1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17
18 // SOME COMMENTS ABOUT USAGE:
19
20 // This provides primarily wp<> weak pointer types and RefBase, which work
21 // together with sp<> from <StrongPointer.h>.
22
23 // sp<> (and wp<>) are a type of smart pointer that use a well defined protocol
24 // to operate. As long as the object they are templated with implements that
25 // protocol, these smart pointers work. In several places the platform
26 // instantiates sp<> with non-RefBase objects; the two are not tied to each
27 // other.
28
29 // RefBase is such an implementation and it supports strong pointers, weak
30 // pointers and some magic features for the binder.
31
32 // So, when using RefBase objects, you have the ability to use strong and weak
33 // pointers through sp<> and wp<>.
34
35 // Normally, when the last strong pointer goes away, the object is destroyed,
36 // i.e. it's destructor is called. HOWEVER, parts of its associated memory is not
37 // freed until the last weak pointer is released.
38
39 // Weak pointers are essentially "safe" pointers. They are always safe to
40 // access through promote(). They may return nullptr if the object was
41 // destroyed because it ran out of strong pointers. This makes them good candidates
42 // for keys in a cache for instance.
43
44 // Weak pointers remain valid for comparison purposes even after the underlying
45 // object has been destroyed. Even if object A is destroyed and its memory reused
46 // for B, A remaining weak pointer to A will not compare equal to one to B.
47 // This again makes them attractive for use as keys.
48
49 // How is this supposed / intended to be used?
50
51 // Our recommendation is to use strong references (sp<>) when there is an
52 // ownership relation. e.g. when an object "owns" another one, use a strong
53 // ref. And of course use strong refs as arguments of functions (it's extremely
54 // rare that a function will take a wp<>).
55
56 // Typically a newly allocated object will immediately be used to initialize
57 // a strong pointer, which may then be used to construct or assign to other
58 // strong and weak pointers.
59
60 // Use weak references when there are no ownership relation. e.g. the keys in a
61 // cache (you cannot use plain pointers because there is no safe way to acquire
62 // a strong reference from a vanilla pointer).
63
64 // This implies that two objects should never (or very rarely) have sp<> on
65 // each other, because they can't both own each other.
66
67
68 // Caveats with reference counting
69
70 // Obviously, circular strong references are a big problem; this creates leaks
71 // and it's hard to debug -- except it's in fact really easy because RefBase has
72 // tons of debugging code for that. It can basically tell you exactly where the
73 // leak is.
74
75 // Another problem has to do with destructors with side effects. You must
76 // assume that the destructor of reference counted objects can be called AT ANY
77 // TIME. For instance code as simple as this:
78
79 // void setStuff(const sp<Stuff>& stuff) {
80 // std::lock_guard<std::mutex> lock(mMutex);
81 // mStuff = stuff;
82 // }
83
84 // is very dangerous. This code WILL deadlock one day or another.
85
86 // What isn't obvious is that ~Stuff() can be called as a result of the
87 // assignment. And it gets called with the lock held. First of all, the lock is
88 // protecting mStuff, not ~Stuff(). Secondly, if ~Stuff() uses its own internal
89 // mutex, now you have mutex ordering issues. Even worse, if ~Stuff() is
90 // virtual, now you're calling into "user" code (potentially), by that, I mean,
91 // code you didn't even write.
92
93 // A correct way to write this code is something like:
94
95 // void setStuff(const sp<Stuff>& stuff) {
96 // std::unique_lock<std::mutex> lock(mMutex);
97 // sp<Stuff> hold = mStuff;
98 // mStuff = stuff;
99 // lock.unlock();
100 // }
101
102 // More importantly, reference counted objects should do as little work as
103 // possible in their destructor, or at least be mindful that their destructor
104 // could be called from very weird and unintended places.
105
106 // Other more specific restrictions for wp<> and sp<>:
107
108 // Do not construct a strong pointer to "this" in an object's constructor.
109 // The onFirstRef() callback would be made on an incompletely constructed
110 // object.
111 // Construction of a weak pointer to "this" in an object's constructor is also
112 // discouraged. But the implementation was recently changed so that, in the
113 // absence of extendObjectLifetime() calls, weak pointers no longer impact
114 // object lifetime, and hence this no longer risks premature deallocation,
115 // and hence usually works correctly.
116
117 // Such strong or weak pointers can be safely created in the RefBase onFirstRef()
118 // callback.
119
120 // Use of wp::unsafe_get() for any purpose other than debugging is almost
121 // always wrong. Unless you somehow know that there is a longer-lived sp<> to
122 // the same object, it may well return a pointer to a deallocated object that
123 // has since been reallocated for a different purpose. (And if you know there
124 // is a longer-lived sp<>, why not use an sp<> directly?) A wp<> should only be
125 // dereferenced by using promote().
126
127 // Any object inheriting from RefBase should always be destroyed as the result
128 // of a reference count decrement, not via any other means. Such objects
129 // should never be stack allocated, or appear directly as data members in other
130 // objects. Objects inheriting from RefBase should have their strong reference
131 // count incremented as soon as possible after construction. Usually this
132 // will be done via construction of an sp<> to the object, but may instead
133 // involve other means of calling RefBase::incStrong().
134 // Explicitly deleting or otherwise destroying a RefBase object with outstanding
135 // wp<> or sp<> pointers to it will result in an abort or heap corruption.
136
137 // It is particularly important not to mix sp<> and direct storage management
138 // since the sp from raw pointer constructor is implicit. Thus if a RefBase-
139 // -derived object of type T is managed without ever incrementing its strong
140 // count, and accidentally passed to f(sp<T>), a strong pointer to the object
141 // will be temporarily constructed and destroyed, prematurely deallocating the
142 // object, and resulting in heap corruption. None of this would be easily
143 // visible in the source. See below on
144 // ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION for a compile time
145 // option which helps avoid this case.
146
147 // Extra Features:
148
149 // RefBase::extendObjectLifetime() can be used to prevent destruction of the
150 // object while there are still weak references. This is really special purpose
151 // functionality to support Binder.
152
153 // Wp::promote(), implemented via the attemptIncStrong() member function, is
154 // used to try to convert a weak pointer back to a strong pointer. It's the
155 // normal way to try to access the fields of an object referenced only through
156 // a wp<>. Binder code also sometimes uses attemptIncStrong() directly.
157
158 // RefBase provides a number of additional callbacks for certain reference count
159 // events, as well as some debugging facilities.
160
161 // Debugging support can be enabled by turning on DEBUG_REFS in RefBase.cpp.
162 // Otherwise little checking is provided.
163
164 // Thread safety:
165
166 // Like std::shared_ptr, sp<> and wp<> allow concurrent accesses to DIFFERENT
167 // sp<> and wp<> instances that happen to refer to the same underlying object.
168 // They do NOT support concurrent access (where at least one access is a write)
169 // to THE SAME sp<> or wp<>. In effect, their thread-safety properties are
170 // exactly like those of T*, NOT atomic<T*>.
171
172 // Safety option: ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION
173 //
174 // This flag makes the semantics for using a RefBase object with wp<> and sp<>
175 // much stricter by disabling implicit conversion from raw pointers to these
176 // objects. In order to use this, apply this flag in Android.bp like so:
177 //
178 // cflags: [
179 // "-DANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION",
180 // ],
181 //
182 // REGARDLESS of whether this flag is on, best usage of sp<> is shown below. If
183 // this flag is on, no other usage is possible (directly calling RefBase methods
184 // is possible, but seeing code using 'incStrong' instead of 'sp<>', for
185 // instance, should already set off big alarm bells. With carefully constructed
186 // data structures, it should NEVER be necessary to directly use RefBase
187 // methods). Proper RefBase usage:
188 //
189 // class Foo : virtual public RefBase { ... };
190 //
191 // // always construct an sp object with sp::make
192 // sp<Foo> myFoo = sp<Foo>::make(/*args*/);
193 //
194 // // if you need a weak pointer, it must be constructed from a strong
195 // // pointer
196 // wp<Foo> weakFoo = myFoo; // NOT myFoo.get()
197 //
198 // // If you are inside of a method of Foo and need access to a strong
199 // // explicitly call this function. This documents your intention to code
200 // // readers, and it will give a runtime error for what otherwise would
201 // // be potential double ownership
202 // .... Foo::someMethod(...) {
203 // // asserts if there is a memory issue
204 // sp<Foo> thiz = sp<Foo>::fromExisting(this);
205 // }
206 //
207
208 #ifndef ANDROID_REF_BASE_H
209 #define ANDROID_REF_BASE_H
210
211 #include <atomic>
212 #include <functional>
213 #include <type_traits> // for common_type.
214
215 #include <stdint.h>
216 #include <sys/types.h>
217 #include <stdlib.h>
218 #include <string.h>
219
220 // LightRefBase used to be declared in this header, so we have to include it
221 #include <utils/LightRefBase.h>
222
223 #include <utils/StrongPointer.h>
224 #include <utils/TypeHelpers.h>
225
226 // ---------------------------------------------------------------------------
227 namespace android {
228
229 // ---------------------------------------------------------------------------
230
231 #define COMPARE_WEAK(_op_) \
232 template<typename U> \
233 inline bool operator _op_ (const U* o) const { \
234 return m_ptr _op_ o; \
235 } \
236 /* Needed to handle type inference for nullptr: */ \
237 inline bool operator _op_ (const T* o) const { \
238 return m_ptr _op_ o; \
239 }
240
241 template<template<typename C> class comparator, typename T, typename U>
_wp_compare_(T * a,U * b)242 static inline bool _wp_compare_(T* a, U* b) {
243 return comparator<typename std::common_type<T*, U*>::type>()(a, b);
244 }
245
246 // Use std::less and friends to avoid undefined behavior when ordering pointers
247 // to different objects.
248 #define COMPARE_WEAK_FUNCTIONAL(_op_, _compare_) \
249 template<typename U> \
250 inline bool operator _op_ (const U* o) const { \
251 return _wp_compare_<_compare_>(m_ptr, o); \
252 }
253
254 // ---------------------------------------------------------------------------
255
256 // RefererenceRenamer is pure abstract, there is no virtual method
257 // implementation to put in a translation unit in order to silence the
258 // weak vtables warning.
259 #if defined(__clang__)
260 #pragma clang diagnostic push
261 #pragma clang diagnostic ignored "-Wweak-vtables"
262 #endif
263
264 class ReferenceRenamer {
265 protected:
266 // destructor is purposely not virtual so we avoid code overhead from
267 // subclasses; we have to make it protected to guarantee that it
268 // cannot be called from this base class (and to make strict compilers
269 // happy).
~ReferenceRenamer()270 ~ReferenceRenamer() { }
271 public:
272 virtual void operator()(size_t i) const = 0;
273 };
274
275 #if defined(__clang__)
276 #pragma clang diagnostic pop
277 #endif
278
279 // ---------------------------------------------------------------------------
280
281 class RefBase
282 {
283 public:
284 void incStrong(const void* id) const;
285 void incStrongRequireStrong(const void* id) const;
286 void decStrong(const void* id) const;
287
288 void forceIncStrong(const void* id) const;
289
290 //! DEBUGGING ONLY: Get current strong ref count.
291 int32_t getStrongCount() const;
292
293 class weakref_type
294 {
295 public:
296 RefBase* refBase() const;
297
298 void incWeak(const void* id);
299 void incWeakRequireWeak(const void* id);
300 void decWeak(const void* id);
301
302 // acquires a strong reference if there is already one.
303 bool attemptIncStrong(const void* id);
304
305 // acquires a weak reference if there is already one.
306 // This is not always safe. see ProcessState.cpp and BpBinder.cpp
307 // for proper use.
308 bool attemptIncWeak(const void* id);
309
310 //! DEBUGGING ONLY: Get current weak ref count.
311 int32_t getWeakCount() const;
312
313 //! DEBUGGING ONLY: Print references held on object.
314 void printRefs() const;
315
316 //! DEBUGGING ONLY: Enable tracking for this object.
317 // enable -- enable/disable tracking
318 // retain -- when tracking is enable, if true, then we save a stack trace
319 // for each reference and dereference; when retain == false, we
320 // match up references and dereferences and keep only the
321 // outstanding ones.
322
323 void trackMe(bool enable, bool retain);
324 };
325
326 weakref_type* createWeak(const void* id) const;
327
328 weakref_type* getWeakRefs() const;
329
330 //! DEBUGGING ONLY: Print references held on object.
printRefs()331 inline void printRefs() const { getWeakRefs()->printRefs(); }
332
333 //! DEBUGGING ONLY: Enable tracking of object.
trackMe(bool enable,bool retain)334 inline void trackMe(bool enable, bool retain)
335 {
336 getWeakRefs()->trackMe(enable, retain);
337 }
338
339 protected:
340 // When constructing these objects, prefer using sp::make<>. Using a RefBase
341 // object on the stack or with other refcount mechanisms (e.g.
342 // std::shared_ptr) is inherently wrong. RefBase types have an implicit
343 // ownership model and cannot be safely used with other ownership models.
344
345 RefBase();
346 virtual ~RefBase();
347
348 //! Flags for extendObjectLifetime()
349 enum {
350 OBJECT_LIFETIME_STRONG = 0x0000,
351 OBJECT_LIFETIME_WEAK = 0x0001,
352 OBJECT_LIFETIME_MASK = 0x0001
353 };
354
355 void extendObjectLifetime(int32_t mode);
356
357 //! Flags for onIncStrongAttempted()
358 enum {
359 FIRST_INC_STRONG = 0x0001
360 };
361
362 // Invoked after creation of initial strong pointer/reference.
363 virtual void onFirstRef();
364 // Invoked when either the last strong reference goes away, or we need to undo
365 // the effect of an unnecessary onIncStrongAttempted.
366 virtual void onLastStrongRef(const void* id);
367 // Only called in OBJECT_LIFETIME_WEAK case. Returns true if OK to promote to
368 // strong reference. May have side effects if it returns true.
369 // The first flags argument is always FIRST_INC_STRONG.
370 // TODO: Remove initial flag argument.
371 virtual bool onIncStrongAttempted(uint32_t flags, const void* id);
372 // Invoked in the OBJECT_LIFETIME_WEAK case when the last reference of either
373 // kind goes away. Unused.
374 // TODO: Remove.
375 virtual void onLastWeakRef(const void* id);
376
377 private:
378 friend class weakref_type;
379 class weakref_impl;
380
381 RefBase(const RefBase& o);
382 RefBase& operator=(const RefBase& o);
383
384 private:
385 friend class ReferenceMover;
386
387 static void renameRefs(size_t n, const ReferenceRenamer& renamer);
388
389 static void renameRefId(weakref_type* ref,
390 const void* old_id, const void* new_id);
391
392 static void renameRefId(RefBase* ref,
393 const void* old_id, const void* new_id);
394
395 weakref_impl* const mRefs;
396 };
397
398 // ---------------------------------------------------------------------------
399
400 template <typename T>
401 class wp
402 {
403 public:
404 typedef typename RefBase::weakref_type weakref_type;
405
wp()406 inline wp() : m_ptr(nullptr), m_refs(nullptr) { }
407
408 // if nullptr, returns nullptr
409 //
410 // if a weak pointer is already available, this will retrieve it,
411 // otherwise, this will abort
412 static inline wp<T> fromExisting(T* other);
413
414 // for more information about this flag, see above
415 #if defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION)
wp(std::nullptr_t)416 wp(std::nullptr_t) : wp() {}
417 #else
418 wp(T* other); // NOLINT(implicit)
419 template <typename U>
420 wp(U* other); // NOLINT(implicit)
421 wp& operator=(T* other);
422 template <typename U>
423 wp& operator=(U* other);
424 #endif
425
426 wp(const wp<T>& other);
427 explicit wp(const sp<T>& other);
428
429 template<typename U> wp(const sp<U>& other); // NOLINT(implicit)
430 template<typename U> wp(const wp<U>& other); // NOLINT(implicit)
431
432 ~wp();
433
434 // Assignment
435
436 wp& operator = (const wp<T>& other);
437 wp& operator = (const sp<T>& other);
438
439 template<typename U> wp& operator = (const wp<U>& other);
440 template<typename U> wp& operator = (const sp<U>& other);
441
442 void set_object_and_refs(T* other, weakref_type* refs);
443
444 // promotion to sp
445
446 sp<T> promote() const;
447
448 // Reset
449
450 void clear();
451
452 // Accessors
453
get_refs()454 inline weakref_type* get_refs() const { return m_refs; }
455
unsafe_get()456 inline T* unsafe_get() const { return m_ptr; }
457
458 // Operators
459
460 COMPARE_WEAK(==)
461 COMPARE_WEAK(!=)
462 COMPARE_WEAK_FUNCTIONAL(>, std::greater)
463 COMPARE_WEAK_FUNCTIONAL(<, std::less)
464 COMPARE_WEAK_FUNCTIONAL(<=, std::less_equal)
465 COMPARE_WEAK_FUNCTIONAL(>=, std::greater_equal)
466
467 template<typename U>
468 inline bool operator == (const wp<U>& o) const {
469 return m_refs == o.m_refs; // Implies m_ptr == o.mptr; see invariants below.
470 }
471
472 template<typename U>
473 inline bool operator == (const sp<U>& o) const {
474 // Just comparing m_ptr fields is often dangerous, since wp<> may refer to an older
475 // object at the same address.
476 if (o == nullptr) {
477 return m_ptr == nullptr;
478 } else {
479 return m_refs == o->getWeakRefs(); // Implies m_ptr == o.mptr.
480 }
481 }
482
483 template<typename U>
484 inline bool operator != (const sp<U>& o) const {
485 return !(*this == o);
486 }
487
488 template<typename U>
489 inline bool operator > (const wp<U>& o) const {
490 if (m_ptr == o.m_ptr) {
491 return _wp_compare_<std::greater>(m_refs, o.m_refs);
492 } else {
493 return _wp_compare_<std::greater>(m_ptr, o.m_ptr);
494 }
495 }
496
497 template<typename U>
498 inline bool operator < (const wp<U>& o) const {
499 if (m_ptr == o.m_ptr) {
500 return _wp_compare_<std::less>(m_refs, o.m_refs);
501 } else {
502 return _wp_compare_<std::less>(m_ptr, o.m_ptr);
503 }
504 }
505 template<typename U> inline bool operator != (const wp<U>& o) const { return !operator == (o); }
506 template<typename U> inline bool operator <= (const wp<U>& o) const { return !operator > (o); }
507 template<typename U> inline bool operator >= (const wp<U>& o) const { return !operator < (o); }
508
509 private:
510 template<typename Y> friend class sp;
511 template<typename Y> friend class wp;
512
513 T* m_ptr;
514 weakref_type* m_refs;
515 };
516
517 #undef COMPARE_WEAK
518 #undef COMPARE_WEAK_FUNCTIONAL
519
520 // ---------------------------------------------------------------------------
521 // No user serviceable parts below here.
522
523 // Implementation invariants:
524 // Either
525 // 1) m_ptr and m_refs are both null, or
526 // 2) m_refs == m_ptr->mRefs, or
527 // 3) *m_ptr is no longer live, and m_refs points to the weakref_type object that corresponded
528 // to m_ptr while it was live. *m_refs remains live while a wp<> refers to it.
529 //
530 // The m_refs field in a RefBase object is allocated on construction, unique to that RefBase
531 // object, and never changes. Thus if two wp's have identical m_refs fields, they are either both
532 // null or point to the same object. If two wp's have identical m_ptr fields, they either both
533 // point to the same live object and thus have the same m_ref fields, or at least one of the
534 // objects is no longer live.
535 //
536 // Note that the above comparison operations go out of their way to provide an ordering consistent
537 // with ordinary pointer comparison; otherwise they could ignore m_ptr, and just compare m_refs.
538
539 template <typename T>
fromExisting(T * other)540 wp<T> wp<T>::fromExisting(T* other) {
541 if (!other) return nullptr;
542
543 auto refs = other->getWeakRefs();
544 refs->incWeakRequireWeak(other);
545
546 wp<T> ret;
547 ret.m_ptr = other;
548 ret.m_refs = refs;
549 return ret;
550 }
551
552 #if !defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION)
553 template<typename T>
wp(T * other)554 wp<T>::wp(T* other)
555 : m_ptr(other)
556 {
557 m_refs = other ? m_refs = other->createWeak(this) : nullptr;
558 }
559
560 template <typename T>
561 template <typename U>
wp(U * other)562 wp<T>::wp(U* other) : m_ptr(other) {
563 m_refs = other ? other->createWeak(this) : nullptr;
564 }
565
566 template <typename T>
567 wp<T>& wp<T>::operator=(T* other) {
568 weakref_type* newRefs = other ? other->createWeak(this) : nullptr;
569 if (m_ptr) m_refs->decWeak(this);
570 m_ptr = other;
571 m_refs = newRefs;
572 return *this;
573 }
574
575 template <typename T>
576 template <typename U>
577 wp<T>& wp<T>::operator=(U* other) {
578 weakref_type* newRefs = other ? other->createWeak(this) : 0;
579 if (m_ptr) m_refs->decWeak(this);
580 m_ptr = other;
581 m_refs = newRefs;
582 return *this;
583 }
584 #endif
585
586 template<typename T>
wp(const wp<T> & other)587 wp<T>::wp(const wp<T>& other)
588 : m_ptr(other.m_ptr), m_refs(other.m_refs)
589 {
590 if (m_ptr) m_refs->incWeak(this);
591 }
592
593 template<typename T>
wp(const sp<T> & other)594 wp<T>::wp(const sp<T>& other)
595 : m_ptr(other.m_ptr)
596 {
597 m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
598 }
599
600 template<typename T> template<typename U>
wp(const wp<U> & other)601 wp<T>::wp(const wp<U>& other)
602 : m_ptr(other.m_ptr)
603 {
604 if (m_ptr) {
605 m_refs = other.m_refs;
606 m_refs->incWeak(this);
607 } else {
608 m_refs = nullptr;
609 }
610 }
611
612 template<typename T> template<typename U>
wp(const sp<U> & other)613 wp<T>::wp(const sp<U>& other)
614 : m_ptr(other.m_ptr)
615 {
616 m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
617 }
618
619 template<typename T>
~wp()620 wp<T>::~wp()
621 {
622 if (m_ptr) m_refs->decWeak(this);
623 }
624
625 template<typename T>
626 wp<T>& wp<T>::operator = (const wp<T>& other)
627 {
628 weakref_type* otherRefs(other.m_refs);
629 T* otherPtr(other.m_ptr);
630 if (otherPtr) otherRefs->incWeak(this);
631 if (m_ptr) m_refs->decWeak(this);
632 m_ptr = otherPtr;
633 m_refs = otherRefs;
634 return *this;
635 }
636
637 template<typename T>
638 wp<T>& wp<T>::operator = (const sp<T>& other)
639 {
640 weakref_type* newRefs =
641 other != nullptr ? other->createWeak(this) : nullptr;
642 T* otherPtr(other.m_ptr);
643 if (m_ptr) m_refs->decWeak(this);
644 m_ptr = otherPtr;
645 m_refs = newRefs;
646 return *this;
647 }
648
649 template<typename T> template<typename U>
650 wp<T>& wp<T>::operator = (const wp<U>& other)
651 {
652 weakref_type* otherRefs(other.m_refs);
653 U* otherPtr(other.m_ptr);
654 if (otherPtr) otherRefs->incWeak(this);
655 if (m_ptr) m_refs->decWeak(this);
656 m_ptr = otherPtr;
657 m_refs = otherRefs;
658 return *this;
659 }
660
661 template<typename T> template<typename U>
662 wp<T>& wp<T>::operator = (const sp<U>& other)
663 {
664 weakref_type* newRefs =
665 other != nullptr ? other->createWeak(this) : 0;
666 U* otherPtr(other.m_ptr);
667 if (m_ptr) m_refs->decWeak(this);
668 m_ptr = otherPtr;
669 m_refs = newRefs;
670 return *this;
671 }
672
673 template<typename T>
set_object_and_refs(T * other,weakref_type * refs)674 void wp<T>::set_object_and_refs(T* other, weakref_type* refs)
675 {
676 if (other) refs->incWeak(this);
677 if (m_ptr) m_refs->decWeak(this);
678 m_ptr = other;
679 m_refs = refs;
680 }
681
682 template<typename T>
promote()683 sp<T> wp<T>::promote() const
684 {
685 sp<T> result;
686 if (m_ptr && m_refs->attemptIncStrong(&result)) {
687 result.set_pointer(m_ptr);
688 }
689 return result;
690 }
691
692 template<typename T>
clear()693 void wp<T>::clear()
694 {
695 if (m_ptr) {
696 m_refs->decWeak(this);
697 m_refs = 0;
698 m_ptr = 0;
699 }
700 }
701
702 // ---------------------------------------------------------------------------
703
704 // this class just serves as a namespace so TYPE::moveReferences can stay
705 // private.
706 class ReferenceMover {
707 public:
708 // it would be nice if we could make sure no extra code is generated
709 // for sp<TYPE> or wp<TYPE> when TYPE is a descendant of RefBase:
710 // Using a sp<RefBase> override doesn't work; it's a bit like we wanted
711 // a template<typename TYPE inherits RefBase> template...
712
713 template<typename TYPE> static inline
move_references(sp<TYPE> * dest,sp<TYPE> const * src,size_t n)714 void move_references(sp<TYPE>* dest, sp<TYPE> const* src, size_t n) {
715
716 class Renamer : public ReferenceRenamer {
717 sp<TYPE>* d_;
718 sp<TYPE> const* s_;
719 virtual void operator()(size_t i) const {
720 // The id are known to be the sp<>'s this pointer
721 TYPE::renameRefId(d_[i].get(), &s_[i], &d_[i]);
722 }
723 public:
724 Renamer(sp<TYPE>* d, sp<TYPE> const* s) : d_(d), s_(s) { }
725 virtual ~Renamer() { }
726 };
727
728 memmove(dest, src, n*sizeof(sp<TYPE>));
729 TYPE::renameRefs(n, Renamer(dest, src));
730 }
731
732
733 template<typename TYPE> static inline
move_references(wp<TYPE> * dest,wp<TYPE> const * src,size_t n)734 void move_references(wp<TYPE>* dest, wp<TYPE> const* src, size_t n) {
735
736 class Renamer : public ReferenceRenamer {
737 wp<TYPE>* d_;
738 wp<TYPE> const* s_;
739 virtual void operator()(size_t i) const {
740 // The id are known to be the wp<>'s this pointer
741 TYPE::renameRefId(d_[i].get_refs(), &s_[i], &d_[i]);
742 }
743 public:
744 Renamer(wp<TYPE>* rd, wp<TYPE> const* rs) : d_(rd), s_(rs) { }
745 virtual ~Renamer() { }
746 };
747
748 memmove(dest, src, n*sizeof(wp<TYPE>));
749 TYPE::renameRefs(n, Renamer(dest, src));
750 }
751 };
752
753 // specialization for moving sp<> and wp<> types.
754 // these are used by the [Sorted|Keyed]Vector<> implementations
755 // sp<> and wp<> need to be handled specially, because they do not
756 // have trivial copy operation in the general case (see RefBase.cpp
757 // when DEBUG ops are enabled), but can be implemented very
758 // efficiently in most cases.
759
760 template<typename TYPE> inline
move_forward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)761 void move_forward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
762 ReferenceMover::move_references(d, s, n);
763 }
764
765 template<typename TYPE> inline
move_backward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)766 void move_backward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
767 ReferenceMover::move_references(d, s, n);
768 }
769
770 template<typename TYPE> inline
move_forward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)771 void move_forward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
772 ReferenceMover::move_references(d, s, n);
773 }
774
775 template<typename TYPE> inline
move_backward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)776 void move_backward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
777 ReferenceMover::move_references(d, s, n);
778 }
779
780 } // namespace android
781
782 // ---------------------------------------------------------------------------
783
784 #endif // ANDROID_REF_BASE_H
785