1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the classes used to generate code from scalar expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H 14 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 22 #include "llvm/Analysis/TargetFolder.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/ValueHandle.h" 26 #include "llvm/Support/CommandLine.h" 27 28 namespace llvm { 29 extern cl::opt<unsigned> SCEVCheapExpansionBudget; 30 31 /// Return true if the given expression is safe to expand in the sense that 32 /// all materialized values are safe to speculate anywhere their operands are 33 /// defined. 34 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE); 35 36 /// Return true if the given expression is safe to expand in the sense that 37 /// all materialized values are defined and safe to speculate at the specified 38 /// location and their operands are defined at this location. 39 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 40 ScalarEvolution &SE); 41 42 /// struct for holding enough information to help calculate the cost of the 43 /// given SCEV when expanded into IR. 44 struct SCEVOperand { SCEVOperandSCEVOperand45 explicit SCEVOperand(unsigned Opc, int Idx, const SCEV *S) : 46 ParentOpcode(Opc), OperandIdx(Idx), S(S) { } 47 /// LLVM instruction opcode that uses the operand. 48 unsigned ParentOpcode; 49 /// The use index of an expanded instruction. 50 int OperandIdx; 51 /// The SCEV operand to be costed. 52 const SCEV* S; 53 }; 54 55 /// This class uses information about analyze scalars to rewrite expressions 56 /// in canonical form. 57 /// 58 /// Clients should create an instance of this class when rewriting is needed, 59 /// and destroy it when finished to allow the release of the associated 60 /// memory. 61 class SCEVExpander : public SCEVVisitor<SCEVExpander, Value *> { 62 ScalarEvolution &SE; 63 const DataLayout &DL; 64 65 // New instructions receive a name to identify them with the current pass. 66 const char *IVName; 67 68 /// Indicates whether LCSSA phis should be created for inserted values. 69 bool PreserveLCSSA; 70 71 // InsertedExpressions caches Values for reuse, so must track RAUW. 72 DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>> 73 InsertedExpressions; 74 75 // InsertedValues only flags inserted instructions so needs no RAUW. 76 DenseSet<AssertingVH<Value>> InsertedValues; 77 DenseSet<AssertingVH<Value>> InsertedPostIncValues; 78 79 /// Keep track of the existing IR values re-used during expansion. 80 /// FIXME: Ideally re-used instructions would not be added to 81 /// InsertedValues/InsertedPostIncValues. 82 SmallPtrSet<Value *, 16> ReusedValues; 83 84 /// A memoization of the "relevant" loop for a given SCEV. 85 DenseMap<const SCEV *, const Loop *> RelevantLoops; 86 87 /// Addrecs referring to any of the given loops are expanded in post-inc 88 /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add 89 /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new 90 /// phi starting at 1. This is only supported in non-canonical mode. 91 PostIncLoopSet PostIncLoops; 92 93 /// When this is non-null, addrecs expanded in the loop it indicates should 94 /// be inserted with increments at IVIncInsertPos. 95 const Loop *IVIncInsertLoop; 96 97 /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV 98 /// increment at this position. 99 Instruction *IVIncInsertPos; 100 101 /// Phis that complete an IV chain. Reuse 102 DenseSet<AssertingVH<PHINode>> ChainedPhis; 103 104 /// When true, SCEVExpander tries to expand expressions in "canonical" form. 105 /// When false, expressions are expanded in a more literal form. 106 /// 107 /// In "canonical" form addrecs are expanded as arithmetic based on a 108 /// canonical induction variable. Note that CanonicalMode doesn't guarantee 109 /// that all expressions are expanded in "canonical" form. For some 110 /// expressions literal mode can be preferred. 111 bool CanonicalMode; 112 113 /// When invoked from LSR, the expander is in "strength reduction" mode. The 114 /// only difference is that phi's are only reused if they are already in 115 /// "expanded" form. 116 bool LSRMode; 117 118 typedef IRBuilder<TargetFolder, IRBuilderCallbackInserter> BuilderType; 119 BuilderType Builder; 120 121 // RAII object that stores the current insertion point and restores it when 122 // the object is destroyed. This includes the debug location. Duplicated 123 // from InsertPointGuard to add SetInsertPoint() which is used to updated 124 // InsertPointGuards stack when insert points are moved during SCEV 125 // expansion. 126 class SCEVInsertPointGuard { 127 IRBuilderBase &Builder; 128 AssertingVH<BasicBlock> Block; 129 BasicBlock::iterator Point; 130 DebugLoc DbgLoc; 131 SCEVExpander *SE; 132 133 SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete; 134 SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete; 135 136 public: SCEVInsertPointGuard(IRBuilderBase & B,SCEVExpander * SE)137 SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE) 138 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), 139 DbgLoc(B.getCurrentDebugLocation()), SE(SE) { 140 SE->InsertPointGuards.push_back(this); 141 } 142 ~SCEVInsertPointGuard()143 ~SCEVInsertPointGuard() { 144 // These guards should always created/destroyed in FIFO order since they 145 // are used to guard lexically scoped blocks of code in 146 // ScalarEvolutionExpander. 147 assert(SE->InsertPointGuards.back() == this); 148 SE->InsertPointGuards.pop_back(); 149 Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point)); 150 Builder.SetCurrentDebugLocation(DbgLoc); 151 } 152 GetInsertPoint()153 BasicBlock::iterator GetInsertPoint() const { return Point; } SetInsertPoint(BasicBlock::iterator I)154 void SetInsertPoint(BasicBlock::iterator I) { Point = I; } 155 }; 156 157 /// Stack of pointers to saved insert points, used to keep insert points 158 /// consistent when instructions are moved. 159 SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards; 160 161 #ifndef NDEBUG 162 const char *DebugType; 163 #endif 164 165 friend struct SCEVVisitor<SCEVExpander, Value *>; 166 167 public: 168 /// Construct a SCEVExpander in "canonical" mode. 169 explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL, 170 const char *name, bool PreserveLCSSA = true) 171 : SE(se), DL(DL), IVName(name), PreserveLCSSA(PreserveLCSSA), 172 IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true), 173 LSRMode(false), 174 Builder(se.getContext(), TargetFolder(DL), 175 IRBuilderCallbackInserter( 176 [this](Instruction *I) { rememberInstruction(I); })) { 177 #ifndef NDEBUG 178 DebugType = ""; 179 #endif 180 } 181 182 ~SCEVExpander() { 183 // Make sure the insert point guard stack is consistent. 184 assert(InsertPointGuards.empty()); 185 } 186 187 #ifndef NDEBUG 188 void setDebugType(const char *s) { DebugType = s; } 189 #endif 190 191 /// Erase the contents of the InsertedExpressions map so that users trying 192 /// to expand the same expression into multiple BasicBlocks or different 193 /// places within the same BasicBlock can do so. 194 void clear() { 195 InsertedExpressions.clear(); 196 InsertedValues.clear(); 197 InsertedPostIncValues.clear(); 198 ReusedValues.clear(); 199 ChainedPhis.clear(); 200 } 201 202 /// Return a vector containing all instructions inserted during expansion. 203 SmallVector<Instruction *, 32> getAllInsertedInstructions() const { 204 SmallVector<Instruction *, 32> Result; 205 for (auto &VH : InsertedValues) { 206 Value *V = VH; 207 if (ReusedValues.contains(V)) 208 continue; 209 if (auto *Inst = dyn_cast<Instruction>(V)) 210 Result.push_back(Inst); 211 } 212 for (auto &VH : InsertedPostIncValues) { 213 Value *V = VH; 214 if (ReusedValues.contains(V)) 215 continue; 216 if (auto *Inst = dyn_cast<Instruction>(V)) 217 Result.push_back(Inst); 218 } 219 220 return Result; 221 } 222 223 /// Return true for expressions that can't be evaluated at runtime 224 /// within given \b Budget. 225 /// 226 /// At is a parameter which specifies point in code where user is going to 227 /// expand this expression. Sometimes this knowledge can lead to 228 /// a less pessimistic cost estimation. 229 bool isHighCostExpansion(const SCEV *Expr, Loop *L, unsigned Budget, 230 const TargetTransformInfo *TTI, 231 const Instruction *At) { 232 assert(TTI && "This function requires TTI to be provided."); 233 assert(At && "This function requires At instruction to be provided."); 234 if (!TTI) // In assert-less builds, avoid crashing 235 return true; // by always claiming to be high-cost. 236 SmallVector<SCEVOperand, 8> Worklist; 237 SmallPtrSet<const SCEV *, 8> Processed; 238 int BudgetRemaining = Budget * TargetTransformInfo::TCC_Basic; 239 Worklist.emplace_back(-1, -1, Expr); 240 while (!Worklist.empty()) { 241 const SCEVOperand WorkItem = Worklist.pop_back_val(); 242 if (isHighCostExpansionHelper(WorkItem, L, *At, BudgetRemaining, 243 *TTI, Processed, Worklist)) 244 return true; 245 } 246 assert(BudgetRemaining >= 0 && "Should have returned from inner loop."); 247 return false; 248 } 249 250 /// This method returns the canonical induction variable of the specified 251 /// type for the specified loop (inserting one if there is none). A 252 /// canonical induction variable starts at zero and steps by one on each 253 /// iteration. 254 PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty); 255 256 /// Return the induction variable increment's IV operand. 257 Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos, 258 bool allowScale); 259 260 /// Utility for hoisting an IV increment. 261 bool hoistIVInc(Instruction *IncV, Instruction *InsertPos); 262 263 /// replace congruent phis with their most canonical representative. Return 264 /// the number of phis eliminated. 265 unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, 266 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 267 const TargetTransformInfo *TTI = nullptr); 268 269 /// Insert code to directly compute the specified SCEV expression into the 270 /// program. The code is inserted into the specified block. 271 Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I) { 272 return expandCodeForImpl(SH, Ty, I, true); 273 } 274 275 /// Insert code to directly compute the specified SCEV expression into the 276 /// program. The code is inserted into the SCEVExpander's current 277 /// insertion point. If a type is specified, the result will be expanded to 278 /// have that type, with a cast if necessary. 279 Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr) { 280 return expandCodeForImpl(SH, Ty, true); 281 } 282 283 /// Generates a code sequence that evaluates this predicate. The inserted 284 /// instructions will be at position \p Loc. The result will be of type i1 285 /// and will have a value of 0 when the predicate is false and 1 otherwise. 286 Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc); 287 288 /// A specialized variant of expandCodeForPredicate, handling the case when 289 /// we are expanding code for a SCEVEqualPredicate. 290 Value *expandEqualPredicate(const SCEVEqualPredicate *Pred, Instruction *Loc); 291 292 /// Generates code that evaluates if the \p AR expression will overflow. 293 Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc, 294 bool Signed); 295 296 /// A specialized variant of expandCodeForPredicate, handling the case when 297 /// we are expanding code for a SCEVWrapPredicate. 298 Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc); 299 300 /// A specialized variant of expandCodeForPredicate, handling the case when 301 /// we are expanding code for a SCEVUnionPredicate. 302 Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc); 303 304 /// Set the current IV increment loop and position. 305 void setIVIncInsertPos(const Loop *L, Instruction *Pos) { 306 assert(!CanonicalMode && 307 "IV increment positions are not supported in CanonicalMode"); 308 IVIncInsertLoop = L; 309 IVIncInsertPos = Pos; 310 } 311 312 /// Enable post-inc expansion for addrecs referring to the given 313 /// loops. Post-inc expansion is only supported in non-canonical mode. 314 void setPostInc(const PostIncLoopSet &L) { 315 assert(!CanonicalMode && 316 "Post-inc expansion is not supported in CanonicalMode"); 317 PostIncLoops = L; 318 } 319 320 /// Disable all post-inc expansion. 321 void clearPostInc() { 322 PostIncLoops.clear(); 323 324 // When we change the post-inc loop set, cached expansions may no 325 // longer be valid. 326 InsertedPostIncValues.clear(); 327 } 328 329 /// Disable the behavior of expanding expressions in canonical form rather 330 /// than in a more literal form. Non-canonical mode is useful for late 331 /// optimization passes. 332 void disableCanonicalMode() { CanonicalMode = false; } 333 334 void enableLSRMode() { LSRMode = true; } 335 336 /// Set the current insertion point. This is useful if multiple calls to 337 /// expandCodeFor() are going to be made with the same insert point and the 338 /// insert point may be moved during one of the expansions (e.g. if the 339 /// insert point is not a block terminator). 340 void setInsertPoint(Instruction *IP) { 341 assert(IP); 342 Builder.SetInsertPoint(IP); 343 } 344 345 /// Clear the current insertion point. This is useful if the instruction 346 /// that had been serving as the insertion point may have been deleted. 347 void clearInsertPoint() { Builder.ClearInsertionPoint(); } 348 349 /// Set location information used by debugging information. 350 void SetCurrentDebugLocation(DebugLoc L) { 351 Builder.SetCurrentDebugLocation(std::move(L)); 352 } 353 354 /// Get location information used by debugging information. 355 const DebugLoc &getCurrentDebugLocation() const { 356 return Builder.getCurrentDebugLocation(); 357 } 358 359 /// Return true if the specified instruction was inserted by the code 360 /// rewriter. If so, the client should not modify the instruction. Note that 361 /// this also includes instructions re-used during expansion. 362 bool isInsertedInstruction(Instruction *I) const { 363 return InsertedValues.count(I) || InsertedPostIncValues.count(I); 364 } 365 366 void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); } 367 368 /// Try to find existing LLVM IR value for S available at the point At. 369 Value *getExactExistingExpansion(const SCEV *S, const Instruction *At, 370 Loop *L); 371 372 /// Try to find the ValueOffsetPair for S. The function is mainly used to 373 /// check whether S can be expanded cheaply. If this returns a non-None 374 /// value, we know we can codegen the `ValueOffsetPair` into a suitable 375 /// expansion identical with S so that S can be expanded cheaply. 376 /// 377 /// L is a hint which tells in which loop to look for the suitable value. 378 /// On success return value which is equivalent to the expanded S at point 379 /// At. Return nullptr if value was not found. 380 /// 381 /// Note that this function does not perform an exhaustive search. I.e if it 382 /// didn't find any value it does not mean that there is no such value. 383 /// 384 Optional<ScalarEvolution::ValueOffsetPair> 385 getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L); 386 387 /// Returns a suitable insert point after \p I, that dominates \p 388 /// MustDominate. Skips instructions inserted by the expander. 389 BasicBlock::iterator findInsertPointAfter(Instruction *I, 390 Instruction *MustDominate); 391 392 private: 393 LLVMContext &getContext() const { return SE.getContext(); } 394 395 /// Insert code to directly compute the specified SCEV expression into the 396 /// program. The code is inserted into the SCEVExpander's current 397 /// insertion point. If a type is specified, the result will be expanded to 398 /// have that type, with a cast if necessary. If \p Root is true, this 399 /// indicates that \p SH is the top-level expression to expand passed from 400 /// an external client call. 401 Value *expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root); 402 403 /// Insert code to directly compute the specified SCEV expression into the 404 /// program. The code is inserted into the specified block. If \p 405 /// Root is true, this indicates that \p SH is the top-level expression to 406 /// expand passed from an external client call. 407 Value *expandCodeForImpl(const SCEV *SH, Type *Ty, Instruction *I, bool Root); 408 409 /// Recursive helper function for isHighCostExpansion. 410 bool isHighCostExpansionHelper( 411 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 412 int &BudgetRemaining, const TargetTransformInfo &TTI, 413 SmallPtrSetImpl<const SCEV *> &Processed, 414 SmallVectorImpl<SCEVOperand> &Worklist); 415 416 /// Insert the specified binary operator, doing a small amount of work to 417 /// avoid inserting an obviously redundant operation, and hoisting to an 418 /// outer loop when the opportunity is there and it is safe. 419 Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 420 SCEV::NoWrapFlags Flags, bool IsSafeToHoist); 421 422 /// Arrange for there to be a cast of V to Ty at IP, reusing an existing 423 /// cast if a suitable one exists, moving an existing cast if a suitable one 424 /// exists but isn't in the right place, or creating a new one. 425 Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op, 426 BasicBlock::iterator IP); 427 428 /// Insert a cast of V to the specified type, which must be possible with a 429 /// noop cast, doing what we can to share the casts. 430 Value *InsertNoopCastOfTo(Value *V, Type *Ty); 431 432 /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using 433 /// ptrtoint+arithmetic+inttoptr. 434 Value *expandAddToGEP(const SCEV *const *op_begin, const SCEV *const *op_end, 435 PointerType *PTy, Type *Ty, Value *V); 436 Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V); 437 438 /// Find a previous Value in ExprValueMap for expand. 439 ScalarEvolution::ValueOffsetPair 440 FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt); 441 442 Value *expand(const SCEV *S); 443 444 /// Determine the most "relevant" loop for the given SCEV. 445 const Loop *getRelevantLoop(const SCEV *); 446 447 Value *visitConstant(const SCEVConstant *S) { return S->getValue(); } 448 449 Value *visitPtrToIntExpr(const SCEVPtrToIntExpr *S); 450 451 Value *visitTruncateExpr(const SCEVTruncateExpr *S); 452 453 Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S); 454 455 Value *visitSignExtendExpr(const SCEVSignExtendExpr *S); 456 457 Value *visitAddExpr(const SCEVAddExpr *S); 458 459 Value *visitMulExpr(const SCEVMulExpr *S); 460 461 Value *visitUDivExpr(const SCEVUDivExpr *S); 462 463 Value *visitAddRecExpr(const SCEVAddRecExpr *S); 464 465 Value *visitSMaxExpr(const SCEVSMaxExpr *S); 466 467 Value *visitUMaxExpr(const SCEVUMaxExpr *S); 468 469 Value *visitSMinExpr(const SCEVSMinExpr *S); 470 471 Value *visitUMinExpr(const SCEVUMinExpr *S); 472 473 Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); } 474 475 void rememberInstruction(Value *I); 476 477 bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 478 479 bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 480 481 Value *expandAddRecExprLiterally(const SCEVAddRecExpr *); 482 PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 483 const Loop *L, Type *ExpandTy, Type *IntTy, 484 Type *&TruncTy, bool &InvertStep); 485 Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy, 486 Type *IntTy, bool useSubtract); 487 488 void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 489 Instruction *Pos, PHINode *LoopPhi); 490 491 void fixupInsertPoints(Instruction *I); 492 493 /// If required, create LCSSA PHIs for \p Users' operand \p OpIdx. If new 494 /// LCSSA PHIs have been created, return the LCSSA PHI available at \p User. 495 /// If no PHIs have been created, return the unchanged operand \p OpIdx. 496 Value *fixupLCSSAFormFor(Instruction *User, unsigned OpIdx); 497 }; 498 499 /// Helper to remove instructions inserted during SCEV expansion, unless they 500 /// are marked as used. 501 class SCEVExpanderCleaner { 502 SCEVExpander &Expander; 503 504 DominatorTree &DT; 505 506 /// Indicates whether the result of the expansion is used. If false, the 507 /// instructions added during expansion are removed. 508 bool ResultUsed; 509 510 public: 511 SCEVExpanderCleaner(SCEVExpander &Expander, DominatorTree &DT) 512 : Expander(Expander), DT(DT), ResultUsed(false) {} 513 514 ~SCEVExpanderCleaner(); 515 516 /// Indicate that the result of the expansion is used. 517 void markResultUsed() { ResultUsed = true; } 518 }; 519 } // namespace llvm 520 521 #endif 522