)...
47 _noiseStdDevOffset(30.0), // ...of getting 30 ms freezes
48 _rttFilter(),
49 fps_counter_(30), // TODO(sprang): Use an estimator with limit based on
50 // time, rather than number of samples.
51 time_deviation_upper_bound_(
52 JitterUpperBoundExperiment::GetUpperBoundSigmas().value_or(
53 kDefaultMaxTimestampDeviationInSigmas)),
54 enable_reduced_delay_(
55 !field_trial::IsEnabled("WebRTC-ReducedJitterDelayKillSwitch")),
56 clock_(clock) {
57 Reset();
58 }
59
~VCMJitterEstimator()60 VCMJitterEstimator::~VCMJitterEstimator() {}
61
operator =(const VCMJitterEstimator & rhs)62 VCMJitterEstimator& VCMJitterEstimator::operator=(
63 const VCMJitterEstimator& rhs) {
64 if (this != &rhs) {
65 memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov));
66 memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov));
67
68 _avgFrameSize = rhs._avgFrameSize;
69 _varFrameSize = rhs._varFrameSize;
70 _maxFrameSize = rhs._maxFrameSize;
71 _fsSum = rhs._fsSum;
72 _fsCount = rhs._fsCount;
73 _lastUpdateT = rhs._lastUpdateT;
74 _prevEstimate = rhs._prevEstimate;
75 _prevFrameSize = rhs._prevFrameSize;
76 _avgNoise = rhs._avgNoise;
77 _alphaCount = rhs._alphaCount;
78 _filterJitterEstimate = rhs._filterJitterEstimate;
79 _startupCount = rhs._startupCount;
80 _latestNackTimestamp = rhs._latestNackTimestamp;
81 _nackCount = rhs._nackCount;
82 _rttFilter = rhs._rttFilter;
83 clock_ = rhs.clock_;
84 }
85 return *this;
86 }
87
88 // Resets the JitterEstimate.
Reset()89 void VCMJitterEstimator::Reset() {
90 _theta[0] = 1 / (512e3 / 8);
91 _theta[1] = 0;
92 _varNoise = 4.0;
93
94 _thetaCov[0][0] = 1e-4;
95 _thetaCov[1][1] = 1e2;
96 _thetaCov[0][1] = _thetaCov[1][0] = 0;
97 _Qcov[0][0] = 2.5e-10;
98 _Qcov[1][1] = 1e-10;
99 _Qcov[0][1] = _Qcov[1][0] = 0;
100 _avgFrameSize = 500;
101 _maxFrameSize = 500;
102 _varFrameSize = 100;
103 _lastUpdateT = -1;
104 _prevEstimate = -1.0;
105 _prevFrameSize = 0;
106 _avgNoise = 0.0;
107 _alphaCount = 1;
108 _filterJitterEstimate = 0.0;
109 _latestNackTimestamp = 0;
110 _nackCount = 0;
111 _latestNackTimestamp = 0;
112 _fsSum = 0;
113 _fsCount = 0;
114 _startupCount = 0;
115 _rttFilter.Reset();
116 fps_counter_.Reset();
117 }
118
119 // Updates the estimates with the new measurements.
UpdateEstimate(int64_t frameDelayMS,uint32_t frameSizeBytes,bool incompleteFrame)120 void VCMJitterEstimator::UpdateEstimate(int64_t frameDelayMS,
121 uint32_t frameSizeBytes,
122 bool incompleteFrame /* = false */) {
123 if (frameSizeBytes == 0) {
124 return;
125 }
126 int deltaFS = frameSizeBytes - _prevFrameSize;
127 if (_fsCount < kFsAccuStartupSamples) {
128 _fsSum += frameSizeBytes;
129 _fsCount++;
130 } else if (_fsCount == kFsAccuStartupSamples) {
131 // Give the frame size filter.
132 _avgFrameSize = static_cast<double>(_fsSum) / static_cast<double>(_fsCount);
133 _fsCount++;
134 }
135 if (!incompleteFrame || frameSizeBytes > _avgFrameSize) {
136 double avgFrameSize = _phi * _avgFrameSize + (1 - _phi) * frameSizeBytes;
137 if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize)) {
138 // Only update the average frame size if this sample wasn't a key frame.
139 _avgFrameSize = avgFrameSize;
140 }
141 // Update the variance anyway since we want to capture cases where we only
142 // get key frames.
143 _varFrameSize = VCM_MAX(
144 _phi * _varFrameSize + (1 - _phi) * (frameSizeBytes - avgFrameSize) *
145 (frameSizeBytes - avgFrameSize),
146 1.0);
147 }
148
149 // Update max frameSize estimate.
150 _maxFrameSize =
151 VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes));
152
153 if (_prevFrameSize == 0) {
154 _prevFrameSize = frameSizeBytes;
155 return;
156 }
157 _prevFrameSize = frameSizeBytes;
158
159 // Cap frameDelayMS based on the current time deviation noise.
160 int64_t max_time_deviation_ms =
161 static_cast<int64_t>(time_deviation_upper_bound_ * sqrt(_varNoise) + 0.5);
162 frameDelayMS = std::max(std::min(frameDelayMS, max_time_deviation_ms),
163 -max_time_deviation_ms);
164
165 // Only update the Kalman filter if the sample is not considered an extreme
166 // outlier. Even if it is an extreme outlier from a delay point of view, if
167 // the frame size also is large the deviation is probably due to an incorrect
168 // line slope.
169 double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS);
170
171 if (fabs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) ||
172 frameSizeBytes >
173 _avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize)) {
174 // Update the variance of the deviation from the line given by the Kalman
175 // filter.
176 EstimateRandomJitter(deviation, incompleteFrame);
177 // Prevent updating with frames which have been congested by a large frame,
178 // and therefore arrives almost at the same time as that frame.
179 // This can occur when we receive a large frame (key frame) which has been
180 // delayed. The next frame is of normal size (delta frame), and thus deltaFS
181 // will be << 0. This removes all frame samples which arrives after a key
182 // frame.
183 if ((!incompleteFrame || deviation >= 0.0) &&
184 static_cast<double>(deltaFS) > -0.25 * _maxFrameSize) {
185 // Update the Kalman filter with the new data
186 KalmanEstimateChannel(frameDelayMS, deltaFS);
187 }
188 } else {
189 int nStdDev =
190 (deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier;
191 EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame);
192 }
193 // Post process the total estimated jitter
194 if (_startupCount >= kStartupDelaySamples) {
195 PostProcessEstimate();
196 } else {
197 _startupCount++;
198 }
199 }
200
201 // Updates the nack/packet ratio.
FrameNacked()202 void VCMJitterEstimator::FrameNacked() {
203 if (_nackCount < _nackLimit) {
204 _nackCount++;
205 }
206 _latestNackTimestamp = clock_->TimeInMicroseconds();
207 }
208
209 // Updates Kalman estimate of the channel.
210 // The caller is expected to sanity check the inputs.
KalmanEstimateChannel(int64_t frameDelayMS,int32_t deltaFSBytes)211 void VCMJitterEstimator::KalmanEstimateChannel(int64_t frameDelayMS,
212 int32_t deltaFSBytes) {
213 double Mh[2];
214 double hMh_sigma;
215 double kalmanGain[2];
216 double measureRes;
217 double t00, t01;
218
219 // Kalman filtering
220
221 // Prediction
222 // M = M + Q
223 _thetaCov[0][0] += _Qcov[0][0];
224 _thetaCov[0][1] += _Qcov[0][1];
225 _thetaCov[1][0] += _Qcov[1][0];
226 _thetaCov[1][1] += _Qcov[1][1];
227
228 // Kalman gain
229 // K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h')
230 // h = [dFS 1]
231 // Mh = M*h'
232 // hMh_sigma = h*M*h' + R
233 Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1];
234 Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1];
235 // sigma weights measurements with a small deltaFS as noisy and
236 // measurements with large deltaFS as good
237 if (_maxFrameSize < 1.0) {
238 return;
239 }
240 double sigma = (300.0 * exp(-fabs(static_cast<double>(deltaFSBytes)) /
241 (1e0 * _maxFrameSize)) +
242 1) *
243 sqrt(_varNoise);
244 if (sigma < 1.0) {
245 sigma = 1.0;
246 }
247 hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma;
248 if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) ||
249 (hMh_sigma > -1e-9 && hMh_sigma <= 0)) {
250 assert(false);
251 return;
252 }
253 kalmanGain[0] = Mh[0] / hMh_sigma;
254 kalmanGain[1] = Mh[1] / hMh_sigma;
255
256 // Correction
257 // theta = theta + K*(dT - h*theta)
258 measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]);
259 _theta[0] += kalmanGain[0] * measureRes;
260 _theta[1] += kalmanGain[1] * measureRes;
261
262 if (_theta[0] < _thetaLow) {
263 _theta[0] = _thetaLow;
264 }
265
266 // M = (I - K*h)*M
267 t00 = _thetaCov[0][0];
268 t01 = _thetaCov[0][1];
269 _thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 -
270 kalmanGain[0] * _thetaCov[1][0];
271 _thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 -
272 kalmanGain[0] * _thetaCov[1][1];
273 _thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) -
274 kalmanGain[1] * deltaFSBytes * t00;
275 _thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) -
276 kalmanGain[1] * deltaFSBytes * t01;
277
278 // Covariance matrix, must be positive semi-definite.
279 assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 &&
280 _thetaCov[0][0] * _thetaCov[1][1] -
281 _thetaCov[0][1] * _thetaCov[1][0] >=
282 0 &&
283 _thetaCov[0][0] >= 0);
284 }
285
286 // Calculate difference in delay between a sample and the expected delay
287 // estimated by the Kalman filter
DeviationFromExpectedDelay(int64_t frameDelayMS,int32_t deltaFSBytes) const288 double VCMJitterEstimator::DeviationFromExpectedDelay(
289 int64_t frameDelayMS,
290 int32_t deltaFSBytes) const {
291 return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]);
292 }
293
294 // Estimates the random jitter by calculating the variance of the sample
295 // distance from the line given by theta.
EstimateRandomJitter(double d_dT,bool incompleteFrame)296 void VCMJitterEstimator::EstimateRandomJitter(double d_dT,
297 bool incompleteFrame) {
298 uint64_t now = clock_->TimeInMicroseconds();
299 if (_lastUpdateT != -1) {
300 fps_counter_.AddSample(now - _lastUpdateT);
301 }
302 _lastUpdateT = now;
303
304 if (_alphaCount == 0) {
305 assert(false);
306 return;
307 }
308 double alpha =
309 static_cast<double>(_alphaCount - 1) / static_cast<double>(_alphaCount);
310 _alphaCount++;
311 if (_alphaCount > _alphaCountMax)
312 _alphaCount = _alphaCountMax;
313
314 // In order to avoid a low frame rate stream to react slower to changes,
315 // scale the alpha weight relative a 30 fps stream.
316 double fps = GetFrameRate();
317 if (fps > 0.0) {
318 double rate_scale = 30.0 / fps;
319 // At startup, there can be a lot of noise in the fps estimate.
320 // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
321 // at sample #kStartupDelaySamples.
322 if (_alphaCount < kStartupDelaySamples) {
323 rate_scale =
324 (_alphaCount * rate_scale + (kStartupDelaySamples - _alphaCount)) /
325 kStartupDelaySamples;
326 }
327 alpha = pow(alpha, rate_scale);
328 }
329
330 double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT;
331 double varNoise =
332 alpha * _varNoise + (1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise);
333 if (!incompleteFrame || varNoise > _varNoise) {
334 _avgNoise = avgNoise;
335 _varNoise = varNoise;
336 }
337 if (_varNoise < 1.0) {
338 // The variance should never be zero, since we might get stuck and consider
339 // all samples as outliers.
340 _varNoise = 1.0;
341 }
342 }
343
NoiseThreshold() const344 double VCMJitterEstimator::NoiseThreshold() const {
345 double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset;
346 if (noiseThreshold < 1.0) {
347 noiseThreshold = 1.0;
348 }
349 return noiseThreshold;
350 }
351
352 // Calculates the current jitter estimate from the filtered estimates.
CalculateEstimate()353 double VCMJitterEstimator::CalculateEstimate() {
354 double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold();
355
356 // A very low estimate (or negative) is neglected.
357 if (ret < 1.0) {
358 if (_prevEstimate <= 0.01) {
359 ret = 1.0;
360 } else {
361 ret = _prevEstimate;
362 }
363 }
364 if (ret > 10000.0) { // Sanity
365 ret = 10000.0;
366 }
367 _prevEstimate = ret;
368 return ret;
369 }
370
PostProcessEstimate()371 void VCMJitterEstimator::PostProcessEstimate() {
372 _filterJitterEstimate = CalculateEstimate();
373 }
374
UpdateRtt(int64_t rttMs)375 void VCMJitterEstimator::UpdateRtt(int64_t rttMs) {
376 _rttFilter.Update(rttMs);
377 }
378
379 // Returns the current filtered estimate if available,
380 // otherwise tries to calculate an estimate.
GetJitterEstimate(double rttMultiplier,absl::optional<double> rttMultAddCapMs)381 int VCMJitterEstimator::GetJitterEstimate(
382 double rttMultiplier,
383 absl::optional<double> rttMultAddCapMs) {
384 double jitterMS = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
385 uint64_t now = clock_->TimeInMicroseconds();
386
387 if (now - _latestNackTimestamp > kNackCountTimeoutMs * 1000)
388 _nackCount = 0;
389
390 if (_filterJitterEstimate > jitterMS)
391 jitterMS = _filterJitterEstimate;
392 if (_nackCount >= _nackLimit) {
393 if (rttMultAddCapMs.has_value()) {
394 jitterMS +=
395 std::min(_rttFilter.RttMs() * rttMultiplier, rttMultAddCapMs.value());
396 } else {
397 jitterMS += _rttFilter.RttMs() * rttMultiplier;
398 }
399 }
400
401 if (enable_reduced_delay_) {
402 static const double kJitterScaleLowThreshold = 5.0;
403 static const double kJitterScaleHighThreshold = 10.0;
404 double fps = GetFrameRate();
405 // Ignore jitter for very low fps streams.
406 if (fps < kJitterScaleLowThreshold) {
407 if (fps == 0.0) {
408 return rtc::checked_cast<int>(std::max(0.0, jitterMS) + 0.5);
409 }
410 return 0;
411 }
412
413 // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
414 // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
415 if (fps < kJitterScaleHighThreshold) {
416 jitterMS =
417 (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
418 (fps - kJitterScaleLowThreshold) * jitterMS;
419 }
420 }
421
422 return rtc::checked_cast<int>(std::max(0.0, jitterMS) + 0.5);
423 }
424
GetFrameRate() const425 double VCMJitterEstimator::GetFrameRate() const {
426 if (fps_counter_.ComputeMean() <= 0.0)
427 return 0;
428
429 double fps = 1000000.0 / fps_counter_.ComputeMean();
430 // Sanity check.
431 assert(fps >= 0.0);
432 if (fps > kMaxFramerateEstimate) {
433 fps = kMaxFramerateEstimate;
434 }
435 return fps;
436 }
437 } // namespace webrtc
438