• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares codegen opcodes and related utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_ISDOPCODES_H
14 #define LLVM_CODEGEN_ISDOPCODES_H
15 
16 #include "llvm/CodeGen/ValueTypes.h"
17 
18 namespace llvm {
19 
20 /// ISD namespace - This namespace contains an enum which represents all of the
21 /// SelectionDAG node types and value types.
22 ///
23 namespace ISD {
24 
25 //===--------------------------------------------------------------------===//
26 /// ISD::NodeType enum - This enum defines the target-independent operators
27 /// for a SelectionDAG.
28 ///
29 /// Targets may also define target-dependent operator codes for SDNodes. For
30 /// example, on x86, these are the enum values in the X86ISD namespace.
31 /// Targets should aim to use target-independent operators to model their
32 /// instruction sets as much as possible, and only use target-dependent
33 /// operators when they have special requirements.
34 ///
35 /// Finally, during and after selection proper, SNodes may use special
36 /// operator codes that correspond directly with MachineInstr opcodes. These
37 /// are used to represent selected instructions. See the isMachineOpcode()
38 /// and getMachineOpcode() member functions of SDNode.
39 ///
40 enum NodeType {
41 
42   /// DELETED_NODE - This is an illegal value that is used to catch
43   /// errors.  This opcode is not a legal opcode for any node.
44   DELETED_NODE,
45 
46   /// EntryToken - This is the marker used to indicate the start of a region.
47   EntryToken,
48 
49   /// TokenFactor - This node takes multiple tokens as input and produces a
50   /// single token result. This is used to represent the fact that the operand
51   /// operators are independent of each other.
52   TokenFactor,
53 
54   /// AssertSext, AssertZext - These nodes record if a register contains a
55   /// value that has already been zero or sign extended from a narrower type.
56   /// These nodes take two operands.  The first is the node that has already
57   /// been extended, and the second is a value type node indicating the width
58   /// of the extension
59   AssertSext,
60   AssertZext,
61   AssertAlign,
62 
63   /// Various leaf nodes.
64   BasicBlock,
65   VALUETYPE,
66   CONDCODE,
67   Register,
68   RegisterMask,
69   Constant,
70   ConstantFP,
71   GlobalAddress,
72   GlobalTLSAddress,
73   FrameIndex,
74   JumpTable,
75   ConstantPool,
76   ExternalSymbol,
77   BlockAddress,
78 
79   /// The address of the GOT
80   GLOBAL_OFFSET_TABLE,
81 
82   /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
83   /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
84   /// of the frame or return address to return.  An index of zero corresponds
85   /// to the current function's frame or return address, an index of one to
86   /// the parent's frame or return address, and so on.
87   FRAMEADDR,
88   RETURNADDR,
89 
90   /// ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
91   /// This node takes no operand, returns a target-specific pointer to the
92   /// place in the stack frame where the return address of the current
93   /// function is stored.
94   ADDROFRETURNADDR,
95 
96   /// SPONENTRY - Represents the llvm.sponentry intrinsic. Takes no argument
97   /// and returns the stack pointer value at the entry of the current
98   /// function calling this intrinsic.
99   SPONENTRY,
100 
101   /// LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
102   /// Materializes the offset from the local object pointer of another
103   /// function to a particular local object passed to llvm.localescape. The
104   /// operand is the MCSymbol label used to represent this offset, since
105   /// typically the offset is not known until after code generation of the
106   /// parent.
107   LOCAL_RECOVER,
108 
109   /// READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on
110   /// the DAG, which implements the named register global variables extension.
111   READ_REGISTER,
112   WRITE_REGISTER,
113 
114   /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
115   /// first (possible) on-stack argument. This is needed for correct stack
116   /// adjustment during unwind.
117   FRAME_TO_ARGS_OFFSET,
118 
119   /// EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical
120   /// Frame Address (CFA), generally the value of the stack pointer at the
121   /// call site in the previous frame.
122   EH_DWARF_CFA,
123 
124   /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
125   /// 'eh_return' gcc dwarf builtin, which is used to return from
126   /// exception. The general meaning is: adjust stack by OFFSET and pass
127   /// execution to HANDLER. Many platform-related details also :)
128   EH_RETURN,
129 
130   /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
131   /// This corresponds to the eh.sjlj.setjmp intrinsic.
132   /// It takes an input chain and a pointer to the jump buffer as inputs
133   /// and returns an outchain.
134   EH_SJLJ_SETJMP,
135 
136   /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
137   /// This corresponds to the eh.sjlj.longjmp intrinsic.
138   /// It takes an input chain and a pointer to the jump buffer as inputs
139   /// and returns an outchain.
140   EH_SJLJ_LONGJMP,
141 
142   /// OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN)
143   /// The target initializes the dispatch table here.
144   EH_SJLJ_SETUP_DISPATCH,
145 
146   /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
147   /// simplification, or lowering of the constant. They are used for constants
148   /// which are known to fit in the immediate fields of their users, or for
149   /// carrying magic numbers which are not values which need to be
150   /// materialized in registers.
151   TargetConstant,
152   TargetConstantFP,
153 
154   /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
155   /// anything else with this node, and this is valid in the target-specific
156   /// dag, turning into a GlobalAddress operand.
157   TargetGlobalAddress,
158   TargetGlobalTLSAddress,
159   TargetFrameIndex,
160   TargetJumpTable,
161   TargetConstantPool,
162   TargetExternalSymbol,
163   TargetBlockAddress,
164 
165   MCSymbol,
166 
167   /// TargetIndex - Like a constant pool entry, but with completely
168   /// target-dependent semantics. Holds target flags, a 32-bit index, and a
169   /// 64-bit index. Targets can use this however they like.
170   TargetIndex,
171 
172   /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
173   /// This node represents a target intrinsic function with no side effects.
174   /// The first operand is the ID number of the intrinsic from the
175   /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
176   /// node returns the result of the intrinsic.
177   INTRINSIC_WO_CHAIN,
178 
179   /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
180   /// This node represents a target intrinsic function with side effects that
181   /// returns a result.  The first operand is a chain pointer.  The second is
182   /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
183   /// operands to the intrinsic follow.  The node has two results, the result
184   /// of the intrinsic and an output chain.
185   INTRINSIC_W_CHAIN,
186 
187   /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
188   /// This node represents a target intrinsic function with side effects that
189   /// does not return a result.  The first operand is a chain pointer.  The
190   /// second is the ID number of the intrinsic from the llvm::Intrinsic
191   /// namespace.  The operands to the intrinsic follow.
192   INTRINSIC_VOID,
193 
194   /// CopyToReg - This node has three operands: a chain, a register number to
195   /// set to this value, and a value.
196   CopyToReg,
197 
198   /// CopyFromReg - This node indicates that the input value is a virtual or
199   /// physical register that is defined outside of the scope of this
200   /// SelectionDAG.  The register is available from the RegisterSDNode object.
201   CopyFromReg,
202 
203   /// UNDEF - An undefined node.
204   UNDEF,
205 
206   // FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or
207   // is evaluated to UNDEF), or returns VAL otherwise. Note that each
208   // read of UNDEF can yield different value, but FREEZE(UNDEF) cannot.
209   FREEZE,
210 
211   /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
212   /// a Constant, which is required to be operand #1) half of the integer or
213   /// float value specified as operand #0.  This is only for use before
214   /// legalization, for values that will be broken into multiple registers.
215   EXTRACT_ELEMENT,
216 
217   /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
218   /// Given two values of the same integer value type, this produces a value
219   /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
220   /// legalization. The lower part of the composite value should be in
221   /// element 0 and the upper part should be in element 1.
222   BUILD_PAIR,
223 
224   /// MERGE_VALUES - This node takes multiple discrete operands and returns
225   /// them all as its individual results.  This nodes has exactly the same
226   /// number of inputs and outputs. This node is useful for some pieces of the
227   /// code generator that want to think about a single node with multiple
228   /// results, not multiple nodes.
229   MERGE_VALUES,
230 
231   /// Simple integer binary arithmetic operators.
232   ADD,
233   SUB,
234   MUL,
235   SDIV,
236   UDIV,
237   SREM,
238   UREM,
239 
240   /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
241   /// a signed/unsigned value of type i[2*N], and return the full value as
242   /// two results, each of type iN.
243   SMUL_LOHI,
244   UMUL_LOHI,
245 
246   /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
247   /// remainder result.
248   SDIVREM,
249   UDIVREM,
250 
251   /// CARRY_FALSE - This node is used when folding other nodes,
252   /// like ADDC/SUBC, which indicate the carry result is always false.
253   CARRY_FALSE,
254 
255   /// Carry-setting nodes for multiple precision addition and subtraction.
256   /// These nodes take two operands of the same value type, and produce two
257   /// results.  The first result is the normal add or sub result, the second
258   /// result is the carry flag result.
259   /// FIXME: These nodes are deprecated in favor of ADDCARRY and SUBCARRY.
260   /// They are kept around for now to provide a smooth transition path
261   /// toward the use of ADDCARRY/SUBCARRY and will eventually be removed.
262   ADDC,
263   SUBC,
264 
265   /// Carry-using nodes for multiple precision addition and subtraction. These
266   /// nodes take three operands: The first two are the normal lhs and rhs to
267   /// the add or sub, and the third is the input carry flag.  These nodes
268   /// produce two results; the normal result of the add or sub, and the output
269   /// carry flag.  These nodes both read and write a carry flag to allow them
270   /// to them to be chained together for add and sub of arbitrarily large
271   /// values.
272   ADDE,
273   SUBE,
274 
275   /// Carry-using nodes for multiple precision addition and subtraction.
276   /// These nodes take three operands: The first two are the normal lhs and
277   /// rhs to the add or sub, and the third is a boolean indicating if there
278   /// is an incoming carry. These nodes produce two results: the normal
279   /// result of the add or sub, and the output carry so they can be chained
280   /// together. The use of this opcode is preferable to adde/sube if the
281   /// target supports it, as the carry is a regular value rather than a
282   /// glue, which allows further optimisation.
283   ADDCARRY,
284   SUBCARRY,
285 
286   /// Carry-using overflow-aware nodes for multiple precision addition and
287   /// subtraction. These nodes take three operands: The first two are normal lhs
288   /// and rhs to the add or sub, and the third is a boolean indicating if there
289   /// is an incoming carry. They produce two results: the normal result of the
290   /// add or sub, and a boolean that indicates if an overflow occured (*not*
291   /// flag, because it may be a store to memory, etc.). If the type of the
292   /// boolean is not i1 then the high bits conform to getBooleanContents.
293   SADDO_CARRY,
294   SSUBO_CARRY,
295 
296   /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
297   /// These nodes take two operands: the normal LHS and RHS to the add. They
298   /// produce two results: the normal result of the add, and a boolean that
299   /// indicates if an overflow occurred (*not* a flag, because it may be store
300   /// to memory, etc.).  If the type of the boolean is not i1 then the high
301   /// bits conform to getBooleanContents.
302   /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
303   SADDO,
304   UADDO,
305 
306   /// Same for subtraction.
307   SSUBO,
308   USUBO,
309 
310   /// Same for multiplication.
311   SMULO,
312   UMULO,
313 
314   /// RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2
315   /// integers with the same bit width (W). If the true value of LHS + RHS
316   /// exceeds the largest value that can be represented by W bits, the
317   /// resulting value is this maximum value. Otherwise, if this value is less
318   /// than the smallest value that can be represented by W bits, the
319   /// resulting value is this minimum value.
320   SADDSAT,
321   UADDSAT,
322 
323   /// RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2
324   /// integers with the same bit width (W). If the true value of LHS - RHS
325   /// exceeds the largest value that can be represented by W bits, the
326   /// resulting value is this maximum value. Otherwise, if this value is less
327   /// than the smallest value that can be represented by W bits, the
328   /// resulting value is this minimum value.
329   SSUBSAT,
330   USUBSAT,
331 
332   /// RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift. The first
333   /// operand is the value to be shifted, and the second argument is the amount
334   /// to shift by. Both must be integers of the same bit width (W). If the true
335   /// value of LHS << RHS exceeds the largest value that can be represented by
336   /// W bits, the resulting value is this maximum value, Otherwise, if this
337   /// value is less than the smallest value that can be represented by W bits,
338   /// the resulting value is this minimum value.
339   SSHLSAT,
340   USHLSAT,
341 
342   /// RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication
343   /// on
344   /// 2 integers with the same width and scale. SCALE represents the scale of
345   /// both operands as fixed point numbers. This SCALE parameter must be a
346   /// constant integer. A scale of zero is effectively performing
347   /// multiplication on 2 integers.
348   SMULFIX,
349   UMULFIX,
350 
351   /// Same as the corresponding unsaturated fixed point instructions, but the
352   /// result is clamped between the min and max values representable by the
353   /// bits of the first 2 operands.
354   SMULFIXSAT,
355   UMULFIXSAT,
356 
357   /// RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on
358   /// 2 integers with the same width and scale. SCALE represents the scale
359   /// of both operands as fixed point numbers. This SCALE parameter must be a
360   /// constant integer.
361   SDIVFIX,
362   UDIVFIX,
363 
364   /// Same as the corresponding unsaturated fixed point instructions, but the
365   /// result is clamped between the min and max values representable by the
366   /// bits of the first 2 operands.
367   SDIVFIXSAT,
368   UDIVFIXSAT,
369 
370   /// Simple binary floating point operators.
371   FADD,
372   FSUB,
373   FMUL,
374   FDIV,
375   FREM,
376 
377   /// Constrained versions of the binary floating point operators.
378   /// These will be lowered to the simple operators before final selection.
379   /// They are used to limit optimizations while the DAG is being
380   /// optimized.
381   STRICT_FADD,
382   STRICT_FSUB,
383   STRICT_FMUL,
384   STRICT_FDIV,
385   STRICT_FREM,
386   STRICT_FMA,
387 
388   /// Constrained versions of libm-equivalent floating point intrinsics.
389   /// These will be lowered to the equivalent non-constrained pseudo-op
390   /// (or expanded to the equivalent library call) before final selection.
391   /// They are used to limit optimizations while the DAG is being optimized.
392   STRICT_FSQRT,
393   STRICT_FPOW,
394   STRICT_FPOWI,
395   STRICT_FSIN,
396   STRICT_FCOS,
397   STRICT_FEXP,
398   STRICT_FEXP2,
399   STRICT_FLOG,
400   STRICT_FLOG10,
401   STRICT_FLOG2,
402   STRICT_FRINT,
403   STRICT_FNEARBYINT,
404   STRICT_FMAXNUM,
405   STRICT_FMINNUM,
406   STRICT_FCEIL,
407   STRICT_FFLOOR,
408   STRICT_FROUND,
409   STRICT_FROUNDEVEN,
410   STRICT_FTRUNC,
411   STRICT_LROUND,
412   STRICT_LLROUND,
413   STRICT_LRINT,
414   STRICT_LLRINT,
415   STRICT_FMAXIMUM,
416   STRICT_FMINIMUM,
417 
418   /// STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or
419   /// unsigned integer. These have the same semantics as fptosi and fptoui
420   /// in IR.
421   /// They are used to limit optimizations while the DAG is being optimized.
422   STRICT_FP_TO_SINT,
423   STRICT_FP_TO_UINT,
424 
425   /// STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to
426   /// a floating point value. These have the same semantics as sitofp and
427   /// uitofp in IR.
428   /// They are used to limit optimizations while the DAG is being optimized.
429   STRICT_SINT_TO_FP,
430   STRICT_UINT_TO_FP,
431 
432   /// X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating
433   /// point type down to the precision of the destination VT.  TRUNC is a
434   /// flag, which is always an integer that is zero or one.  If TRUNC is 0,
435   /// this is a normal rounding, if it is 1, this FP_ROUND is known to not
436   /// change the value of Y.
437   ///
438   /// The TRUNC = 1 case is used in cases where we know that the value will
439   /// not be modified by the node, because Y is not using any of the extra
440   /// precision of source type.  This allows certain transformations like
441   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,1)) -> X which are not safe for
442   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,0)) because the extra bits aren't
443   /// removed.
444   /// It is used to limit optimizations while the DAG is being optimized.
445   STRICT_FP_ROUND,
446 
447   /// X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP
448   /// type.
449   /// It is used to limit optimizations while the DAG is being optimized.
450   STRICT_FP_EXTEND,
451 
452   /// STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used
453   /// for floating-point operands only.  STRICT_FSETCC performs a quiet
454   /// comparison operation, while STRICT_FSETCCS performs a signaling
455   /// comparison operation.
456   STRICT_FSETCC,
457   STRICT_FSETCCS,
458 
459   /// FMA - Perform a * b + c with no intermediate rounding step.
460   FMA,
461 
462   /// FMAD - Perform a * b + c, while getting the same result as the
463   /// separately rounded operations.
464   FMAD,
465 
466   /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
467   /// DAG node does not require that X and Y have the same type, just that
468   /// they are both floating point.  X and the result must have the same type.
469   /// FCOPYSIGN(f32, f64) is allowed.
470   FCOPYSIGN,
471 
472   /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
473   /// value as an integer 0/1 value.
474   FGETSIGN,
475 
476   /// Returns platform specific canonical encoding of a floating point number.
477   FCANONICALIZE,
478 
479   /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector
480   /// with the specified, possibly variable, elements. The types of the
481   /// operands must match the vector element type, except that integer types
482   /// are allowed to be larger than the element type, in which case the
483   /// operands are implicitly truncated. The types of the operands must all
484   /// be the same.
485   BUILD_VECTOR,
486 
487   /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
488   /// at IDX replaced with VAL. If the type of VAL is larger than the vector
489   /// element type then VAL is truncated before replacement.
490   ///
491   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
492   /// vector width. IDX is not first scaled by the runtime scaling factor of
493   /// VECTOR.
494   INSERT_VECTOR_ELT,
495 
496   /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
497   /// identified by the (potentially variable) element number IDX. If the return
498   /// type is an integer type larger than the element type of the vector, the
499   /// result is extended to the width of the return type. In that case, the high
500   /// bits are undefined.
501   ///
502   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
503   /// vector width. IDX is not first scaled by the runtime scaling factor of
504   /// VECTOR.
505   EXTRACT_VECTOR_ELT,
506 
507   /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
508   /// vector type with the same length and element type, this produces a
509   /// concatenated vector result value, with length equal to the sum of the
510   /// lengths of the input vectors. If VECTOR0 is a fixed-width vector, then
511   /// VECTOR1..VECTORN must all be fixed-width vectors. Similarly, if VECTOR0
512   /// is a scalable vector, then VECTOR1..VECTORN must all be scalable vectors.
513   CONCAT_VECTORS,
514 
515   /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2
516   /// inserted into VECTOR1. IDX represents the starting element number at which
517   /// VECTOR2 will be inserted. IDX must be a constant multiple of T's known
518   /// minimum vector length. Let the type of VECTOR2 be T, then if T is a
519   /// scalable vector, IDX is first scaled by the runtime scaling factor of T.
520   /// The elements of VECTOR1 starting at IDX are overwritten with VECTOR2.
521   /// Elements IDX through (IDX + num_elements(T) - 1) must be valid VECTOR1
522   /// indices. If this condition cannot be determined statically but is false at
523   /// runtime, then the result vector is undefined.
524   ///
525   /// This operation supports inserting a fixed-width vector into a scalable
526   /// vector, but not the other way around.
527   INSERT_SUBVECTOR,
528 
529   /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
530   /// Let the result type be T, then IDX represents the starting element number
531   /// from which a subvector of type T is extracted. IDX must be a constant
532   /// multiple of T's known minimum vector length. If T is a scalable vector,
533   /// IDX is first scaled by the runtime scaling factor of T. Elements IDX
534   /// through (IDX + num_elements(T) - 1) must be valid VECTOR indices. If this
535   /// condition cannot be determined statically but is false at runtime, then
536   /// the result vector is undefined. The IDX parameter must be a vector index
537   /// constant type, which for most targets will be an integer pointer type.
538   ///
539   /// This operation supports extracting a fixed-width vector from a scalable
540   /// vector, but not the other way around.
541   EXTRACT_SUBVECTOR,
542 
543   /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
544   /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
545   /// values that indicate which value (or undef) each result element will
546   /// get.  These constant ints are accessible through the
547   /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
548   /// 'vperm' instruction, except that the indices must be constants and are
549   /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
550   VECTOR_SHUFFLE,
551 
552   /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
553   /// scalar value into element 0 of the resultant vector type.  The top
554   /// elements 1 to N-1 of the N-element vector are undefined.  The type
555   /// of the operand must match the vector element type, except when they
556   /// are integer types.  In this case the operand is allowed to be wider
557   /// than the vector element type, and is implicitly truncated to it.
558   SCALAR_TO_VECTOR,
559 
560   /// SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL
561   /// duplicated in all lanes. The type of the operand must match the vector
562   /// element type, except when they are integer types.  In this case the
563   /// operand is allowed to be wider than the vector element type, and is
564   /// implicitly truncated to it.
565   SPLAT_VECTOR,
566 
567   /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
568   /// producing an unsigned/signed value of type i[2*N], then return the top
569   /// part.
570   MULHU,
571   MULHS,
572 
573   /// [US]{MIN/MAX} - Binary minimum or maximum or signed or unsigned
574   /// integers.
575   SMIN,
576   SMAX,
577   UMIN,
578   UMAX,
579 
580   /// Bitwise operators - logical and, logical or, logical xor.
581   AND,
582   OR,
583   XOR,
584 
585   /// ABS - Determine the unsigned absolute value of a signed integer value of
586   /// the same bitwidth.
587   /// Note: A value of INT_MIN will return INT_MIN, no saturation or overflow
588   /// is performed.
589   ABS,
590 
591   /// Shift and rotation operations.  After legalization, the type of the
592   /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
593   /// the shift amount can be any type, but care must be taken to ensure it is
594   /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
595   /// legalization, types like i1024 can occur and i8 doesn't have enough bits
596   /// to represent the shift amount.
597   /// When the 1st operand is a vector, the shift amount must be in the same
598   /// type. (TLI.getShiftAmountTy() will return the same type when the input
599   /// type is a vector.)
600   /// For rotates and funnel shifts, the shift amount is treated as an unsigned
601   /// amount modulo the element size of the first operand.
602   ///
603   /// Funnel 'double' shifts take 3 operands, 2 inputs and the shift amount.
604   /// fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
605   /// fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
606   SHL,
607   SRA,
608   SRL,
609   ROTL,
610   ROTR,
611   FSHL,
612   FSHR,
613 
614   /// Byte Swap and Counting operators.
615   BSWAP,
616   CTTZ,
617   CTLZ,
618   CTPOP,
619   BITREVERSE,
620   PARITY,
621 
622   /// Bit counting operators with an undefined result for zero inputs.
623   CTTZ_ZERO_UNDEF,
624   CTLZ_ZERO_UNDEF,
625 
626   /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
627   /// i1 then the high bits must conform to getBooleanContents.
628   SELECT,
629 
630   /// Select with a vector condition (op #0) and two vector operands (ops #1
631   /// and #2), returning a vector result.  All vectors have the same length.
632   /// Much like the scalar select and setcc, each bit in the condition selects
633   /// whether the corresponding result element is taken from op #1 or op #2.
634   /// At first, the VSELECT condition is of vXi1 type. Later, targets may
635   /// change the condition type in order to match the VSELECT node using a
636   /// pattern. The condition follows the BooleanContent format of the target.
637   VSELECT,
638 
639   /// Select with condition operator - This selects between a true value and
640   /// a false value (ops #2 and #3) based on the boolean result of comparing
641   /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
642   /// condition code in op #4, a CondCodeSDNode.
643   SELECT_CC,
644 
645   /// SetCC operator - This evaluates to a true value iff the condition is
646   /// true.  If the result value type is not i1 then the high bits conform
647   /// to getBooleanContents.  The operands to this are the left and right
648   /// operands to compare (ops #0, and #1) and the condition code to compare
649   /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
650   /// then the result type must also be a vector type.
651   SETCC,
652 
653   /// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but
654   /// op #2 is a boolean indicating if there is an incoming carry. This
655   /// operator checks the result of "LHS - RHS - Carry", and can be used to
656   /// compare two wide integers:
657   /// (setcccarry lhshi rhshi (subcarry lhslo rhslo) cc).
658   /// Only valid for integers.
659   SETCCCARRY,
660 
661   /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
662   /// integer shift operations.  The operation ordering is:
663   ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
664   SHL_PARTS,
665   SRA_PARTS,
666   SRL_PARTS,
667 
668   /// Conversion operators.  These are all single input single output
669   /// operations.  For all of these, the result type must be strictly
670   /// wider or narrower (depending on the operation) than the source
671   /// type.
672 
673   /// SIGN_EXTEND - Used for integer types, replicating the sign bit
674   /// into new bits.
675   SIGN_EXTEND,
676 
677   /// ZERO_EXTEND - Used for integer types, zeroing the new bits.
678   ZERO_EXTEND,
679 
680   /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
681   ANY_EXTEND,
682 
683   /// TRUNCATE - Completely drop the high bits.
684   TRUNCATE,
685 
686   /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
687   /// depends on the first letter) to floating point.
688   SINT_TO_FP,
689   UINT_TO_FP,
690 
691   /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
692   /// sign extend a small value in a large integer register (e.g. sign
693   /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
694   /// with the 7th bit).  The size of the smaller type is indicated by the 1th
695   /// operand, a ValueType node.
696   SIGN_EXTEND_INREG,
697 
698   /// ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an
699   /// in-register any-extension of the low lanes of an integer vector. The
700   /// result type must have fewer elements than the operand type, and those
701   /// elements must be larger integer types such that the total size of the
702   /// operand type is less than or equal to the size of the result type. Each
703   /// of the low operand elements is any-extended into the corresponding,
704   /// wider result elements with the high bits becoming undef.
705   /// NOTE: The type legalizer prefers to make the operand and result size
706   /// the same to allow expansion to shuffle vector during op legalization.
707   ANY_EXTEND_VECTOR_INREG,
708 
709   /// SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an
710   /// in-register sign-extension of the low lanes of an integer vector. The
711   /// result type must have fewer elements than the operand type, and those
712   /// elements must be larger integer types such that the total size of the
713   /// operand type is less than or equal to the size of the result type. Each
714   /// of the low operand elements is sign-extended into the corresponding,
715   /// wider result elements.
716   /// NOTE: The type legalizer prefers to make the operand and result size
717   /// the same to allow expansion to shuffle vector during op legalization.
718   SIGN_EXTEND_VECTOR_INREG,
719 
720   /// ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an
721   /// in-register zero-extension of the low lanes of an integer vector. The
722   /// result type must have fewer elements than the operand type, and those
723   /// elements must be larger integer types such that the total size of the
724   /// operand type is less than or equal to the size of the result type. Each
725   /// of the low operand elements is zero-extended into the corresponding,
726   /// wider result elements.
727   /// NOTE: The type legalizer prefers to make the operand and result size
728   /// the same to allow expansion to shuffle vector during op legalization.
729   ZERO_EXTEND_VECTOR_INREG,
730 
731   /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
732   /// integer. These have the same semantics as fptosi and fptoui in IR. If
733   /// the FP value cannot fit in the integer type, the results are undefined.
734   FP_TO_SINT,
735   FP_TO_UINT,
736 
737   /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
738   /// down to the precision of the destination VT.  TRUNC is a flag, which is
739   /// always an integer that is zero or one.  If TRUNC is 0, this is a
740   /// normal rounding, if it is 1, this FP_ROUND is known to not change the
741   /// value of Y.
742   ///
743   /// The TRUNC = 1 case is used in cases where we know that the value will
744   /// not be modified by the node, because Y is not using any of the extra
745   /// precision of source type.  This allows certain transformations like
746   /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
747   /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
748   FP_ROUND,
749 
750   /// FLT_ROUNDS_ - Returns current rounding mode:
751   /// -1 Undefined
752   ///  0 Round to 0
753   ///  1 Round to nearest
754   ///  2 Round to +inf
755   ///  3 Round to -inf
756   /// Result is rounding mode and chain. Input is a chain.
757   FLT_ROUNDS_,
758 
759   /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
760   FP_EXTEND,
761 
762   /// BITCAST - This operator converts between integer, vector and FP
763   /// values, as if the value was stored to memory with one type and loaded
764   /// from the same address with the other type (or equivalently for vector
765   /// format conversions, etc).  The source and result are required to have
766   /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
767   /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
768   /// getNode().
769   ///
770   /// This operator is subtly different from the bitcast instruction from
771   /// LLVM-IR since this node may change the bits in the register. For
772   /// example, this occurs on big-endian NEON and big-endian MSA where the
773   /// layout of the bits in the register depends on the vector type and this
774   /// operator acts as a shuffle operation for some vector type combinations.
775   BITCAST,
776 
777   /// ADDRSPACECAST - This operator converts between pointers of different
778   /// address spaces.
779   ADDRSPACECAST,
780 
781   /// FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions
782   /// and truncation for half-precision (16 bit) floating numbers. These nodes
783   /// form a semi-softened interface for dealing with f16 (as an i16), which
784   /// is often a storage-only type but has native conversions.
785   FP16_TO_FP,
786   FP_TO_FP16,
787   STRICT_FP16_TO_FP,
788   STRICT_FP_TO_FP16,
789 
790   /// Perform various unary floating-point operations inspired by libm. For
791   /// FPOWI, the result is undefined if if the integer operand doesn't fit
792   /// into 32 bits.
793   FNEG,
794   FABS,
795   FSQRT,
796   FCBRT,
797   FSIN,
798   FCOS,
799   FPOWI,
800   FPOW,
801   FLOG,
802   FLOG2,
803   FLOG10,
804   FEXP,
805   FEXP2,
806   FCEIL,
807   FTRUNC,
808   FRINT,
809   FNEARBYINT,
810   FROUND,
811   FROUNDEVEN,
812   FFLOOR,
813   LROUND,
814   LLROUND,
815   LRINT,
816   LLRINT,
817 
818   /// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
819   /// values.
820   //
821   /// In the case where a single input is a NaN (either signaling or quiet),
822   /// the non-NaN input is returned.
823   ///
824   /// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
825   FMINNUM,
826   FMAXNUM,
827 
828   /// FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on
829   /// two values, following the IEEE-754 2008 definition. This differs from
830   /// FMINNUM/FMAXNUM in the handling of signaling NaNs. If one input is a
831   /// signaling NaN, returns a quiet NaN.
832   FMINNUM_IEEE,
833   FMAXNUM_IEEE,
834 
835   /// FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0
836   /// as less than 0.0. While FMINNUM_IEEE/FMAXNUM_IEEE follow IEEE 754-2008
837   /// semantics, FMINIMUM/FMAXIMUM follow IEEE 754-2018 draft semantics.
838   FMINIMUM,
839   FMAXIMUM,
840 
841   /// FSINCOS - Compute both fsin and fcos as a single operation.
842   FSINCOS,
843 
844   /// LOAD and STORE have token chains as their first operand, then the same
845   /// operands as an LLVM load/store instruction, then an offset node that
846   /// is added / subtracted from the base pointer to form the address (for
847   /// indexed memory ops).
848   LOAD,
849   STORE,
850 
851   /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
852   /// to a specified boundary.  This node always has two return values: a new
853   /// stack pointer value and a chain. The first operand is the token chain,
854   /// the second is the number of bytes to allocate, and the third is the
855   /// alignment boundary.  The size is guaranteed to be a multiple of the
856   /// stack alignment, and the alignment is guaranteed to be bigger than the
857   /// stack alignment (if required) or 0 to get standard stack alignment.
858   DYNAMIC_STACKALLOC,
859 
860   /// Control flow instructions.  These all have token chains.
861 
862   /// BR - Unconditional branch.  The first operand is the chain
863   /// operand, the second is the MBB to branch to.
864   BR,
865 
866   /// BRIND - Indirect branch.  The first operand is the chain, the second
867   /// is the value to branch to, which must be of the same type as the
868   /// target's pointer type.
869   BRIND,
870 
871   /// BR_JT - Jumptable branch. The first operand is the chain, the second
872   /// is the jumptable index, the last one is the jumptable entry index.
873   BR_JT,
874 
875   /// BRCOND - Conditional branch.  The first operand is the chain, the
876   /// second is the condition, the third is the block to branch to if the
877   /// condition is true.  If the type of the condition is not i1, then the
878   /// high bits must conform to getBooleanContents.
879   BRCOND,
880 
881   /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
882   /// that the condition is represented as condition code, and two nodes to
883   /// compare, rather than as a combined SetCC node.  The operands in order
884   /// are chain, cc, lhs, rhs, block to branch to if condition is true.
885   BR_CC,
886 
887   /// INLINEASM - Represents an inline asm block.  This node always has two
888   /// return values: a chain and a flag result.  The inputs are as follows:
889   ///   Operand #0  : Input chain.
890   ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
891   ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
892   ///   Operand #3  : HasSideEffect, IsAlignStack bits.
893   ///   After this, it is followed by a list of operands with this format:
894   ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
895   ///                     of operands that follow, etc.  See InlineAsm.h.
896   ///     ... however many operands ...
897   ///   Operand #last: Optional, an incoming flag.
898   ///
899   /// The variable width operands are required to represent target addressing
900   /// modes as a single "operand", even though they may have multiple
901   /// SDOperands.
902   INLINEASM,
903 
904   /// INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
905   INLINEASM_BR,
906 
907   /// EH_LABEL - Represents a label in mid basic block used to track
908   /// locations needed for debug and exception handling tables.  These nodes
909   /// take a chain as input and return a chain.
910   EH_LABEL,
911 
912   /// ANNOTATION_LABEL - Represents a mid basic block label used by
913   /// annotations. This should remain within the basic block and be ordered
914   /// with respect to other call instructions, but loads and stores may float
915   /// past it.
916   ANNOTATION_LABEL,
917 
918   /// CATCHRET - Represents a return from a catch block funclet. Used for
919   /// MSVC compatible exception handling. Takes a chain operand and a
920   /// destination basic block operand.
921   CATCHRET,
922 
923   /// CLEANUPRET - Represents a return from a cleanup block funclet.  Used for
924   /// MSVC compatible exception handling. Takes only a chain operand.
925   CLEANUPRET,
926 
927   /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
928   /// value, the same type as the pointer type for the system, and an output
929   /// chain.
930   STACKSAVE,
931 
932   /// STACKRESTORE has two operands, an input chain and a pointer to restore
933   /// to it returns an output chain.
934   STACKRESTORE,
935 
936   /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
937   /// of a call sequence, and carry arbitrary information that target might
938   /// want to know.  The first operand is a chain, the rest are specified by
939   /// the target and not touched by the DAG optimizers.
940   /// Targets that may use stack to pass call arguments define additional
941   /// operands:
942   /// - size of the call frame part that must be set up within the
943   ///   CALLSEQ_START..CALLSEQ_END pair,
944   /// - part of the call frame prepared prior to CALLSEQ_START.
945   /// Both these parameters must be constants, their sum is the total call
946   /// frame size.
947   /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
948   CALLSEQ_START, // Beginning of a call sequence
949   CALLSEQ_END,   // End of a call sequence
950 
951   /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
952   /// and the alignment. It returns a pair of values: the vaarg value and a
953   /// new chain.
954   VAARG,
955 
956   /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
957   /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
958   /// source.
959   VACOPY,
960 
961   /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
962   /// pointer, and a SRCVALUE.
963   VAEND,
964   VASTART,
965 
966   // PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE
967   // with the preallocated call Value.
968   PREALLOCATED_SETUP,
969   // PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE
970   // with the preallocated call Value, and a constant int.
971   PREALLOCATED_ARG,
972 
973   /// SRCVALUE - This is a node type that holds a Value* that is used to
974   /// make reference to a value in the LLVM IR.
975   SRCVALUE,
976 
977   /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
978   /// reference metadata in the IR.
979   MDNODE_SDNODE,
980 
981   /// PCMARKER - This corresponds to the pcmarker intrinsic.
982   PCMARKER,
983 
984   /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
985   /// It produces a chain and one i64 value. The only operand is a chain.
986   /// If i64 is not legal, the result will be expanded into smaller values.
987   /// Still, it returns an i64, so targets should set legality for i64.
988   /// The result is the content of the architecture-specific cycle
989   /// counter-like register (or other high accuracy low latency clock source).
990   READCYCLECOUNTER,
991 
992   /// HANDLENODE node - Used as a handle for various purposes.
993   HANDLENODE,
994 
995   /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
996   /// takes as input a token chain, the pointer to the trampoline, the pointer
997   /// to the nested function, the pointer to pass for the 'nest' parameter, a
998   /// SRCVALUE for the trampoline and another for the nested function
999   /// (allowing targets to access the original Function*).
1000   /// It produces a token chain as output.
1001   INIT_TRAMPOLINE,
1002 
1003   /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
1004   /// It takes a pointer to the trampoline and produces a (possibly) new
1005   /// pointer to the same trampoline with platform-specific adjustments
1006   /// applied.  The pointer it returns points to an executable block of code.
1007   ADJUST_TRAMPOLINE,
1008 
1009   /// TRAP - Trapping instruction
1010   TRAP,
1011 
1012   /// DEBUGTRAP - Trap intended to get the attention of a debugger.
1013   DEBUGTRAP,
1014 
1015   /// UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
1016   UBSANTRAP,
1017 
1018   /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
1019   /// is the chain.  The other operands are the address to prefetch,
1020   /// read / write specifier, locality specifier and instruction / data cache
1021   /// specifier.
1022   PREFETCH,
1023 
1024   /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
1025   /// This corresponds to the fence instruction. It takes an input chain, and
1026   /// two integer constants: an AtomicOrdering and a SynchronizationScope.
1027   ATOMIC_FENCE,
1028 
1029   /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
1030   /// This corresponds to "load atomic" instruction.
1031   ATOMIC_LOAD,
1032 
1033   /// OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val)
1034   /// This corresponds to "store atomic" instruction.
1035   ATOMIC_STORE,
1036 
1037   /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
1038   /// For double-word atomic operations:
1039   /// ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi,
1040   ///                                          swapLo, swapHi)
1041   /// This corresponds to the cmpxchg instruction.
1042   ATOMIC_CMP_SWAP,
1043 
1044   /// Val, Success, OUTCHAIN
1045   ///     = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap)
1046   /// N.b. this is still a strong cmpxchg operation, so
1047   /// Success == "Val == cmp".
1048   ATOMIC_CMP_SWAP_WITH_SUCCESS,
1049 
1050   /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
1051   /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
1052   /// For double-word atomic operations:
1053   /// ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi)
1054   /// ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi)
1055   /// These correspond to the atomicrmw instruction.
1056   ATOMIC_SWAP,
1057   ATOMIC_LOAD_ADD,
1058   ATOMIC_LOAD_SUB,
1059   ATOMIC_LOAD_AND,
1060   ATOMIC_LOAD_CLR,
1061   ATOMIC_LOAD_OR,
1062   ATOMIC_LOAD_XOR,
1063   ATOMIC_LOAD_NAND,
1064   ATOMIC_LOAD_MIN,
1065   ATOMIC_LOAD_MAX,
1066   ATOMIC_LOAD_UMIN,
1067   ATOMIC_LOAD_UMAX,
1068   ATOMIC_LOAD_FADD,
1069   ATOMIC_LOAD_FSUB,
1070 
1071   // Masked load and store - consecutive vector load and store operations
1072   // with additional mask operand that prevents memory accesses to the
1073   // masked-off lanes.
1074   //
1075   // Val, OutChain = MLOAD(BasePtr, Mask, PassThru)
1076   // OutChain = MSTORE(Value, BasePtr, Mask)
1077   MLOAD,
1078   MSTORE,
1079 
1080   // Masked gather and scatter - load and store operations for a vector of
1081   // random addresses with additional mask operand that prevents memory
1082   // accesses to the masked-off lanes.
1083   //
1084   // Val, OutChain = GATHER(InChain, PassThru, Mask, BasePtr, Index, Scale)
1085   // OutChain = SCATTER(InChain, Value, Mask, BasePtr, Index, Scale)
1086   //
1087   // The Index operand can have more vector elements than the other operands
1088   // due to type legalization. The extra elements are ignored.
1089   MGATHER,
1090   MSCATTER,
1091 
1092   /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
1093   /// is the chain and the second operand is the alloca pointer.
1094   LIFETIME_START,
1095   LIFETIME_END,
1096 
1097   /// GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the
1098   /// beginning and end of GC transition  sequence, and carry arbitrary
1099   /// information that target might need for lowering.  The first operand is
1100   /// a chain, the rest are specified by the target and not touched by the DAG
1101   /// optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be
1102   /// nested.
1103   GC_TRANSITION_START,
1104   GC_TRANSITION_END,
1105 
1106   /// GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of
1107   /// the most recent dynamic alloca. For most targets that would be 0, but
1108   /// for some others (e.g. PowerPC, PowerPC64) that would be compile-time
1109   /// known nonzero constant. The only operand here is the chain.
1110   GET_DYNAMIC_AREA_OFFSET,
1111 
1112   /// Pseudo probe for AutoFDO, as a place holder in a basic block to improve
1113   /// the sample counts quality.
1114   PSEUDO_PROBE,
1115 
1116   /// VSCALE(IMM) - Returns the runtime scaling factor used to calculate the
1117   /// number of elements within a scalable vector. IMM is a constant integer
1118   /// multiplier that is applied to the runtime value.
1119   VSCALE,
1120 
1121   /// Generic reduction nodes. These nodes represent horizontal vector
1122   /// reduction operations, producing a scalar result.
1123   /// The SEQ variants perform reductions in sequential order. The first
1124   /// operand is an initial scalar accumulator value, and the second operand
1125   /// is the vector to reduce.
1126   /// E.g. RES = VECREDUCE_SEQ_FADD f32 ACC, <4 x f32> SRC_VEC
1127   ///  ... is equivalent to
1128   /// RES = (((ACC + SRC_VEC[0]) + SRC_VEC[1]) + SRC_VEC[2]) + SRC_VEC[3]
1129   VECREDUCE_SEQ_FADD,
1130   VECREDUCE_SEQ_FMUL,
1131 
1132   /// These reductions have relaxed evaluation order semantics, and have a
1133   /// single vector operand. The order of evaluation is unspecified. For
1134   /// pow-of-2 vectors, one valid legalizer expansion is to use a tree
1135   /// reduction, i.e.:
1136   /// For RES = VECREDUCE_FADD <8 x f16> SRC_VEC
1137   ///   PART_RDX = FADD SRC_VEC[0:3], SRC_VEC[4:7]
1138   ///   PART_RDX2 = FADD PART_RDX[0:1], PART_RDX[2:3]
1139   ///   RES = FADD PART_RDX2[0], PART_RDX2[1]
1140   /// For non-pow-2 vectors, this can be computed by extracting each element
1141   /// and performing the operation as if it were scalarized.
1142   VECREDUCE_FADD,
1143   VECREDUCE_FMUL,
1144   /// FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
1145   VECREDUCE_FMAX,
1146   VECREDUCE_FMIN,
1147   /// Integer reductions may have a result type larger than the vector element
1148   /// type. However, the reduction is performed using the vector element type
1149   /// and the value in the top bits is unspecified.
1150   VECREDUCE_ADD,
1151   VECREDUCE_MUL,
1152   VECREDUCE_AND,
1153   VECREDUCE_OR,
1154   VECREDUCE_XOR,
1155   VECREDUCE_SMAX,
1156   VECREDUCE_SMIN,
1157   VECREDUCE_UMAX,
1158   VECREDUCE_UMIN,
1159 
1160 // Vector Predication
1161 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) VPSDID,
1162 #include "llvm/IR/VPIntrinsics.def"
1163 
1164   /// BUILTIN_OP_END - This must be the last enum value in this list.
1165   /// The target-specific pre-isel opcode values start here.
1166   BUILTIN_OP_END
1167 };
1168 
1169 /// FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations
1170 /// which cannot raise FP exceptions should be less than this value.
1171 /// Those that do must not be less than this value.
1172 static const int FIRST_TARGET_STRICTFP_OPCODE = BUILTIN_OP_END + 400;
1173 
1174 /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
1175 /// which do not reference a specific memory location should be less than
1176 /// this value. Those that do must not be less than this value, and can
1177 /// be used with SelectionDAG::getMemIntrinsicNode.
1178 static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END + 500;
1179 
1180 /// Get underlying scalar opcode for VECREDUCE opcode.
1181 /// For example ISD::AND for ISD::VECREDUCE_AND.
1182 NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode);
1183 
1184 //===--------------------------------------------------------------------===//
1185 /// MemIndexedMode enum - This enum defines the load / store indexed
1186 /// addressing modes.
1187 ///
1188 /// UNINDEXED    "Normal" load / store. The effective address is already
1189 ///              computed and is available in the base pointer. The offset
1190 ///              operand is always undefined. In addition to producing a
1191 ///              chain, an unindexed load produces one value (result of the
1192 ///              load); an unindexed store does not produce a value.
1193 ///
1194 /// PRE_INC      Similar to the unindexed mode where the effective address is
1195 /// PRE_DEC      the value of the base pointer add / subtract the offset.
1196 ///              It considers the computation as being folded into the load /
1197 ///              store operation (i.e. the load / store does the address
1198 ///              computation as well as performing the memory transaction).
1199 ///              The base operand is always undefined. In addition to
1200 ///              producing a chain, pre-indexed load produces two values
1201 ///              (result of the load and the result of the address
1202 ///              computation); a pre-indexed store produces one value (result
1203 ///              of the address computation).
1204 ///
1205 /// POST_INC     The effective address is the value of the base pointer. The
1206 /// POST_DEC     value of the offset operand is then added to / subtracted
1207 ///              from the base after memory transaction. In addition to
1208 ///              producing a chain, post-indexed load produces two values
1209 ///              (the result of the load and the result of the base +/- offset
1210 ///              computation); a post-indexed store produces one value (the
1211 ///              the result of the base +/- offset computation).
1212 enum MemIndexedMode { UNINDEXED = 0, PRE_INC, PRE_DEC, POST_INC, POST_DEC };
1213 
1214 static const int LAST_INDEXED_MODE = POST_DEC + 1;
1215 
1216 //===--------------------------------------------------------------------===//
1217 /// MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's
1218 /// index parameter when calculating addresses.
1219 ///
1220 /// SIGNED_SCALED     Addr = Base + ((signed)Index * sizeof(element))
1221 /// SIGNED_UNSCALED   Addr = Base + (signed)Index
1222 /// UNSIGNED_SCALED   Addr = Base + ((unsigned)Index * sizeof(element))
1223 /// UNSIGNED_UNSCALED Addr = Base + (unsigned)Index
1224 enum MemIndexType {
1225   SIGNED_SCALED = 0,
1226   SIGNED_UNSCALED,
1227   UNSIGNED_SCALED,
1228   UNSIGNED_UNSCALED
1229 };
1230 
1231 static const int LAST_MEM_INDEX_TYPE = UNSIGNED_UNSCALED + 1;
1232 
1233 //===--------------------------------------------------------------------===//
1234 /// LoadExtType enum - This enum defines the three variants of LOADEXT
1235 /// (load with extension).
1236 ///
1237 /// SEXTLOAD loads the integer operand and sign extends it to a larger
1238 ///          integer result type.
1239 /// ZEXTLOAD loads the integer operand and zero extends it to a larger
1240 ///          integer result type.
1241 /// EXTLOAD  is used for two things: floating point extending loads and
1242 ///          integer extending loads [the top bits are undefined].
1243 enum LoadExtType { NON_EXTLOAD = 0, EXTLOAD, SEXTLOAD, ZEXTLOAD };
1244 
1245 static const int LAST_LOADEXT_TYPE = ZEXTLOAD + 1;
1246 
1247 NodeType getExtForLoadExtType(bool IsFP, LoadExtType);
1248 
1249 //===--------------------------------------------------------------------===//
1250 /// ISD::CondCode enum - These are ordered carefully to make the bitfields
1251 /// below work out, when considering SETFALSE (something that never exists
1252 /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
1253 /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
1254 /// to.  If the "N" column is 1, the result of the comparison is undefined if
1255 /// the input is a NAN.
1256 ///
1257 /// All of these (except for the 'always folded ops') should be handled for
1258 /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
1259 /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
1260 ///
1261 /// Note that these are laid out in a specific order to allow bit-twiddling
1262 /// to transform conditions.
1263 enum CondCode {
1264   // Opcode       N U L G E       Intuitive operation
1265   SETFALSE, //      0 0 0 0       Always false (always folded)
1266   SETOEQ,   //      0 0 0 1       True if ordered and equal
1267   SETOGT,   //      0 0 1 0       True if ordered and greater than
1268   SETOGE,   //      0 0 1 1       True if ordered and greater than or equal
1269   SETOLT,   //      0 1 0 0       True if ordered and less than
1270   SETOLE,   //      0 1 0 1       True if ordered and less than or equal
1271   SETONE,   //      0 1 1 0       True if ordered and operands are unequal
1272   SETO,     //      0 1 1 1       True if ordered (no nans)
1273   SETUO,    //      1 0 0 0       True if unordered: isnan(X) | isnan(Y)
1274   SETUEQ,   //      1 0 0 1       True if unordered or equal
1275   SETUGT,   //      1 0 1 0       True if unordered or greater than
1276   SETUGE,   //      1 0 1 1       True if unordered, greater than, or equal
1277   SETULT,   //      1 1 0 0       True if unordered or less than
1278   SETULE,   //      1 1 0 1       True if unordered, less than, or equal
1279   SETUNE,   //      1 1 1 0       True if unordered or not equal
1280   SETTRUE,  //      1 1 1 1       Always true (always folded)
1281   // Don't care operations: undefined if the input is a nan.
1282   SETFALSE2, //   1 X 0 0 0       Always false (always folded)
1283   SETEQ,     //   1 X 0 0 1       True if equal
1284   SETGT,     //   1 X 0 1 0       True if greater than
1285   SETGE,     //   1 X 0 1 1       True if greater than or equal
1286   SETLT,     //   1 X 1 0 0       True if less than
1287   SETLE,     //   1 X 1 0 1       True if less than or equal
1288   SETNE,     //   1 X 1 1 0       True if not equal
1289   SETTRUE2,  //   1 X 1 1 1       Always true (always folded)
1290 
1291   SETCC_INVALID // Marker value.
1292 };
1293 
1294 /// Return true if this is a setcc instruction that performs a signed
1295 /// comparison when used with integer operands.
isSignedIntSetCC(CondCode Code)1296 inline bool isSignedIntSetCC(CondCode Code) {
1297   return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
1298 }
1299 
1300 /// Return true if this is a setcc instruction that performs an unsigned
1301 /// comparison when used with integer operands.
isUnsignedIntSetCC(CondCode Code)1302 inline bool isUnsignedIntSetCC(CondCode Code) {
1303   return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
1304 }
1305 
1306 /// Return true if the specified condition returns true if the two operands to
1307 /// the condition are equal. Note that if one of the two operands is a NaN,
1308 /// this value is meaningless.
isTrueWhenEqual(CondCode Cond)1309 inline bool isTrueWhenEqual(CondCode Cond) { return ((int)Cond & 1) != 0; }
1310 
1311 /// This function returns 0 if the condition is always false if an operand is
1312 /// a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if
1313 /// the condition is undefined if the operand is a NaN.
getUnorderedFlavor(CondCode Cond)1314 inline unsigned getUnorderedFlavor(CondCode Cond) {
1315   return ((int)Cond >> 3) & 3;
1316 }
1317 
1318 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1319 /// SetCC operation.
1320 CondCode getSetCCInverse(CondCode Operation, EVT Type);
1321 
1322 namespace GlobalISel {
1323 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1324 /// SetCC operation. The U bit of the condition code has different meanings
1325 /// between floating point and integer comparisons and LLT's don't provide
1326 /// this distinction. As such we need to be told whether the comparison is
1327 /// floating point or integer-like. Pointers should use integer-like
1328 /// comparisons.
1329 CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike);
1330 } // end namespace GlobalISel
1331 
1332 /// Return the operation corresponding to (Y op X) when given the operation
1333 /// for (X op Y).
1334 CondCode getSetCCSwappedOperands(CondCode Operation);
1335 
1336 /// Return the result of a logical OR between different comparisons of
1337 /// identical values: ((X op1 Y) | (X op2 Y)). This function returns
1338 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1339 CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type);
1340 
1341 /// Return the result of a logical AND between different comparisons of
1342 /// identical values: ((X op1 Y) & (X op2 Y)). This function returns
1343 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1344 CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type);
1345 
1346 } // namespace ISD
1347 
1348 } // namespace llvm
1349 
1350 #endif
1351