• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
getBitWidth(Type * Ty,const DataLayout & DL)87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
Query__anonc06c4cea0111::Query125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
Query__anonc06c4cea0111::Query130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
isExcluded__anonc06c4cea0111::Query138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
safeCxtI(const Value * V,const Instruction * CxtI)150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
getShuffleDemandedElts(const ShuffleVectorInst * Shuf,const APInt & DemandedElts,APInt & DemandedLHS,APInt & DemandedRHS)164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
165                                    const APInt &DemandedElts,
166                                    APInt &DemandedLHS, APInt &DemandedRHS) {
167   // The length of scalable vectors is unknown at compile time, thus we
168   // cannot check their values
169   if (isa<ScalableVectorType>(Shuf->getType()))
170     return false;
171 
172   int NumElts =
173       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
174   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
175   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
176   if (DemandedElts.isNullValue())
177     return true;
178   // Simple case of a shuffle with zeroinitializer.
179   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
180     DemandedLHS.setBit(0);
181     return true;
182   }
183   for (int i = 0; i != NumMaskElts; ++i) {
184     if (!DemandedElts[i])
185       continue;
186     int M = Shuf->getMaskValue(i);
187     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
188 
189     // For undef elements, we don't know anything about the common state of
190     // the shuffle result.
191     if (M == -1)
192       return false;
193     if (M < NumElts)
194       DemandedLHS.setBit(M % NumElts);
195     else
196       DemandedRHS.setBit(M % NumElts);
197   }
198 
199   return true;
200 }
201 
202 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
203                              KnownBits &Known, unsigned Depth, const Query &Q);
204 
computeKnownBits(const Value * V,KnownBits & Known,unsigned Depth,const Query & Q)205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
206                              const Query &Q) {
207   // FIXME: We currently have no way to represent the DemandedElts of a scalable
208   // vector
209   if (isa<ScalableVectorType>(V->getType())) {
210     Known.resetAll();
211     return;
212   }
213 
214   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
215   APInt DemandedElts =
216       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
217   computeKnownBits(V, DemandedElts, Known, Depth, Q);
218 }
219 
computeKnownBits(const Value * V,KnownBits & Known,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)220 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
221                             const DataLayout &DL, unsigned Depth,
222                             AssumptionCache *AC, const Instruction *CxtI,
223                             const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
computeKnownBits(const Value * V,const APInt & DemandedElts,KnownBits & Known,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
230                             KnownBits &Known, const DataLayout &DL,
231                             unsigned Depth, AssumptionCache *AC,
232                             const Instruction *CxtI, const DominatorTree *DT,
233                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
234   ::computeKnownBits(V, DemandedElts, Known, Depth,
235                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
236 }
237 
238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
239                                   unsigned Depth, const Query &Q);
240 
241 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
242                                   const Query &Q);
243 
computeKnownBits(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
245                                  unsigned Depth, AssumptionCache *AC,
246                                  const Instruction *CxtI,
247                                  const DominatorTree *DT,
248                                  OptimizationRemarkEmitter *ORE,
249                                  bool UseInstrInfo) {
250   return ::computeKnownBits(
251       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
252 }
253 
computeKnownBits(const Value * V,const APInt & DemandedElts,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
255                                  const DataLayout &DL, unsigned Depth,
256                                  AssumptionCache *AC, const Instruction *CxtI,
257                                  const DominatorTree *DT,
258                                  OptimizationRemarkEmitter *ORE,
259                                  bool UseInstrInfo) {
260   return ::computeKnownBits(
261       V, DemandedElts, Depth,
262       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
263 }
264 
haveNoCommonBitsSet(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
266                                const DataLayout &DL, AssumptionCache *AC,
267                                const Instruction *CxtI, const DominatorTree *DT,
268                                bool UseInstrInfo) {
269   assert(LHS->getType() == RHS->getType() &&
270          "LHS and RHS should have the same type");
271   assert(LHS->getType()->isIntOrIntVectorTy() &&
272          "LHS and RHS should be integers");
273   // Look for an inverted mask: (X & ~M) op (Y & M).
274   Value *M;
275   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
276       match(RHS, m_c_And(m_Specific(M), m_Value())))
277     return true;
278   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279       match(LHS, m_c_And(m_Specific(M), m_Value())))
280     return true;
281   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
282   KnownBits LHSKnown(IT->getBitWidth());
283   KnownBits RHSKnown(IT->getBitWidth());
284   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
285   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
287 }
288 
isOnlyUsedInZeroEqualityComparison(const Instruction * CxtI)289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
290   for (const User *U : CxtI->users()) {
291     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
292       if (IC->isEquality())
293         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
294           if (C->isNullValue())
295             continue;
296     return false;
297   }
298   return true;
299 }
300 
301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
302                                    const Query &Q);
303 
isKnownToBeAPowerOfTwo(const Value * V,const DataLayout & DL,bool OrZero,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
305                                   bool OrZero, unsigned Depth,
306                                   AssumptionCache *AC, const Instruction *CxtI,
307                                   const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownToBeAPowerOfTwo(
309       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
313                            unsigned Depth, const Query &Q);
314 
315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
316 
isKnownNonZero(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
318                           AssumptionCache *AC, const Instruction *CxtI,
319                           const DominatorTree *DT, bool UseInstrInfo) {
320   return ::isKnownNonZero(V, Depth,
321                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
322 }
323 
isKnownNonNegative(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
325                               unsigned Depth, AssumptionCache *AC,
326                               const Instruction *CxtI, const DominatorTree *DT,
327                               bool UseInstrInfo) {
328   KnownBits Known =
329       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
330   return Known.isNonNegative();
331 }
332 
isKnownPositive(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   if (auto *CI = dyn_cast<ConstantInt>(V))
337     return CI->getValue().isStrictlyPositive();
338 
339   // TODO: We'd doing two recursive queries here.  We should factor this such
340   // that only a single query is needed.
341   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
342          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
343 }
344 
isKnownNegative(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
346                            AssumptionCache *AC, const Instruction *CxtI,
347                            const DominatorTree *DT, bool UseInstrInfo) {
348   KnownBits Known =
349       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
350   return Known.isNegative();
351 }
352 
353 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
354                             const Query &Q);
355 
isKnownNonEqual(const Value * V1,const Value * V2,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)356 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
357                            const DataLayout &DL, AssumptionCache *AC,
358                            const Instruction *CxtI, const DominatorTree *DT,
359                            bool UseInstrInfo) {
360   return ::isKnownNonEqual(V1, V2, 0,
361                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
362                                  UseInstrInfo, /*ORE=*/nullptr));
363 }
364 
365 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
366                               const Query &Q);
367 
MaskedValueIsZero(const Value * V,const APInt & Mask,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)368 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
369                              const DataLayout &DL, unsigned Depth,
370                              AssumptionCache *AC, const Instruction *CxtI,
371                              const DominatorTree *DT, bool UseInstrInfo) {
372   return ::MaskedValueIsZero(
373       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
374 }
375 
376 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
377                                    unsigned Depth, const Query &Q);
378 
ComputeNumSignBits(const Value * V,unsigned Depth,const Query & Q)379 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
380                                    const Query &Q) {
381   // FIXME: We currently have no way to represent the DemandedElts of a scalable
382   // vector
383   if (isa<ScalableVectorType>(V->getType()))
384     return 1;
385 
386   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
387   APInt DemandedElts =
388       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
389   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
390 }
391 
ComputeNumSignBits(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)392 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
393                                   unsigned Depth, AssumptionCache *AC,
394                                   const Instruction *CxtI,
395                                   const DominatorTree *DT, bool UseInstrInfo) {
396   return ::ComputeNumSignBits(
397       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
398 }
399 
computeKnownBitsAddSub(bool Add,const Value * Op0,const Value * Op1,bool NSW,const APInt & DemandedElts,KnownBits & KnownOut,KnownBits & Known2,unsigned Depth,const Query & Q)400 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
401                                    bool NSW, const APInt &DemandedElts,
402                                    KnownBits &KnownOut, KnownBits &Known2,
403                                    unsigned Depth, const Query &Q) {
404   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
405 
406   // If one operand is unknown and we have no nowrap information,
407   // the result will be unknown independently of the second operand.
408   if (KnownOut.isUnknown() && !NSW)
409     return;
410 
411   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
412   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
413 }
414 
computeKnownBitsMul(const Value * Op0,const Value * Op1,bool NSW,const APInt & DemandedElts,KnownBits & Known,KnownBits & Known2,unsigned Depth,const Query & Q)415 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
416                                 const APInt &DemandedElts, KnownBits &Known,
417                                 KnownBits &Known2, unsigned Depth,
418                                 const Query &Q) {
419   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
420   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
421 
422   bool isKnownNegative = false;
423   bool isKnownNonNegative = false;
424   // If the multiplication is known not to overflow, compute the sign bit.
425   if (NSW) {
426     if (Op0 == Op1) {
427       // The product of a number with itself is non-negative.
428       isKnownNonNegative = true;
429     } else {
430       bool isKnownNonNegativeOp1 = Known.isNonNegative();
431       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
432       bool isKnownNegativeOp1 = Known.isNegative();
433       bool isKnownNegativeOp0 = Known2.isNegative();
434       // The product of two numbers with the same sign is non-negative.
435       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
436                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
437       // The product of a negative number and a non-negative number is either
438       // negative or zero.
439       if (!isKnownNonNegative)
440         isKnownNegative =
441             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
442              Known2.isNonZero()) ||
443             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
444     }
445   }
446 
447   Known = KnownBits::computeForMul(Known, Known2);
448 
449   // Only make use of no-wrap flags if we failed to compute the sign bit
450   // directly.  This matters if the multiplication always overflows, in
451   // which case we prefer to follow the result of the direct computation,
452   // though as the program is invoking undefined behaviour we can choose
453   // whatever we like here.
454   if (isKnownNonNegative && !Known.isNegative())
455     Known.makeNonNegative();
456   else if (isKnownNegative && !Known.isNonNegative())
457     Known.makeNegative();
458 }
459 
computeKnownBitsFromRangeMetadata(const MDNode & Ranges,KnownBits & Known)460 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
461                                              KnownBits &Known) {
462   unsigned BitWidth = Known.getBitWidth();
463   unsigned NumRanges = Ranges.getNumOperands() / 2;
464   assert(NumRanges >= 1);
465 
466   Known.Zero.setAllBits();
467   Known.One.setAllBits();
468 
469   for (unsigned i = 0; i < NumRanges; ++i) {
470     ConstantInt *Lower =
471         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
472     ConstantInt *Upper =
473         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
474     ConstantRange Range(Lower->getValue(), Upper->getValue());
475 
476     // The first CommonPrefixBits of all values in Range are equal.
477     unsigned CommonPrefixBits =
478         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
479     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
480     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
481     Known.One &= UnsignedMax & Mask;
482     Known.Zero &= ~UnsignedMax & Mask;
483   }
484 }
485 
isEphemeralValueOf(const Instruction * I,const Value * E)486 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
487   SmallVector<const Value *, 16> WorkSet(1, I);
488   SmallPtrSet<const Value *, 32> Visited;
489   SmallPtrSet<const Value *, 16> EphValues;
490 
491   // The instruction defining an assumption's condition itself is always
492   // considered ephemeral to that assumption (even if it has other
493   // non-ephemeral users). See r246696's test case for an example.
494   if (is_contained(I->operands(), E))
495     return true;
496 
497   while (!WorkSet.empty()) {
498     const Value *V = WorkSet.pop_back_val();
499     if (!Visited.insert(V).second)
500       continue;
501 
502     // If all uses of this value are ephemeral, then so is this value.
503     if (llvm::all_of(V->users(), [&](const User *U) {
504                                    return EphValues.count(U);
505                                  })) {
506       if (V == E)
507         return true;
508 
509       if (V == I || isSafeToSpeculativelyExecute(V)) {
510        EphValues.insert(V);
511        if (const User *U = dyn_cast<User>(V))
512          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
513               J != JE; ++J)
514            WorkSet.push_back(*J);
515       }
516     }
517   }
518 
519   return false;
520 }
521 
522 // Is this an intrinsic that cannot be speculated but also cannot trap?
isAssumeLikeIntrinsic(const Instruction * I)523 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
524   if (const CallInst *CI = dyn_cast<CallInst>(I))
525     if (Function *F = CI->getCalledFunction())
526       switch (F->getIntrinsicID()) {
527       default: break;
528       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
529       case Intrinsic::assume:
530       case Intrinsic::sideeffect:
531       case Intrinsic::pseudoprobe:
532       case Intrinsic::dbg_declare:
533       case Intrinsic::dbg_value:
534       case Intrinsic::dbg_label:
535       case Intrinsic::invariant_start:
536       case Intrinsic::invariant_end:
537       case Intrinsic::lifetime_start:
538       case Intrinsic::lifetime_end:
539       case Intrinsic::objectsize:
540       case Intrinsic::ptr_annotation:
541       case Intrinsic::var_annotation:
542         return true;
543       }
544 
545   return false;
546 }
547 
isValidAssumeForContext(const Instruction * Inv,const Instruction * CxtI,const DominatorTree * DT)548 bool llvm::isValidAssumeForContext(const Instruction *Inv,
549                                    const Instruction *CxtI,
550                                    const DominatorTree *DT) {
551   // There are two restrictions on the use of an assume:
552   //  1. The assume must dominate the context (or the control flow must
553   //     reach the assume whenever it reaches the context).
554   //  2. The context must not be in the assume's set of ephemeral values
555   //     (otherwise we will use the assume to prove that the condition
556   //     feeding the assume is trivially true, thus causing the removal of
557   //     the assume).
558 
559   if (Inv->getParent() == CxtI->getParent()) {
560     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
561     // in the BB.
562     if (Inv->comesBefore(CxtI))
563       return true;
564 
565     // Don't let an assume affect itself - this would cause the problems
566     // `isEphemeralValueOf` is trying to prevent, and it would also make
567     // the loop below go out of bounds.
568     if (Inv == CxtI)
569       return false;
570 
571     // The context comes first, but they're both in the same block.
572     // Make sure there is nothing in between that might interrupt
573     // the control flow, not even CxtI itself.
574     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
575       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
576         return false;
577 
578     return !isEphemeralValueOf(Inv, CxtI);
579   }
580 
581   // Inv and CxtI are in different blocks.
582   if (DT) {
583     if (DT->dominates(Inv, CxtI))
584       return true;
585   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
586     // We don't have a DT, but this trivially dominates.
587     return true;
588   }
589 
590   return false;
591 }
592 
isKnownNonZeroFromAssume(const Value * V,const Query & Q)593 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
594   // Use of assumptions is context-sensitive. If we don't have a context, we
595   // cannot use them!
596   if (!Q.AC || !Q.CxtI)
597     return false;
598 
599   // Note that the patterns below need to be kept in sync with the code
600   // in AssumptionCache::updateAffectedValues.
601 
602   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
603     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
604 
605     Value *RHS;
606     CmpInst::Predicate Pred;
607     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
608       return false;
609     // assume(v u> y) -> assume(v != 0)
610     if (Pred == ICmpInst::ICMP_UGT)
611       return true;
612 
613     // assume(v != 0)
614     // We special-case this one to ensure that we handle `assume(v != null)`.
615     if (Pred == ICmpInst::ICMP_NE)
616       return match(RHS, m_Zero());
617 
618     // All other predicates - rely on generic ConstantRange handling.
619     ConstantInt *CI;
620     if (!match(RHS, m_ConstantInt(CI)))
621       return false;
622     ConstantRange RHSRange(CI->getValue());
623     ConstantRange TrueValues =
624         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
625     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
626   };
627 
628   if (Q.CxtI && V->getType()->isPointerTy()) {
629     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
630     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
631                               V->getType()->getPointerAddressSpace()))
632       AttrKinds.push_back(Attribute::Dereferenceable);
633 
634     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
635       return true;
636   }
637 
638   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
639     if (!AssumeVH)
640       continue;
641     CallInst *I = cast<CallInst>(AssumeVH);
642     assert(I->getFunction() == Q.CxtI->getFunction() &&
643            "Got assumption for the wrong function!");
644     if (Q.isExcluded(I))
645       continue;
646 
647     // Warning: This loop can end up being somewhat performance sensitive.
648     // We're running this loop for once for each value queried resulting in a
649     // runtime of ~O(#assumes * #values).
650 
651     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
652            "must be an assume intrinsic");
653 
654     Value *Arg = I->getArgOperand(0);
655     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
656     if (!Cmp)
657       continue;
658 
659     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
660       return true;
661   }
662 
663   return false;
664 }
665 
computeKnownBitsFromAssume(const Value * V,KnownBits & Known,unsigned Depth,const Query & Q)666 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
667                                        unsigned Depth, const Query &Q) {
668   // Use of assumptions is context-sensitive. If we don't have a context, we
669   // cannot use them!
670   if (!Q.AC || !Q.CxtI)
671     return;
672 
673   unsigned BitWidth = Known.getBitWidth();
674 
675   // Refine Known set if the pointer alignment is set by assume bundles.
676   if (V->getType()->isPointerTy()) {
677     if (RetainedKnowledge RK = getKnowledgeValidInContext(
678             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
679       Known.Zero.setLowBits(Log2_32(RK.ArgValue));
680     }
681   }
682 
683   // Note that the patterns below need to be kept in sync with the code
684   // in AssumptionCache::updateAffectedValues.
685 
686   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
687     if (!AssumeVH)
688       continue;
689     CallInst *I = cast<CallInst>(AssumeVH);
690     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
691            "Got assumption for the wrong function!");
692     if (Q.isExcluded(I))
693       continue;
694 
695     // Warning: This loop can end up being somewhat performance sensitive.
696     // We're running this loop for once for each value queried resulting in a
697     // runtime of ~O(#assumes * #values).
698 
699     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
700            "must be an assume intrinsic");
701 
702     Value *Arg = I->getArgOperand(0);
703 
704     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
705       assert(BitWidth == 1 && "assume operand is not i1?");
706       Known.setAllOnes();
707       return;
708     }
709     if (match(Arg, m_Not(m_Specific(V))) &&
710         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
711       assert(BitWidth == 1 && "assume operand is not i1?");
712       Known.setAllZero();
713       return;
714     }
715 
716     // The remaining tests are all recursive, so bail out if we hit the limit.
717     if (Depth == MaxAnalysisRecursionDepth)
718       continue;
719 
720     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
721     if (!Cmp)
722       continue;
723 
724     // Note that ptrtoint may change the bitwidth.
725     Value *A, *B;
726     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
727 
728     CmpInst::Predicate Pred;
729     uint64_t C;
730     switch (Cmp->getPredicate()) {
731     default:
732       break;
733     case ICmpInst::ICMP_EQ:
734       // assume(v = a)
735       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
736           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
737         KnownBits RHSKnown =
738             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
739         Known.Zero |= RHSKnown.Zero;
740         Known.One  |= RHSKnown.One;
741       // assume(v & b = a)
742       } else if (match(Cmp,
743                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
744                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
745         KnownBits RHSKnown =
746             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
747         KnownBits MaskKnown =
748             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
749 
750         // For those bits in the mask that are known to be one, we can propagate
751         // known bits from the RHS to V.
752         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
753         Known.One  |= RHSKnown.One  & MaskKnown.One;
754       // assume(~(v & b) = a)
755       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
756                                      m_Value(A))) &&
757                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758         KnownBits RHSKnown =
759             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
760         KnownBits MaskKnown =
761             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
762 
763         // For those bits in the mask that are known to be one, we can propagate
764         // inverted known bits from the RHS to V.
765         Known.Zero |= RHSKnown.One  & MaskKnown.One;
766         Known.One  |= RHSKnown.Zero & MaskKnown.One;
767       // assume(v | b = a)
768       } else if (match(Cmp,
769                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
770                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
771         KnownBits RHSKnown =
772             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
773         KnownBits BKnown =
774             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
775 
776         // For those bits in B that are known to be zero, we can propagate known
777         // bits from the RHS to V.
778         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
779         Known.One  |= RHSKnown.One  & BKnown.Zero;
780       // assume(~(v | b) = a)
781       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
782                                      m_Value(A))) &&
783                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
784         KnownBits RHSKnown =
785             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
786         KnownBits BKnown =
787             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
788 
789         // For those bits in B that are known to be zero, we can propagate
790         // inverted known bits from the RHS to V.
791         Known.Zero |= RHSKnown.One  & BKnown.Zero;
792         Known.One  |= RHSKnown.Zero & BKnown.Zero;
793       // assume(v ^ b = a)
794       } else if (match(Cmp,
795                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
796                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
797         KnownBits RHSKnown =
798             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
799         KnownBits BKnown =
800             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
801 
802         // For those bits in B that are known to be zero, we can propagate known
803         // bits from the RHS to V. For those bits in B that are known to be one,
804         // we can propagate inverted known bits from the RHS to V.
805         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
806         Known.One  |= RHSKnown.One  & BKnown.Zero;
807         Known.Zero |= RHSKnown.One  & BKnown.One;
808         Known.One  |= RHSKnown.Zero & BKnown.One;
809       // assume(~(v ^ b) = a)
810       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
811                                      m_Value(A))) &&
812                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
813         KnownBits RHSKnown =
814             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
815         KnownBits BKnown =
816             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
817 
818         // For those bits in B that are known to be zero, we can propagate
819         // inverted known bits from the RHS to V. For those bits in B that are
820         // known to be one, we can propagate known bits from the RHS to V.
821         Known.Zero |= RHSKnown.One  & BKnown.Zero;
822         Known.One  |= RHSKnown.Zero & BKnown.Zero;
823         Known.Zero |= RHSKnown.Zero & BKnown.One;
824         Known.One  |= RHSKnown.One  & BKnown.One;
825       // assume(v << c = a)
826       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
827                                      m_Value(A))) &&
828                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
829         KnownBits RHSKnown =
830             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
831 
832         // For those bits in RHS that are known, we can propagate them to known
833         // bits in V shifted to the right by C.
834         RHSKnown.Zero.lshrInPlace(C);
835         Known.Zero |= RHSKnown.Zero;
836         RHSKnown.One.lshrInPlace(C);
837         Known.One  |= RHSKnown.One;
838       // assume(~(v << c) = a)
839       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
840                                      m_Value(A))) &&
841                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
842         KnownBits RHSKnown =
843             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
844         // For those bits in RHS that are known, we can propagate them inverted
845         // to known bits in V shifted to the right by C.
846         RHSKnown.One.lshrInPlace(C);
847         Known.Zero |= RHSKnown.One;
848         RHSKnown.Zero.lshrInPlace(C);
849         Known.One  |= RHSKnown.Zero;
850       // assume(v >> c = a)
851       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
852                                      m_Value(A))) &&
853                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
854         KnownBits RHSKnown =
855             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
856         // For those bits in RHS that are known, we can propagate them to known
857         // bits in V shifted to the right by C.
858         Known.Zero |= RHSKnown.Zero << C;
859         Known.One  |= RHSKnown.One  << C;
860       // assume(~(v >> c) = a)
861       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
862                                      m_Value(A))) &&
863                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
864         KnownBits RHSKnown =
865             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
866         // For those bits in RHS that are known, we can propagate them inverted
867         // to known bits in V shifted to the right by C.
868         Known.Zero |= RHSKnown.One  << C;
869         Known.One  |= RHSKnown.Zero << C;
870       }
871       break;
872     case ICmpInst::ICMP_SGE:
873       // assume(v >=_s c) where c is non-negative
874       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
875           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
876         KnownBits RHSKnown =
877             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
878 
879         if (RHSKnown.isNonNegative()) {
880           // We know that the sign bit is zero.
881           Known.makeNonNegative();
882         }
883       }
884       break;
885     case ICmpInst::ICMP_SGT:
886       // assume(v >_s c) where c is at least -1.
887       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
888           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
889         KnownBits RHSKnown =
890             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
891 
892         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
893           // We know that the sign bit is zero.
894           Known.makeNonNegative();
895         }
896       }
897       break;
898     case ICmpInst::ICMP_SLE:
899       // assume(v <=_s c) where c is negative
900       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
901           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
902         KnownBits RHSKnown =
903             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
904 
905         if (RHSKnown.isNegative()) {
906           // We know that the sign bit is one.
907           Known.makeNegative();
908         }
909       }
910       break;
911     case ICmpInst::ICMP_SLT:
912       // assume(v <_s c) where c is non-positive
913       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
914           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
915         KnownBits RHSKnown =
916             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
917 
918         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
919           // We know that the sign bit is one.
920           Known.makeNegative();
921         }
922       }
923       break;
924     case ICmpInst::ICMP_ULE:
925       // assume(v <=_u c)
926       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
927           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
928         KnownBits RHSKnown =
929             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
930 
931         // Whatever high bits in c are zero are known to be zero.
932         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
933       }
934       break;
935     case ICmpInst::ICMP_ULT:
936       // assume(v <_u c)
937       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
938           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
939         KnownBits RHSKnown =
940             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
941 
942         // If the RHS is known zero, then this assumption must be wrong (nothing
943         // is unsigned less than zero). Signal a conflict and get out of here.
944         if (RHSKnown.isZero()) {
945           Known.Zero.setAllBits();
946           Known.One.setAllBits();
947           break;
948         }
949 
950         // Whatever high bits in c are zero are known to be zero (if c is a power
951         // of 2, then one more).
952         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
953           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
954         else
955           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
956       }
957       break;
958     }
959   }
960 
961   // If assumptions conflict with each other or previous known bits, then we
962   // have a logical fallacy. It's possible that the assumption is not reachable,
963   // so this isn't a real bug. On the other hand, the program may have undefined
964   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
965   // clear out the known bits, try to warn the user, and hope for the best.
966   if (Known.Zero.intersects(Known.One)) {
967     Known.resetAll();
968 
969     if (Q.ORE)
970       Q.ORE->emit([&]() {
971         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
972         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
973                                           CxtI)
974                << "Detected conflicting code assumptions. Program may "
975                   "have undefined behavior, or compiler may have "
976                   "internal error.";
977       });
978   }
979 }
980 
981 /// Compute known bits from a shift operator, including those with a
982 /// non-constant shift amount. Known is the output of this function. Known2 is a
983 /// pre-allocated temporary with the same bit width as Known and on return
984 /// contains the known bit of the shift value source. KF is an
985 /// operator-specific function that, given the known-bits and a shift amount,
986 /// compute the implied known-bits of the shift operator's result respectively
987 /// for that shift amount. The results from calling KF are conservatively
988 /// combined for all permitted shift amounts.
computeKnownBitsFromShiftOperator(const Operator * I,const APInt & DemandedElts,KnownBits & Known,KnownBits & Known2,unsigned Depth,const Query & Q,function_ref<KnownBits (const KnownBits &,const KnownBits &)> KF)989 static void computeKnownBitsFromShiftOperator(
990     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
991     KnownBits &Known2, unsigned Depth, const Query &Q,
992     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
993   unsigned BitWidth = Known.getBitWidth();
994   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
995   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
996 
997   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
998   // BitWidth > 64 and any upper bits are known, we'll end up returning the
999   // limit value (which implies all bits are known).
1000   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1001   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1002   bool ShiftAmtIsConstant = Known.isConstant();
1003   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
1004 
1005   if (ShiftAmtIsConstant) {
1006     Known = KF(Known2, Known);
1007 
1008     // If the known bits conflict, this must be an overflowing left shift, so
1009     // the shift result is poison. We can return anything we want. Choose 0 for
1010     // the best folding opportunity.
1011     if (Known.hasConflict())
1012       Known.setAllZero();
1013 
1014     return;
1015   }
1016 
1017   // If the shift amount could be greater than or equal to the bit-width of the
1018   // LHS, the value could be poison, but bail out because the check below is
1019   // expensive.
1020   // TODO: Should we just carry on?
1021   if (MaxShiftAmtIsOutOfRange) {
1022     Known.resetAll();
1023     return;
1024   }
1025 
1026   // It would be more-clearly correct to use the two temporaries for this
1027   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1028   Known.resetAll();
1029 
1030   // If we know the shifter operand is nonzero, we can sometimes infer more
1031   // known bits. However this is expensive to compute, so be lazy about it and
1032   // only compute it when absolutely necessary.
1033   Optional<bool> ShifterOperandIsNonZero;
1034 
1035   // Early exit if we can't constrain any well-defined shift amount.
1036   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1037       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1038     ShifterOperandIsNonZero =
1039         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1040     if (!*ShifterOperandIsNonZero)
1041       return;
1042   }
1043 
1044   Known.Zero.setAllBits();
1045   Known.One.setAllBits();
1046   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1047     // Combine the shifted known input bits only for those shift amounts
1048     // compatible with its known constraints.
1049     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1050       continue;
1051     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1052       continue;
1053     // If we know the shifter is nonzero, we may be able to infer more known
1054     // bits. This check is sunk down as far as possible to avoid the expensive
1055     // call to isKnownNonZero if the cheaper checks above fail.
1056     if (ShiftAmt == 0) {
1057       if (!ShifterOperandIsNonZero.hasValue())
1058         ShifterOperandIsNonZero =
1059             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1060       if (*ShifterOperandIsNonZero)
1061         continue;
1062     }
1063 
1064     Known = KnownBits::commonBits(
1065         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1066   }
1067 
1068   // If the known bits conflict, the result is poison. Return a 0 and hope the
1069   // caller can further optimize that.
1070   if (Known.hasConflict())
1071     Known.setAllZero();
1072 }
1073 
computeKnownBitsFromOperator(const Operator * I,const APInt & DemandedElts,KnownBits & Known,unsigned Depth,const Query & Q)1074 static void computeKnownBitsFromOperator(const Operator *I,
1075                                          const APInt &DemandedElts,
1076                                          KnownBits &Known, unsigned Depth,
1077                                          const Query &Q) {
1078   unsigned BitWidth = Known.getBitWidth();
1079 
1080   KnownBits Known2(BitWidth);
1081   switch (I->getOpcode()) {
1082   default: break;
1083   case Instruction::Load:
1084     if (MDNode *MD =
1085             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1086       computeKnownBitsFromRangeMetadata(*MD, Known);
1087     break;
1088   case Instruction::And: {
1089     // If either the LHS or the RHS are Zero, the result is zero.
1090     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1091     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1092 
1093     Known &= Known2;
1094 
1095     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1096     // here we handle the more general case of adding any odd number by
1097     // matching the form add(x, add(x, y)) where y is odd.
1098     // TODO: This could be generalized to clearing any bit set in y where the
1099     // following bit is known to be unset in y.
1100     Value *X = nullptr, *Y = nullptr;
1101     if (!Known.Zero[0] && !Known.One[0] &&
1102         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1103       Known2.resetAll();
1104       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1105       if (Known2.countMinTrailingOnes() > 0)
1106         Known.Zero.setBit(0);
1107     }
1108     break;
1109   }
1110   case Instruction::Or:
1111     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1112     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1113 
1114     Known |= Known2;
1115     break;
1116   case Instruction::Xor:
1117     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1118     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1119 
1120     Known ^= Known2;
1121     break;
1122   case Instruction::Mul: {
1123     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1124     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1125                         Known, Known2, Depth, Q);
1126     break;
1127   }
1128   case Instruction::UDiv: {
1129     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1130     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1131     Known = KnownBits::udiv(Known, Known2);
1132     break;
1133   }
1134   case Instruction::Select: {
1135     const Value *LHS = nullptr, *RHS = nullptr;
1136     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1137     if (SelectPatternResult::isMinOrMax(SPF)) {
1138       computeKnownBits(RHS, Known, Depth + 1, Q);
1139       computeKnownBits(LHS, Known2, Depth + 1, Q);
1140       switch (SPF) {
1141       default:
1142         llvm_unreachable("Unhandled select pattern flavor!");
1143       case SPF_SMAX:
1144         Known = KnownBits::smax(Known, Known2);
1145         break;
1146       case SPF_SMIN:
1147         Known = KnownBits::smin(Known, Known2);
1148         break;
1149       case SPF_UMAX:
1150         Known = KnownBits::umax(Known, Known2);
1151         break;
1152       case SPF_UMIN:
1153         Known = KnownBits::umin(Known, Known2);
1154         break;
1155       }
1156       break;
1157     }
1158 
1159     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1160     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1161 
1162     // Only known if known in both the LHS and RHS.
1163     Known = KnownBits::commonBits(Known, Known2);
1164 
1165     if (SPF == SPF_ABS) {
1166       // RHS from matchSelectPattern returns the negation part of abs pattern.
1167       // If the negate has an NSW flag we can assume the sign bit of the result
1168       // will be 0 because that makes abs(INT_MIN) undefined.
1169       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1170           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1171         Known.Zero.setSignBit();
1172     }
1173 
1174     break;
1175   }
1176   case Instruction::FPTrunc:
1177   case Instruction::FPExt:
1178   case Instruction::FPToUI:
1179   case Instruction::FPToSI:
1180   case Instruction::SIToFP:
1181   case Instruction::UIToFP:
1182     break; // Can't work with floating point.
1183   case Instruction::PtrToInt:
1184   case Instruction::IntToPtr:
1185     // Fall through and handle them the same as zext/trunc.
1186     LLVM_FALLTHROUGH;
1187   case Instruction::ZExt:
1188   case Instruction::Trunc: {
1189     Type *SrcTy = I->getOperand(0)->getType();
1190 
1191     unsigned SrcBitWidth;
1192     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1193     // which fall through here.
1194     Type *ScalarTy = SrcTy->getScalarType();
1195     SrcBitWidth = ScalarTy->isPointerTy() ?
1196       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1197       Q.DL.getTypeSizeInBits(ScalarTy);
1198 
1199     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1200     Known = Known.anyextOrTrunc(SrcBitWidth);
1201     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1202     Known = Known.zextOrTrunc(BitWidth);
1203     break;
1204   }
1205   case Instruction::BitCast: {
1206     Type *SrcTy = I->getOperand(0)->getType();
1207     if (SrcTy->isIntOrPtrTy() &&
1208         // TODO: For now, not handling conversions like:
1209         // (bitcast i64 %x to <2 x i32>)
1210         !I->getType()->isVectorTy()) {
1211       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1212       break;
1213     }
1214     break;
1215   }
1216   case Instruction::SExt: {
1217     // Compute the bits in the result that are not present in the input.
1218     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1219 
1220     Known = Known.trunc(SrcBitWidth);
1221     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1222     // If the sign bit of the input is known set or clear, then we know the
1223     // top bits of the result.
1224     Known = Known.sext(BitWidth);
1225     break;
1226   }
1227   case Instruction::Shl: {
1228     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1229     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1230       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1231       // If this shift has "nsw" keyword, then the result is either a poison
1232       // value or has the same sign bit as the first operand.
1233       if (NSW) {
1234         if (KnownVal.Zero.isSignBitSet())
1235           Result.Zero.setSignBit();
1236         if (KnownVal.One.isSignBitSet())
1237           Result.One.setSignBit();
1238       }
1239       return Result;
1240     };
1241     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1242                                       KF);
1243     break;
1244   }
1245   case Instruction::LShr: {
1246     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1247       return KnownBits::lshr(KnownVal, KnownAmt);
1248     };
1249     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1250                                       KF);
1251     break;
1252   }
1253   case Instruction::AShr: {
1254     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1255       return KnownBits::ashr(KnownVal, KnownAmt);
1256     };
1257     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1258                                       KF);
1259     break;
1260   }
1261   case Instruction::Sub: {
1262     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1263     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1264                            DemandedElts, Known, Known2, Depth, Q);
1265     break;
1266   }
1267   case Instruction::Add: {
1268     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1269     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1270                            DemandedElts, Known, Known2, Depth, Q);
1271     break;
1272   }
1273   case Instruction::SRem:
1274     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1275     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1276     Known = KnownBits::srem(Known, Known2);
1277     break;
1278 
1279   case Instruction::URem:
1280     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1281     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1282     Known = KnownBits::urem(Known, Known2);
1283     break;
1284   case Instruction::Alloca:
1285     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1286     break;
1287   case Instruction::GetElementPtr: {
1288     // Analyze all of the subscripts of this getelementptr instruction
1289     // to determine if we can prove known low zero bits.
1290     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1291     // Accumulate the constant indices in a separate variable
1292     // to minimize the number of calls to computeForAddSub.
1293     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1294 
1295     gep_type_iterator GTI = gep_type_begin(I);
1296     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1297       // TrailZ can only become smaller, short-circuit if we hit zero.
1298       if (Known.isUnknown())
1299         break;
1300 
1301       Value *Index = I->getOperand(i);
1302 
1303       // Handle case when index is zero.
1304       Constant *CIndex = dyn_cast<Constant>(Index);
1305       if (CIndex && CIndex->isZeroValue())
1306         continue;
1307 
1308       if (StructType *STy = GTI.getStructTypeOrNull()) {
1309         // Handle struct member offset arithmetic.
1310 
1311         assert(CIndex &&
1312                "Access to structure field must be known at compile time");
1313 
1314         if (CIndex->getType()->isVectorTy())
1315           Index = CIndex->getSplatValue();
1316 
1317         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1318         const StructLayout *SL = Q.DL.getStructLayout(STy);
1319         uint64_t Offset = SL->getElementOffset(Idx);
1320         AccConstIndices += Offset;
1321         continue;
1322       }
1323 
1324       // Handle array index arithmetic.
1325       Type *IndexedTy = GTI.getIndexedType();
1326       if (!IndexedTy->isSized()) {
1327         Known.resetAll();
1328         break;
1329       }
1330 
1331       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1332       KnownBits IndexBits(IndexBitWidth);
1333       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1334       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1335       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1336       KnownBits ScalingFactor(IndexBitWidth);
1337       // Multiply by current sizeof type.
1338       // &A[i] == A + i * sizeof(*A[i]).
1339       if (IndexTypeSize.isScalable()) {
1340         // For scalable types the only thing we know about sizeof is
1341         // that this is a multiple of the minimum size.
1342         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1343       } else if (IndexBits.isConstant()) {
1344         APInt IndexConst = IndexBits.getConstant();
1345         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1346         IndexConst *= ScalingFactor;
1347         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1348         continue;
1349       } else {
1350         ScalingFactor.Zero = ~TypeSizeInBytes;
1351         ScalingFactor.One = TypeSizeInBytes;
1352       }
1353       IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor);
1354 
1355       // If the offsets have a different width from the pointer, according
1356       // to the language reference we need to sign-extend or truncate them
1357       // to the width of the pointer.
1358       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1359 
1360       // Note that inbounds does *not* guarantee nsw for the addition, as only
1361       // the offset is signed, while the base address is unsigned.
1362       Known = KnownBits::computeForAddSub(
1363           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1364     }
1365     if (!Known.isUnknown() && !AccConstIndices.isNullValue()) {
1366       KnownBits Index(BitWidth);
1367       Index.Zero = ~AccConstIndices;
1368       Index.One = AccConstIndices;
1369       Known = KnownBits::computeForAddSub(
1370           /*Add=*/true, /*NSW=*/false, Known, Index);
1371     }
1372     break;
1373   }
1374   case Instruction::PHI: {
1375     const PHINode *P = cast<PHINode>(I);
1376     // Handle the case of a simple two-predecessor recurrence PHI.
1377     // There's a lot more that could theoretically be done here, but
1378     // this is sufficient to catch some interesting cases.
1379     if (P->getNumIncomingValues() == 2) {
1380       for (unsigned i = 0; i != 2; ++i) {
1381         Value *L = P->getIncomingValue(i);
1382         Value *R = P->getIncomingValue(!i);
1383         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1384         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1385         Operator *LU = dyn_cast<Operator>(L);
1386         if (!LU)
1387           continue;
1388         unsigned Opcode = LU->getOpcode();
1389         // Check for operations that have the property that if
1390         // both their operands have low zero bits, the result
1391         // will have low zero bits.
1392         if (Opcode == Instruction::Add ||
1393             Opcode == Instruction::Sub ||
1394             Opcode == Instruction::And ||
1395             Opcode == Instruction::Or ||
1396             Opcode == Instruction::Mul) {
1397           Value *LL = LU->getOperand(0);
1398           Value *LR = LU->getOperand(1);
1399           // Find a recurrence.
1400           if (LL == I)
1401             L = LR;
1402           else if (LR == I)
1403             L = LL;
1404           else
1405             continue; // Check for recurrence with L and R flipped.
1406 
1407           // Change the context instruction to the "edge" that flows into the
1408           // phi. This is important because that is where the value is actually
1409           // "evaluated" even though it is used later somewhere else. (see also
1410           // D69571).
1411           Query RecQ = Q;
1412 
1413           // Ok, we have a PHI of the form L op= R. Check for low
1414           // zero bits.
1415           RecQ.CxtI = RInst;
1416           computeKnownBits(R, Known2, Depth + 1, RecQ);
1417 
1418           // We need to take the minimum number of known bits
1419           KnownBits Known3(BitWidth);
1420           RecQ.CxtI = LInst;
1421           computeKnownBits(L, Known3, Depth + 1, RecQ);
1422 
1423           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1424                                          Known3.countMinTrailingZeros()));
1425 
1426           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1427           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1428             // If initial value of recurrence is nonnegative, and we are adding
1429             // a nonnegative number with nsw, the result can only be nonnegative
1430             // or poison value regardless of the number of times we execute the
1431             // add in phi recurrence. If initial value is negative and we are
1432             // adding a negative number with nsw, the result can only be
1433             // negative or poison value. Similar arguments apply to sub and mul.
1434             //
1435             // (add non-negative, non-negative) --> non-negative
1436             // (add negative, negative) --> negative
1437             if (Opcode == Instruction::Add) {
1438               if (Known2.isNonNegative() && Known3.isNonNegative())
1439                 Known.makeNonNegative();
1440               else if (Known2.isNegative() && Known3.isNegative())
1441                 Known.makeNegative();
1442             }
1443 
1444             // (sub nsw non-negative, negative) --> non-negative
1445             // (sub nsw negative, non-negative) --> negative
1446             else if (Opcode == Instruction::Sub && LL == I) {
1447               if (Known2.isNonNegative() && Known3.isNegative())
1448                 Known.makeNonNegative();
1449               else if (Known2.isNegative() && Known3.isNonNegative())
1450                 Known.makeNegative();
1451             }
1452 
1453             // (mul nsw non-negative, non-negative) --> non-negative
1454             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1455                      Known3.isNonNegative())
1456               Known.makeNonNegative();
1457           }
1458 
1459           break;
1460         }
1461       }
1462     }
1463 
1464     // Unreachable blocks may have zero-operand PHI nodes.
1465     if (P->getNumIncomingValues() == 0)
1466       break;
1467 
1468     // Otherwise take the unions of the known bit sets of the operands,
1469     // taking conservative care to avoid excessive recursion.
1470     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1471       // Skip if every incoming value references to ourself.
1472       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1473         break;
1474 
1475       Known.Zero.setAllBits();
1476       Known.One.setAllBits();
1477       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1478         Value *IncValue = P->getIncomingValue(u);
1479         // Skip direct self references.
1480         if (IncValue == P) continue;
1481 
1482         // Change the context instruction to the "edge" that flows into the
1483         // phi. This is important because that is where the value is actually
1484         // "evaluated" even though it is used later somewhere else. (see also
1485         // D69571).
1486         Query RecQ = Q;
1487         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1488 
1489         Known2 = KnownBits(BitWidth);
1490         // Recurse, but cap the recursion to one level, because we don't
1491         // want to waste time spinning around in loops.
1492         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1493         Known = KnownBits::commonBits(Known, Known2);
1494         // If all bits have been ruled out, there's no need to check
1495         // more operands.
1496         if (Known.isUnknown())
1497           break;
1498       }
1499     }
1500     break;
1501   }
1502   case Instruction::Call:
1503   case Instruction::Invoke:
1504     // If range metadata is attached to this call, set known bits from that,
1505     // and then intersect with known bits based on other properties of the
1506     // function.
1507     if (MDNode *MD =
1508             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1509       computeKnownBitsFromRangeMetadata(*MD, Known);
1510     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1511       computeKnownBits(RV, Known2, Depth + 1, Q);
1512       Known.Zero |= Known2.Zero;
1513       Known.One |= Known2.One;
1514     }
1515     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1516       switch (II->getIntrinsicID()) {
1517       default: break;
1518       case Intrinsic::abs: {
1519         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1520         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1521         Known = Known2.abs(IntMinIsPoison);
1522         break;
1523       }
1524       case Intrinsic::bitreverse:
1525         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1526         Known.Zero |= Known2.Zero.reverseBits();
1527         Known.One |= Known2.One.reverseBits();
1528         break;
1529       case Intrinsic::bswap:
1530         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1531         Known.Zero |= Known2.Zero.byteSwap();
1532         Known.One |= Known2.One.byteSwap();
1533         break;
1534       case Intrinsic::ctlz: {
1535         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1536         // If we have a known 1, its position is our upper bound.
1537         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1538         // If this call is undefined for 0, the result will be less than 2^n.
1539         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1540           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1541         unsigned LowBits = Log2_32(PossibleLZ)+1;
1542         Known.Zero.setBitsFrom(LowBits);
1543         break;
1544       }
1545       case Intrinsic::cttz: {
1546         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1547         // If we have a known 1, its position is our upper bound.
1548         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1549         // If this call is undefined for 0, the result will be less than 2^n.
1550         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1551           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1552         unsigned LowBits = Log2_32(PossibleTZ)+1;
1553         Known.Zero.setBitsFrom(LowBits);
1554         break;
1555       }
1556       case Intrinsic::ctpop: {
1557         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1558         // We can bound the space the count needs.  Also, bits known to be zero
1559         // can't contribute to the population.
1560         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1561         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1562         Known.Zero.setBitsFrom(LowBits);
1563         // TODO: we could bound KnownOne using the lower bound on the number
1564         // of bits which might be set provided by popcnt KnownOne2.
1565         break;
1566       }
1567       case Intrinsic::fshr:
1568       case Intrinsic::fshl: {
1569         const APInt *SA;
1570         if (!match(I->getOperand(2), m_APInt(SA)))
1571           break;
1572 
1573         // Normalize to funnel shift left.
1574         uint64_t ShiftAmt = SA->urem(BitWidth);
1575         if (II->getIntrinsicID() == Intrinsic::fshr)
1576           ShiftAmt = BitWidth - ShiftAmt;
1577 
1578         KnownBits Known3(BitWidth);
1579         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1580         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1581 
1582         Known.Zero =
1583             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1584         Known.One =
1585             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1586         break;
1587       }
1588       case Intrinsic::uadd_sat:
1589       case Intrinsic::usub_sat: {
1590         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1591         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1592         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1593 
1594         // Add: Leading ones of either operand are preserved.
1595         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1596         // as leading zeros in the result.
1597         unsigned LeadingKnown;
1598         if (IsAdd)
1599           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1600                                   Known2.countMinLeadingOnes());
1601         else
1602           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1603                                   Known2.countMinLeadingOnes());
1604 
1605         Known = KnownBits::computeForAddSub(
1606             IsAdd, /* NSW */ false, Known, Known2);
1607 
1608         // We select between the operation result and all-ones/zero
1609         // respectively, so we can preserve known ones/zeros.
1610         if (IsAdd) {
1611           Known.One.setHighBits(LeadingKnown);
1612           Known.Zero.clearAllBits();
1613         } else {
1614           Known.Zero.setHighBits(LeadingKnown);
1615           Known.One.clearAllBits();
1616         }
1617         break;
1618       }
1619       case Intrinsic::umin:
1620         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1621         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1622         Known = KnownBits::umin(Known, Known2);
1623         break;
1624       case Intrinsic::umax:
1625         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1626         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1627         Known = KnownBits::umax(Known, Known2);
1628         break;
1629       case Intrinsic::smin:
1630         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1631         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1632         Known = KnownBits::smin(Known, Known2);
1633         break;
1634       case Intrinsic::smax:
1635         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1636         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1637         Known = KnownBits::smax(Known, Known2);
1638         break;
1639       case Intrinsic::x86_sse42_crc32_64_64:
1640         Known.Zero.setBitsFrom(32);
1641         break;
1642       }
1643     }
1644     break;
1645   case Instruction::ShuffleVector: {
1646     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1647     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1648     if (!Shuf) {
1649       Known.resetAll();
1650       return;
1651     }
1652     // For undef elements, we don't know anything about the common state of
1653     // the shuffle result.
1654     APInt DemandedLHS, DemandedRHS;
1655     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1656       Known.resetAll();
1657       return;
1658     }
1659     Known.One.setAllBits();
1660     Known.Zero.setAllBits();
1661     if (!!DemandedLHS) {
1662       const Value *LHS = Shuf->getOperand(0);
1663       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1664       // If we don't know any bits, early out.
1665       if (Known.isUnknown())
1666         break;
1667     }
1668     if (!!DemandedRHS) {
1669       const Value *RHS = Shuf->getOperand(1);
1670       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1671       Known = KnownBits::commonBits(Known, Known2);
1672     }
1673     break;
1674   }
1675   case Instruction::InsertElement: {
1676     const Value *Vec = I->getOperand(0);
1677     const Value *Elt = I->getOperand(1);
1678     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1679     // Early out if the index is non-constant or out-of-range.
1680     unsigned NumElts = DemandedElts.getBitWidth();
1681     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1682       Known.resetAll();
1683       return;
1684     }
1685     Known.One.setAllBits();
1686     Known.Zero.setAllBits();
1687     unsigned EltIdx = CIdx->getZExtValue();
1688     // Do we demand the inserted element?
1689     if (DemandedElts[EltIdx]) {
1690       computeKnownBits(Elt, Known, Depth + 1, Q);
1691       // If we don't know any bits, early out.
1692       if (Known.isUnknown())
1693         break;
1694     }
1695     // We don't need the base vector element that has been inserted.
1696     APInt DemandedVecElts = DemandedElts;
1697     DemandedVecElts.clearBit(EltIdx);
1698     if (!!DemandedVecElts) {
1699       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1700       Known = KnownBits::commonBits(Known, Known2);
1701     }
1702     break;
1703   }
1704   case Instruction::ExtractElement: {
1705     // Look through extract element. If the index is non-constant or
1706     // out-of-range demand all elements, otherwise just the extracted element.
1707     const Value *Vec = I->getOperand(0);
1708     const Value *Idx = I->getOperand(1);
1709     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1710     if (isa<ScalableVectorType>(Vec->getType())) {
1711       // FIXME: there's probably *something* we can do with scalable vectors
1712       Known.resetAll();
1713       break;
1714     }
1715     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1716     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1717     if (CIdx && CIdx->getValue().ult(NumElts))
1718       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1719     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1720     break;
1721   }
1722   case Instruction::ExtractValue:
1723     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1724       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1725       if (EVI->getNumIndices() != 1) break;
1726       if (EVI->getIndices()[0] == 0) {
1727         switch (II->getIntrinsicID()) {
1728         default: break;
1729         case Intrinsic::uadd_with_overflow:
1730         case Intrinsic::sadd_with_overflow:
1731           computeKnownBitsAddSub(true, II->getArgOperand(0),
1732                                  II->getArgOperand(1), false, DemandedElts,
1733                                  Known, Known2, Depth, Q);
1734           break;
1735         case Intrinsic::usub_with_overflow:
1736         case Intrinsic::ssub_with_overflow:
1737           computeKnownBitsAddSub(false, II->getArgOperand(0),
1738                                  II->getArgOperand(1), false, DemandedElts,
1739                                  Known, Known2, Depth, Q);
1740           break;
1741         case Intrinsic::umul_with_overflow:
1742         case Intrinsic::smul_with_overflow:
1743           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1744                               DemandedElts, Known, Known2, Depth, Q);
1745           break;
1746         }
1747       }
1748     }
1749     break;
1750   case Instruction::Freeze:
1751     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1752                                   Depth + 1))
1753       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1754     break;
1755   }
1756 }
1757 
1758 /// Determine which bits of V are known to be either zero or one and return
1759 /// them.
computeKnownBits(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)1760 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1761                            unsigned Depth, const Query &Q) {
1762   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1763   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1764   return Known;
1765 }
1766 
1767 /// Determine which bits of V are known to be either zero or one and return
1768 /// them.
computeKnownBits(const Value * V,unsigned Depth,const Query & Q)1769 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1770   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1771   computeKnownBits(V, Known, Depth, Q);
1772   return Known;
1773 }
1774 
1775 /// Determine which bits of V are known to be either zero or one and return
1776 /// them in the Known bit set.
1777 ///
1778 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1779 /// we cannot optimize based on the assumption that it is zero without changing
1780 /// it to be an explicit zero.  If we don't change it to zero, other code could
1781 /// optimized based on the contradictory assumption that it is non-zero.
1782 /// Because instcombine aggressively folds operations with undef args anyway,
1783 /// this won't lose us code quality.
1784 ///
1785 /// This function is defined on values with integer type, values with pointer
1786 /// type, and vectors of integers.  In the case
1787 /// where V is a vector, known zero, and known one values are the
1788 /// same width as the vector element, and the bit is set only if it is true
1789 /// for all of the demanded elements in the vector specified by DemandedElts.
computeKnownBits(const Value * V,const APInt & DemandedElts,KnownBits & Known,unsigned Depth,const Query & Q)1790 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1791                       KnownBits &Known, unsigned Depth, const Query &Q) {
1792   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1793     // No demanded elts or V is a scalable vector, better to assume we don't
1794     // know anything.
1795     Known.resetAll();
1796     return;
1797   }
1798 
1799   assert(V && "No Value?");
1800   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1801 
1802 #ifndef NDEBUG
1803   Type *Ty = V->getType();
1804   unsigned BitWidth = Known.getBitWidth();
1805 
1806   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1807          "Not integer or pointer type!");
1808 
1809   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1810     assert(
1811         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1812         "DemandedElt width should equal the fixed vector number of elements");
1813   } else {
1814     assert(DemandedElts == APInt(1, 1) &&
1815            "DemandedElt width should be 1 for scalars");
1816   }
1817 
1818   Type *ScalarTy = Ty->getScalarType();
1819   if (ScalarTy->isPointerTy()) {
1820     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1821            "V and Known should have same BitWidth");
1822   } else {
1823     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1824            "V and Known should have same BitWidth");
1825   }
1826 #endif
1827 
1828   const APInt *C;
1829   if (match(V, m_APInt(C))) {
1830     // We know all of the bits for a scalar constant or a splat vector constant!
1831     Known.One = *C;
1832     Known.Zero = ~Known.One;
1833     return;
1834   }
1835   // Null and aggregate-zero are all-zeros.
1836   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1837     Known.setAllZero();
1838     return;
1839   }
1840   // Handle a constant vector by taking the intersection of the known bits of
1841   // each element.
1842   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1843     // We know that CDV must be a vector of integers. Take the intersection of
1844     // each element.
1845     Known.Zero.setAllBits(); Known.One.setAllBits();
1846     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1847       if (!DemandedElts[i])
1848         continue;
1849       APInt Elt = CDV->getElementAsAPInt(i);
1850       Known.Zero &= ~Elt;
1851       Known.One &= Elt;
1852     }
1853     return;
1854   }
1855 
1856   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1857     // We know that CV must be a vector of integers. Take the intersection of
1858     // each element.
1859     Known.Zero.setAllBits(); Known.One.setAllBits();
1860     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1861       if (!DemandedElts[i])
1862         continue;
1863       Constant *Element = CV->getAggregateElement(i);
1864       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1865       if (!ElementCI) {
1866         Known.resetAll();
1867         return;
1868       }
1869       const APInt &Elt = ElementCI->getValue();
1870       Known.Zero &= ~Elt;
1871       Known.One &= Elt;
1872     }
1873     return;
1874   }
1875 
1876   // Start out not knowing anything.
1877   Known.resetAll();
1878 
1879   // We can't imply anything about undefs.
1880   if (isa<UndefValue>(V))
1881     return;
1882 
1883   // There's no point in looking through other users of ConstantData for
1884   // assumptions.  Confirm that we've handled them all.
1885   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1886 
1887   // All recursive calls that increase depth must come after this.
1888   if (Depth == MaxAnalysisRecursionDepth)
1889     return;
1890 
1891   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1892   // the bits of its aliasee.
1893   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1894     if (!GA->isInterposable())
1895       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1896     return;
1897   }
1898 
1899   if (const Operator *I = dyn_cast<Operator>(V))
1900     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1901 
1902   // Aligned pointers have trailing zeros - refine Known.Zero set
1903   if (isa<PointerType>(V->getType())) {
1904     Align Alignment = V->getPointerAlignment(Q.DL);
1905     Known.Zero.setLowBits(Log2(Alignment));
1906   }
1907 
1908   // computeKnownBitsFromAssume strictly refines Known.
1909   // Therefore, we run them after computeKnownBitsFromOperator.
1910 
1911   // Check whether a nearby assume intrinsic can determine some known bits.
1912   computeKnownBitsFromAssume(V, Known, Depth, Q);
1913 
1914   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1915 }
1916 
1917 /// Return true if the given value is known to have exactly one
1918 /// bit set when defined. For vectors return true if every element is known to
1919 /// be a power of two when defined. Supports values with integer or pointer
1920 /// types and vectors of integers.
isKnownToBeAPowerOfTwo(const Value * V,bool OrZero,unsigned Depth,const Query & Q)1921 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1922                             const Query &Q) {
1923   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1924 
1925   // Attempt to match against constants.
1926   if (OrZero && match(V, m_Power2OrZero()))
1927       return true;
1928   if (match(V, m_Power2()))
1929       return true;
1930 
1931   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1932   // it is shifted off the end then the result is undefined.
1933   if (match(V, m_Shl(m_One(), m_Value())))
1934     return true;
1935 
1936   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1937   // the bottom.  If it is shifted off the bottom then the result is undefined.
1938   if (match(V, m_LShr(m_SignMask(), m_Value())))
1939     return true;
1940 
1941   // The remaining tests are all recursive, so bail out if we hit the limit.
1942   if (Depth++ == MaxAnalysisRecursionDepth)
1943     return false;
1944 
1945   Value *X = nullptr, *Y = nullptr;
1946   // A shift left or a logical shift right of a power of two is a power of two
1947   // or zero.
1948   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1949                  match(V, m_LShr(m_Value(X), m_Value()))))
1950     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1951 
1952   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1953     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1954 
1955   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1956     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1957            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1958 
1959   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1960     // A power of two and'd with anything is a power of two or zero.
1961     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1962         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1963       return true;
1964     // X & (-X) is always a power of two or zero.
1965     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1966       return true;
1967     return false;
1968   }
1969 
1970   // Adding a power-of-two or zero to the same power-of-two or zero yields
1971   // either the original power-of-two, a larger power-of-two or zero.
1972   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1973     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1974     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1975         Q.IIQ.hasNoSignedWrap(VOBO)) {
1976       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1977           match(X, m_And(m_Value(), m_Specific(Y))))
1978         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1979           return true;
1980       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1981           match(Y, m_And(m_Value(), m_Specific(X))))
1982         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1983           return true;
1984 
1985       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1986       KnownBits LHSBits(BitWidth);
1987       computeKnownBits(X, LHSBits, Depth, Q);
1988 
1989       KnownBits RHSBits(BitWidth);
1990       computeKnownBits(Y, RHSBits, Depth, Q);
1991       // If i8 V is a power of two or zero:
1992       //  ZeroBits: 1 1 1 0 1 1 1 1
1993       // ~ZeroBits: 0 0 0 1 0 0 0 0
1994       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1995         // If OrZero isn't set, we cannot give back a zero result.
1996         // Make sure either the LHS or RHS has a bit set.
1997         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1998           return true;
1999     }
2000   }
2001 
2002   // An exact divide or right shift can only shift off zero bits, so the result
2003   // is a power of two only if the first operand is a power of two and not
2004   // copying a sign bit (sdiv int_min, 2).
2005   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2006       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2007     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2008                                   Depth, Q);
2009   }
2010 
2011   return false;
2012 }
2013 
2014 /// Test whether a GEP's result is known to be non-null.
2015 ///
2016 /// Uses properties inherent in a GEP to try to determine whether it is known
2017 /// to be non-null.
2018 ///
2019 /// Currently this routine does not support vector GEPs.
isGEPKnownNonNull(const GEPOperator * GEP,unsigned Depth,const Query & Q)2020 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2021                               const Query &Q) {
2022   const Function *F = nullptr;
2023   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2024     F = I->getFunction();
2025 
2026   if (!GEP->isInBounds() ||
2027       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2028     return false;
2029 
2030   // FIXME: Support vector-GEPs.
2031   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2032 
2033   // If the base pointer is non-null, we cannot walk to a null address with an
2034   // inbounds GEP in address space zero.
2035   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2036     return true;
2037 
2038   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2039   // If so, then the GEP cannot produce a null pointer, as doing so would
2040   // inherently violate the inbounds contract within address space zero.
2041   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2042        GTI != GTE; ++GTI) {
2043     // Struct types are easy -- they must always be indexed by a constant.
2044     if (StructType *STy = GTI.getStructTypeOrNull()) {
2045       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2046       unsigned ElementIdx = OpC->getZExtValue();
2047       const StructLayout *SL = Q.DL.getStructLayout(STy);
2048       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2049       if (ElementOffset > 0)
2050         return true;
2051       continue;
2052     }
2053 
2054     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2055     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2056       continue;
2057 
2058     // Fast path the constant operand case both for efficiency and so we don't
2059     // increment Depth when just zipping down an all-constant GEP.
2060     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2061       if (!OpC->isZero())
2062         return true;
2063       continue;
2064     }
2065 
2066     // We post-increment Depth here because while isKnownNonZero increments it
2067     // as well, when we pop back up that increment won't persist. We don't want
2068     // to recurse 10k times just because we have 10k GEP operands. We don't
2069     // bail completely out because we want to handle constant GEPs regardless
2070     // of depth.
2071     if (Depth++ >= MaxAnalysisRecursionDepth)
2072       continue;
2073 
2074     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2075       return true;
2076   }
2077 
2078   return false;
2079 }
2080 
isKnownNonNullFromDominatingCondition(const Value * V,const Instruction * CtxI,const DominatorTree * DT)2081 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2082                                                   const Instruction *CtxI,
2083                                                   const DominatorTree *DT) {
2084   if (isa<Constant>(V))
2085     return false;
2086 
2087   if (!CtxI || !DT)
2088     return false;
2089 
2090   unsigned NumUsesExplored = 0;
2091   for (auto *U : V->users()) {
2092     // Avoid massive lists
2093     if (NumUsesExplored >= DomConditionsMaxUses)
2094       break;
2095     NumUsesExplored++;
2096 
2097     // If the value is used as an argument to a call or invoke, then argument
2098     // attributes may provide an answer about null-ness.
2099     if (const auto *CB = dyn_cast<CallBase>(U))
2100       if (auto *CalledFunc = CB->getCalledFunction())
2101         for (const Argument &Arg : CalledFunc->args())
2102           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2103               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2104             return true;
2105 
2106     // If the value is used as a load/store, then the pointer must be non null.
2107     if (V == getLoadStorePointerOperand(U)) {
2108       const Instruction *I = cast<Instruction>(U);
2109       if (!NullPointerIsDefined(I->getFunction(),
2110                                 V->getType()->getPointerAddressSpace()) &&
2111           DT->dominates(I, CtxI))
2112         return true;
2113     }
2114 
2115     // Consider only compare instructions uniquely controlling a branch
2116     CmpInst::Predicate Pred;
2117     if (!match(const_cast<User *>(U),
2118                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2119         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2120       continue;
2121 
2122     SmallVector<const User *, 4> WorkList;
2123     SmallPtrSet<const User *, 4> Visited;
2124     for (auto *CmpU : U->users()) {
2125       assert(WorkList.empty() && "Should be!");
2126       if (Visited.insert(CmpU).second)
2127         WorkList.push_back(CmpU);
2128 
2129       while (!WorkList.empty()) {
2130         auto *Curr = WorkList.pop_back_val();
2131 
2132         // If a user is an AND, add all its users to the work list. We only
2133         // propagate "pred != null" condition through AND because it is only
2134         // correct to assume that all conditions of AND are met in true branch.
2135         // TODO: Support similar logic of OR and EQ predicate?
2136         if (Pred == ICmpInst::ICMP_NE)
2137           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2138             if (BO->getOpcode() == Instruction::And) {
2139               for (auto *BOU : BO->users())
2140                 if (Visited.insert(BOU).second)
2141                   WorkList.push_back(BOU);
2142               continue;
2143             }
2144 
2145         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2146           assert(BI->isConditional() && "uses a comparison!");
2147 
2148           BasicBlock *NonNullSuccessor =
2149               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2150           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2151           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2152             return true;
2153         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2154                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2155           return true;
2156         }
2157       }
2158     }
2159   }
2160 
2161   return false;
2162 }
2163 
2164 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2165 /// ensure that the value it's attached to is never Value?  'RangeType' is
2166 /// is the type of the value described by the range.
rangeMetadataExcludesValue(const MDNode * Ranges,const APInt & Value)2167 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2168   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2169   assert(NumRanges >= 1);
2170   for (unsigned i = 0; i < NumRanges; ++i) {
2171     ConstantInt *Lower =
2172         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2173     ConstantInt *Upper =
2174         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2175     ConstantRange Range(Lower->getValue(), Upper->getValue());
2176     if (Range.contains(Value))
2177       return false;
2178   }
2179   return true;
2180 }
2181 
2182 /// Return true if the given value is known to be non-zero when defined. For
2183 /// vectors, return true if every demanded element is known to be non-zero when
2184 /// defined. For pointers, if the context instruction and dominator tree are
2185 /// specified, perform context-sensitive analysis and return true if the
2186 /// pointer couldn't possibly be null at the specified instruction.
2187 /// Supports values with integer or pointer type and vectors of integers.
isKnownNonZero(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2188 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2189                     const Query &Q) {
2190   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2191   // vector
2192   if (isa<ScalableVectorType>(V->getType()))
2193     return false;
2194 
2195   if (auto *C = dyn_cast<Constant>(V)) {
2196     if (C->isNullValue())
2197       return false;
2198     if (isa<ConstantInt>(C))
2199       // Must be non-zero due to null test above.
2200       return true;
2201 
2202     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2203       // See the comment for IntToPtr/PtrToInt instructions below.
2204       if (CE->getOpcode() == Instruction::IntToPtr ||
2205           CE->getOpcode() == Instruction::PtrToInt)
2206         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2207                 .getFixedSize() <=
2208             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2209           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2210     }
2211 
2212     // For constant vectors, check that all elements are undefined or known
2213     // non-zero to determine that the whole vector is known non-zero.
2214     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2215       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2216         if (!DemandedElts[i])
2217           continue;
2218         Constant *Elt = C->getAggregateElement(i);
2219         if (!Elt || Elt->isNullValue())
2220           return false;
2221         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2222           return false;
2223       }
2224       return true;
2225     }
2226 
2227     // A global variable in address space 0 is non null unless extern weak
2228     // or an absolute symbol reference. Other address spaces may have null as a
2229     // valid address for a global, so we can't assume anything.
2230     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2231       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2232           GV->getType()->getAddressSpace() == 0)
2233         return true;
2234     } else
2235       return false;
2236   }
2237 
2238   if (auto *I = dyn_cast<Instruction>(V)) {
2239     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2240       // If the possible ranges don't contain zero, then the value is
2241       // definitely non-zero.
2242       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2243         const APInt ZeroValue(Ty->getBitWidth(), 0);
2244         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2245           return true;
2246       }
2247     }
2248   }
2249 
2250   if (isKnownNonZeroFromAssume(V, Q))
2251     return true;
2252 
2253   // Some of the tests below are recursive, so bail out if we hit the limit.
2254   if (Depth++ >= MaxAnalysisRecursionDepth)
2255     return false;
2256 
2257   // Check for pointer simplifications.
2258 
2259   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2260     // Alloca never returns null, malloc might.
2261     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2262       return true;
2263 
2264     // A byval, inalloca may not be null in a non-default addres space. A
2265     // nonnull argument is assumed never 0.
2266     if (const Argument *A = dyn_cast<Argument>(V)) {
2267       if (((A->hasPassPointeeByValueCopyAttr() &&
2268             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2269            A->hasNonNullAttr()))
2270         return true;
2271     }
2272 
2273     // A Load tagged with nonnull metadata is never null.
2274     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2275       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2276         return true;
2277 
2278     if (const auto *Call = dyn_cast<CallBase>(V)) {
2279       if (Call->isReturnNonNull())
2280         return true;
2281       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2282         return isKnownNonZero(RP, Depth, Q);
2283     }
2284   }
2285 
2286   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2287     return true;
2288 
2289   // Check for recursive pointer simplifications.
2290   if (V->getType()->isPointerTy()) {
2291     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2292     // do not alter the value, or at least not the nullness property of the
2293     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2294     //
2295     // Note that we have to take special care to avoid looking through
2296     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2297     // as casts that can alter the value, e.g., AddrSpaceCasts.
2298     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2299       return isGEPKnownNonNull(GEP, Depth, Q);
2300 
2301     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2302       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2303 
2304     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2305       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2306           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2307         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2308   }
2309 
2310   // Similar to int2ptr above, we can look through ptr2int here if the cast
2311   // is a no-op or an extend and not a truncate.
2312   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2313     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2314         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2315       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2316 
2317   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2318 
2319   // X | Y != 0 if X != 0 or Y != 0.
2320   Value *X = nullptr, *Y = nullptr;
2321   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2322     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2323            isKnownNonZero(Y, DemandedElts, Depth, Q);
2324 
2325   // ext X != 0 if X != 0.
2326   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2327     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2328 
2329   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2330   // if the lowest bit is shifted off the end.
2331   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2332     // shl nuw can't remove any non-zero bits.
2333     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2334     if (Q.IIQ.hasNoUnsignedWrap(BO))
2335       return isKnownNonZero(X, Depth, Q);
2336 
2337     KnownBits Known(BitWidth);
2338     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2339     if (Known.One[0])
2340       return true;
2341   }
2342   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2343   // defined if the sign bit is shifted off the end.
2344   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2345     // shr exact can only shift out zero bits.
2346     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2347     if (BO->isExact())
2348       return isKnownNonZero(X, Depth, Q);
2349 
2350     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2351     if (Known.isNegative())
2352       return true;
2353 
2354     // If the shifter operand is a constant, and all of the bits shifted
2355     // out are known to be zero, and X is known non-zero then at least one
2356     // non-zero bit must remain.
2357     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2358       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2359       // Is there a known one in the portion not shifted out?
2360       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2361         return true;
2362       // Are all the bits to be shifted out known zero?
2363       if (Known.countMinTrailingZeros() >= ShiftVal)
2364         return isKnownNonZero(X, DemandedElts, Depth, Q);
2365     }
2366   }
2367   // div exact can only produce a zero if the dividend is zero.
2368   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2369     return isKnownNonZero(X, DemandedElts, Depth, Q);
2370   }
2371   // X + Y.
2372   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2373     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2374     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2375 
2376     // If X and Y are both non-negative (as signed values) then their sum is not
2377     // zero unless both X and Y are zero.
2378     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2379       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2380           isKnownNonZero(Y, DemandedElts, Depth, Q))
2381         return true;
2382 
2383     // If X and Y are both negative (as signed values) then their sum is not
2384     // zero unless both X and Y equal INT_MIN.
2385     if (XKnown.isNegative() && YKnown.isNegative()) {
2386       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2387       // The sign bit of X is set.  If some other bit is set then X is not equal
2388       // to INT_MIN.
2389       if (XKnown.One.intersects(Mask))
2390         return true;
2391       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2392       // to INT_MIN.
2393       if (YKnown.One.intersects(Mask))
2394         return true;
2395     }
2396 
2397     // The sum of a non-negative number and a power of two is not zero.
2398     if (XKnown.isNonNegative() &&
2399         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2400       return true;
2401     if (YKnown.isNonNegative() &&
2402         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2403       return true;
2404   }
2405   // X * Y.
2406   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2407     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2408     // If X and Y are non-zero then so is X * Y as long as the multiplication
2409     // does not overflow.
2410     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2411         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2412         isKnownNonZero(Y, DemandedElts, Depth, Q))
2413       return true;
2414   }
2415   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2416   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2417     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2418         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2419       return true;
2420   }
2421   // PHI
2422   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2423     // Try and detect a recurrence that monotonically increases from a
2424     // starting value, as these are common as induction variables.
2425     if (PN->getNumIncomingValues() == 2) {
2426       Value *Start = PN->getIncomingValue(0);
2427       Value *Induction = PN->getIncomingValue(1);
2428       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2429         std::swap(Start, Induction);
2430       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2431         if (!C->isZero() && !C->isNegative()) {
2432           ConstantInt *X;
2433           if (Q.IIQ.UseInstrInfo &&
2434               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2435                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2436               !X->isNegative())
2437             return true;
2438         }
2439       }
2440     }
2441     // Check if all incoming values are non-zero using recursion.
2442     Query RecQ = Q;
2443     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2444     return llvm::all_of(PN->operands(), [&](const Use &U) {
2445       if (U.get() == PN)
2446         return true;
2447       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2448       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2449     });
2450   }
2451   // ExtractElement
2452   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2453     const Value *Vec = EEI->getVectorOperand();
2454     const Value *Idx = EEI->getIndexOperand();
2455     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2456     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2457       unsigned NumElts = VecTy->getNumElements();
2458       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2459       if (CIdx && CIdx->getValue().ult(NumElts))
2460         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2461       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2462     }
2463   }
2464   // Freeze
2465   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2466     auto *Op = FI->getOperand(0);
2467     if (isKnownNonZero(Op, Depth, Q) &&
2468         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2469       return true;
2470   }
2471 
2472   KnownBits Known(BitWidth);
2473   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2474   return Known.One != 0;
2475 }
2476 
isKnownNonZero(const Value * V,unsigned Depth,const Query & Q)2477 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2478   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2479   // vector
2480   if (isa<ScalableVectorType>(V->getType()))
2481     return false;
2482 
2483   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2484   APInt DemandedElts =
2485       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2486   return isKnownNonZero(V, DemandedElts, Depth, Q);
2487 }
2488 
2489 /// Return true if V2 == V1 + X, where X is known non-zero.
isAddOfNonZero(const Value * V1,const Value * V2,unsigned Depth,const Query & Q)2490 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2491                            const Query &Q) {
2492   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2493   if (!BO || BO->getOpcode() != Instruction::Add)
2494     return false;
2495   Value *Op = nullptr;
2496   if (V2 == BO->getOperand(0))
2497     Op = BO->getOperand(1);
2498   else if (V2 == BO->getOperand(1))
2499     Op = BO->getOperand(0);
2500   else
2501     return false;
2502   return isKnownNonZero(Op, Depth + 1, Q);
2503 }
2504 
2505 
2506 /// Return true if it is known that V1 != V2.
isKnownNonEqual(const Value * V1,const Value * V2,unsigned Depth,const Query & Q)2507 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2508                             const Query &Q) {
2509   if (V1 == V2)
2510     return false;
2511   if (V1->getType() != V2->getType())
2512     // We can't look through casts yet.
2513     return false;
2514 
2515   if (Depth >= MaxAnalysisRecursionDepth)
2516     return false;
2517 
2518   // See if we can recurse through (exactly one of) our operands.  This
2519   // requires our operation be 1-to-1 and map every input value to exactly
2520   // one output value.  Such an operation is invertible.
2521   auto *O1 = dyn_cast<Operator>(V1);
2522   auto *O2 = dyn_cast<Operator>(V2);
2523   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2524     switch (O1->getOpcode()) {
2525     default: break;
2526     case Instruction::Add:
2527     case Instruction::Sub:
2528       // Assume operand order has been canonicalized
2529       if (O1->getOperand(0) == O2->getOperand(0))
2530         return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1),
2531                                Depth + 1, Q);
2532       if (O1->getOperand(1) == O2->getOperand(1))
2533         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0),
2534                                Depth + 1, Q);
2535       break;
2536     case Instruction::Mul:
2537       // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2538       // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2539       // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2540       if ((!cast<BinaryOperator>(O1)->hasNoUnsignedWrap() ||
2541            !cast<BinaryOperator>(O2)->hasNoUnsignedWrap()) &&
2542           (!cast<BinaryOperator>(O1)->hasNoSignedWrap() ||
2543            !cast<BinaryOperator>(O2)->hasNoSignedWrap()))
2544         break;
2545 
2546       // Assume operand order has been canonicalized
2547       if (O1->getOperand(1) == O2->getOperand(1) &&
2548           isa<ConstantInt>(O1->getOperand(1)) &&
2549           !cast<ConstantInt>(O1->getOperand(1))->isZero())
2550         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0),
2551                                Depth + 1, Q);
2552       break;
2553     case Instruction::SExt:
2554     case Instruction::ZExt:
2555       if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType())
2556         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0),
2557                                Depth + 1, Q);
2558       break;
2559     };
2560   }
2561 
2562   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2563     return true;
2564 
2565   if (V1->getType()->isIntOrIntVectorTy()) {
2566     // Are any known bits in V1 contradictory to known bits in V2? If V1
2567     // has a known zero where V2 has a known one, they must not be equal.
2568     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2569     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2570 
2571     if (Known1.Zero.intersects(Known2.One) ||
2572         Known2.Zero.intersects(Known1.One))
2573       return true;
2574   }
2575   return false;
2576 }
2577 
2578 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2579 /// simplify operations downstream. Mask is known to be zero for bits that V
2580 /// cannot have.
2581 ///
2582 /// This function is defined on values with integer type, values with pointer
2583 /// type, and vectors of integers.  In the case
2584 /// where V is a vector, the mask, known zero, and known one values are the
2585 /// same width as the vector element, and the bit is set only if it is true
2586 /// for all of the elements in the vector.
MaskedValueIsZero(const Value * V,const APInt & Mask,unsigned Depth,const Query & Q)2587 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2588                        const Query &Q) {
2589   KnownBits Known(Mask.getBitWidth());
2590   computeKnownBits(V, Known, Depth, Q);
2591   return Mask.isSubsetOf(Known.Zero);
2592 }
2593 
2594 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2595 // Returns the input and lower/upper bounds.
isSignedMinMaxClamp(const Value * Select,const Value * & In,const APInt * & CLow,const APInt * & CHigh)2596 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2597                                 const APInt *&CLow, const APInt *&CHigh) {
2598   assert(isa<Operator>(Select) &&
2599          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2600          "Input should be a Select!");
2601 
2602   const Value *LHS = nullptr, *RHS = nullptr;
2603   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2604   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2605     return false;
2606 
2607   if (!match(RHS, m_APInt(CLow)))
2608     return false;
2609 
2610   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2611   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2612   if (getInverseMinMaxFlavor(SPF) != SPF2)
2613     return false;
2614 
2615   if (!match(RHS2, m_APInt(CHigh)))
2616     return false;
2617 
2618   if (SPF == SPF_SMIN)
2619     std::swap(CLow, CHigh);
2620 
2621   In = LHS2;
2622   return CLow->sle(*CHigh);
2623 }
2624 
2625 /// For vector constants, loop over the elements and find the constant with the
2626 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2627 /// or if any element was not analyzed; otherwise, return the count for the
2628 /// element with the minimum number of sign bits.
computeNumSignBitsVectorConstant(const Value * V,const APInt & DemandedElts,unsigned TyBits)2629 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2630                                                  const APInt &DemandedElts,
2631                                                  unsigned TyBits) {
2632   const auto *CV = dyn_cast<Constant>(V);
2633   if (!CV || !isa<FixedVectorType>(CV->getType()))
2634     return 0;
2635 
2636   unsigned MinSignBits = TyBits;
2637   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2638   for (unsigned i = 0; i != NumElts; ++i) {
2639     if (!DemandedElts[i])
2640       continue;
2641     // If we find a non-ConstantInt, bail out.
2642     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2643     if (!Elt)
2644       return 0;
2645 
2646     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2647   }
2648 
2649   return MinSignBits;
2650 }
2651 
2652 static unsigned ComputeNumSignBitsImpl(const Value *V,
2653                                        const APInt &DemandedElts,
2654                                        unsigned Depth, const Query &Q);
2655 
ComputeNumSignBits(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2656 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2657                                    unsigned Depth, const Query &Q) {
2658   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2659   assert(Result > 0 && "At least one sign bit needs to be present!");
2660   return Result;
2661 }
2662 
2663 /// Return the number of times the sign bit of the register is replicated into
2664 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2665 /// (itself), but other cases can give us information. For example, immediately
2666 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2667 /// other, so we return 3. For vectors, return the number of sign bits for the
2668 /// vector element with the minimum number of known sign bits of the demanded
2669 /// elements in the vector specified by DemandedElts.
ComputeNumSignBitsImpl(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2670 static unsigned ComputeNumSignBitsImpl(const Value *V,
2671                                        const APInt &DemandedElts,
2672                                        unsigned Depth, const Query &Q) {
2673   Type *Ty = V->getType();
2674 
2675   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2676   // vector
2677   if (isa<ScalableVectorType>(Ty))
2678     return 1;
2679 
2680 #ifndef NDEBUG
2681   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2682 
2683   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2684     assert(
2685         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2686         "DemandedElt width should equal the fixed vector number of elements");
2687   } else {
2688     assert(DemandedElts == APInt(1, 1) &&
2689            "DemandedElt width should be 1 for scalars");
2690   }
2691 #endif
2692 
2693   // We return the minimum number of sign bits that are guaranteed to be present
2694   // in V, so for undef we have to conservatively return 1.  We don't have the
2695   // same behavior for poison though -- that's a FIXME today.
2696 
2697   Type *ScalarTy = Ty->getScalarType();
2698   unsigned TyBits = ScalarTy->isPointerTy() ?
2699     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2700     Q.DL.getTypeSizeInBits(ScalarTy);
2701 
2702   unsigned Tmp, Tmp2;
2703   unsigned FirstAnswer = 1;
2704 
2705   // Note that ConstantInt is handled by the general computeKnownBits case
2706   // below.
2707 
2708   if (Depth == MaxAnalysisRecursionDepth)
2709     return 1;
2710 
2711   if (auto *U = dyn_cast<Operator>(V)) {
2712     switch (Operator::getOpcode(V)) {
2713     default: break;
2714     case Instruction::SExt:
2715       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2716       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2717 
2718     case Instruction::SDiv: {
2719       const APInt *Denominator;
2720       // sdiv X, C -> adds log(C) sign bits.
2721       if (match(U->getOperand(1), m_APInt(Denominator))) {
2722 
2723         // Ignore non-positive denominator.
2724         if (!Denominator->isStrictlyPositive())
2725           break;
2726 
2727         // Calculate the incoming numerator bits.
2728         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2729 
2730         // Add floor(log(C)) bits to the numerator bits.
2731         return std::min(TyBits, NumBits + Denominator->logBase2());
2732       }
2733       break;
2734     }
2735 
2736     case Instruction::SRem: {
2737       const APInt *Denominator;
2738       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2739       // positive constant.  This let us put a lower bound on the number of sign
2740       // bits.
2741       if (match(U->getOperand(1), m_APInt(Denominator))) {
2742 
2743         // Ignore non-positive denominator.
2744         if (!Denominator->isStrictlyPositive())
2745           break;
2746 
2747         // Calculate the incoming numerator bits. SRem by a positive constant
2748         // can't lower the number of sign bits.
2749         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2750 
2751         // Calculate the leading sign bit constraints by examining the
2752         // denominator.  Given that the denominator is positive, there are two
2753         // cases:
2754         //
2755         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2756         //     (1 << ceilLogBase2(C)).
2757         //
2758         //  2. the numerator is negative. Then the result range is (-C,0] and
2759         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2760         //
2761         // Thus a lower bound on the number of sign bits is `TyBits -
2762         // ceilLogBase2(C)`.
2763 
2764         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2765         return std::max(NumrBits, ResBits);
2766       }
2767       break;
2768     }
2769 
2770     case Instruction::AShr: {
2771       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2772       // ashr X, C   -> adds C sign bits.  Vectors too.
2773       const APInt *ShAmt;
2774       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2775         if (ShAmt->uge(TyBits))
2776           break; // Bad shift.
2777         unsigned ShAmtLimited = ShAmt->getZExtValue();
2778         Tmp += ShAmtLimited;
2779         if (Tmp > TyBits) Tmp = TyBits;
2780       }
2781       return Tmp;
2782     }
2783     case Instruction::Shl: {
2784       const APInt *ShAmt;
2785       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2786         // shl destroys sign bits.
2787         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2788         if (ShAmt->uge(TyBits) ||   // Bad shift.
2789             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2790         Tmp2 = ShAmt->getZExtValue();
2791         return Tmp - Tmp2;
2792       }
2793       break;
2794     }
2795     case Instruction::And:
2796     case Instruction::Or:
2797     case Instruction::Xor: // NOT is handled here.
2798       // Logical binary ops preserve the number of sign bits at the worst.
2799       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2800       if (Tmp != 1) {
2801         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2802         FirstAnswer = std::min(Tmp, Tmp2);
2803         // We computed what we know about the sign bits as our first
2804         // answer. Now proceed to the generic code that uses
2805         // computeKnownBits, and pick whichever answer is better.
2806       }
2807       break;
2808 
2809     case Instruction::Select: {
2810       // If we have a clamp pattern, we know that the number of sign bits will
2811       // be the minimum of the clamp min/max range.
2812       const Value *X;
2813       const APInt *CLow, *CHigh;
2814       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2815         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2816 
2817       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2818       if (Tmp == 1) break;
2819       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2820       return std::min(Tmp, Tmp2);
2821     }
2822 
2823     case Instruction::Add:
2824       // Add can have at most one carry bit.  Thus we know that the output
2825       // is, at worst, one more bit than the inputs.
2826       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2827       if (Tmp == 1) break;
2828 
2829       // Special case decrementing a value (ADD X, -1):
2830       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2831         if (CRHS->isAllOnesValue()) {
2832           KnownBits Known(TyBits);
2833           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2834 
2835           // If the input is known to be 0 or 1, the output is 0/-1, which is
2836           // all sign bits set.
2837           if ((Known.Zero | 1).isAllOnesValue())
2838             return TyBits;
2839 
2840           // If we are subtracting one from a positive number, there is no carry
2841           // out of the result.
2842           if (Known.isNonNegative())
2843             return Tmp;
2844         }
2845 
2846       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2847       if (Tmp2 == 1) break;
2848       return std::min(Tmp, Tmp2) - 1;
2849 
2850     case Instruction::Sub:
2851       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2852       if (Tmp2 == 1) break;
2853 
2854       // Handle NEG.
2855       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2856         if (CLHS->isNullValue()) {
2857           KnownBits Known(TyBits);
2858           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2859           // If the input is known to be 0 or 1, the output is 0/-1, which is
2860           // all sign bits set.
2861           if ((Known.Zero | 1).isAllOnesValue())
2862             return TyBits;
2863 
2864           // If the input is known to be positive (the sign bit is known clear),
2865           // the output of the NEG has the same number of sign bits as the
2866           // input.
2867           if (Known.isNonNegative())
2868             return Tmp2;
2869 
2870           // Otherwise, we treat this like a SUB.
2871         }
2872 
2873       // Sub can have at most one carry bit.  Thus we know that the output
2874       // is, at worst, one more bit than the inputs.
2875       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2876       if (Tmp == 1) break;
2877       return std::min(Tmp, Tmp2) - 1;
2878 
2879     case Instruction::Mul: {
2880       // The output of the Mul can be at most twice the valid bits in the
2881       // inputs.
2882       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2883       if (SignBitsOp0 == 1) break;
2884       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2885       if (SignBitsOp1 == 1) break;
2886       unsigned OutValidBits =
2887           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2888       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2889     }
2890 
2891     case Instruction::PHI: {
2892       const PHINode *PN = cast<PHINode>(U);
2893       unsigned NumIncomingValues = PN->getNumIncomingValues();
2894       // Don't analyze large in-degree PHIs.
2895       if (NumIncomingValues > 4) break;
2896       // Unreachable blocks may have zero-operand PHI nodes.
2897       if (NumIncomingValues == 0) break;
2898 
2899       // Take the minimum of all incoming values.  This can't infinitely loop
2900       // because of our depth threshold.
2901       Query RecQ = Q;
2902       Tmp = TyBits;
2903       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
2904         if (Tmp == 1) return Tmp;
2905         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
2906         Tmp = std::min(
2907             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
2908       }
2909       return Tmp;
2910     }
2911 
2912     case Instruction::Trunc:
2913       // FIXME: it's tricky to do anything useful for this, but it is an
2914       // important case for targets like X86.
2915       break;
2916 
2917     case Instruction::ExtractElement:
2918       // Look through extract element. At the moment we keep this simple and
2919       // skip tracking the specific element. But at least we might find
2920       // information valid for all elements of the vector (for example if vector
2921       // is sign extended, shifted, etc).
2922       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2923 
2924     case Instruction::ShuffleVector: {
2925       // Collect the minimum number of sign bits that are shared by every vector
2926       // element referenced by the shuffle.
2927       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
2928       if (!Shuf) {
2929         // FIXME: Add support for shufflevector constant expressions.
2930         return 1;
2931       }
2932       APInt DemandedLHS, DemandedRHS;
2933       // For undef elements, we don't know anything about the common state of
2934       // the shuffle result.
2935       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
2936         return 1;
2937       Tmp = std::numeric_limits<unsigned>::max();
2938       if (!!DemandedLHS) {
2939         const Value *LHS = Shuf->getOperand(0);
2940         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
2941       }
2942       // If we don't know anything, early out and try computeKnownBits
2943       // fall-back.
2944       if (Tmp == 1)
2945         break;
2946       if (!!DemandedRHS) {
2947         const Value *RHS = Shuf->getOperand(1);
2948         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
2949         Tmp = std::min(Tmp, Tmp2);
2950       }
2951       // If we don't know anything, early out and try computeKnownBits
2952       // fall-back.
2953       if (Tmp == 1)
2954         break;
2955       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
2956       return Tmp;
2957     }
2958     case Instruction::Call: {
2959       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
2960         switch (II->getIntrinsicID()) {
2961         default: break;
2962         case Intrinsic::abs:
2963           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2964           if (Tmp == 1) break;
2965 
2966           // Absolute value reduces number of sign bits by at most 1.
2967           return Tmp - 1;
2968         }
2969       }
2970     }
2971     }
2972   }
2973 
2974   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2975   // use this information.
2976 
2977   // If we can examine all elements of a vector constant successfully, we're
2978   // done (we can't do any better than that). If not, keep trying.
2979   if (unsigned VecSignBits =
2980           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
2981     return VecSignBits;
2982 
2983   KnownBits Known(TyBits);
2984   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2985 
2986   // If we know that the sign bit is either zero or one, determine the number of
2987   // identical bits in the top of the input value.
2988   return std::max(FirstAnswer, Known.countMinSignBits());
2989 }
2990 
2991 /// This function computes the integer multiple of Base that equals V.
2992 /// If successful, it returns true and returns the multiple in
2993 /// Multiple. If unsuccessful, it returns false. It looks
2994 /// through SExt instructions only if LookThroughSExt is true.
ComputeMultiple(Value * V,unsigned Base,Value * & Multiple,bool LookThroughSExt,unsigned Depth)2995 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2996                            bool LookThroughSExt, unsigned Depth) {
2997   assert(V && "No Value?");
2998   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2999   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3000 
3001   Type *T = V->getType();
3002 
3003   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3004 
3005   if (Base == 0)
3006     return false;
3007 
3008   if (Base == 1) {
3009     Multiple = V;
3010     return true;
3011   }
3012 
3013   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3014   Constant *BaseVal = ConstantInt::get(T, Base);
3015   if (CO && CO == BaseVal) {
3016     // Multiple is 1.
3017     Multiple = ConstantInt::get(T, 1);
3018     return true;
3019   }
3020 
3021   if (CI && CI->getZExtValue() % Base == 0) {
3022     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3023     return true;
3024   }
3025 
3026   if (Depth == MaxAnalysisRecursionDepth) return false;
3027 
3028   Operator *I = dyn_cast<Operator>(V);
3029   if (!I) return false;
3030 
3031   switch (I->getOpcode()) {
3032   default: break;
3033   case Instruction::SExt:
3034     if (!LookThroughSExt) return false;
3035     // otherwise fall through to ZExt
3036     LLVM_FALLTHROUGH;
3037   case Instruction::ZExt:
3038     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3039                            LookThroughSExt, Depth+1);
3040   case Instruction::Shl:
3041   case Instruction::Mul: {
3042     Value *Op0 = I->getOperand(0);
3043     Value *Op1 = I->getOperand(1);
3044 
3045     if (I->getOpcode() == Instruction::Shl) {
3046       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3047       if (!Op1CI) return false;
3048       // Turn Op0 << Op1 into Op0 * 2^Op1
3049       APInt Op1Int = Op1CI->getValue();
3050       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3051       APInt API(Op1Int.getBitWidth(), 0);
3052       API.setBit(BitToSet);
3053       Op1 = ConstantInt::get(V->getContext(), API);
3054     }
3055 
3056     Value *Mul0 = nullptr;
3057     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3058       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3059         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3060           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3061               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3062             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3063           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3064               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3065             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3066 
3067           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3068           Multiple = ConstantExpr::getMul(MulC, Op1C);
3069           return true;
3070         }
3071 
3072       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3073         if (Mul0CI->getValue() == 1) {
3074           // V == Base * Op1, so return Op1
3075           Multiple = Op1;
3076           return true;
3077         }
3078     }
3079 
3080     Value *Mul1 = nullptr;
3081     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3082       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3083         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3084           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3085               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3086             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3087           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3088               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3089             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3090 
3091           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3092           Multiple = ConstantExpr::getMul(MulC, Op0C);
3093           return true;
3094         }
3095 
3096       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3097         if (Mul1CI->getValue() == 1) {
3098           // V == Base * Op0, so return Op0
3099           Multiple = Op0;
3100           return true;
3101         }
3102     }
3103   }
3104   }
3105 
3106   // We could not determine if V is a multiple of Base.
3107   return false;
3108 }
3109 
getIntrinsicForCallSite(const CallBase & CB,const TargetLibraryInfo * TLI)3110 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3111                                             const TargetLibraryInfo *TLI) {
3112   const Function *F = CB.getCalledFunction();
3113   if (!F)
3114     return Intrinsic::not_intrinsic;
3115 
3116   if (F->isIntrinsic())
3117     return F->getIntrinsicID();
3118 
3119   // We are going to infer semantics of a library function based on mapping it
3120   // to an LLVM intrinsic. Check that the library function is available from
3121   // this callbase and in this environment.
3122   LibFunc Func;
3123   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3124       !CB.onlyReadsMemory())
3125     return Intrinsic::not_intrinsic;
3126 
3127   switch (Func) {
3128   default:
3129     break;
3130   case LibFunc_sin:
3131   case LibFunc_sinf:
3132   case LibFunc_sinl:
3133     return Intrinsic::sin;
3134   case LibFunc_cos:
3135   case LibFunc_cosf:
3136   case LibFunc_cosl:
3137     return Intrinsic::cos;
3138   case LibFunc_exp:
3139   case LibFunc_expf:
3140   case LibFunc_expl:
3141     return Intrinsic::exp;
3142   case LibFunc_exp2:
3143   case LibFunc_exp2f:
3144   case LibFunc_exp2l:
3145     return Intrinsic::exp2;
3146   case LibFunc_log:
3147   case LibFunc_logf:
3148   case LibFunc_logl:
3149     return Intrinsic::log;
3150   case LibFunc_log10:
3151   case LibFunc_log10f:
3152   case LibFunc_log10l:
3153     return Intrinsic::log10;
3154   case LibFunc_log2:
3155   case LibFunc_log2f:
3156   case LibFunc_log2l:
3157     return Intrinsic::log2;
3158   case LibFunc_fabs:
3159   case LibFunc_fabsf:
3160   case LibFunc_fabsl:
3161     return Intrinsic::fabs;
3162   case LibFunc_fmin:
3163   case LibFunc_fminf:
3164   case LibFunc_fminl:
3165     return Intrinsic::minnum;
3166   case LibFunc_fmax:
3167   case LibFunc_fmaxf:
3168   case LibFunc_fmaxl:
3169     return Intrinsic::maxnum;
3170   case LibFunc_copysign:
3171   case LibFunc_copysignf:
3172   case LibFunc_copysignl:
3173     return Intrinsic::copysign;
3174   case LibFunc_floor:
3175   case LibFunc_floorf:
3176   case LibFunc_floorl:
3177     return Intrinsic::floor;
3178   case LibFunc_ceil:
3179   case LibFunc_ceilf:
3180   case LibFunc_ceill:
3181     return Intrinsic::ceil;
3182   case LibFunc_trunc:
3183   case LibFunc_truncf:
3184   case LibFunc_truncl:
3185     return Intrinsic::trunc;
3186   case LibFunc_rint:
3187   case LibFunc_rintf:
3188   case LibFunc_rintl:
3189     return Intrinsic::rint;
3190   case LibFunc_nearbyint:
3191   case LibFunc_nearbyintf:
3192   case LibFunc_nearbyintl:
3193     return Intrinsic::nearbyint;
3194   case LibFunc_round:
3195   case LibFunc_roundf:
3196   case LibFunc_roundl:
3197     return Intrinsic::round;
3198   case LibFunc_roundeven:
3199   case LibFunc_roundevenf:
3200   case LibFunc_roundevenl:
3201     return Intrinsic::roundeven;
3202   case LibFunc_pow:
3203   case LibFunc_powf:
3204   case LibFunc_powl:
3205     return Intrinsic::pow;
3206   case LibFunc_sqrt:
3207   case LibFunc_sqrtf:
3208   case LibFunc_sqrtl:
3209     return Intrinsic::sqrt;
3210   }
3211 
3212   return Intrinsic::not_intrinsic;
3213 }
3214 
3215 /// Return true if we can prove that the specified FP value is never equal to
3216 /// -0.0.
3217 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3218 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3219 ///       the same as +0.0 in floating-point ops.
3220 ///
3221 /// NOTE: this function will need to be revisited when we support non-default
3222 /// rounding modes!
CannotBeNegativeZero(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)3223 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3224                                 unsigned Depth) {
3225   if (auto *CFP = dyn_cast<ConstantFP>(V))
3226     return !CFP->getValueAPF().isNegZero();
3227 
3228   if (Depth == MaxAnalysisRecursionDepth)
3229     return false;
3230 
3231   auto *Op = dyn_cast<Operator>(V);
3232   if (!Op)
3233     return false;
3234 
3235   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3236   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3237     return true;
3238 
3239   // sitofp and uitofp turn into +0.0 for zero.
3240   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3241     return true;
3242 
3243   if (auto *Call = dyn_cast<CallInst>(Op)) {
3244     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3245     switch (IID) {
3246     default:
3247       break;
3248     // sqrt(-0.0) = -0.0, no other negative results are possible.
3249     case Intrinsic::sqrt:
3250     case Intrinsic::canonicalize:
3251       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3252     // fabs(x) != -0.0
3253     case Intrinsic::fabs:
3254       return true;
3255     }
3256   }
3257 
3258   return false;
3259 }
3260 
3261 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3262 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3263 /// bit despite comparing equal.
cannotBeOrderedLessThanZeroImpl(const Value * V,const TargetLibraryInfo * TLI,bool SignBitOnly,unsigned Depth)3264 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3265                                             const TargetLibraryInfo *TLI,
3266                                             bool SignBitOnly,
3267                                             unsigned Depth) {
3268   // TODO: This function does not do the right thing when SignBitOnly is true
3269   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3270   // which flips the sign bits of NaNs.  See
3271   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3272 
3273   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3274     return !CFP->getValueAPF().isNegative() ||
3275            (!SignBitOnly && CFP->getValueAPF().isZero());
3276   }
3277 
3278   // Handle vector of constants.
3279   if (auto *CV = dyn_cast<Constant>(V)) {
3280     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3281       unsigned NumElts = CVFVTy->getNumElements();
3282       for (unsigned i = 0; i != NumElts; ++i) {
3283         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3284         if (!CFP)
3285           return false;
3286         if (CFP->getValueAPF().isNegative() &&
3287             (SignBitOnly || !CFP->getValueAPF().isZero()))
3288           return false;
3289       }
3290 
3291       // All non-negative ConstantFPs.
3292       return true;
3293     }
3294   }
3295 
3296   if (Depth == MaxAnalysisRecursionDepth)
3297     return false;
3298 
3299   const Operator *I = dyn_cast<Operator>(V);
3300   if (!I)
3301     return false;
3302 
3303   switch (I->getOpcode()) {
3304   default:
3305     break;
3306   // Unsigned integers are always nonnegative.
3307   case Instruction::UIToFP:
3308     return true;
3309   case Instruction::FMul:
3310   case Instruction::FDiv:
3311     // X * X is always non-negative or a NaN.
3312     // X / X is always exactly 1.0 or a NaN.
3313     if (I->getOperand(0) == I->getOperand(1) &&
3314         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3315       return true;
3316 
3317     LLVM_FALLTHROUGH;
3318   case Instruction::FAdd:
3319   case Instruction::FRem:
3320     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3321                                            Depth + 1) &&
3322            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3323                                            Depth + 1);
3324   case Instruction::Select:
3325     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3326                                            Depth + 1) &&
3327            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3328                                            Depth + 1);
3329   case Instruction::FPExt:
3330   case Instruction::FPTrunc:
3331     // Widening/narrowing never change sign.
3332     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3333                                            Depth + 1);
3334   case Instruction::ExtractElement:
3335     // Look through extract element. At the moment we keep this simple and skip
3336     // tracking the specific element. But at least we might find information
3337     // valid for all elements of the vector.
3338     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3339                                            Depth + 1);
3340   case Instruction::Call:
3341     const auto *CI = cast<CallInst>(I);
3342     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3343     switch (IID) {
3344     default:
3345       break;
3346     case Intrinsic::maxnum: {
3347       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3348       auto isPositiveNum = [&](Value *V) {
3349         if (SignBitOnly) {
3350           // With SignBitOnly, this is tricky because the result of
3351           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3352           // a constant strictly greater than 0.0.
3353           const APFloat *C;
3354           return match(V, m_APFloat(C)) &&
3355                  *C > APFloat::getZero(C->getSemantics());
3356         }
3357 
3358         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3359         // maxnum can't be ordered-less-than-zero.
3360         return isKnownNeverNaN(V, TLI) &&
3361                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3362       };
3363 
3364       // TODO: This could be improved. We could also check that neither operand
3365       //       has its sign bit set (and at least 1 is not-NAN?).
3366       return isPositiveNum(V0) || isPositiveNum(V1);
3367     }
3368 
3369     case Intrinsic::maximum:
3370       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3371                                              Depth + 1) ||
3372              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3373                                              Depth + 1);
3374     case Intrinsic::minnum:
3375     case Intrinsic::minimum:
3376       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3377                                              Depth + 1) &&
3378              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3379                                              Depth + 1);
3380     case Intrinsic::exp:
3381     case Intrinsic::exp2:
3382     case Intrinsic::fabs:
3383       return true;
3384 
3385     case Intrinsic::sqrt:
3386       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3387       if (!SignBitOnly)
3388         return true;
3389       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3390                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3391 
3392     case Intrinsic::powi:
3393       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3394         // powi(x,n) is non-negative if n is even.
3395         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3396           return true;
3397       }
3398       // TODO: This is not correct.  Given that exp is an integer, here are the
3399       // ways that pow can return a negative value:
3400       //
3401       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3402       //   pow(-0, exp)   --> -inf if exp is negative odd.
3403       //   pow(-0, exp)   --> -0 if exp is positive odd.
3404       //   pow(-inf, exp) --> -0 if exp is negative odd.
3405       //   pow(-inf, exp) --> -inf if exp is positive odd.
3406       //
3407       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3408       // but we must return false if x == -0.  Unfortunately we do not currently
3409       // have a way of expressing this constraint.  See details in
3410       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3411       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3412                                              Depth + 1);
3413 
3414     case Intrinsic::fma:
3415     case Intrinsic::fmuladd:
3416       // x*x+y is non-negative if y is non-negative.
3417       return I->getOperand(0) == I->getOperand(1) &&
3418              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3419              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3420                                              Depth + 1);
3421     }
3422     break;
3423   }
3424   return false;
3425 }
3426 
CannotBeOrderedLessThanZero(const Value * V,const TargetLibraryInfo * TLI)3427 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3428                                        const TargetLibraryInfo *TLI) {
3429   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3430 }
3431 
SignBitMustBeZero(const Value * V,const TargetLibraryInfo * TLI)3432 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3433   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3434 }
3435 
isKnownNeverInfinity(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)3436 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3437                                 unsigned Depth) {
3438   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3439 
3440   // If we're told that infinities won't happen, assume they won't.
3441   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3442     if (FPMathOp->hasNoInfs())
3443       return true;
3444 
3445   // Handle scalar constants.
3446   if (auto *CFP = dyn_cast<ConstantFP>(V))
3447     return !CFP->isInfinity();
3448 
3449   if (Depth == MaxAnalysisRecursionDepth)
3450     return false;
3451 
3452   if (auto *Inst = dyn_cast<Instruction>(V)) {
3453     switch (Inst->getOpcode()) {
3454     case Instruction::Select: {
3455       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3456              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3457     }
3458     case Instruction::SIToFP:
3459     case Instruction::UIToFP: {
3460       // Get width of largest magnitude integer (remove a bit if signed).
3461       // This still works for a signed minimum value because the largest FP
3462       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3463       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3464       if (Inst->getOpcode() == Instruction::SIToFP)
3465         --IntSize;
3466 
3467       // If the exponent of the largest finite FP value can hold the largest
3468       // integer, the result of the cast must be finite.
3469       Type *FPTy = Inst->getType()->getScalarType();
3470       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3471     }
3472     default:
3473       break;
3474     }
3475   }
3476 
3477   // try to handle fixed width vector constants
3478   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3479   if (VFVTy && isa<Constant>(V)) {
3480     // For vectors, verify that each element is not infinity.
3481     unsigned NumElts = VFVTy->getNumElements();
3482     for (unsigned i = 0; i != NumElts; ++i) {
3483       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3484       if (!Elt)
3485         return false;
3486       if (isa<UndefValue>(Elt))
3487         continue;
3488       auto *CElt = dyn_cast<ConstantFP>(Elt);
3489       if (!CElt || CElt->isInfinity())
3490         return false;
3491     }
3492     // All elements were confirmed non-infinity or undefined.
3493     return true;
3494   }
3495 
3496   // was not able to prove that V never contains infinity
3497   return false;
3498 }
3499 
isKnownNeverNaN(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)3500 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3501                            unsigned Depth) {
3502   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3503 
3504   // If we're told that NaNs won't happen, assume they won't.
3505   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3506     if (FPMathOp->hasNoNaNs())
3507       return true;
3508 
3509   // Handle scalar constants.
3510   if (auto *CFP = dyn_cast<ConstantFP>(V))
3511     return !CFP->isNaN();
3512 
3513   if (Depth == MaxAnalysisRecursionDepth)
3514     return false;
3515 
3516   if (auto *Inst = dyn_cast<Instruction>(V)) {
3517     switch (Inst->getOpcode()) {
3518     case Instruction::FAdd:
3519     case Instruction::FSub:
3520       // Adding positive and negative infinity produces NaN.
3521       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3522              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3523              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3524               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3525 
3526     case Instruction::FMul:
3527       // Zero multiplied with infinity produces NaN.
3528       // FIXME: If neither side can be zero fmul never produces NaN.
3529       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3530              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3531              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3532              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3533 
3534     case Instruction::FDiv:
3535     case Instruction::FRem:
3536       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3537       return false;
3538 
3539     case Instruction::Select: {
3540       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3541              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3542     }
3543     case Instruction::SIToFP:
3544     case Instruction::UIToFP:
3545       return true;
3546     case Instruction::FPTrunc:
3547     case Instruction::FPExt:
3548       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3549     default:
3550       break;
3551     }
3552   }
3553 
3554   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3555     switch (II->getIntrinsicID()) {
3556     case Intrinsic::canonicalize:
3557     case Intrinsic::fabs:
3558     case Intrinsic::copysign:
3559     case Intrinsic::exp:
3560     case Intrinsic::exp2:
3561     case Intrinsic::floor:
3562     case Intrinsic::ceil:
3563     case Intrinsic::trunc:
3564     case Intrinsic::rint:
3565     case Intrinsic::nearbyint:
3566     case Intrinsic::round:
3567     case Intrinsic::roundeven:
3568       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3569     case Intrinsic::sqrt:
3570       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3571              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3572     case Intrinsic::minnum:
3573     case Intrinsic::maxnum:
3574       // If either operand is not NaN, the result is not NaN.
3575       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3576              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3577     default:
3578       return false;
3579     }
3580   }
3581 
3582   // Try to handle fixed width vector constants
3583   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3584   if (VFVTy && isa<Constant>(V)) {
3585     // For vectors, verify that each element is not NaN.
3586     unsigned NumElts = VFVTy->getNumElements();
3587     for (unsigned i = 0; i != NumElts; ++i) {
3588       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3589       if (!Elt)
3590         return false;
3591       if (isa<UndefValue>(Elt))
3592         continue;
3593       auto *CElt = dyn_cast<ConstantFP>(Elt);
3594       if (!CElt || CElt->isNaN())
3595         return false;
3596     }
3597     // All elements were confirmed not-NaN or undefined.
3598     return true;
3599   }
3600 
3601   // Was not able to prove that V never contains NaN
3602   return false;
3603 }
3604 
isBytewiseValue(Value * V,const DataLayout & DL)3605 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3606 
3607   // All byte-wide stores are splatable, even of arbitrary variables.
3608   if (V->getType()->isIntegerTy(8))
3609     return V;
3610 
3611   LLVMContext &Ctx = V->getContext();
3612 
3613   // Undef don't care.
3614   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3615   if (isa<UndefValue>(V))
3616     return UndefInt8;
3617 
3618   // Return Undef for zero-sized type.
3619   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3620     return UndefInt8;
3621 
3622   Constant *C = dyn_cast<Constant>(V);
3623   if (!C) {
3624     // Conceptually, we could handle things like:
3625     //   %a = zext i8 %X to i16
3626     //   %b = shl i16 %a, 8
3627     //   %c = or i16 %a, %b
3628     // but until there is an example that actually needs this, it doesn't seem
3629     // worth worrying about.
3630     return nullptr;
3631   }
3632 
3633   // Handle 'null' ConstantArrayZero etc.
3634   if (C->isNullValue())
3635     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3636 
3637   // Constant floating-point values can be handled as integer values if the
3638   // corresponding integer value is "byteable".  An important case is 0.0.
3639   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3640     Type *Ty = nullptr;
3641     if (CFP->getType()->isHalfTy())
3642       Ty = Type::getInt16Ty(Ctx);
3643     else if (CFP->getType()->isFloatTy())
3644       Ty = Type::getInt32Ty(Ctx);
3645     else if (CFP->getType()->isDoubleTy())
3646       Ty = Type::getInt64Ty(Ctx);
3647     // Don't handle long double formats, which have strange constraints.
3648     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3649               : nullptr;
3650   }
3651 
3652   // We can handle constant integers that are multiple of 8 bits.
3653   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3654     if (CI->getBitWidth() % 8 == 0) {
3655       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3656       if (!CI->getValue().isSplat(8))
3657         return nullptr;
3658       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3659     }
3660   }
3661 
3662   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3663     if (CE->getOpcode() == Instruction::IntToPtr) {
3664       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3665         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3666         return isBytewiseValue(
3667             ConstantExpr::getIntegerCast(CE->getOperand(0),
3668                                          Type::getIntNTy(Ctx, BitWidth), false),
3669             DL);
3670       }
3671     }
3672   }
3673 
3674   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3675     if (LHS == RHS)
3676       return LHS;
3677     if (!LHS || !RHS)
3678       return nullptr;
3679     if (LHS == UndefInt8)
3680       return RHS;
3681     if (RHS == UndefInt8)
3682       return LHS;
3683     return nullptr;
3684   };
3685 
3686   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3687     Value *Val = UndefInt8;
3688     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3689       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3690         return nullptr;
3691     return Val;
3692   }
3693 
3694   if (isa<ConstantAggregate>(C)) {
3695     Value *Val = UndefInt8;
3696     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3697       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3698         return nullptr;
3699     return Val;
3700   }
3701 
3702   // Don't try to handle the handful of other constants.
3703   return nullptr;
3704 }
3705 
3706 // This is the recursive version of BuildSubAggregate. It takes a few different
3707 // arguments. Idxs is the index within the nested struct From that we are
3708 // looking at now (which is of type IndexedType). IdxSkip is the number of
3709 // indices from Idxs that should be left out when inserting into the resulting
3710 // struct. To is the result struct built so far, new insertvalue instructions
3711 // build on that.
BuildSubAggregate(Value * From,Value * To,Type * IndexedType,SmallVectorImpl<unsigned> & Idxs,unsigned IdxSkip,Instruction * InsertBefore)3712 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3713                                 SmallVectorImpl<unsigned> &Idxs,
3714                                 unsigned IdxSkip,
3715                                 Instruction *InsertBefore) {
3716   StructType *STy = dyn_cast<StructType>(IndexedType);
3717   if (STy) {
3718     // Save the original To argument so we can modify it
3719     Value *OrigTo = To;
3720     // General case, the type indexed by Idxs is a struct
3721     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3722       // Process each struct element recursively
3723       Idxs.push_back(i);
3724       Value *PrevTo = To;
3725       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3726                              InsertBefore);
3727       Idxs.pop_back();
3728       if (!To) {
3729         // Couldn't find any inserted value for this index? Cleanup
3730         while (PrevTo != OrigTo) {
3731           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3732           PrevTo = Del->getAggregateOperand();
3733           Del->eraseFromParent();
3734         }
3735         // Stop processing elements
3736         break;
3737       }
3738     }
3739     // If we successfully found a value for each of our subaggregates
3740     if (To)
3741       return To;
3742   }
3743   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3744   // the struct's elements had a value that was inserted directly. In the latter
3745   // case, perhaps we can't determine each of the subelements individually, but
3746   // we might be able to find the complete struct somewhere.
3747 
3748   // Find the value that is at that particular spot
3749   Value *V = FindInsertedValue(From, Idxs);
3750 
3751   if (!V)
3752     return nullptr;
3753 
3754   // Insert the value in the new (sub) aggregate
3755   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3756                                  "tmp", InsertBefore);
3757 }
3758 
3759 // This helper takes a nested struct and extracts a part of it (which is again a
3760 // struct) into a new value. For example, given the struct:
3761 // { a, { b, { c, d }, e } }
3762 // and the indices "1, 1" this returns
3763 // { c, d }.
3764 //
3765 // It does this by inserting an insertvalue for each element in the resulting
3766 // struct, as opposed to just inserting a single struct. This will only work if
3767 // each of the elements of the substruct are known (ie, inserted into From by an
3768 // insertvalue instruction somewhere).
3769 //
3770 // All inserted insertvalue instructions are inserted before InsertBefore
BuildSubAggregate(Value * From,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)3771 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3772                                 Instruction *InsertBefore) {
3773   assert(InsertBefore && "Must have someplace to insert!");
3774   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3775                                                              idx_range);
3776   Value *To = UndefValue::get(IndexedType);
3777   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3778   unsigned IdxSkip = Idxs.size();
3779 
3780   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3781 }
3782 
3783 /// Given an aggregate and a sequence of indices, see if the scalar value
3784 /// indexed is already around as a register, for example if it was inserted
3785 /// directly into the aggregate.
3786 ///
3787 /// If InsertBefore is not null, this function will duplicate (modified)
3788 /// insertvalues when a part of a nested struct is extracted.
FindInsertedValue(Value * V,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)3789 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3790                                Instruction *InsertBefore) {
3791   // Nothing to index? Just return V then (this is useful at the end of our
3792   // recursion).
3793   if (idx_range.empty())
3794     return V;
3795   // We have indices, so V should have an indexable type.
3796   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3797          "Not looking at a struct or array?");
3798   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3799          "Invalid indices for type?");
3800 
3801   if (Constant *C = dyn_cast<Constant>(V)) {
3802     C = C->getAggregateElement(idx_range[0]);
3803     if (!C) return nullptr;
3804     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3805   }
3806 
3807   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3808     // Loop the indices for the insertvalue instruction in parallel with the
3809     // requested indices
3810     const unsigned *req_idx = idx_range.begin();
3811     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3812          i != e; ++i, ++req_idx) {
3813       if (req_idx == idx_range.end()) {
3814         // We can't handle this without inserting insertvalues
3815         if (!InsertBefore)
3816           return nullptr;
3817 
3818         // The requested index identifies a part of a nested aggregate. Handle
3819         // this specially. For example,
3820         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3821         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3822         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3823         // This can be changed into
3824         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3825         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3826         // which allows the unused 0,0 element from the nested struct to be
3827         // removed.
3828         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3829                                  InsertBefore);
3830       }
3831 
3832       // This insert value inserts something else than what we are looking for.
3833       // See if the (aggregate) value inserted into has the value we are
3834       // looking for, then.
3835       if (*req_idx != *i)
3836         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3837                                  InsertBefore);
3838     }
3839     // If we end up here, the indices of the insertvalue match with those
3840     // requested (though possibly only partially). Now we recursively look at
3841     // the inserted value, passing any remaining indices.
3842     return FindInsertedValue(I->getInsertedValueOperand(),
3843                              makeArrayRef(req_idx, idx_range.end()),
3844                              InsertBefore);
3845   }
3846 
3847   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3848     // If we're extracting a value from an aggregate that was extracted from
3849     // something else, we can extract from that something else directly instead.
3850     // However, we will need to chain I's indices with the requested indices.
3851 
3852     // Calculate the number of indices required
3853     unsigned size = I->getNumIndices() + idx_range.size();
3854     // Allocate some space to put the new indices in
3855     SmallVector<unsigned, 5> Idxs;
3856     Idxs.reserve(size);
3857     // Add indices from the extract value instruction
3858     Idxs.append(I->idx_begin(), I->idx_end());
3859 
3860     // Add requested indices
3861     Idxs.append(idx_range.begin(), idx_range.end());
3862 
3863     assert(Idxs.size() == size
3864            && "Number of indices added not correct?");
3865 
3866     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3867   }
3868   // Otherwise, we don't know (such as, extracting from a function return value
3869   // or load instruction)
3870   return nullptr;
3871 }
3872 
isGEPBasedOnPointerToString(const GEPOperator * GEP,unsigned CharSize)3873 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3874                                        unsigned CharSize) {
3875   // Make sure the GEP has exactly three arguments.
3876   if (GEP->getNumOperands() != 3)
3877     return false;
3878 
3879   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3880   // CharSize.
3881   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3882   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3883     return false;
3884 
3885   // Check to make sure that the first operand of the GEP is an integer and
3886   // has value 0 so that we are sure we're indexing into the initializer.
3887   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3888   if (!FirstIdx || !FirstIdx->isZero())
3889     return false;
3890 
3891   return true;
3892 }
3893 
getConstantDataArrayInfo(const Value * V,ConstantDataArraySlice & Slice,unsigned ElementSize,uint64_t Offset)3894 bool llvm::getConstantDataArrayInfo(const Value *V,
3895                                     ConstantDataArraySlice &Slice,
3896                                     unsigned ElementSize, uint64_t Offset) {
3897   assert(V);
3898 
3899   // Look through bitcast instructions and geps.
3900   V = V->stripPointerCasts();
3901 
3902   // If the value is a GEP instruction or constant expression, treat it as an
3903   // offset.
3904   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3905     // The GEP operator should be based on a pointer to string constant, and is
3906     // indexing into the string constant.
3907     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3908       return false;
3909 
3910     // If the second index isn't a ConstantInt, then this is a variable index
3911     // into the array.  If this occurs, we can't say anything meaningful about
3912     // the string.
3913     uint64_t StartIdx = 0;
3914     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3915       StartIdx = CI->getZExtValue();
3916     else
3917       return false;
3918     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3919                                     StartIdx + Offset);
3920   }
3921 
3922   // The GEP instruction, constant or instruction, must reference a global
3923   // variable that is a constant and is initialized. The referenced constant
3924   // initializer is the array that we'll use for optimization.
3925   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3926   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3927     return false;
3928 
3929   const ConstantDataArray *Array;
3930   ArrayType *ArrayTy;
3931   if (GV->getInitializer()->isNullValue()) {
3932     Type *GVTy = GV->getValueType();
3933     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3934       // A zeroinitializer for the array; there is no ConstantDataArray.
3935       Array = nullptr;
3936     } else {
3937       const DataLayout &DL = GV->getParent()->getDataLayout();
3938       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
3939       uint64_t Length = SizeInBytes / (ElementSize / 8);
3940       if (Length <= Offset)
3941         return false;
3942 
3943       Slice.Array = nullptr;
3944       Slice.Offset = 0;
3945       Slice.Length = Length - Offset;
3946       return true;
3947     }
3948   } else {
3949     // This must be a ConstantDataArray.
3950     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3951     if (!Array)
3952       return false;
3953     ArrayTy = Array->getType();
3954   }
3955   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3956     return false;
3957 
3958   uint64_t NumElts = ArrayTy->getArrayNumElements();
3959   if (Offset > NumElts)
3960     return false;
3961 
3962   Slice.Array = Array;
3963   Slice.Offset = Offset;
3964   Slice.Length = NumElts - Offset;
3965   return true;
3966 }
3967 
3968 /// This function computes the length of a null-terminated C string pointed to
3969 /// by V. If successful, it returns true and returns the string in Str.
3970 /// If unsuccessful, it returns false.
getConstantStringInfo(const Value * V,StringRef & Str,uint64_t Offset,bool TrimAtNul)3971 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3972                                  uint64_t Offset, bool TrimAtNul) {
3973   ConstantDataArraySlice Slice;
3974   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3975     return false;
3976 
3977   if (Slice.Array == nullptr) {
3978     if (TrimAtNul) {
3979       Str = StringRef();
3980       return true;
3981     }
3982     if (Slice.Length == 1) {
3983       Str = StringRef("", 1);
3984       return true;
3985     }
3986     // We cannot instantiate a StringRef as we do not have an appropriate string
3987     // of 0s at hand.
3988     return false;
3989   }
3990 
3991   // Start out with the entire array in the StringRef.
3992   Str = Slice.Array->getAsString();
3993   // Skip over 'offset' bytes.
3994   Str = Str.substr(Slice.Offset);
3995 
3996   if (TrimAtNul) {
3997     // Trim off the \0 and anything after it.  If the array is not nul
3998     // terminated, we just return the whole end of string.  The client may know
3999     // some other way that the string is length-bound.
4000     Str = Str.substr(0, Str.find('\0'));
4001   }
4002   return true;
4003 }
4004 
4005 // These next two are very similar to the above, but also look through PHI
4006 // nodes.
4007 // TODO: See if we can integrate these two together.
4008 
4009 /// If we can compute the length of the string pointed to by
4010 /// the specified pointer, return 'len+1'.  If we can't, return 0.
GetStringLengthH(const Value * V,SmallPtrSetImpl<const PHINode * > & PHIs,unsigned CharSize)4011 static uint64_t GetStringLengthH(const Value *V,
4012                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4013                                  unsigned CharSize) {
4014   // Look through noop bitcast instructions.
4015   V = V->stripPointerCasts();
4016 
4017   // If this is a PHI node, there are two cases: either we have already seen it
4018   // or we haven't.
4019   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4020     if (!PHIs.insert(PN).second)
4021       return ~0ULL;  // already in the set.
4022 
4023     // If it was new, see if all the input strings are the same length.
4024     uint64_t LenSoFar = ~0ULL;
4025     for (Value *IncValue : PN->incoming_values()) {
4026       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4027       if (Len == 0) return 0; // Unknown length -> unknown.
4028 
4029       if (Len == ~0ULL) continue;
4030 
4031       if (Len != LenSoFar && LenSoFar != ~0ULL)
4032         return 0;    // Disagree -> unknown.
4033       LenSoFar = Len;
4034     }
4035 
4036     // Success, all agree.
4037     return LenSoFar;
4038   }
4039 
4040   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4041   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4042     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4043     if (Len1 == 0) return 0;
4044     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4045     if (Len2 == 0) return 0;
4046     if (Len1 == ~0ULL) return Len2;
4047     if (Len2 == ~0ULL) return Len1;
4048     if (Len1 != Len2) return 0;
4049     return Len1;
4050   }
4051 
4052   // Otherwise, see if we can read the string.
4053   ConstantDataArraySlice Slice;
4054   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4055     return 0;
4056 
4057   if (Slice.Array == nullptr)
4058     return 1;
4059 
4060   // Search for nul characters
4061   unsigned NullIndex = 0;
4062   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4063     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4064       break;
4065   }
4066 
4067   return NullIndex + 1;
4068 }
4069 
4070 /// If we can compute the length of the string pointed to by
4071 /// the specified pointer, return 'len+1'.  If we can't, return 0.
GetStringLength(const Value * V,unsigned CharSize)4072 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4073   if (!V->getType()->isPointerTy())
4074     return 0;
4075 
4076   SmallPtrSet<const PHINode*, 32> PHIs;
4077   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4078   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4079   // an empty string as a length.
4080   return Len == ~0ULL ? 1 : Len;
4081 }
4082 
4083 const Value *
getArgumentAliasingToReturnedPointer(const CallBase * Call,bool MustPreserveNullness)4084 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4085                                            bool MustPreserveNullness) {
4086   assert(Call &&
4087          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4088   if (const Value *RV = Call->getReturnedArgOperand())
4089     return RV;
4090   // This can be used only as a aliasing property.
4091   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4092           Call, MustPreserveNullness))
4093     return Call->getArgOperand(0);
4094   return nullptr;
4095 }
4096 
isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase * Call,bool MustPreserveNullness)4097 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4098     const CallBase *Call, bool MustPreserveNullness) {
4099   switch (Call->getIntrinsicID()) {
4100   case Intrinsic::launder_invariant_group:
4101   case Intrinsic::strip_invariant_group:
4102   case Intrinsic::aarch64_irg:
4103   case Intrinsic::aarch64_tagp:
4104     return true;
4105   case Intrinsic::ptrmask:
4106     return !MustPreserveNullness;
4107   default:
4108     return false;
4109   }
4110 }
4111 
4112 /// \p PN defines a loop-variant pointer to an object.  Check if the
4113 /// previous iteration of the loop was referring to the same object as \p PN.
isSameUnderlyingObjectInLoop(const PHINode * PN,const LoopInfo * LI)4114 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4115                                          const LoopInfo *LI) {
4116   // Find the loop-defined value.
4117   Loop *L = LI->getLoopFor(PN->getParent());
4118   if (PN->getNumIncomingValues() != 2)
4119     return true;
4120 
4121   // Find the value from previous iteration.
4122   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4123   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4124     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4125   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4126     return true;
4127 
4128   // If a new pointer is loaded in the loop, the pointer references a different
4129   // object in every iteration.  E.g.:
4130   //    for (i)
4131   //       int *p = a[i];
4132   //       ...
4133   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4134     if (!L->isLoopInvariant(Load->getPointerOperand()))
4135       return false;
4136   return true;
4137 }
4138 
getUnderlyingObject(Value * V,unsigned MaxLookup)4139 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) {
4140   if (!V->getType()->isPointerTy())
4141     return V;
4142   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4143     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4144       V = GEP->getPointerOperand();
4145     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4146                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4147       V = cast<Operator>(V)->getOperand(0);
4148       if (!V->getType()->isPointerTy())
4149         return V;
4150     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4151       if (GA->isInterposable())
4152         return V;
4153       V = GA->getAliasee();
4154     } else {
4155       if (auto *PHI = dyn_cast<PHINode>(V)) {
4156         // Look through single-arg phi nodes created by LCSSA.
4157         if (PHI->getNumIncomingValues() == 1) {
4158           V = PHI->getIncomingValue(0);
4159           continue;
4160         }
4161       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4162         // CaptureTracking can know about special capturing properties of some
4163         // intrinsics like launder.invariant.group, that can't be expressed with
4164         // the attributes, but have properties like returning aliasing pointer.
4165         // Because some analysis may assume that nocaptured pointer is not
4166         // returned from some special intrinsic (because function would have to
4167         // be marked with returns attribute), it is crucial to use this function
4168         // because it should be in sync with CaptureTracking. Not using it may
4169         // cause weird miscompilations where 2 aliasing pointers are assumed to
4170         // noalias.
4171         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4172           V = RP;
4173           continue;
4174         }
4175       }
4176 
4177       return V;
4178     }
4179     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4180   }
4181   return V;
4182 }
4183 
getUnderlyingObjects(const Value * V,SmallVectorImpl<const Value * > & Objects,LoopInfo * LI,unsigned MaxLookup)4184 void llvm::getUnderlyingObjects(const Value *V,
4185                                 SmallVectorImpl<const Value *> &Objects,
4186                                 LoopInfo *LI, unsigned MaxLookup) {
4187   SmallPtrSet<const Value *, 4> Visited;
4188   SmallVector<const Value *, 4> Worklist;
4189   Worklist.push_back(V);
4190   do {
4191     const Value *P = Worklist.pop_back_val();
4192     P = getUnderlyingObject(P, MaxLookup);
4193 
4194     if (!Visited.insert(P).second)
4195       continue;
4196 
4197     if (auto *SI = dyn_cast<SelectInst>(P)) {
4198       Worklist.push_back(SI->getTrueValue());
4199       Worklist.push_back(SI->getFalseValue());
4200       continue;
4201     }
4202 
4203     if (auto *PN = dyn_cast<PHINode>(P)) {
4204       // If this PHI changes the underlying object in every iteration of the
4205       // loop, don't look through it.  Consider:
4206       //   int **A;
4207       //   for (i) {
4208       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4209       //     Curr = A[i];
4210       //     *Prev, *Curr;
4211       //
4212       // Prev is tracking Curr one iteration behind so they refer to different
4213       // underlying objects.
4214       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4215           isSameUnderlyingObjectInLoop(PN, LI))
4216         for (Value *IncValue : PN->incoming_values())
4217           Worklist.push_back(IncValue);
4218       continue;
4219     }
4220 
4221     Objects.push_back(P);
4222   } while (!Worklist.empty());
4223 }
4224 
4225 /// This is the function that does the work of looking through basic
4226 /// ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjectFromInt(const Value * V)4227 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4228   do {
4229     if (const Operator *U = dyn_cast<Operator>(V)) {
4230       // If we find a ptrtoint, we can transfer control back to the
4231       // regular getUnderlyingObjectFromInt.
4232       if (U->getOpcode() == Instruction::PtrToInt)
4233         return U->getOperand(0);
4234       // If we find an add of a constant, a multiplied value, or a phi, it's
4235       // likely that the other operand will lead us to the base
4236       // object. We don't have to worry about the case where the
4237       // object address is somehow being computed by the multiply,
4238       // because our callers only care when the result is an
4239       // identifiable object.
4240       if (U->getOpcode() != Instruction::Add ||
4241           (!isa<ConstantInt>(U->getOperand(1)) &&
4242            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4243            !isa<PHINode>(U->getOperand(1))))
4244         return V;
4245       V = U->getOperand(0);
4246     } else {
4247       return V;
4248     }
4249     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4250   } while (true);
4251 }
4252 
4253 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4254 /// ptrtoint+arithmetic+inttoptr sequences.
4255 /// It returns false if unidentified object is found in getUnderlyingObjects.
getUnderlyingObjectsForCodeGen(const Value * V,SmallVectorImpl<Value * > & Objects)4256 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4257                                           SmallVectorImpl<Value *> &Objects) {
4258   SmallPtrSet<const Value *, 16> Visited;
4259   SmallVector<const Value *, 4> Working(1, V);
4260   do {
4261     V = Working.pop_back_val();
4262 
4263     SmallVector<const Value *, 4> Objs;
4264     getUnderlyingObjects(V, Objs);
4265 
4266     for (const Value *V : Objs) {
4267       if (!Visited.insert(V).second)
4268         continue;
4269       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4270         const Value *O =
4271           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4272         if (O->getType()->isPointerTy()) {
4273           Working.push_back(O);
4274           continue;
4275         }
4276       }
4277       // If getUnderlyingObjects fails to find an identifiable object,
4278       // getUnderlyingObjectsForCodeGen also fails for safety.
4279       if (!isIdentifiedObject(V)) {
4280         Objects.clear();
4281         return false;
4282       }
4283       Objects.push_back(const_cast<Value *>(V));
4284     }
4285   } while (!Working.empty());
4286   return true;
4287 }
4288 
findAllocaForValue(Value * V,bool OffsetZero)4289 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4290   AllocaInst *Result = nullptr;
4291   SmallPtrSet<Value *, 4> Visited;
4292   SmallVector<Value *, 4> Worklist;
4293 
4294   auto AddWork = [&](Value *V) {
4295     if (Visited.insert(V).second)
4296       Worklist.push_back(V);
4297   };
4298 
4299   AddWork(V);
4300   do {
4301     V = Worklist.pop_back_val();
4302     assert(Visited.count(V));
4303 
4304     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4305       if (Result && Result != AI)
4306         return nullptr;
4307       Result = AI;
4308     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4309       AddWork(CI->getOperand(0));
4310     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4311       for (Value *IncValue : PN->incoming_values())
4312         AddWork(IncValue);
4313     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4314       AddWork(SI->getTrueValue());
4315       AddWork(SI->getFalseValue());
4316     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4317       if (OffsetZero && !GEP->hasAllZeroIndices())
4318         return nullptr;
4319       AddWork(GEP->getPointerOperand());
4320     } else {
4321       return nullptr;
4322     }
4323   } while (!Worklist.empty());
4324 
4325   return Result;
4326 }
4327 
onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value * V,bool AllowLifetime,bool AllowDroppable)4328 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4329     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4330   for (const User *U : V->users()) {
4331     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4332     if (!II)
4333       return false;
4334 
4335     if (AllowLifetime && II->isLifetimeStartOrEnd())
4336       continue;
4337 
4338     if (AllowDroppable && II->isDroppable())
4339       continue;
4340 
4341     return false;
4342   }
4343   return true;
4344 }
4345 
onlyUsedByLifetimeMarkers(const Value * V)4346 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4347   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4348       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4349 }
onlyUsedByLifetimeMarkersOrDroppableInsts(const Value * V)4350 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4351   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4352       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4353 }
4354 
mustSuppressSpeculation(const LoadInst & LI)4355 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4356   if (!LI.isUnordered())
4357     return true;
4358   const Function &F = *LI.getFunction();
4359   // Speculative load may create a race that did not exist in the source.
4360   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4361     // Speculative load may load data from dirty regions.
4362     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4363     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4364 }
4365 
4366 
isSafeToSpeculativelyExecute(const Value * V,const Instruction * CtxI,const DominatorTree * DT)4367 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4368                                         const Instruction *CtxI,
4369                                         const DominatorTree *DT) {
4370   const Operator *Inst = dyn_cast<Operator>(V);
4371   if (!Inst)
4372     return false;
4373 
4374   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4375     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4376       if (C->canTrap())
4377         return false;
4378 
4379   switch (Inst->getOpcode()) {
4380   default:
4381     return true;
4382   case Instruction::UDiv:
4383   case Instruction::URem: {
4384     // x / y is undefined if y == 0.
4385     const APInt *V;
4386     if (match(Inst->getOperand(1), m_APInt(V)))
4387       return *V != 0;
4388     return false;
4389   }
4390   case Instruction::SDiv:
4391   case Instruction::SRem: {
4392     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4393     const APInt *Numerator, *Denominator;
4394     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4395       return false;
4396     // We cannot hoist this division if the denominator is 0.
4397     if (*Denominator == 0)
4398       return false;
4399     // It's safe to hoist if the denominator is not 0 or -1.
4400     if (*Denominator != -1)
4401       return true;
4402     // At this point we know that the denominator is -1.  It is safe to hoist as
4403     // long we know that the numerator is not INT_MIN.
4404     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4405       return !Numerator->isMinSignedValue();
4406     // The numerator *might* be MinSignedValue.
4407     return false;
4408   }
4409   case Instruction::Load: {
4410     const LoadInst *LI = cast<LoadInst>(Inst);
4411     if (mustSuppressSpeculation(*LI))
4412       return false;
4413     const DataLayout &DL = LI->getModule()->getDataLayout();
4414     return isDereferenceableAndAlignedPointer(
4415         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4416         DL, CtxI, DT);
4417   }
4418   case Instruction::Call: {
4419     auto *CI = cast<const CallInst>(Inst);
4420     const Function *Callee = CI->getCalledFunction();
4421 
4422     // The called function could have undefined behavior or side-effects, even
4423     // if marked readnone nounwind.
4424     return Callee && Callee->isSpeculatable();
4425   }
4426   case Instruction::VAArg:
4427   case Instruction::Alloca:
4428   case Instruction::Invoke:
4429   case Instruction::CallBr:
4430   case Instruction::PHI:
4431   case Instruction::Store:
4432   case Instruction::Ret:
4433   case Instruction::Br:
4434   case Instruction::IndirectBr:
4435   case Instruction::Switch:
4436   case Instruction::Unreachable:
4437   case Instruction::Fence:
4438   case Instruction::AtomicRMW:
4439   case Instruction::AtomicCmpXchg:
4440   case Instruction::LandingPad:
4441   case Instruction::Resume:
4442   case Instruction::CatchSwitch:
4443   case Instruction::CatchPad:
4444   case Instruction::CatchRet:
4445   case Instruction::CleanupPad:
4446   case Instruction::CleanupRet:
4447     return false; // Misc instructions which have effects
4448   }
4449 }
4450 
mayBeMemoryDependent(const Instruction & I)4451 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4452   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4453 }
4454 
4455 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
mapOverflowResult(ConstantRange::OverflowResult OR)4456 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4457   switch (OR) {
4458     case ConstantRange::OverflowResult::MayOverflow:
4459       return OverflowResult::MayOverflow;
4460     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4461       return OverflowResult::AlwaysOverflowsLow;
4462     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4463       return OverflowResult::AlwaysOverflowsHigh;
4464     case ConstantRange::OverflowResult::NeverOverflows:
4465       return OverflowResult::NeverOverflows;
4466   }
4467   llvm_unreachable("Unknown OverflowResult");
4468 }
4469 
4470 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
computeConstantRangeIncludingKnownBits(const Value * V,bool ForSigned,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE=nullptr,bool UseInstrInfo=true)4471 static ConstantRange computeConstantRangeIncludingKnownBits(
4472     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4473     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4474     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4475   KnownBits Known = computeKnownBits(
4476       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4477   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4478   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4479   ConstantRange::PreferredRangeType RangeType =
4480       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4481   return CR1.intersectWith(CR2, RangeType);
4482 }
4483 
computeOverflowForUnsignedMul(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)4484 OverflowResult llvm::computeOverflowForUnsignedMul(
4485     const Value *LHS, const Value *RHS, const DataLayout &DL,
4486     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4487     bool UseInstrInfo) {
4488   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4489                                         nullptr, UseInstrInfo);
4490   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4491                                         nullptr, UseInstrInfo);
4492   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4493   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4494   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4495 }
4496 
4497 OverflowResult
computeOverflowForSignedMul(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)4498 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4499                                   const DataLayout &DL, AssumptionCache *AC,
4500                                   const Instruction *CxtI,
4501                                   const DominatorTree *DT, bool UseInstrInfo) {
4502   // Multiplying n * m significant bits yields a result of n + m significant
4503   // bits. If the total number of significant bits does not exceed the
4504   // result bit width (minus 1), there is no overflow.
4505   // This means if we have enough leading sign bits in the operands
4506   // we can guarantee that the result does not overflow.
4507   // Ref: "Hacker's Delight" by Henry Warren
4508   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4509 
4510   // Note that underestimating the number of sign bits gives a more
4511   // conservative answer.
4512   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4513                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4514 
4515   // First handle the easy case: if we have enough sign bits there's
4516   // definitely no overflow.
4517   if (SignBits > BitWidth + 1)
4518     return OverflowResult::NeverOverflows;
4519 
4520   // There are two ambiguous cases where there can be no overflow:
4521   //   SignBits == BitWidth + 1    and
4522   //   SignBits == BitWidth
4523   // The second case is difficult to check, therefore we only handle the
4524   // first case.
4525   if (SignBits == BitWidth + 1) {
4526     // It overflows only when both arguments are negative and the true
4527     // product is exactly the minimum negative number.
4528     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4529     // For simplicity we just check if at least one side is not negative.
4530     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4531                                           nullptr, UseInstrInfo);
4532     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4533                                           nullptr, UseInstrInfo);
4534     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4535       return OverflowResult::NeverOverflows;
4536   }
4537   return OverflowResult::MayOverflow;
4538 }
4539 
computeOverflowForUnsignedAdd(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)4540 OverflowResult llvm::computeOverflowForUnsignedAdd(
4541     const Value *LHS, const Value *RHS, const DataLayout &DL,
4542     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4543     bool UseInstrInfo) {
4544   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4545       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4546       nullptr, UseInstrInfo);
4547   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4548       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4549       nullptr, UseInstrInfo);
4550   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4551 }
4552 
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4553 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4554                                                   const Value *RHS,
4555                                                   const AddOperator *Add,
4556                                                   const DataLayout &DL,
4557                                                   AssumptionCache *AC,
4558                                                   const Instruction *CxtI,
4559                                                   const DominatorTree *DT) {
4560   if (Add && Add->hasNoSignedWrap()) {
4561     return OverflowResult::NeverOverflows;
4562   }
4563 
4564   // If LHS and RHS each have at least two sign bits, the addition will look
4565   // like
4566   //
4567   // XX..... +
4568   // YY.....
4569   //
4570   // If the carry into the most significant position is 0, X and Y can't both
4571   // be 1 and therefore the carry out of the addition is also 0.
4572   //
4573   // If the carry into the most significant position is 1, X and Y can't both
4574   // be 0 and therefore the carry out of the addition is also 1.
4575   //
4576   // Since the carry into the most significant position is always equal to
4577   // the carry out of the addition, there is no signed overflow.
4578   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4579       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4580     return OverflowResult::NeverOverflows;
4581 
4582   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4583       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4584   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4585       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4586   OverflowResult OR =
4587       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4588   if (OR != OverflowResult::MayOverflow)
4589     return OR;
4590 
4591   // The remaining code needs Add to be available. Early returns if not so.
4592   if (!Add)
4593     return OverflowResult::MayOverflow;
4594 
4595   // If the sign of Add is the same as at least one of the operands, this add
4596   // CANNOT overflow. If this can be determined from the known bits of the
4597   // operands the above signedAddMayOverflow() check will have already done so.
4598   // The only other way to improve on the known bits is from an assumption, so
4599   // call computeKnownBitsFromAssume() directly.
4600   bool LHSOrRHSKnownNonNegative =
4601       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4602   bool LHSOrRHSKnownNegative =
4603       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4604   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4605     KnownBits AddKnown(LHSRange.getBitWidth());
4606     computeKnownBitsFromAssume(
4607         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4608     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4609         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4610       return OverflowResult::NeverOverflows;
4611   }
4612 
4613   return OverflowResult::MayOverflow;
4614 }
4615 
computeOverflowForUnsignedSub(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4616 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4617                                                    const Value *RHS,
4618                                                    const DataLayout &DL,
4619                                                    AssumptionCache *AC,
4620                                                    const Instruction *CxtI,
4621                                                    const DominatorTree *DT) {
4622   // Checking for conditions implied by dominating conditions may be expensive.
4623   // Limit it to usub_with_overflow calls for now.
4624   if (match(CxtI,
4625             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4626     if (auto C =
4627             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4628       if (*C)
4629         return OverflowResult::NeverOverflows;
4630       return OverflowResult::AlwaysOverflowsLow;
4631     }
4632   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4633       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4634   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4635       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4636   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4637 }
4638 
computeOverflowForSignedSub(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4639 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4640                                                  const Value *RHS,
4641                                                  const DataLayout &DL,
4642                                                  AssumptionCache *AC,
4643                                                  const Instruction *CxtI,
4644                                                  const DominatorTree *DT) {
4645   // If LHS and RHS each have at least two sign bits, the subtraction
4646   // cannot overflow.
4647   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4648       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4649     return OverflowResult::NeverOverflows;
4650 
4651   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4652       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4653   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4654       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4655   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4656 }
4657 
isOverflowIntrinsicNoWrap(const WithOverflowInst * WO,const DominatorTree & DT)4658 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4659                                      const DominatorTree &DT) {
4660   SmallVector<const BranchInst *, 2> GuardingBranches;
4661   SmallVector<const ExtractValueInst *, 2> Results;
4662 
4663   for (const User *U : WO->users()) {
4664     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4665       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4666 
4667       if (EVI->getIndices()[0] == 0)
4668         Results.push_back(EVI);
4669       else {
4670         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4671 
4672         for (const auto *U : EVI->users())
4673           if (const auto *B = dyn_cast<BranchInst>(U)) {
4674             assert(B->isConditional() && "How else is it using an i1?");
4675             GuardingBranches.push_back(B);
4676           }
4677       }
4678     } else {
4679       // We are using the aggregate directly in a way we don't want to analyze
4680       // here (storing it to a global, say).
4681       return false;
4682     }
4683   }
4684 
4685   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4686     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4687     if (!NoWrapEdge.isSingleEdge())
4688       return false;
4689 
4690     // Check if all users of the add are provably no-wrap.
4691     for (const auto *Result : Results) {
4692       // If the extractvalue itself is not executed on overflow, the we don't
4693       // need to check each use separately, since domination is transitive.
4694       if (DT.dominates(NoWrapEdge, Result->getParent()))
4695         continue;
4696 
4697       for (auto &RU : Result->uses())
4698         if (!DT.dominates(NoWrapEdge, RU))
4699           return false;
4700     }
4701 
4702     return true;
4703   };
4704 
4705   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4706 }
4707 
canCreateUndefOrPoison(const Operator * Op,bool PoisonOnly)4708 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4709   // See whether I has flags that may create poison
4710   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4711     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4712       return true;
4713   }
4714   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4715     if (ExactOp->isExact())
4716       return true;
4717   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4718     auto FMF = FP->getFastMathFlags();
4719     if (FMF.noNaNs() || FMF.noInfs())
4720       return true;
4721   }
4722 
4723   unsigned Opcode = Op->getOpcode();
4724 
4725   // Check whether opcode is a poison/undef-generating operation
4726   switch (Opcode) {
4727   case Instruction::Shl:
4728   case Instruction::AShr:
4729   case Instruction::LShr: {
4730     // Shifts return poison if shiftwidth is larger than the bitwidth.
4731     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4732       SmallVector<Constant *, 4> ShiftAmounts;
4733       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4734         unsigned NumElts = FVTy->getNumElements();
4735         for (unsigned i = 0; i < NumElts; ++i)
4736           ShiftAmounts.push_back(C->getAggregateElement(i));
4737       } else if (isa<ScalableVectorType>(C->getType()))
4738         return true; // Can't tell, just return true to be safe
4739       else
4740         ShiftAmounts.push_back(C);
4741 
4742       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4743         auto *CI = dyn_cast<ConstantInt>(C);
4744         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4745       });
4746       return !Safe;
4747     }
4748     return true;
4749   }
4750   case Instruction::FPToSI:
4751   case Instruction::FPToUI:
4752     // fptosi/ui yields poison if the resulting value does not fit in the
4753     // destination type.
4754     return true;
4755   case Instruction::Call:
4756   case Instruction::CallBr:
4757   case Instruction::Invoke: {
4758     const auto *CB = cast<CallBase>(Op);
4759     return !CB->hasRetAttr(Attribute::NoUndef);
4760   }
4761   case Instruction::InsertElement:
4762   case Instruction::ExtractElement: {
4763     // If index exceeds the length of the vector, it returns poison
4764     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4765     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4766     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4767     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4768       return true;
4769     return false;
4770   }
4771   case Instruction::ShuffleVector: {
4772     // shufflevector may return undef.
4773     if (PoisonOnly)
4774       return false;
4775     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4776                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4777                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4778     return is_contained(Mask, UndefMaskElem);
4779   }
4780   case Instruction::FNeg:
4781   case Instruction::PHI:
4782   case Instruction::Select:
4783   case Instruction::URem:
4784   case Instruction::SRem:
4785   case Instruction::ExtractValue:
4786   case Instruction::InsertValue:
4787   case Instruction::Freeze:
4788   case Instruction::ICmp:
4789   case Instruction::FCmp:
4790     return false;
4791   case Instruction::GetElementPtr: {
4792     const auto *GEP = cast<GEPOperator>(Op);
4793     return GEP->isInBounds();
4794   }
4795   default: {
4796     const auto *CE = dyn_cast<ConstantExpr>(Op);
4797     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4798       return false;
4799     else if (Instruction::isBinaryOp(Opcode))
4800       return false;
4801     // Be conservative and return true.
4802     return true;
4803   }
4804   }
4805 }
4806 
canCreateUndefOrPoison(const Operator * Op)4807 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4808   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4809 }
4810 
canCreatePoison(const Operator * Op)4811 bool llvm::canCreatePoison(const Operator *Op) {
4812   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4813 }
4814 
4815 static bool programUndefinedIfUndefOrPoison(const Value *V,
4816                                             bool PoisonOnly);
4817 
isGuaranteedNotToBeUndefOrPoison(const Value * V,AssumptionCache * AC,const Instruction * CtxI,const DominatorTree * DT,unsigned Depth,bool PoisonOnly)4818 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
4819                                              AssumptionCache *AC,
4820                                              const Instruction *CtxI,
4821                                              const DominatorTree *DT,
4822                                              unsigned Depth, bool PoisonOnly) {
4823   if (Depth >= MaxAnalysisRecursionDepth)
4824     return false;
4825 
4826   if (isa<MetadataAsValue>(V))
4827     return false;
4828 
4829   if (const auto *A = dyn_cast<Argument>(V)) {
4830     if (A->hasAttribute(Attribute::NoUndef))
4831       return true;
4832   }
4833 
4834   if (auto *C = dyn_cast<Constant>(V)) {
4835     if (isa<UndefValue>(C))
4836       return PoisonOnly;
4837 
4838     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4839         isa<ConstantPointerNull>(C) || isa<Function>(C))
4840       return true;
4841 
4842     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
4843       return (PoisonOnly || !C->containsUndefElement()) &&
4844              !C->containsConstantExpression();
4845   }
4846 
4847   // Strip cast operations from a pointer value.
4848   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4849   // inbounds with zero offset. To guarantee that the result isn't poison, the
4850   // stripped pointer is checked as it has to be pointing into an allocated
4851   // object or be null `null` to ensure `inbounds` getelement pointers with a
4852   // zero offset could not produce poison.
4853   // It can strip off addrspacecast that do not change bit representation as
4854   // well. We believe that such addrspacecast is equivalent to no-op.
4855   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4856   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4857       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4858     return true;
4859 
4860   auto OpCheck = [&](const Value *V) {
4861     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
4862                                             PoisonOnly);
4863   };
4864 
4865   if (auto *Opr = dyn_cast<Operator>(V)) {
4866     // If the value is a freeze instruction, then it can never
4867     // be undef or poison.
4868     if (isa<FreezeInst>(V))
4869       return true;
4870 
4871     if (const auto *CB = dyn_cast<CallBase>(V)) {
4872       if (CB->hasRetAttr(Attribute::NoUndef))
4873         return true;
4874     }
4875 
4876     if (const auto *PN = dyn_cast<PHINode>(V)) {
4877       unsigned Num = PN->getNumIncomingValues();
4878       bool IsWellDefined = true;
4879       for (unsigned i = 0; i < Num; ++i) {
4880         auto *TI = PN->getIncomingBlock(i)->getTerminator();
4881         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
4882                                               DT, Depth + 1, PoisonOnly)) {
4883           IsWellDefined = false;
4884           break;
4885         }
4886       }
4887       if (IsWellDefined)
4888         return true;
4889     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
4890       return true;
4891   }
4892 
4893   if (auto *I = dyn_cast<LoadInst>(V))
4894     if (I->getMetadata(LLVMContext::MD_noundef))
4895       return true;
4896 
4897   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
4898     return true;
4899 
4900   // CxtI may be null or a cloned instruction.
4901   if (!CtxI || !CtxI->getParent() || !DT)
4902     return false;
4903 
4904   auto *DNode = DT->getNode(CtxI->getParent());
4905   if (!DNode)
4906     // Unreachable block
4907     return false;
4908 
4909   // If V is used as a branch condition before reaching CtxI, V cannot be
4910   // undef or poison.
4911   //   br V, BB1, BB2
4912   // BB1:
4913   //   CtxI ; V cannot be undef or poison here
4914   auto *Dominator = DNode->getIDom();
4915   while (Dominator) {
4916     auto *TI = Dominator->getBlock()->getTerminator();
4917 
4918     Value *Cond = nullptr;
4919     if (auto BI = dyn_cast<BranchInst>(TI)) {
4920       if (BI->isConditional())
4921         Cond = BI->getCondition();
4922     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4923       Cond = SI->getCondition();
4924     }
4925 
4926     if (Cond) {
4927       if (Cond == V)
4928         return true;
4929       else if (PoisonOnly && isa<Operator>(Cond)) {
4930         // For poison, we can analyze further
4931         auto *Opr = cast<Operator>(Cond);
4932         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
4933           return true;
4934       }
4935     }
4936 
4937     Dominator = Dominator->getIDom();
4938   }
4939 
4940   SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
4941   if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
4942     return true;
4943 
4944   return false;
4945 }
4946 
isGuaranteedNotToBeUndefOrPoison(const Value * V,AssumptionCache * AC,const Instruction * CtxI,const DominatorTree * DT,unsigned Depth)4947 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
4948                                             const Instruction *CtxI,
4949                                             const DominatorTree *DT,
4950                                             unsigned Depth) {
4951   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
4952 }
4953 
isGuaranteedNotToBePoison(const Value * V,AssumptionCache * AC,const Instruction * CtxI,const DominatorTree * DT,unsigned Depth)4954 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
4955                                      const Instruction *CtxI,
4956                                      const DominatorTree *DT, unsigned Depth) {
4957   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
4958 }
4959 
computeOverflowForSignedAdd(const AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4960 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4961                                                  const DataLayout &DL,
4962                                                  AssumptionCache *AC,
4963                                                  const Instruction *CxtI,
4964                                                  const DominatorTree *DT) {
4965   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4966                                        Add, DL, AC, CxtI, DT);
4967 }
4968 
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4969 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4970                                                  const Value *RHS,
4971                                                  const DataLayout &DL,
4972                                                  AssumptionCache *AC,
4973                                                  const Instruction *CxtI,
4974                                                  const DominatorTree *DT) {
4975   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4976 }
4977 
isGuaranteedToTransferExecutionToSuccessor(const Instruction * I)4978 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4979   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4980   // of time because it's possible for another thread to interfere with it for an
4981   // arbitrary length of time, but programs aren't allowed to rely on that.
4982 
4983   // If there is no successor, then execution can't transfer to it.
4984   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4985     return !CRI->unwindsToCaller();
4986   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4987     return !CatchSwitch->unwindsToCaller();
4988   if (isa<ResumeInst>(I))
4989     return false;
4990   if (isa<ReturnInst>(I))
4991     return false;
4992   if (isa<UnreachableInst>(I))
4993     return false;
4994 
4995   // Calls can throw, or contain an infinite loop, or kill the process.
4996   if (const auto *CB = dyn_cast<CallBase>(I)) {
4997     // Call sites that throw have implicit non-local control flow.
4998     if (!CB->doesNotThrow())
4999       return false;
5000 
5001     // A function which doens't throw and has "willreturn" attribute will
5002     // always return.
5003     if (CB->hasFnAttr(Attribute::WillReturn))
5004       return true;
5005 
5006     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
5007     // etc. and thus not return.  However, LLVM already assumes that
5008     //
5009     //  - Thread exiting actions are modeled as writes to memory invisible to
5010     //    the program.
5011     //
5012     //  - Loops that don't have side effects (side effects are volatile/atomic
5013     //    stores and IO) always terminate (see http://llvm.org/PR965).
5014     //    Furthermore IO itself is also modeled as writes to memory invisible to
5015     //    the program.
5016     //
5017     // We rely on those assumptions here, and use the memory effects of the call
5018     // target as a proxy for checking that it always returns.
5019 
5020     // FIXME: This isn't aggressive enough; a call which only writes to a global
5021     // is guaranteed to return.
5022     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
5023   }
5024 
5025   // Other instructions return normally.
5026   return true;
5027 }
5028 
isGuaranteedToTransferExecutionToSuccessor(const BasicBlock * BB)5029 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5030   // TODO: This is slightly conservative for invoke instruction since exiting
5031   // via an exception *is* normal control for them.
5032   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
5033     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
5034       return false;
5035   return true;
5036 }
5037 
isGuaranteedToExecuteForEveryIteration(const Instruction * I,const Loop * L)5038 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5039                                                   const Loop *L) {
5040   // The loop header is guaranteed to be executed for every iteration.
5041   //
5042   // FIXME: Relax this constraint to cover all basic blocks that are
5043   // guaranteed to be executed at every iteration.
5044   if (I->getParent() != L->getHeader()) return false;
5045 
5046   for (const Instruction &LI : *L->getHeader()) {
5047     if (&LI == I) return true;
5048     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5049   }
5050   llvm_unreachable("Instruction not contained in its own parent basic block.");
5051 }
5052 
propagatesPoison(const Operator * I)5053 bool llvm::propagatesPoison(const Operator *I) {
5054   switch (I->getOpcode()) {
5055   case Instruction::Freeze:
5056   case Instruction::Select:
5057   case Instruction::PHI:
5058   case Instruction::Call:
5059   case Instruction::Invoke:
5060     return false;
5061   case Instruction::ICmp:
5062   case Instruction::FCmp:
5063   case Instruction::GetElementPtr:
5064     return true;
5065   default:
5066     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5067       return true;
5068 
5069     // Be conservative and return false.
5070     return false;
5071   }
5072 }
5073 
getGuaranteedNonPoisonOps(const Instruction * I,SmallPtrSetImpl<const Value * > & Operands)5074 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5075                                      SmallPtrSetImpl<const Value *> &Operands) {
5076   switch (I->getOpcode()) {
5077     case Instruction::Store:
5078       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5079       break;
5080 
5081     case Instruction::Load:
5082       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5083       break;
5084 
5085     case Instruction::AtomicCmpXchg:
5086       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5087       break;
5088 
5089     case Instruction::AtomicRMW:
5090       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5091       break;
5092 
5093     case Instruction::UDiv:
5094     case Instruction::SDiv:
5095     case Instruction::URem:
5096     case Instruction::SRem:
5097       Operands.insert(I->getOperand(1));
5098       break;
5099 
5100     case Instruction::Call:
5101     case Instruction::Invoke: {
5102       const CallBase *CB = cast<CallBase>(I);
5103       if (CB->isIndirectCall())
5104         Operands.insert(CB->getCalledOperand());
5105       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5106         if (CB->paramHasAttr(i, Attribute::NoUndef))
5107           Operands.insert(CB->getArgOperand(i));
5108       }
5109       break;
5110     }
5111 
5112     default:
5113       break;
5114   }
5115 }
5116 
mustTriggerUB(const Instruction * I,const SmallSet<const Value *,16> & KnownPoison)5117 bool llvm::mustTriggerUB(const Instruction *I,
5118                          const SmallSet<const Value *, 16>& KnownPoison) {
5119   SmallPtrSet<const Value *, 4> NonPoisonOps;
5120   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5121 
5122   for (const auto *V : NonPoisonOps)
5123     if (KnownPoison.count(V))
5124       return true;
5125 
5126   return false;
5127 }
5128 
programUndefinedIfUndefOrPoison(const Value * V,bool PoisonOnly)5129 static bool programUndefinedIfUndefOrPoison(const Value *V,
5130                                             bool PoisonOnly) {
5131   // We currently only look for uses of values within the same basic
5132   // block, as that makes it easier to guarantee that the uses will be
5133   // executed given that Inst is executed.
5134   //
5135   // FIXME: Expand this to consider uses beyond the same basic block. To do
5136   // this, look out for the distinction between post-dominance and strong
5137   // post-dominance.
5138   const BasicBlock *BB = nullptr;
5139   BasicBlock::const_iterator Begin;
5140   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5141     BB = Inst->getParent();
5142     Begin = Inst->getIterator();
5143     Begin++;
5144   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5145     BB = &Arg->getParent()->getEntryBlock();
5146     Begin = BB->begin();
5147   } else {
5148     return false;
5149   }
5150 
5151   BasicBlock::const_iterator End = BB->end();
5152 
5153   if (!PoisonOnly) {
5154     // Be conservative & just check whether a value is passed to a noundef
5155     // argument.
5156     // Instructions that raise UB with a poison operand are well-defined
5157     // or have unclear semantics when the input is partially undef.
5158     // For example, 'udiv x, (undef | 1)' isn't UB.
5159 
5160     for (auto &I : make_range(Begin, End)) {
5161       if (const auto *CB = dyn_cast<CallBase>(&I)) {
5162         for (unsigned i = 0; i < CB->arg_size(); ++i) {
5163           if (CB->paramHasAttr(i, Attribute::NoUndef) &&
5164               CB->getArgOperand(i) == V)
5165             return true;
5166         }
5167       }
5168       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5169         break;
5170     }
5171     return false;
5172   }
5173 
5174   // Set of instructions that we have proved will yield poison if Inst
5175   // does.
5176   SmallSet<const Value *, 16> YieldsPoison;
5177   SmallSet<const BasicBlock *, 4> Visited;
5178 
5179   YieldsPoison.insert(V);
5180   auto Propagate = [&](const User *User) {
5181     if (propagatesPoison(cast<Operator>(User)))
5182       YieldsPoison.insert(User);
5183   };
5184   for_each(V->users(), Propagate);
5185   Visited.insert(BB);
5186 
5187   unsigned Iter = 0;
5188   while (Iter++ < MaxAnalysisRecursionDepth) {
5189     for (auto &I : make_range(Begin, End)) {
5190       if (mustTriggerUB(&I, YieldsPoison))
5191         return true;
5192       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5193         return false;
5194 
5195       // Mark poison that propagates from I through uses of I.
5196       if (YieldsPoison.count(&I))
5197         for_each(I.users(), Propagate);
5198     }
5199 
5200     if (auto *NextBB = BB->getSingleSuccessor()) {
5201       if (Visited.insert(NextBB).second) {
5202         BB = NextBB;
5203         Begin = BB->getFirstNonPHI()->getIterator();
5204         End = BB->end();
5205         continue;
5206       }
5207     }
5208 
5209     break;
5210   }
5211   return false;
5212 }
5213 
programUndefinedIfUndefOrPoison(const Instruction * Inst)5214 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5215   return ::programUndefinedIfUndefOrPoison(Inst, false);
5216 }
5217 
programUndefinedIfPoison(const Instruction * Inst)5218 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5219   return ::programUndefinedIfUndefOrPoison(Inst, true);
5220 }
5221 
isKnownNonNaN(const Value * V,FastMathFlags FMF)5222 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5223   if (FMF.noNaNs())
5224     return true;
5225 
5226   if (auto *C = dyn_cast<ConstantFP>(V))
5227     return !C->isNaN();
5228 
5229   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5230     if (!C->getElementType()->isFloatingPointTy())
5231       return false;
5232     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5233       if (C->getElementAsAPFloat(I).isNaN())
5234         return false;
5235     }
5236     return true;
5237   }
5238 
5239   if (isa<ConstantAggregateZero>(V))
5240     return true;
5241 
5242   return false;
5243 }
5244 
isKnownNonZero(const Value * V)5245 static bool isKnownNonZero(const Value *V) {
5246   if (auto *C = dyn_cast<ConstantFP>(V))
5247     return !C->isZero();
5248 
5249   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5250     if (!C->getElementType()->isFloatingPointTy())
5251       return false;
5252     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5253       if (C->getElementAsAPFloat(I).isZero())
5254         return false;
5255     }
5256     return true;
5257   }
5258 
5259   return false;
5260 }
5261 
5262 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5263 /// Given non-min/max outer cmp/select from the clamp pattern this
5264 /// function recognizes if it can be substitued by a "canonical" min/max
5265 /// pattern.
matchFastFloatClamp(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS)5266 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5267                                                Value *CmpLHS, Value *CmpRHS,
5268                                                Value *TrueVal, Value *FalseVal,
5269                                                Value *&LHS, Value *&RHS) {
5270   // Try to match
5271   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5272   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5273   // and return description of the outer Max/Min.
5274 
5275   // First, check if select has inverse order:
5276   if (CmpRHS == FalseVal) {
5277     std::swap(TrueVal, FalseVal);
5278     Pred = CmpInst::getInversePredicate(Pred);
5279   }
5280 
5281   // Assume success now. If there's no match, callers should not use these anyway.
5282   LHS = TrueVal;
5283   RHS = FalseVal;
5284 
5285   const APFloat *FC1;
5286   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5287     return {SPF_UNKNOWN, SPNB_NA, false};
5288 
5289   const APFloat *FC2;
5290   switch (Pred) {
5291   case CmpInst::FCMP_OLT:
5292   case CmpInst::FCMP_OLE:
5293   case CmpInst::FCMP_ULT:
5294   case CmpInst::FCMP_ULE:
5295     if (match(FalseVal,
5296               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5297                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5298         *FC1 < *FC2)
5299       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5300     break;
5301   case CmpInst::FCMP_OGT:
5302   case CmpInst::FCMP_OGE:
5303   case CmpInst::FCMP_UGT:
5304   case CmpInst::FCMP_UGE:
5305     if (match(FalseVal,
5306               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5307                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5308         *FC1 > *FC2)
5309       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5310     break;
5311   default:
5312     break;
5313   }
5314 
5315   return {SPF_UNKNOWN, SPNB_NA, false};
5316 }
5317 
5318 /// Recognize variations of:
5319 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
matchClamp(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal)5320 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5321                                       Value *CmpLHS, Value *CmpRHS,
5322                                       Value *TrueVal, Value *FalseVal) {
5323   // Swap the select operands and predicate to match the patterns below.
5324   if (CmpRHS != TrueVal) {
5325     Pred = ICmpInst::getSwappedPredicate(Pred);
5326     std::swap(TrueVal, FalseVal);
5327   }
5328   const APInt *C1;
5329   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5330     const APInt *C2;
5331     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5332     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5333         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5334       return {SPF_SMAX, SPNB_NA, false};
5335 
5336     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5337     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5338         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5339       return {SPF_SMIN, SPNB_NA, false};
5340 
5341     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5342     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5343         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5344       return {SPF_UMAX, SPNB_NA, false};
5345 
5346     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5347     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5348         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5349       return {SPF_UMIN, SPNB_NA, false};
5350   }
5351   return {SPF_UNKNOWN, SPNB_NA, false};
5352 }
5353 
5354 /// Recognize variations of:
5355 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
matchMinMaxOfMinMax(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TVal,Value * FVal,unsigned Depth)5356 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5357                                                Value *CmpLHS, Value *CmpRHS,
5358                                                Value *TVal, Value *FVal,
5359                                                unsigned Depth) {
5360   // TODO: Allow FP min/max with nnan/nsz.
5361   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5362 
5363   Value *A = nullptr, *B = nullptr;
5364   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5365   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5366     return {SPF_UNKNOWN, SPNB_NA, false};
5367 
5368   Value *C = nullptr, *D = nullptr;
5369   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5370   if (L.Flavor != R.Flavor)
5371     return {SPF_UNKNOWN, SPNB_NA, false};
5372 
5373   // We have something like: x Pred y ? min(a, b) : min(c, d).
5374   // Try to match the compare to the min/max operations of the select operands.
5375   // First, make sure we have the right compare predicate.
5376   switch (L.Flavor) {
5377   case SPF_SMIN:
5378     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5379       Pred = ICmpInst::getSwappedPredicate(Pred);
5380       std::swap(CmpLHS, CmpRHS);
5381     }
5382     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5383       break;
5384     return {SPF_UNKNOWN, SPNB_NA, false};
5385   case SPF_SMAX:
5386     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5387       Pred = ICmpInst::getSwappedPredicate(Pred);
5388       std::swap(CmpLHS, CmpRHS);
5389     }
5390     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5391       break;
5392     return {SPF_UNKNOWN, SPNB_NA, false};
5393   case SPF_UMIN:
5394     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5395       Pred = ICmpInst::getSwappedPredicate(Pred);
5396       std::swap(CmpLHS, CmpRHS);
5397     }
5398     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5399       break;
5400     return {SPF_UNKNOWN, SPNB_NA, false};
5401   case SPF_UMAX:
5402     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5403       Pred = ICmpInst::getSwappedPredicate(Pred);
5404       std::swap(CmpLHS, CmpRHS);
5405     }
5406     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5407       break;
5408     return {SPF_UNKNOWN, SPNB_NA, false};
5409   default:
5410     return {SPF_UNKNOWN, SPNB_NA, false};
5411   }
5412 
5413   // If there is a common operand in the already matched min/max and the other
5414   // min/max operands match the compare operands (either directly or inverted),
5415   // then this is min/max of the same flavor.
5416 
5417   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5418   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5419   if (D == B) {
5420     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5421                                          match(A, m_Not(m_Specific(CmpRHS)))))
5422       return {L.Flavor, SPNB_NA, false};
5423   }
5424   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5425   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5426   if (C == B) {
5427     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5428                                          match(A, m_Not(m_Specific(CmpRHS)))))
5429       return {L.Flavor, SPNB_NA, false};
5430   }
5431   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5432   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5433   if (D == A) {
5434     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5435                                          match(B, m_Not(m_Specific(CmpRHS)))))
5436       return {L.Flavor, SPNB_NA, false};
5437   }
5438   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5439   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5440   if (C == A) {
5441     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5442                                          match(B, m_Not(m_Specific(CmpRHS)))))
5443       return {L.Flavor, SPNB_NA, false};
5444   }
5445 
5446   return {SPF_UNKNOWN, SPNB_NA, false};
5447 }
5448 
5449 /// If the input value is the result of a 'not' op, constant integer, or vector
5450 /// splat of a constant integer, return the bitwise-not source value.
5451 /// TODO: This could be extended to handle non-splat vector integer constants.
getNotValue(Value * V)5452 static Value *getNotValue(Value *V) {
5453   Value *NotV;
5454   if (match(V, m_Not(m_Value(NotV))))
5455     return NotV;
5456 
5457   const APInt *C;
5458   if (match(V, m_APInt(C)))
5459     return ConstantInt::get(V->getType(), ~(*C));
5460 
5461   return nullptr;
5462 }
5463 
5464 /// Match non-obvious integer minimum and maximum sequences.
matchMinMax(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS,unsigned Depth)5465 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5466                                        Value *CmpLHS, Value *CmpRHS,
5467                                        Value *TrueVal, Value *FalseVal,
5468                                        Value *&LHS, Value *&RHS,
5469                                        unsigned Depth) {
5470   // Assume success. If there's no match, callers should not use these anyway.
5471   LHS = TrueVal;
5472   RHS = FalseVal;
5473 
5474   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5475   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5476     return SPR;
5477 
5478   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5479   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5480     return SPR;
5481 
5482   // Look through 'not' ops to find disguised min/max.
5483   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5484   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5485   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5486     switch (Pred) {
5487     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5488     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5489     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5490     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5491     default: break;
5492     }
5493   }
5494 
5495   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5496   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5497   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5498     switch (Pred) {
5499     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5500     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5501     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5502     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5503     default: break;
5504     }
5505   }
5506 
5507   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5508     return {SPF_UNKNOWN, SPNB_NA, false};
5509 
5510   // Z = X -nsw Y
5511   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5512   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5513   if (match(TrueVal, m_Zero()) &&
5514       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5515     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5516 
5517   // Z = X -nsw Y
5518   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5519   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5520   if (match(FalseVal, m_Zero()) &&
5521       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5522     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5523 
5524   const APInt *C1;
5525   if (!match(CmpRHS, m_APInt(C1)))
5526     return {SPF_UNKNOWN, SPNB_NA, false};
5527 
5528   // An unsigned min/max can be written with a signed compare.
5529   const APInt *C2;
5530   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5531       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5532     // Is the sign bit set?
5533     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5534     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5535     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5536         C2->isMaxSignedValue())
5537       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5538 
5539     // Is the sign bit clear?
5540     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5541     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5542     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5543         C2->isMinSignedValue())
5544       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5545   }
5546 
5547   return {SPF_UNKNOWN, SPNB_NA, false};
5548 }
5549 
isKnownNegation(const Value * X,const Value * Y,bool NeedNSW)5550 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5551   assert(X && Y && "Invalid operand");
5552 
5553   // X = sub (0, Y) || X = sub nsw (0, Y)
5554   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5555       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5556     return true;
5557 
5558   // Y = sub (0, X) || Y = sub nsw (0, X)
5559   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5560       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5561     return true;
5562 
5563   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5564   Value *A, *B;
5565   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5566                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5567          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5568                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5569 }
5570 
matchSelectPattern(CmpInst::Predicate Pred,FastMathFlags FMF,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS,unsigned Depth)5571 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5572                                               FastMathFlags FMF,
5573                                               Value *CmpLHS, Value *CmpRHS,
5574                                               Value *TrueVal, Value *FalseVal,
5575                                               Value *&LHS, Value *&RHS,
5576                                               unsigned Depth) {
5577   if (CmpInst::isFPPredicate(Pred)) {
5578     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5579     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5580     // purpose of identifying min/max. Disregard vector constants with undefined
5581     // elements because those can not be back-propagated for analysis.
5582     Value *OutputZeroVal = nullptr;
5583     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5584         !cast<Constant>(TrueVal)->containsUndefElement())
5585       OutputZeroVal = TrueVal;
5586     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5587              !cast<Constant>(FalseVal)->containsUndefElement())
5588       OutputZeroVal = FalseVal;
5589 
5590     if (OutputZeroVal) {
5591       if (match(CmpLHS, m_AnyZeroFP()))
5592         CmpLHS = OutputZeroVal;
5593       if (match(CmpRHS, m_AnyZeroFP()))
5594         CmpRHS = OutputZeroVal;
5595     }
5596   }
5597 
5598   LHS = CmpLHS;
5599   RHS = CmpRHS;
5600 
5601   // Signed zero may return inconsistent results between implementations.
5602   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5603   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5604   // Therefore, we behave conservatively and only proceed if at least one of the
5605   // operands is known to not be zero or if we don't care about signed zero.
5606   switch (Pred) {
5607   default: break;
5608   // FIXME: Include OGT/OLT/UGT/ULT.
5609   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5610   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5611     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5612         !isKnownNonZero(CmpRHS))
5613       return {SPF_UNKNOWN, SPNB_NA, false};
5614   }
5615 
5616   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5617   bool Ordered = false;
5618 
5619   // When given one NaN and one non-NaN input:
5620   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5621   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5622   //     ordered comparison fails), which could be NaN or non-NaN.
5623   // so here we discover exactly what NaN behavior is required/accepted.
5624   if (CmpInst::isFPPredicate(Pred)) {
5625     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5626     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5627 
5628     if (LHSSafe && RHSSafe) {
5629       // Both operands are known non-NaN.
5630       NaNBehavior = SPNB_RETURNS_ANY;
5631     } else if (CmpInst::isOrdered(Pred)) {
5632       // An ordered comparison will return false when given a NaN, so it
5633       // returns the RHS.
5634       Ordered = true;
5635       if (LHSSafe)
5636         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5637         NaNBehavior = SPNB_RETURNS_NAN;
5638       else if (RHSSafe)
5639         NaNBehavior = SPNB_RETURNS_OTHER;
5640       else
5641         // Completely unsafe.
5642         return {SPF_UNKNOWN, SPNB_NA, false};
5643     } else {
5644       Ordered = false;
5645       // An unordered comparison will return true when given a NaN, so it
5646       // returns the LHS.
5647       if (LHSSafe)
5648         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5649         NaNBehavior = SPNB_RETURNS_OTHER;
5650       else if (RHSSafe)
5651         NaNBehavior = SPNB_RETURNS_NAN;
5652       else
5653         // Completely unsafe.
5654         return {SPF_UNKNOWN, SPNB_NA, false};
5655     }
5656   }
5657 
5658   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5659     std::swap(CmpLHS, CmpRHS);
5660     Pred = CmpInst::getSwappedPredicate(Pred);
5661     if (NaNBehavior == SPNB_RETURNS_NAN)
5662       NaNBehavior = SPNB_RETURNS_OTHER;
5663     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5664       NaNBehavior = SPNB_RETURNS_NAN;
5665     Ordered = !Ordered;
5666   }
5667 
5668   // ([if]cmp X, Y) ? X : Y
5669   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5670     switch (Pred) {
5671     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5672     case ICmpInst::ICMP_UGT:
5673     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5674     case ICmpInst::ICMP_SGT:
5675     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5676     case ICmpInst::ICMP_ULT:
5677     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5678     case ICmpInst::ICMP_SLT:
5679     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5680     case FCmpInst::FCMP_UGT:
5681     case FCmpInst::FCMP_UGE:
5682     case FCmpInst::FCMP_OGT:
5683     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5684     case FCmpInst::FCMP_ULT:
5685     case FCmpInst::FCMP_ULE:
5686     case FCmpInst::FCMP_OLT:
5687     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5688     }
5689   }
5690 
5691   if (isKnownNegation(TrueVal, FalseVal)) {
5692     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5693     // match against either LHS or sext(LHS).
5694     auto MaybeSExtCmpLHS =
5695         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5696     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5697     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5698     if (match(TrueVal, MaybeSExtCmpLHS)) {
5699       // Set the return values. If the compare uses the negated value (-X >s 0),
5700       // swap the return values because the negated value is always 'RHS'.
5701       LHS = TrueVal;
5702       RHS = FalseVal;
5703       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5704         std::swap(LHS, RHS);
5705 
5706       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5707       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5708       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5709         return {SPF_ABS, SPNB_NA, false};
5710 
5711       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5712       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5713         return {SPF_ABS, SPNB_NA, false};
5714 
5715       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5716       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5717       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5718         return {SPF_NABS, SPNB_NA, false};
5719     }
5720     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5721       // Set the return values. If the compare uses the negated value (-X >s 0),
5722       // swap the return values because the negated value is always 'RHS'.
5723       LHS = FalseVal;
5724       RHS = TrueVal;
5725       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5726         std::swap(LHS, RHS);
5727 
5728       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5729       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5730       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5731         return {SPF_NABS, SPNB_NA, false};
5732 
5733       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5734       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5735       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5736         return {SPF_ABS, SPNB_NA, false};
5737     }
5738   }
5739 
5740   if (CmpInst::isIntPredicate(Pred))
5741     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5742 
5743   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5744   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5745   // semantics than minNum. Be conservative in such case.
5746   if (NaNBehavior != SPNB_RETURNS_ANY ||
5747       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5748        !isKnownNonZero(CmpRHS)))
5749     return {SPF_UNKNOWN, SPNB_NA, false};
5750 
5751   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5752 }
5753 
5754 /// Helps to match a select pattern in case of a type mismatch.
5755 ///
5756 /// The function processes the case when type of true and false values of a
5757 /// select instruction differs from type of the cmp instruction operands because
5758 /// of a cast instruction. The function checks if it is legal to move the cast
5759 /// operation after "select". If yes, it returns the new second value of
5760 /// "select" (with the assumption that cast is moved):
5761 /// 1. As operand of cast instruction when both values of "select" are same cast
5762 /// instructions.
5763 /// 2. As restored constant (by applying reverse cast operation) when the first
5764 /// value of the "select" is a cast operation and the second value is a
5765 /// constant.
5766 /// NOTE: We return only the new second value because the first value could be
5767 /// accessed as operand of cast instruction.
lookThroughCast(CmpInst * CmpI,Value * V1,Value * V2,Instruction::CastOps * CastOp)5768 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5769                               Instruction::CastOps *CastOp) {
5770   auto *Cast1 = dyn_cast<CastInst>(V1);
5771   if (!Cast1)
5772     return nullptr;
5773 
5774   *CastOp = Cast1->getOpcode();
5775   Type *SrcTy = Cast1->getSrcTy();
5776   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5777     // If V1 and V2 are both the same cast from the same type, look through V1.
5778     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5779       return Cast2->getOperand(0);
5780     return nullptr;
5781   }
5782 
5783   auto *C = dyn_cast<Constant>(V2);
5784   if (!C)
5785     return nullptr;
5786 
5787   Constant *CastedTo = nullptr;
5788   switch (*CastOp) {
5789   case Instruction::ZExt:
5790     if (CmpI->isUnsigned())
5791       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5792     break;
5793   case Instruction::SExt:
5794     if (CmpI->isSigned())
5795       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5796     break;
5797   case Instruction::Trunc:
5798     Constant *CmpConst;
5799     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5800         CmpConst->getType() == SrcTy) {
5801       // Here we have the following case:
5802       //
5803       //   %cond = cmp iN %x, CmpConst
5804       //   %tr = trunc iN %x to iK
5805       //   %narrowsel = select i1 %cond, iK %t, iK C
5806       //
5807       // We can always move trunc after select operation:
5808       //
5809       //   %cond = cmp iN %x, CmpConst
5810       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5811       //   %tr = trunc iN %widesel to iK
5812       //
5813       // Note that C could be extended in any way because we don't care about
5814       // upper bits after truncation. It can't be abs pattern, because it would
5815       // look like:
5816       //
5817       //   select i1 %cond, x, -x.
5818       //
5819       // So only min/max pattern could be matched. Such match requires widened C
5820       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5821       // CmpConst == C is checked below.
5822       CastedTo = CmpConst;
5823     } else {
5824       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5825     }
5826     break;
5827   case Instruction::FPTrunc:
5828     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5829     break;
5830   case Instruction::FPExt:
5831     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5832     break;
5833   case Instruction::FPToUI:
5834     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5835     break;
5836   case Instruction::FPToSI:
5837     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5838     break;
5839   case Instruction::UIToFP:
5840     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5841     break;
5842   case Instruction::SIToFP:
5843     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5844     break;
5845   default:
5846     break;
5847   }
5848 
5849   if (!CastedTo)
5850     return nullptr;
5851 
5852   // Make sure the cast doesn't lose any information.
5853   Constant *CastedBack =
5854       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5855   if (CastedBack != C)
5856     return nullptr;
5857 
5858   return CastedTo;
5859 }
5860 
matchSelectPattern(Value * V,Value * & LHS,Value * & RHS,Instruction::CastOps * CastOp,unsigned Depth)5861 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5862                                              Instruction::CastOps *CastOp,
5863                                              unsigned Depth) {
5864   if (Depth >= MaxAnalysisRecursionDepth)
5865     return {SPF_UNKNOWN, SPNB_NA, false};
5866 
5867   SelectInst *SI = dyn_cast<SelectInst>(V);
5868   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5869 
5870   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5871   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5872 
5873   Value *TrueVal = SI->getTrueValue();
5874   Value *FalseVal = SI->getFalseValue();
5875 
5876   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5877                                             CastOp, Depth);
5878 }
5879 
matchDecomposedSelectPattern(CmpInst * CmpI,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS,Instruction::CastOps * CastOp,unsigned Depth)5880 SelectPatternResult llvm::matchDecomposedSelectPattern(
5881     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5882     Instruction::CastOps *CastOp, unsigned Depth) {
5883   CmpInst::Predicate Pred = CmpI->getPredicate();
5884   Value *CmpLHS = CmpI->getOperand(0);
5885   Value *CmpRHS = CmpI->getOperand(1);
5886   FastMathFlags FMF;
5887   if (isa<FPMathOperator>(CmpI))
5888     FMF = CmpI->getFastMathFlags();
5889 
5890   // Bail out early.
5891   if (CmpI->isEquality())
5892     return {SPF_UNKNOWN, SPNB_NA, false};
5893 
5894   // Deal with type mismatches.
5895   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5896     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5897       // If this is a potential fmin/fmax with a cast to integer, then ignore
5898       // -0.0 because there is no corresponding integer value.
5899       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5900         FMF.setNoSignedZeros();
5901       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5902                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5903                                   LHS, RHS, Depth);
5904     }
5905     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5906       // If this is a potential fmin/fmax with a cast to integer, then ignore
5907       // -0.0 because there is no corresponding integer value.
5908       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5909         FMF.setNoSignedZeros();
5910       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5911                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5912                                   LHS, RHS, Depth);
5913     }
5914   }
5915   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5916                               LHS, RHS, Depth);
5917 }
5918 
getMinMaxPred(SelectPatternFlavor SPF,bool Ordered)5919 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5920   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5921   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5922   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5923   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5924   if (SPF == SPF_FMINNUM)
5925     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5926   if (SPF == SPF_FMAXNUM)
5927     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5928   llvm_unreachable("unhandled!");
5929 }
5930 
getInverseMinMaxFlavor(SelectPatternFlavor SPF)5931 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5932   if (SPF == SPF_SMIN) return SPF_SMAX;
5933   if (SPF == SPF_UMIN) return SPF_UMAX;
5934   if (SPF == SPF_SMAX) return SPF_SMIN;
5935   if (SPF == SPF_UMAX) return SPF_UMIN;
5936   llvm_unreachable("unhandled!");
5937 }
5938 
getInverseMinMaxPred(SelectPatternFlavor SPF)5939 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5940   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5941 }
5942 
5943 std::pair<Intrinsic::ID, bool>
canConvertToMinOrMaxIntrinsic(ArrayRef<Value * > VL)5944 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
5945   // Check if VL contains select instructions that can be folded into a min/max
5946   // vector intrinsic and return the intrinsic if it is possible.
5947   // TODO: Support floating point min/max.
5948   bool AllCmpSingleUse = true;
5949   SelectPatternResult SelectPattern;
5950   SelectPattern.Flavor = SPF_UNKNOWN;
5951   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
5952         Value *LHS, *RHS;
5953         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
5954         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
5955             CurrentPattern.Flavor == SPF_FMINNUM ||
5956             CurrentPattern.Flavor == SPF_FMAXNUM ||
5957             !I->getType()->isIntOrIntVectorTy())
5958           return false;
5959         if (SelectPattern.Flavor != SPF_UNKNOWN &&
5960             SelectPattern.Flavor != CurrentPattern.Flavor)
5961           return false;
5962         SelectPattern = CurrentPattern;
5963         AllCmpSingleUse &=
5964             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
5965         return true;
5966       })) {
5967     switch (SelectPattern.Flavor) {
5968     case SPF_SMIN:
5969       return {Intrinsic::smin, AllCmpSingleUse};
5970     case SPF_UMIN:
5971       return {Intrinsic::umin, AllCmpSingleUse};
5972     case SPF_SMAX:
5973       return {Intrinsic::smax, AllCmpSingleUse};
5974     case SPF_UMAX:
5975       return {Intrinsic::umax, AllCmpSingleUse};
5976     default:
5977       llvm_unreachable("unexpected select pattern flavor");
5978     }
5979   }
5980   return {Intrinsic::not_intrinsic, false};
5981 }
5982 
5983 /// Return true if "icmp Pred LHS RHS" is always true.
isTruePredicate(CmpInst::Predicate Pred,const Value * LHS,const Value * RHS,const DataLayout & DL,unsigned Depth)5984 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5985                             const Value *RHS, const DataLayout &DL,
5986                             unsigned Depth) {
5987   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5988   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5989     return true;
5990 
5991   switch (Pred) {
5992   default:
5993     return false;
5994 
5995   case CmpInst::ICMP_SLE: {
5996     const APInt *C;
5997 
5998     // LHS s<= LHS +_{nsw} C   if C >= 0
5999     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6000       return !C->isNegative();
6001     return false;
6002   }
6003 
6004   case CmpInst::ICMP_ULE: {
6005     const APInt *C;
6006 
6007     // LHS u<= LHS +_{nuw} C   for any C
6008     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6009       return true;
6010 
6011     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6012     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6013                                        const Value *&X,
6014                                        const APInt *&CA, const APInt *&CB) {
6015       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6016           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6017         return true;
6018 
6019       // If X & C == 0 then (X | C) == X +_{nuw} C
6020       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6021           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6022         KnownBits Known(CA->getBitWidth());
6023         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6024                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6025         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6026           return true;
6027       }
6028 
6029       return false;
6030     };
6031 
6032     const Value *X;
6033     const APInt *CLHS, *CRHS;
6034     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6035       return CLHS->ule(*CRHS);
6036 
6037     return false;
6038   }
6039   }
6040 }
6041 
6042 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6043 /// ALHS ARHS" is true.  Otherwise, return None.
6044 static Optional<bool>
isImpliedCondOperands(CmpInst::Predicate Pred,const Value * ALHS,const Value * ARHS,const Value * BLHS,const Value * BRHS,const DataLayout & DL,unsigned Depth)6045 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6046                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6047                       const DataLayout &DL, unsigned Depth) {
6048   switch (Pred) {
6049   default:
6050     return None;
6051 
6052   case CmpInst::ICMP_SLT:
6053   case CmpInst::ICMP_SLE:
6054     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6055         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6056       return true;
6057     return None;
6058 
6059   case CmpInst::ICMP_ULT:
6060   case CmpInst::ICMP_ULE:
6061     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6062         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6063       return true;
6064     return None;
6065   }
6066 }
6067 
6068 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6069 /// when the operands match, but are swapped.
isMatchingOps(const Value * ALHS,const Value * ARHS,const Value * BLHS,const Value * BRHS,bool & IsSwappedOps)6070 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6071                           const Value *BLHS, const Value *BRHS,
6072                           bool &IsSwappedOps) {
6073 
6074   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6075   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6076   return IsMatchingOps || IsSwappedOps;
6077 }
6078 
6079 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6080 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6081 /// Otherwise, return None if we can't infer anything.
isImpliedCondMatchingOperands(CmpInst::Predicate APred,CmpInst::Predicate BPred,bool AreSwappedOps)6082 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6083                                                     CmpInst::Predicate BPred,
6084                                                     bool AreSwappedOps) {
6085   // Canonicalize the predicate as if the operands were not commuted.
6086   if (AreSwappedOps)
6087     BPred = ICmpInst::getSwappedPredicate(BPred);
6088 
6089   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6090     return true;
6091   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6092     return false;
6093 
6094   return None;
6095 }
6096 
6097 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6098 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6099 /// Otherwise, return None if we can't infer anything.
6100 static Optional<bool>
isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,const ConstantInt * C1,CmpInst::Predicate BPred,const ConstantInt * C2)6101 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6102                                  const ConstantInt *C1,
6103                                  CmpInst::Predicate BPred,
6104                                  const ConstantInt *C2) {
6105   ConstantRange DomCR =
6106       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6107   ConstantRange CR =
6108       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6109   ConstantRange Intersection = DomCR.intersectWith(CR);
6110   ConstantRange Difference = DomCR.difference(CR);
6111   if (Intersection.isEmptySet())
6112     return false;
6113   if (Difference.isEmptySet())
6114     return true;
6115   return None;
6116 }
6117 
6118 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6119 /// false.  Otherwise, return None if we can't infer anything.
isImpliedCondICmps(const ICmpInst * LHS,CmpInst::Predicate BPred,const Value * BLHS,const Value * BRHS,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6120 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6121                                          CmpInst::Predicate BPred,
6122                                          const Value *BLHS, const Value *BRHS,
6123                                          const DataLayout &DL, bool LHSIsTrue,
6124                                          unsigned Depth) {
6125   Value *ALHS = LHS->getOperand(0);
6126   Value *ARHS = LHS->getOperand(1);
6127 
6128   // The rest of the logic assumes the LHS condition is true.  If that's not the
6129   // case, invert the predicate to make it so.
6130   CmpInst::Predicate APred =
6131       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6132 
6133   // Can we infer anything when the two compares have matching operands?
6134   bool AreSwappedOps;
6135   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6136     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6137             APred, BPred, AreSwappedOps))
6138       return Implication;
6139     // No amount of additional analysis will infer the second condition, so
6140     // early exit.
6141     return None;
6142   }
6143 
6144   // Can we infer anything when the LHS operands match and the RHS operands are
6145   // constants (not necessarily matching)?
6146   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6147     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6148             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6149       return Implication;
6150     // No amount of additional analysis will infer the second condition, so
6151     // early exit.
6152     return None;
6153   }
6154 
6155   if (APred == BPred)
6156     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6157   return None;
6158 }
6159 
6160 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6161 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6162 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6163 static Optional<bool>
isImpliedCondAndOr(const BinaryOperator * LHS,CmpInst::Predicate RHSPred,const Value * RHSOp0,const Value * RHSOp1,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6164 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6165                    const Value *RHSOp0, const Value *RHSOp1,
6166 
6167                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6168   // The LHS must be an 'or' or an 'and' instruction.
6169   assert((LHS->getOpcode() == Instruction::And ||
6170           LHS->getOpcode() == Instruction::Or) &&
6171          "Expected LHS to be 'and' or 'or'.");
6172 
6173   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6174 
6175   // If the result of an 'or' is false, then we know both legs of the 'or' are
6176   // false.  Similarly, if the result of an 'and' is true, then we know both
6177   // legs of the 'and' are true.
6178   Value *ALHS, *ARHS;
6179   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6180       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6181     // FIXME: Make this non-recursion.
6182     if (Optional<bool> Implication = isImpliedCondition(
6183             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6184       return Implication;
6185     if (Optional<bool> Implication = isImpliedCondition(
6186             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6187       return Implication;
6188     return None;
6189   }
6190   return None;
6191 }
6192 
6193 Optional<bool>
isImpliedCondition(const Value * LHS,CmpInst::Predicate RHSPred,const Value * RHSOp0,const Value * RHSOp1,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6194 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6195                          const Value *RHSOp0, const Value *RHSOp1,
6196                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6197   // Bail out when we hit the limit.
6198   if (Depth == MaxAnalysisRecursionDepth)
6199     return None;
6200 
6201   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6202   // example.
6203   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6204     return None;
6205 
6206   Type *OpTy = LHS->getType();
6207   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6208 
6209   // FIXME: Extending the code below to handle vectors.
6210   if (OpTy->isVectorTy())
6211     return None;
6212 
6213   assert(OpTy->isIntegerTy(1) && "implied by above");
6214 
6215   // Both LHS and RHS are icmps.
6216   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6217   if (LHSCmp)
6218     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6219                               Depth);
6220 
6221   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6222   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6223   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6224   if (LHSBO) {
6225     if ((LHSBO->getOpcode() == Instruction::And ||
6226          LHSBO->getOpcode() == Instruction::Or))
6227       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6228                                 Depth);
6229   }
6230   return None;
6231 }
6232 
isImpliedCondition(const Value * LHS,const Value * RHS,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6233 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6234                                         const DataLayout &DL, bool LHSIsTrue,
6235                                         unsigned Depth) {
6236   // LHS ==> RHS by definition
6237   if (LHS == RHS)
6238     return LHSIsTrue;
6239 
6240   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6241   if (RHSCmp)
6242     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6243                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6244                               LHSIsTrue, Depth);
6245   return None;
6246 }
6247 
6248 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6249 // condition dominating ContextI or nullptr, if no condition is found.
6250 static std::pair<Value *, bool>
getDomPredecessorCondition(const Instruction * ContextI)6251 getDomPredecessorCondition(const Instruction *ContextI) {
6252   if (!ContextI || !ContextI->getParent())
6253     return {nullptr, false};
6254 
6255   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6256   // dominator tree (eg, from a SimplifyQuery) instead?
6257   const BasicBlock *ContextBB = ContextI->getParent();
6258   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6259   if (!PredBB)
6260     return {nullptr, false};
6261 
6262   // We need a conditional branch in the predecessor.
6263   Value *PredCond;
6264   BasicBlock *TrueBB, *FalseBB;
6265   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6266     return {nullptr, false};
6267 
6268   // The branch should get simplified. Don't bother simplifying this condition.
6269   if (TrueBB == FalseBB)
6270     return {nullptr, false};
6271 
6272   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6273          "Predecessor block does not point to successor?");
6274 
6275   // Is this condition implied by the predecessor condition?
6276   return {PredCond, TrueBB == ContextBB};
6277 }
6278 
isImpliedByDomCondition(const Value * Cond,const Instruction * ContextI,const DataLayout & DL)6279 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6280                                              const Instruction *ContextI,
6281                                              const DataLayout &DL) {
6282   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6283   auto PredCond = getDomPredecessorCondition(ContextI);
6284   if (PredCond.first)
6285     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6286   return None;
6287 }
6288 
isImpliedByDomCondition(CmpInst::Predicate Pred,const Value * LHS,const Value * RHS,const Instruction * ContextI,const DataLayout & DL)6289 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6290                                              const Value *LHS, const Value *RHS,
6291                                              const Instruction *ContextI,
6292                                              const DataLayout &DL) {
6293   auto PredCond = getDomPredecessorCondition(ContextI);
6294   if (PredCond.first)
6295     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6296                               PredCond.second);
6297   return None;
6298 }
6299 
setLimitsForBinOp(const BinaryOperator & BO,APInt & Lower,APInt & Upper,const InstrInfoQuery & IIQ)6300 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6301                               APInt &Upper, const InstrInfoQuery &IIQ) {
6302   unsigned Width = Lower.getBitWidth();
6303   const APInt *C;
6304   switch (BO.getOpcode()) {
6305   case Instruction::Add:
6306     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6307       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6308       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6309         // 'add nuw x, C' produces [C, UINT_MAX].
6310         Lower = *C;
6311       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6312         if (C->isNegative()) {
6313           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6314           Lower = APInt::getSignedMinValue(Width);
6315           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6316         } else {
6317           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6318           Lower = APInt::getSignedMinValue(Width) + *C;
6319           Upper = APInt::getSignedMaxValue(Width) + 1;
6320         }
6321       }
6322     }
6323     break;
6324 
6325   case Instruction::And:
6326     if (match(BO.getOperand(1), m_APInt(C)))
6327       // 'and x, C' produces [0, C].
6328       Upper = *C + 1;
6329     break;
6330 
6331   case Instruction::Or:
6332     if (match(BO.getOperand(1), m_APInt(C)))
6333       // 'or x, C' produces [C, UINT_MAX].
6334       Lower = *C;
6335     break;
6336 
6337   case Instruction::AShr:
6338     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6339       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6340       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6341       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6342     } else if (match(BO.getOperand(0), m_APInt(C))) {
6343       unsigned ShiftAmount = Width - 1;
6344       if (!C->isNullValue() && IIQ.isExact(&BO))
6345         ShiftAmount = C->countTrailingZeros();
6346       if (C->isNegative()) {
6347         // 'ashr C, x' produces [C, C >> (Width-1)]
6348         Lower = *C;
6349         Upper = C->ashr(ShiftAmount) + 1;
6350       } else {
6351         // 'ashr C, x' produces [C >> (Width-1), C]
6352         Lower = C->ashr(ShiftAmount);
6353         Upper = *C + 1;
6354       }
6355     }
6356     break;
6357 
6358   case Instruction::LShr:
6359     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6360       // 'lshr x, C' produces [0, UINT_MAX >> C].
6361       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6362     } else if (match(BO.getOperand(0), m_APInt(C))) {
6363       // 'lshr C, x' produces [C >> (Width-1), C].
6364       unsigned ShiftAmount = Width - 1;
6365       if (!C->isNullValue() && IIQ.isExact(&BO))
6366         ShiftAmount = C->countTrailingZeros();
6367       Lower = C->lshr(ShiftAmount);
6368       Upper = *C + 1;
6369     }
6370     break;
6371 
6372   case Instruction::Shl:
6373     if (match(BO.getOperand(0), m_APInt(C))) {
6374       if (IIQ.hasNoUnsignedWrap(&BO)) {
6375         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6376         Lower = *C;
6377         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6378       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6379         if (C->isNegative()) {
6380           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6381           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6382           Lower = C->shl(ShiftAmount);
6383           Upper = *C + 1;
6384         } else {
6385           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6386           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6387           Lower = *C;
6388           Upper = C->shl(ShiftAmount) + 1;
6389         }
6390       }
6391     }
6392     break;
6393 
6394   case Instruction::SDiv:
6395     if (match(BO.getOperand(1), m_APInt(C))) {
6396       APInt IntMin = APInt::getSignedMinValue(Width);
6397       APInt IntMax = APInt::getSignedMaxValue(Width);
6398       if (C->isAllOnesValue()) {
6399         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6400         //    where C != -1 and C != 0 and C != 1
6401         Lower = IntMin + 1;
6402         Upper = IntMax + 1;
6403       } else if (C->countLeadingZeros() < Width - 1) {
6404         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6405         //    where C != -1 and C != 0 and C != 1
6406         Lower = IntMin.sdiv(*C);
6407         Upper = IntMax.sdiv(*C);
6408         if (Lower.sgt(Upper))
6409           std::swap(Lower, Upper);
6410         Upper = Upper + 1;
6411         assert(Upper != Lower && "Upper part of range has wrapped!");
6412       }
6413     } else if (match(BO.getOperand(0), m_APInt(C))) {
6414       if (C->isMinSignedValue()) {
6415         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6416         Lower = *C;
6417         Upper = Lower.lshr(1) + 1;
6418       } else {
6419         // 'sdiv C, x' produces [-|C|, |C|].
6420         Upper = C->abs() + 1;
6421         Lower = (-Upper) + 1;
6422       }
6423     }
6424     break;
6425 
6426   case Instruction::UDiv:
6427     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6428       // 'udiv x, C' produces [0, UINT_MAX / C].
6429       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6430     } else if (match(BO.getOperand(0), m_APInt(C))) {
6431       // 'udiv C, x' produces [0, C].
6432       Upper = *C + 1;
6433     }
6434     break;
6435 
6436   case Instruction::SRem:
6437     if (match(BO.getOperand(1), m_APInt(C))) {
6438       // 'srem x, C' produces (-|C|, |C|).
6439       Upper = C->abs();
6440       Lower = (-Upper) + 1;
6441     }
6442     break;
6443 
6444   case Instruction::URem:
6445     if (match(BO.getOperand(1), m_APInt(C)))
6446       // 'urem x, C' produces [0, C).
6447       Upper = *C;
6448     break;
6449 
6450   default:
6451     break;
6452   }
6453 }
6454 
setLimitsForIntrinsic(const IntrinsicInst & II,APInt & Lower,APInt & Upper)6455 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6456                                   APInt &Upper) {
6457   unsigned Width = Lower.getBitWidth();
6458   const APInt *C;
6459   switch (II.getIntrinsicID()) {
6460   case Intrinsic::ctpop:
6461   case Intrinsic::ctlz:
6462   case Intrinsic::cttz:
6463     // Maximum of set/clear bits is the bit width.
6464     assert(Lower == 0 && "Expected lower bound to be zero");
6465     Upper = Width + 1;
6466     break;
6467   case Intrinsic::uadd_sat:
6468     // uadd.sat(x, C) produces [C, UINT_MAX].
6469     if (match(II.getOperand(0), m_APInt(C)) ||
6470         match(II.getOperand(1), m_APInt(C)))
6471       Lower = *C;
6472     break;
6473   case Intrinsic::sadd_sat:
6474     if (match(II.getOperand(0), m_APInt(C)) ||
6475         match(II.getOperand(1), m_APInt(C))) {
6476       if (C->isNegative()) {
6477         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6478         Lower = APInt::getSignedMinValue(Width);
6479         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6480       } else {
6481         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6482         Lower = APInt::getSignedMinValue(Width) + *C;
6483         Upper = APInt::getSignedMaxValue(Width) + 1;
6484       }
6485     }
6486     break;
6487   case Intrinsic::usub_sat:
6488     // usub.sat(C, x) produces [0, C].
6489     if (match(II.getOperand(0), m_APInt(C)))
6490       Upper = *C + 1;
6491     // usub.sat(x, C) produces [0, UINT_MAX - C].
6492     else if (match(II.getOperand(1), m_APInt(C)))
6493       Upper = APInt::getMaxValue(Width) - *C + 1;
6494     break;
6495   case Intrinsic::ssub_sat:
6496     if (match(II.getOperand(0), m_APInt(C))) {
6497       if (C->isNegative()) {
6498         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6499         Lower = APInt::getSignedMinValue(Width);
6500         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6501       } else {
6502         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6503         Lower = *C - APInt::getSignedMaxValue(Width);
6504         Upper = APInt::getSignedMaxValue(Width) + 1;
6505       }
6506     } else if (match(II.getOperand(1), m_APInt(C))) {
6507       if (C->isNegative()) {
6508         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6509         Lower = APInt::getSignedMinValue(Width) - *C;
6510         Upper = APInt::getSignedMaxValue(Width) + 1;
6511       } else {
6512         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6513         Lower = APInt::getSignedMinValue(Width);
6514         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6515       }
6516     }
6517     break;
6518   case Intrinsic::umin:
6519   case Intrinsic::umax:
6520   case Intrinsic::smin:
6521   case Intrinsic::smax:
6522     if (!match(II.getOperand(0), m_APInt(C)) &&
6523         !match(II.getOperand(1), m_APInt(C)))
6524       break;
6525 
6526     switch (II.getIntrinsicID()) {
6527     case Intrinsic::umin:
6528       Upper = *C + 1;
6529       break;
6530     case Intrinsic::umax:
6531       Lower = *C;
6532       break;
6533     case Intrinsic::smin:
6534       Lower = APInt::getSignedMinValue(Width);
6535       Upper = *C + 1;
6536       break;
6537     case Intrinsic::smax:
6538       Lower = *C;
6539       Upper = APInt::getSignedMaxValue(Width) + 1;
6540       break;
6541     default:
6542       llvm_unreachable("Must be min/max intrinsic");
6543     }
6544     break;
6545   case Intrinsic::abs:
6546     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6547     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6548     if (match(II.getOperand(1), m_One()))
6549       Upper = APInt::getSignedMaxValue(Width) + 1;
6550     else
6551       Upper = APInt::getSignedMinValue(Width) + 1;
6552     break;
6553   default:
6554     break;
6555   }
6556 }
6557 
setLimitsForSelectPattern(const SelectInst & SI,APInt & Lower,APInt & Upper,const InstrInfoQuery & IIQ)6558 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6559                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6560   const Value *LHS = nullptr, *RHS = nullptr;
6561   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6562   if (R.Flavor == SPF_UNKNOWN)
6563     return;
6564 
6565   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6566 
6567   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6568     // If the negation part of the abs (in RHS) has the NSW flag,
6569     // then the result of abs(X) is [0..SIGNED_MAX],
6570     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6571     Lower = APInt::getNullValue(BitWidth);
6572     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6573         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6574       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6575     else
6576       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6577     return;
6578   }
6579 
6580   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6581     // The result of -abs(X) is <= 0.
6582     Lower = APInt::getSignedMinValue(BitWidth);
6583     Upper = APInt(BitWidth, 1);
6584     return;
6585   }
6586 
6587   const APInt *C;
6588   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6589     return;
6590 
6591   switch (R.Flavor) {
6592     case SPF_UMIN:
6593       Upper = *C + 1;
6594       break;
6595     case SPF_UMAX:
6596       Lower = *C;
6597       break;
6598     case SPF_SMIN:
6599       Lower = APInt::getSignedMinValue(BitWidth);
6600       Upper = *C + 1;
6601       break;
6602     case SPF_SMAX:
6603       Lower = *C;
6604       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6605       break;
6606     default:
6607       break;
6608   }
6609 }
6610 
computeConstantRange(const Value * V,bool UseInstrInfo,AssumptionCache * AC,const Instruction * CtxI,unsigned Depth)6611 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6612                                          AssumptionCache *AC,
6613                                          const Instruction *CtxI,
6614                                          unsigned Depth) {
6615   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6616 
6617   if (Depth == MaxAnalysisRecursionDepth)
6618     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6619 
6620   const APInt *C;
6621   if (match(V, m_APInt(C)))
6622     return ConstantRange(*C);
6623 
6624   InstrInfoQuery IIQ(UseInstrInfo);
6625   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6626   APInt Lower = APInt(BitWidth, 0);
6627   APInt Upper = APInt(BitWidth, 0);
6628   if (auto *BO = dyn_cast<BinaryOperator>(V))
6629     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6630   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6631     setLimitsForIntrinsic(*II, Lower, Upper);
6632   else if (auto *SI = dyn_cast<SelectInst>(V))
6633     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6634 
6635   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6636 
6637   if (auto *I = dyn_cast<Instruction>(V))
6638     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6639       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6640 
6641   if (CtxI && AC) {
6642     // Try to restrict the range based on information from assumptions.
6643     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6644       if (!AssumeVH)
6645         continue;
6646       CallInst *I = cast<CallInst>(AssumeVH);
6647       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6648              "Got assumption for the wrong function!");
6649       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6650              "must be an assume intrinsic");
6651 
6652       if (!isValidAssumeForContext(I, CtxI, nullptr))
6653         continue;
6654       Value *Arg = I->getArgOperand(0);
6655       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6656       // Currently we just use information from comparisons.
6657       if (!Cmp || Cmp->getOperand(0) != V)
6658         continue;
6659       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6660                                                AC, I, Depth + 1);
6661       CR = CR.intersectWith(
6662           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6663     }
6664   }
6665 
6666   return CR;
6667 }
6668 
6669 static Optional<int64_t>
getOffsetFromIndex(const GEPOperator * GEP,unsigned Idx,const DataLayout & DL)6670 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6671   // Skip over the first indices.
6672   gep_type_iterator GTI = gep_type_begin(GEP);
6673   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6674     /*skip along*/;
6675 
6676   // Compute the offset implied by the rest of the indices.
6677   int64_t Offset = 0;
6678   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6679     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6680     if (!OpC)
6681       return None;
6682     if (OpC->isZero())
6683       continue; // No offset.
6684 
6685     // Handle struct indices, which add their field offset to the pointer.
6686     if (StructType *STy = GTI.getStructTypeOrNull()) {
6687       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6688       continue;
6689     }
6690 
6691     // Otherwise, we have a sequential type like an array or fixed-length
6692     // vector. Multiply the index by the ElementSize.
6693     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6694     if (Size.isScalable())
6695       return None;
6696     Offset += Size.getFixedSize() * OpC->getSExtValue();
6697   }
6698 
6699   return Offset;
6700 }
6701 
isPointerOffset(const Value * Ptr1,const Value * Ptr2,const DataLayout & DL)6702 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6703                                         const DataLayout &DL) {
6704   Ptr1 = Ptr1->stripPointerCasts();
6705   Ptr2 = Ptr2->stripPointerCasts();
6706 
6707   // Handle the trivial case first.
6708   if (Ptr1 == Ptr2) {
6709     return 0;
6710   }
6711 
6712   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6713   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6714 
6715   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6716   // as in "P" and "gep P, 1".
6717   // Also do this iteratively to handle the the following case:
6718   //   Ptr_t1 = GEP Ptr1, c1
6719   //   Ptr_t2 = GEP Ptr_t1, c2
6720   //   Ptr2 = GEP Ptr_t2, c3
6721   // where we will return c1+c2+c3.
6722   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6723   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6724   // are the same, and return the difference between offsets.
6725   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6726                                  const Value *Ptr) -> Optional<int64_t> {
6727     const GEPOperator *GEP_T = GEP;
6728     int64_t OffsetVal = 0;
6729     bool HasSameBase = false;
6730     while (GEP_T) {
6731       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6732       if (!Offset)
6733         return None;
6734       OffsetVal += *Offset;
6735       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6736       if (Op0 == Ptr) {
6737         HasSameBase = true;
6738         break;
6739       }
6740       GEP_T = dyn_cast<GEPOperator>(Op0);
6741     }
6742     if (!HasSameBase)
6743       return None;
6744     return OffsetVal;
6745   };
6746 
6747   if (GEP1) {
6748     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6749     if (Offset)
6750       return -*Offset;
6751   }
6752   if (GEP2) {
6753     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6754     if (Offset)
6755       return Offset;
6756   }
6757 
6758   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6759   // base.  After that base, they may have some number of common (and
6760   // potentially variable) indices.  After that they handle some constant
6761   // offset, which determines their offset from each other.  At this point, we
6762   // handle no other case.
6763   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6764     return None;
6765 
6766   // Skip any common indices and track the GEP types.
6767   unsigned Idx = 1;
6768   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6769     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6770       break;
6771 
6772   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6773   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6774   if (!Offset1 || !Offset2)
6775     return None;
6776   return *Offset2 - *Offset1;
6777 }
6778