• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/MemoryDependenceAnalysis.h - Memory Deps  --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MemoryDependenceAnalysis analysis pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
15 #define LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerSumType.h"
19 #include "llvm/ADT/PointerEmbeddedInt.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/IR/PredIteratorCache.h"
25 #include "llvm/IR/ValueHandle.h"
26 #include "llvm/Pass.h"
27 
28 namespace llvm {
29 class Function;
30 class FunctionPass;
31 class Instruction;
32 class CallSite;
33 class AssumptionCache;
34 class MemoryDependenceResults;
35 class PredIteratorCache;
36 class DominatorTree;
37 class PHITransAddr;
38 
39 /// A memory dependence query can return one of three different answers.
40 class MemDepResult {
41   enum DepType {
42     /// Clients of MemDep never see this.
43     ///
44     /// Entries with this marker occur in a LocalDeps map or NonLocalDeps map
45     /// when the instruction they previously referenced was removed from
46     /// MemDep.  In either case, the entry may include an instruction pointer.
47     /// If so, the pointer is an instruction in the block where scanning can
48     /// start from, saving some work.
49     ///
50     /// In a default-constructed MemDepResult object, the type will be Invalid
51     /// and the instruction pointer will be null.
52     Invalid = 0,
53 
54     /// This is a dependence on the specified instruction which clobbers the
55     /// desired value.  The pointer member of the MemDepResult pair holds the
56     /// instruction that clobbers the memory.  For example, this occurs when we
57     /// see a may-aliased store to the memory location we care about.
58     ///
59     /// There are several cases that may be interesting here:
60     ///   1. Loads are clobbered by may-alias stores.
61     ///   2. Loads are considered clobbered by partially-aliased loads.  The
62     ///      client may choose to analyze deeper into these cases.
63     Clobber,
64 
65     /// This is a dependence on the specified instruction which defines or
66     /// produces the desired memory location.  The pointer member of the
67     /// MemDepResult pair holds the instruction that defines the memory.
68     ///
69     /// Cases of interest:
70     ///   1. This could be a load or store for dependence queries on
71     ///      load/store.  The value loaded or stored is the produced value.
72     ///      Note that the pointer operand may be different than that of the
73     ///      queried pointer due to must aliases and phi translation.  Note
74     ///      that the def may not be the same type as the query, the pointers
75     ///      may just be must aliases.
76     ///   2. For loads and stores, this could be an allocation instruction. In
77     ///      this case, the load is loading an undef value or a store is the
78     ///      first store to (that part of) the allocation.
79     ///   3. Dependence queries on calls return Def only when they are readonly
80     ///      calls or memory use intrinsics with identical callees and no
81     ///      intervening clobbers.  No validation is done that the operands to
82     ///      the calls are the same.
83     Def,
84 
85     /// This marker indicates that the query has no known dependency in the
86     /// specified block.
87     ///
88     /// More detailed state info is encoded in the upper part of the pair (i.e.
89     /// the Instruction*)
90     Other
91   };
92 
93   /// If DepType is "Other", the upper part of the sum type is an encoding of
94   /// the following more detailed type information.
95   enum OtherType {
96     /// This marker indicates that the query has no dependency in the specified
97     /// block.
98     ///
99     /// To find out more, the client should query other predecessor blocks.
100     NonLocal = 1,
101     /// This marker indicates that the query has no dependency in the specified
102     /// function.
103     NonFuncLocal,
104     /// This marker indicates that the query dependency is unknown.
105     Unknown
106   };
107 
108   typedef PointerSumType<
109       DepType, PointerSumTypeMember<Invalid, Instruction *>,
110       PointerSumTypeMember<Clobber, Instruction *>,
111       PointerSumTypeMember<Def, Instruction *>,
112       PointerSumTypeMember<Other, PointerEmbeddedInt<OtherType, 3>>>
113       ValueTy;
114   ValueTy Value;
MemDepResult(ValueTy V)115   explicit MemDepResult(ValueTy V) : Value(V) {}
116 
117 public:
MemDepResult()118   MemDepResult() : Value() {}
119 
120   /// get methods: These are static ctor methods for creating various
121   /// MemDepResult kinds.
getDef(Instruction * Inst)122   static MemDepResult getDef(Instruction *Inst) {
123     assert(Inst && "Def requires inst");
124     return MemDepResult(ValueTy::create<Def>(Inst));
125   }
getClobber(Instruction * Inst)126   static MemDepResult getClobber(Instruction *Inst) {
127     assert(Inst && "Clobber requires inst");
128     return MemDepResult(ValueTy::create<Clobber>(Inst));
129   }
getNonLocal()130   static MemDepResult getNonLocal() {
131     return MemDepResult(ValueTy::create<Other>(NonLocal));
132   }
getNonFuncLocal()133   static MemDepResult getNonFuncLocal() {
134     return MemDepResult(ValueTy::create<Other>(NonFuncLocal));
135   }
getUnknown()136   static MemDepResult getUnknown() {
137     return MemDepResult(ValueTy::create<Other>(Unknown));
138   }
139 
140   /// Tests if this MemDepResult represents a query that is an instruction
141   /// clobber dependency.
isClobber()142   bool isClobber() const { return Value.is<Clobber>(); }
143 
144   /// Tests if this MemDepResult represents a query that is an instruction
145   /// definition dependency.
isDef()146   bool isDef() const { return Value.is<Def>(); }
147 
148   /// Tests if this MemDepResult represents a query that is transparent to the
149   /// start of the block, but where a non-local hasn't been done.
isNonLocal()150   bool isNonLocal() const {
151     return Value.is<Other>() && Value.cast<Other>() == NonLocal;
152   }
153 
154   /// Tests if this MemDepResult represents a query that is transparent to the
155   /// start of the function.
isNonFuncLocal()156   bool isNonFuncLocal() const {
157     return Value.is<Other>() && Value.cast<Other>() == NonFuncLocal;
158   }
159 
160   /// Tests if this MemDepResult represents a query which cannot and/or will
161   /// not be computed.
isUnknown()162   bool isUnknown() const {
163     return Value.is<Other>() && Value.cast<Other>() == Unknown;
164   }
165 
166   /// If this is a normal dependency, returns the instruction that is depended
167   /// on.  Otherwise, returns null.
getInst()168   Instruction *getInst() const {
169     switch (Value.getTag()) {
170     case Invalid:
171       return Value.cast<Invalid>();
172     case Clobber:
173       return Value.cast<Clobber>();
174     case Def:
175       return Value.cast<Def>();
176     case Other:
177       return nullptr;
178     }
179     llvm_unreachable("Unknown discriminant!");
180   }
181 
182   bool operator==(const MemDepResult &M) const { return Value == M.Value; }
183   bool operator!=(const MemDepResult &M) const { return Value != M.Value; }
184   bool operator<(const MemDepResult &M) const { return Value < M.Value; }
185   bool operator>(const MemDepResult &M) const { return Value > M.Value; }
186 
187 private:
188   friend class MemoryDependenceResults;
189 
190   /// Tests if this is a MemDepResult in its dirty/invalid. state.
isDirty()191   bool isDirty() const { return Value.is<Invalid>(); }
192 
getDirty(Instruction * Inst)193   static MemDepResult getDirty(Instruction *Inst) {
194     return MemDepResult(ValueTy::create<Invalid>(Inst));
195   }
196 };
197 
198 /// This is an entry in the NonLocalDepInfo cache.
199 ///
200 /// For each BasicBlock (the BB entry) it keeps a MemDepResult.
201 class NonLocalDepEntry {
202   BasicBlock *BB;
203   MemDepResult Result;
204 
205 public:
NonLocalDepEntry(BasicBlock * bb,MemDepResult result)206   NonLocalDepEntry(BasicBlock *bb, MemDepResult result)
207       : BB(bb), Result(result) {}
208 
209   // This is used for searches.
NonLocalDepEntry(BasicBlock * bb)210   NonLocalDepEntry(BasicBlock *bb) : BB(bb) {}
211 
212   // BB is the sort key, it can't be changed.
getBB()213   BasicBlock *getBB() const { return BB; }
214 
setResult(const MemDepResult & R)215   void setResult(const MemDepResult &R) { Result = R; }
216 
getResult()217   const MemDepResult &getResult() const { return Result; }
218 
219   bool operator<(const NonLocalDepEntry &RHS) const { return BB < RHS.BB; }
220 };
221 
222 /// This is a result from a NonLocal dependence query.
223 ///
224 /// For each BasicBlock (the BB entry) it keeps a MemDepResult and the
225 /// (potentially phi translated) address that was live in the block.
226 class NonLocalDepResult {
227   NonLocalDepEntry Entry;
228   Value *Address;
229 
230 public:
NonLocalDepResult(BasicBlock * bb,MemDepResult result,Value * address)231   NonLocalDepResult(BasicBlock *bb, MemDepResult result, Value *address)
232       : Entry(bb, result), Address(address) {}
233 
234   // BB is the sort key, it can't be changed.
getBB()235   BasicBlock *getBB() const { return Entry.getBB(); }
236 
setResult(const MemDepResult & R,Value * Addr)237   void setResult(const MemDepResult &R, Value *Addr) {
238     Entry.setResult(R);
239     Address = Addr;
240   }
241 
getResult()242   const MemDepResult &getResult() const { return Entry.getResult(); }
243 
244   /// Returns the address of this pointer in this block.
245   ///
246   /// This can be different than the address queried for the non-local result
247   /// because of phi translation.  This returns null if the address was not
248   /// available in a block (i.e. because phi translation failed) or if this is
249   /// a cached result and that address was deleted.
250   ///
251   /// The address is always null for a non-local 'call' dependence.
getAddress()252   Value *getAddress() const { return Address; }
253 };
254 
255 /// Provides a lazy, caching interface for making common memory aliasing
256 /// information queries, backed by LLVM's alias analysis passes.
257 ///
258 /// The dependency information returned is somewhat unusual, but is pragmatic.
259 /// If queried about a store or call that might modify memory, the analysis
260 /// will return the instruction[s] that may either load from that memory or
261 /// store to it.  If queried with a load or call that can never modify memory,
262 /// the analysis will return calls and stores that might modify the pointer,
263 /// but generally does not return loads unless a) they are volatile, or
264 /// b) they load from *must-aliased* pointers.  Returning a dependence on
265 /// must-alias'd pointers instead of all pointers interacts well with the
266 /// internal caching mechanism.
267 class MemoryDependenceResults {
268   // A map from instructions to their dependency.
269   typedef DenseMap<Instruction *, MemDepResult> LocalDepMapType;
270   LocalDepMapType LocalDeps;
271 
272 public:
273   typedef std::vector<NonLocalDepEntry> NonLocalDepInfo;
274 
275 private:
276   /// A pair<Value*, bool> where the bool is true if the dependence is a read
277   /// only dependence, false if read/write.
278   typedef PointerIntPair<const Value *, 1, bool> ValueIsLoadPair;
279 
280   /// This pair is used when caching information for a block.
281   ///
282   /// If the pointer is null, the cache value is not a full query that starts
283   /// at the specified block.  If non-null, the bool indicates whether or not
284   /// the contents of the block was skipped.
285   typedef PointerIntPair<BasicBlock *, 1, bool> BBSkipFirstBlockPair;
286 
287   /// This record is the information kept for each (value, is load) pair.
288   struct NonLocalPointerInfo {
289     /// The pair of the block and the skip-first-block flag.
290     BBSkipFirstBlockPair Pair;
291     /// The results of the query for each relevant block.
292     NonLocalDepInfo NonLocalDeps;
293     /// The maximum size of the dereferences of the pointer.
294     ///
295     /// May be UnknownSize if the sizes are unknown.
296     uint64_t Size;
297     /// The AA tags associated with dereferences of the pointer.
298     ///
299     /// The members may be null if there are no tags or conflicting tags.
300     AAMDNodes AATags;
301 
NonLocalPointerInfoNonLocalPointerInfo302     NonLocalPointerInfo() : Size(MemoryLocation::UnknownSize) {}
303   };
304 
305   /// This map stores the cached results of doing a pointer lookup at the
306   /// bottom of a block.
307   ///
308   /// The key of this map is the pointer+isload bit, the value is a list of
309   /// <bb->result> mappings.
310   typedef DenseMap<ValueIsLoadPair, NonLocalPointerInfo>
311       CachedNonLocalPointerInfo;
312   CachedNonLocalPointerInfo NonLocalPointerDeps;
313 
314   // A map from instructions to their non-local pointer dependencies.
315   typedef DenseMap<Instruction *, SmallPtrSet<ValueIsLoadPair, 4>>
316       ReverseNonLocalPtrDepTy;
317   ReverseNonLocalPtrDepTy ReverseNonLocalPtrDeps;
318 
319   /// This is the instruction we keep for each cached access that we have for
320   /// an instruction.
321   ///
322   /// The pointer is an owning pointer and the bool indicates whether we have
323   /// any dirty bits in the set.
324   typedef std::pair<NonLocalDepInfo, bool> PerInstNLInfo;
325 
326   // A map from instructions to their non-local dependencies.
327   typedef DenseMap<Instruction *, PerInstNLInfo> NonLocalDepMapType;
328 
329   NonLocalDepMapType NonLocalDeps;
330 
331   // A reverse mapping from dependencies to the dependees.  This is
332   // used when removing instructions to keep the cache coherent.
333   typedef DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>>
334       ReverseDepMapType;
335   ReverseDepMapType ReverseLocalDeps;
336 
337   // A reverse mapping from dependencies to the non-local dependees.
338   ReverseDepMapType ReverseNonLocalDeps;
339 
340   /// Current AA implementation, just a cache.
341   AliasAnalysis &AA;
342   AssumptionCache &AC;
343   const TargetLibraryInfo &TLI;
344   DominatorTree &DT;
345   PredIteratorCache PredCache;
346 
347 public:
MemoryDependenceResults(AliasAnalysis & AA,AssumptionCache & AC,const TargetLibraryInfo & TLI,DominatorTree & DT)348   MemoryDependenceResults(AliasAnalysis &AA, AssumptionCache &AC,
349                           const TargetLibraryInfo &TLI,
350                           DominatorTree &DT)
351       : AA(AA), AC(AC), TLI(TLI), DT(DT) {}
352 
353   /// Returns the instruction on which a memory operation depends.
354   ///
355   /// See the class comment for more details.  It is illegal to call this on
356   /// non-memory instructions.
357   MemDepResult getDependency(Instruction *QueryInst);
358 
359   /// Perform a full dependency query for the specified call, returning the set
360   /// of blocks that the value is potentially live across.
361   ///
362   /// The returned set of results will include a "NonLocal" result for all
363   /// blocks where the value is live across.
364   ///
365   /// This method assumes the instruction returns a "NonLocal" dependency
366   /// within its own block.
367   ///
368   /// This returns a reference to an internal data structure that may be
369   /// invalidated on the next non-local query or when an instruction is
370   /// removed.  Clients must copy this data if they want it around longer than
371   /// that.
372   const NonLocalDepInfo &getNonLocalCallDependency(CallSite QueryCS);
373 
374   /// Perform a full dependency query for an access to the QueryInst's
375   /// specified memory location, returning the set of instructions that either
376   /// define or clobber the value.
377   ///
378   /// Warning: For a volatile query instruction, the dependencies will be
379   /// accurate, and thus usable for reordering, but it is never legal to
380   /// remove the query instruction.
381   ///
382   /// This method assumes the pointer has a "NonLocal" dependency within
383   /// QueryInst's parent basic block.
384   void getNonLocalPointerDependency(Instruction *QueryInst,
385                                     SmallVectorImpl<NonLocalDepResult> &Result);
386 
387   /// Removes an instruction from the dependence analysis, updating the
388   /// dependence of instructions that previously depended on it.
389   void removeInstruction(Instruction *InstToRemove);
390 
391   /// Invalidates cached information about the specified pointer, because it
392   /// may be too conservative in memdep.
393   ///
394   /// This is an optional call that can be used when the client detects an
395   /// equivalence between the pointer and some other value and replaces the
396   /// other value with ptr. This can make Ptr available in more places that
397   /// cached info does not necessarily keep.
398   void invalidateCachedPointerInfo(Value *Ptr);
399 
400   /// Clears the PredIteratorCache info.
401   ///
402   /// This needs to be done when the CFG changes, e.g., due to splitting
403   /// critical edges.
404   void invalidateCachedPredecessors();
405 
406   /// Returns the instruction on which a memory location depends.
407   ///
408   /// If isLoad is true, this routine ignores may-aliases with read-only
409   /// operations.  If isLoad is false, this routine ignores may-aliases
410   /// with reads from read-only locations. If possible, pass the query
411   /// instruction as well; this function may take advantage of the metadata
412   /// annotated to the query instruction to refine the result.
413   ///
414   /// Note that this is an uncached query, and thus may be inefficient.
415   MemDepResult getPointerDependencyFrom(const MemoryLocation &Loc, bool isLoad,
416                                         BasicBlock::iterator ScanIt,
417                                         BasicBlock *BB,
418                                         Instruction *QueryInst = nullptr);
419 
420   MemDepResult getSimplePointerDependencyFrom(const MemoryLocation &MemLoc,
421                                               bool isLoad,
422                                               BasicBlock::iterator ScanIt,
423                                               BasicBlock *BB,
424                                               Instruction *QueryInst);
425 
426   /// This analysis looks for other loads and stores with invariant.group
427   /// metadata and the same pointer operand. Returns Unknown if it does not
428   /// find anything, and Def if it can be assumed that 2 instructions load or
429   /// store the same value.
430   /// FIXME: This analysis works only on single block because of restrictions
431   /// at the call site.
432   MemDepResult getInvariantGroupPointerDependency(LoadInst *LI, BasicBlock *BB);
433 
434   /// Looks at a memory location for a load (specified by MemLocBase, Offs, and
435   /// Size) and compares it against a load.
436   ///
437   /// If the specified load could be safely widened to a larger integer load
438   /// that is 1) still efficient, 2) safe for the target, and 3) would provide
439   /// the specified memory location value, then this function returns the size
440   /// in bytes of the load width to use.  If not, this returns zero.
441   static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
442                                                   int64_t MemLocOffs,
443                                                   unsigned MemLocSize,
444                                                   const LoadInst *LI);
445 
446   /// Release memory in caches.
447   void releaseMemory();
448 
449 private:
450   MemDepResult getCallSiteDependencyFrom(CallSite C, bool isReadOnlyCall,
451                                          BasicBlock::iterator ScanIt,
452                                          BasicBlock *BB);
453   bool getNonLocalPointerDepFromBB(Instruction *QueryInst,
454                                    const PHITransAddr &Pointer,
455                                    const MemoryLocation &Loc, bool isLoad,
456                                    BasicBlock *BB,
457                                    SmallVectorImpl<NonLocalDepResult> &Result,
458                                    DenseMap<BasicBlock *, Value *> &Visited,
459                                    bool SkipFirstBlock = false);
460   MemDepResult GetNonLocalInfoForBlock(Instruction *QueryInst,
461                                        const MemoryLocation &Loc, bool isLoad,
462                                        BasicBlock *BB, NonLocalDepInfo *Cache,
463                                        unsigned NumSortedEntries);
464 
465   void RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P);
466 
467   void verifyRemoved(Instruction *Inst) const;
468 };
469 
470 /// An analysis that produces \c MemoryDependenceResults for a function.
471 ///
472 /// This is essentially a no-op because the results are computed entirely
473 /// lazily.
474 class MemoryDependenceAnalysis
475     : public AnalysisInfoMixin<MemoryDependenceAnalysis> {
476   friend AnalysisInfoMixin<MemoryDependenceAnalysis>;
477   static char PassID;
478 
479 public:
480   typedef MemoryDependenceResults Result;
481 
482   MemoryDependenceResults run(Function &F, AnalysisManager<Function> &AM);
483 };
484 
485 /// A wrapper analysis pass for the legacy pass manager that exposes a \c
486 /// MemoryDepnedenceResults instance.
487 class MemoryDependenceWrapperPass : public FunctionPass {
488   Optional<MemoryDependenceResults> MemDep;
489 public:
490   MemoryDependenceWrapperPass();
491   ~MemoryDependenceWrapperPass() override;
492   static char ID;
493 
494   /// Pass Implementation stuff.  This doesn't do any analysis eagerly.
495   bool runOnFunction(Function &) override;
496 
497   /// Clean up memory in between runs
498   void releaseMemory() override;
499 
500   /// Does not modify anything.  It uses Value Numbering and Alias Analysis.
501   void getAnalysisUsage(AnalysisUsage &AU) const override;
502 
getMemDep()503   MemoryDependenceResults &getMemDep() { return *MemDep; }
504 };
505 
506 } // End llvm namespace
507 
508 #endif
509