1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "src/traced/probes/ftrace/cpu_reader.h"
18
19 #include <dirent.h>
20 #include <fcntl.h>
21 #include <signal.h>
22
23 #include <algorithm>
24 #include <utility>
25
26 #include "perfetto/base/build_config.h"
27 #include "perfetto/base/logging.h"
28 #include "perfetto/ext/base/metatrace.h"
29 #include "perfetto/ext/base/optional.h"
30 #include "perfetto/ext/base/utils.h"
31 #include "perfetto/ext/tracing/core/trace_writer.h"
32 #include "src/kallsyms/kernel_symbol_map.h"
33 #include "src/kallsyms/lazy_kernel_symbolizer.h"
34 #include "src/traced/probes/ftrace/ftrace_config_muxer.h"
35 #include "src/traced/probes/ftrace/ftrace_controller.h"
36 #include "src/traced/probes/ftrace/ftrace_data_source.h"
37 #include "src/traced/probes/ftrace/proto_translation_table.h"
38
39 #include "protos/perfetto/trace/ftrace/ftrace_event.pbzero.h"
40 #include "protos/perfetto/trace/ftrace/ftrace_event_bundle.pbzero.h"
41 #include "protos/perfetto/trace/ftrace/generic.pbzero.h"
42 #include "protos/perfetto/trace/interned_data/interned_data.pbzero.h"
43 #include "protos/perfetto/trace/profiling/profile_common.pbzero.h"
44 #include "protos/perfetto/trace/trace_packet.pbzero.h"
45
46 namespace perfetto {
47 namespace {
48
49 // If the compact_sched buffer accumulates more unique strings, the reader will
50 // flush it to reset the interning state (and make it cheap again).
51 // This is not an exact cap, since we check only at tracing page boundaries.
52 // TODO(rsavitski): consider making part of compact_sched config.
53 constexpr size_t kCompactSchedInternerThreshold = 64;
54
55 // For further documentation of these constants see the kernel source:
56 // linux/include/linux/ring_buffer.h
57 // Some information about the values of these constants are exposed to user
58 // space at: /sys/kernel/debug/tracing/events/header_event
59 constexpr uint32_t kTypeDataTypeLengthMax = 28;
60 constexpr uint32_t kTypePadding = 29;
61 constexpr uint32_t kTypeTimeExtend = 30;
62 constexpr uint32_t kTypeTimeStamp = 31;
63
64 struct EventHeader {
65 uint32_t type_or_length : 5;
66 uint32_t time_delta : 27;
67 };
68
69 struct TimeStamp {
70 uint64_t tv_nsec;
71 uint64_t tv_sec;
72 };
73
ReadIntoString(const uint8_t * start,const uint8_t * end,uint32_t field_id,protozero::Message * out)74 bool ReadIntoString(const uint8_t* start,
75 const uint8_t* end,
76 uint32_t field_id,
77 protozero::Message* out) {
78 for (const uint8_t* c = start; c < end; c++) {
79 if (*c != '\0')
80 continue;
81 out->AppendBytes(field_id, reinterpret_cast<const char*>(start),
82 static_cast<uintptr_t>(c - start));
83 return true;
84 }
85 return false;
86 }
87
ReadDataLoc(const uint8_t * start,const uint8_t * field_start,const uint8_t * end,const Field & field,protozero::Message * message)88 bool ReadDataLoc(const uint8_t* start,
89 const uint8_t* field_start,
90 const uint8_t* end,
91 const Field& field,
92 protozero::Message* message) {
93 PERFETTO_DCHECK(field.ftrace_size == 4);
94 // See
95 // https://github.com/torvalds/linux/blob/master/include/trace/trace_events.h
96 uint32_t data = 0;
97 const uint8_t* ptr = field_start;
98 if (!CpuReader::ReadAndAdvance(&ptr, end, &data)) {
99 PERFETTO_DFATAL("Buffer overflowed.");
100 return false;
101 }
102
103 const uint16_t offset = data & 0xffff;
104 const uint16_t len = (data >> 16) & 0xffff;
105 const uint8_t* const string_start = start + offset;
106 const uint8_t* const string_end = string_start + len;
107 if (string_start <= start || string_end > end) {
108 PERFETTO_DFATAL("Buffer overflowed.");
109 return false;
110 }
111 ReadIntoString(string_start, string_end, field.proto_field_id, message);
112 return true;
113 }
114
115 template <typename T>
ReadValue(const uint8_t * ptr)116 T ReadValue(const uint8_t* ptr) {
117 T t;
118 memcpy(&t, reinterpret_cast<const void*>(ptr), sizeof(T));
119 return t;
120 }
121
122 // Reads a signed ftrace value as an int64_t, sign extending if necessary.
ReadSignedFtraceValue(const uint8_t * ptr,FtraceFieldType ftrace_type)123 static int64_t ReadSignedFtraceValue(const uint8_t* ptr,
124 FtraceFieldType ftrace_type) {
125 if (ftrace_type == kFtraceInt32) {
126 int32_t value;
127 memcpy(&value, reinterpret_cast<const void*>(ptr), sizeof(value));
128 return int64_t(value);
129 }
130 if (ftrace_type == kFtraceInt64) {
131 int64_t value;
132 memcpy(&value, reinterpret_cast<const void*>(ptr), sizeof(value));
133 return value;
134 }
135 PERFETTO_FATAL("unexpected ftrace type");
136 }
137
SetBlocking(int fd,bool is_blocking)138 bool SetBlocking(int fd, bool is_blocking) {
139 int flags = fcntl(fd, F_GETFL, 0);
140 flags = (is_blocking) ? (flags & ~O_NONBLOCK) : (flags | O_NONBLOCK);
141 return fcntl(fd, F_SETFL, flags) == 0;
142 }
143
144 } // namespace
145
146 using protos::pbzero::GenericFtraceEvent;
147
CpuReader(size_t cpu,const ProtoTranslationTable * table,LazyKernelSymbolizer * symbolizer,base::ScopedFile trace_fd)148 CpuReader::CpuReader(size_t cpu,
149 const ProtoTranslationTable* table,
150 LazyKernelSymbolizer* symbolizer,
151 base::ScopedFile trace_fd)
152 : cpu_(cpu),
153 table_(table),
154 symbolizer_(symbolizer),
155 trace_fd_(std::move(trace_fd)) {
156 PERFETTO_CHECK(trace_fd_);
157 PERFETTO_CHECK(SetBlocking(*trace_fd_, false));
158 }
159
160 CpuReader::~CpuReader() = default;
161
ReadCycle(uint8_t * parsing_buf,size_t parsing_buf_size_pages,size_t max_pages,const std::set<FtraceDataSource * > & started_data_sources)162 size_t CpuReader::ReadCycle(
163 uint8_t* parsing_buf,
164 size_t parsing_buf_size_pages,
165 size_t max_pages,
166 const std::set<FtraceDataSource*>& started_data_sources) {
167 PERFETTO_DCHECK(max_pages > 0 && parsing_buf_size_pages > 0);
168 metatrace::ScopedEvent evt(metatrace::TAG_FTRACE,
169 metatrace::FTRACE_CPU_READ_CYCLE);
170
171 // Work in batches to keep cache locality, and limit memory usage.
172 size_t batch_pages = std::min(parsing_buf_size_pages, max_pages);
173 size_t total_pages_read = 0;
174 for (bool is_first_batch = true;; is_first_batch = false) {
175 size_t pages_read = ReadAndProcessBatch(
176 parsing_buf, batch_pages, is_first_batch, started_data_sources);
177
178 PERFETTO_DCHECK(pages_read <= batch_pages);
179 total_pages_read += pages_read;
180
181 // Check whether we've caught up to the writer, or possibly giving up on
182 // this attempt due to some error.
183 if (pages_read != batch_pages)
184 break;
185 // Check if we've hit the limit of work for this cycle.
186 if (total_pages_read >= max_pages)
187 break;
188 }
189 PERFETTO_METATRACE_COUNTER(TAG_FTRACE, FTRACE_PAGES_DRAINED,
190 total_pages_read);
191 return total_pages_read;
192 }
193
194 // metatrace note: mark the reading phase as FTRACE_CPU_READ_BATCH, but let the
195 // parsing time be implied (by the difference between the caller's span, and
196 // this reading span). Makes it easier to estimate the read/parse ratio when
197 // looking at the trace in the UI.
ReadAndProcessBatch(uint8_t * parsing_buf,size_t max_pages,bool first_batch_in_cycle,const std::set<FtraceDataSource * > & started_data_sources)198 size_t CpuReader::ReadAndProcessBatch(
199 uint8_t* parsing_buf,
200 size_t max_pages,
201 bool first_batch_in_cycle,
202 const std::set<FtraceDataSource*>& started_data_sources) {
203 size_t pages_read = 0;
204 {
205 metatrace::ScopedEvent evt(metatrace::TAG_FTRACE,
206 metatrace::FTRACE_CPU_READ_BATCH);
207 for (; pages_read < max_pages;) {
208 uint8_t* curr_page = parsing_buf + (pages_read * base::kPageSize);
209 ssize_t res =
210 PERFETTO_EINTR(read(*trace_fd_, curr_page, base::kPageSize));
211 if (res < 0) {
212 // Expected errors:
213 // EAGAIN: no data (since we're in non-blocking mode).
214 // ENONMEM, EBUSY: temporary ftrace failures (they happen).
215 // ENODEV: the cpu is offline (b/145583318).
216 if (errno != EAGAIN && errno != ENOMEM && errno != EBUSY &&
217 errno != ENODEV) {
218 PERFETTO_PLOG("Unexpected error on raw ftrace read");
219 }
220 break; // stop reading regardless of errno
221 }
222
223 // As long as all of our reads are for a single page, the kernel should
224 // return exactly a well-formed raw ftrace page (if not in the steady
225 // state of reading out fully-written pages, the kernel will construct
226 // pages as necessary, copying over events and zero-filling at the end).
227 // A sub-page read() is therefore not expected in practice (unless
228 // there's a concurrent reader requesting less than a page?). Crash if
229 // encountering this situation. Kernel source pointer: see usage of
230 // |info->read| within |tracing_buffers_read|.
231 if (res == 0) {
232 // Very rare, but possible. Stop for now, should recover.
233 PERFETTO_DLOG("[cpu%zu]: 0-sized read from ftrace pipe.", cpu_);
234 break;
235 }
236 PERFETTO_CHECK(res == static_cast<ssize_t>(base::kPageSize));
237
238 pages_read += 1;
239
240 // Compare the amount of ftrace data read against an empirical threshold
241 // to make an educated guess on whether we should read more. To figure
242 // out the amount of ftrace data, we need to parse the page header (since
243 // the read always returns a page, zero-filled at the end). If we read
244 // fewer bytes than the threshold, it means that we caught up with the
245 // write pointer and we started consuming ftrace events in real-time.
246 // This cannot be just 4096 because it needs to account for
247 // fragmentation, i.e. for the fact that the last trace event didn't fit
248 // in the current page and hence the current page was terminated
249 // prematurely.
250 static constexpr size_t kRoughlyAPage = base::kPageSize - 512;
251 const uint8_t* scratch_ptr = curr_page;
252 base::Optional<PageHeader> hdr =
253 ParsePageHeader(&scratch_ptr, table_->page_header_size_len());
254 PERFETTO_DCHECK(hdr && hdr->size > 0 && hdr->size <= base::kPageSize);
255 if (!hdr.has_value()) {
256 PERFETTO_ELOG("[cpu%zu]: can't parse page header", cpu_);
257 break;
258 }
259 // Note that the first read after starting the read cycle being small is
260 // normal. It means that we're given the remainder of events from a
261 // page that we've partially consumed during the last read of the previous
262 // cycle (having caught up to the writer).
263 if (hdr->size < kRoughlyAPage &&
264 !(first_batch_in_cycle && pages_read == 1)) {
265 break;
266 }
267 }
268 } // end of metatrace::FTRACE_CPU_READ_BATCH
269
270 // Parse the pages and write to the trace for all relevant data
271 // sources.
272 if (pages_read == 0)
273 return pages_read;
274
275 for (FtraceDataSource* data_source : started_data_sources) {
276 bool success = ProcessPagesForDataSource(
277 data_source->trace_writer(), data_source->mutable_metadata(), cpu_,
278 data_source->parsing_config(), parsing_buf, pages_read, table_,
279 symbolizer_);
280 PERFETTO_CHECK(success);
281 }
282
283 return pages_read;
284 }
285
286 // static
ProcessPagesForDataSource(TraceWriter * trace_writer,FtraceMetadata * metadata,size_t cpu,const FtraceDataSourceConfig * ds_config,const uint8_t * parsing_buf,const size_t pages_read,const ProtoTranslationTable * table,LazyKernelSymbolizer * symbolizer)287 bool CpuReader::ProcessPagesForDataSource(
288 TraceWriter* trace_writer,
289 FtraceMetadata* metadata,
290 size_t cpu,
291 const FtraceDataSourceConfig* ds_config,
292 const uint8_t* parsing_buf,
293 const size_t pages_read,
294 const ProtoTranslationTable* table,
295 LazyKernelSymbolizer* symbolizer) {
296 // Allocate the buffer for compact scheduler events (which will be unused if
297 // the compact option isn't enabled).
298 CompactSchedBuffer compact_sched;
299 bool compact_sched_enabled = ds_config->compact_sched.enabled;
300
301 TraceWriter::TracePacketHandle packet;
302 protos::pbzero::FtraceEventBundle* bundle = nullptr;
303
304 // This function is called after the contents of a FtraceBundle are written.
305 auto finalize_cur_packet = [&] {
306 PERFETTO_DCHECK(packet);
307 if (compact_sched_enabled)
308 compact_sched.WriteAndReset(bundle);
309
310 bundle->Finalize();
311 bundle = nullptr;
312
313 // Write the kernel symbol index (mangled address) -> name table.
314 // |metadata| is shared across all cpus, is distinct per |data_source| (i.e.
315 // tracing session) and is cleared after each FtraceController::ReadTick().
316 // const size_t kaddrs_size = metadata->kernel_addrs.size();
317 if (ds_config->symbolize_ksyms) {
318 // Symbol indexes are assigned mononically as |kernel_addrs.size()|,
319 // starting from index 1 (no symbol has index 0). Here we remember the
320 // size() (which is also == the highest value in |kernel_addrs|) at the
321 // beginning and only write newer indexes bigger than that.
322 uint32_t max_index_at_start = metadata->last_kernel_addr_index_written;
323 PERFETTO_DCHECK(max_index_at_start <= metadata->kernel_addrs.size());
324 protos::pbzero::InternedData* interned_data = nullptr;
325 auto* ksyms_map = symbolizer->GetOrCreateKernelSymbolMap();
326 bool wrote_at_least_one_symbol = false;
327 for (const FtraceMetadata::KernelAddr& kaddr : metadata->kernel_addrs) {
328 if (kaddr.index <= max_index_at_start)
329 continue;
330 std::string sym_name = ksyms_map->Lookup(kaddr.addr);
331 if (sym_name.empty()) {
332 // Lookup failed. This can genuinely happen in many occasions. E.g.,
333 // workqueue_execute_start has two pointers: one is a pointer to a
334 // function (which we expect to be symbolized), the other (|work|) is
335 // a pointer to a heap struct, which is unsymbolizable, even when
336 // using the textual ftrace endpoint.
337 continue;
338 }
339
340 if (!interned_data) {
341 // If this is the very first write, clear the start of the sequence
342 // so the trace processor knows that all previous indexes can be
343 // discarded and that the mapping is restarting.
344 // In most cases this occurs with cpu==0. But if cpu0 is idle, this
345 // will happen with the first CPU that has any ftrace data.
346 if (max_index_at_start == 0) {
347 packet->set_sequence_flags(
348 protos::pbzero::TracePacket::SEQ_INCREMENTAL_STATE_CLEARED);
349 }
350 interned_data = packet->set_interned_data();
351 }
352 auto* interned_sym = interned_data->add_kernel_symbols();
353 interned_sym->set_iid(kaddr.index);
354 interned_sym->set_str(sym_name);
355 wrote_at_least_one_symbol = true;
356 }
357
358 auto max_it_at_end = static_cast<uint32_t>(metadata->kernel_addrs.size());
359
360 // Rationale for the if (wrote_at_least_one_symbol) check: in rare cases,
361 // all symbols seen in a ProcessPagesForDataSource() call can fail the
362 // ksyms_map->Lookup(). If that happens we don't want to bump the
363 // last_kernel_addr_index_written watermark, as that would cause the next
364 // call to NOT emit the SEQ_INCREMENTAL_STATE_CLEARED.
365 if (wrote_at_least_one_symbol)
366 metadata->last_kernel_addr_index_written = max_it_at_end;
367 }
368
369 packet->Finalize();
370 }; // finalize_cur_packet().
371
372 auto start_new_packet = [&](bool lost_events) {
373 if (packet)
374 finalize_cur_packet();
375 packet = trace_writer->NewTracePacket();
376 bundle = packet->set_ftrace_events();
377 // Note: The fastpath in proto_trace_parser.cc speculates on the fact
378 // that the cpu field is the first field of the proto message. If this
379 // changes, change proto_trace_parser.cc accordingly.
380 bundle->set_cpu(static_cast<uint32_t>(cpu));
381 if (lost_events)
382 bundle->set_lost_events(true);
383 };
384
385 start_new_packet(/*lost_events=*/false);
386 for (size_t i = 0; i < pages_read; i++) {
387 const uint8_t* curr_page = parsing_buf + (i * base::kPageSize);
388 const uint8_t* curr_page_end = curr_page + base::kPageSize;
389 const uint8_t* parse_pos = curr_page;
390 base::Optional<PageHeader> page_header =
391 ParsePageHeader(&parse_pos, table->page_header_size_len());
392
393 if (!page_header.has_value() || page_header->size == 0 ||
394 parse_pos >= curr_page_end ||
395 parse_pos + page_header->size > curr_page_end) {
396 PERFETTO_DFATAL("invalid page header");
397 return false;
398 }
399
400 // Start a new bundle if either:
401 // * The page we're about to read indicates that there was a kernel ring
402 // buffer overrun since our last read from that per-cpu buffer. We have
403 // a single |lost_events| field per bundle, so start a new packet.
404 // * The compact_sched buffer is holding more unique interned strings than
405 // a threshold. We need to flush the compact buffer to make the
406 // interning lookups cheap again.
407 bool interner_past_threshold =
408 compact_sched_enabled &&
409 compact_sched.interner().interned_comms_size() >
410 kCompactSchedInternerThreshold;
411
412 if (page_header->lost_events || interner_past_threshold)
413 start_new_packet(page_header->lost_events);
414
415 size_t evt_size =
416 ParsePagePayload(parse_pos, &page_header.value(), table, ds_config,
417 &compact_sched, bundle, metadata);
418
419 // TODO(rsavitski): propagate error to trace processor in release builds.
420 // (FtraceMetadata -> FtraceStats in trace).
421 PERFETTO_DCHECK(evt_size == page_header->size);
422 }
423 finalize_cur_packet();
424
425 return true;
426 }
427
428 // A page header consists of:
429 // * timestamp: 8 bytes
430 // * commit: 8 bytes on 64 bit, 4 bytes on 32 bit kernels
431 //
432 // The kernel reports this at /sys/kernel/debug/tracing/events/header_page.
433 //
434 // |commit|'s bottom bits represent the length of the payload following this
435 // header. The top bits have been repurposed as a bitset of flags pertaining to
436 // data loss. We look only at the "there has been some data lost" flag
437 // (RB_MISSED_EVENTS), and ignore the relatively tricky "appended the precise
438 // lost events count past the end of the valid data, as there was room to do so"
439 // flag (RB_MISSED_STORED).
440 //
441 // static
ParsePageHeader(const uint8_t ** ptr,uint16_t page_header_size_len)442 base::Optional<CpuReader::PageHeader> CpuReader::ParsePageHeader(
443 const uint8_t** ptr,
444 uint16_t page_header_size_len) {
445 // Mask for the data length portion of the |commit| field. Note that the
446 // kernel implementation never explicitly defines the boundary (beyond using
447 // bits 30 and 31 as flags), but 27 bits are mentioned as sufficient in the
448 // original commit message, and is the constant used by trace-cmd.
449 constexpr static uint64_t kDataSizeMask = (1ull << 27) - 1;
450 // If set, indicates that the relevant cpu has lost events since the last read
451 // (clearing the bit internally).
452 constexpr static uint64_t kMissedEventsFlag = (1ull << 31);
453
454 const uint8_t* end_of_page = *ptr + base::kPageSize;
455 PageHeader page_header;
456 if (!CpuReader::ReadAndAdvance<uint64_t>(ptr, end_of_page,
457 &page_header.timestamp))
458 return base::nullopt;
459
460 uint32_t size_and_flags;
461
462 // On little endian, we can just read a uint32_t and reject the rest of the
463 // number later.
464 if (!CpuReader::ReadAndAdvance<uint32_t>(
465 ptr, end_of_page, base::AssumeLittleEndian(&size_and_flags)))
466 return base::nullopt;
467
468 page_header.size = size_and_flags & kDataSizeMask;
469 page_header.lost_events = bool(size_and_flags & kMissedEventsFlag);
470 PERFETTO_DCHECK(page_header.size <= base::kPageSize);
471
472 // Reject rest of the number, if applicable. On 32-bit, size_bytes - 4 will
473 // evaluate to 0 and this will be a no-op. On 64-bit, this will advance by 4
474 // bytes.
475 PERFETTO_DCHECK(page_header_size_len >= 4);
476 *ptr += page_header_size_len - 4;
477
478 return base::make_optional(page_header);
479 }
480
481 // A raw ftrace buffer page consists of a header followed by a sequence of
482 // binary ftrace events. See |ParsePageHeader| for the format of the earlier.
483 //
484 // This method is deliberately static so it can be tested independently.
ParsePagePayload(const uint8_t * start_of_payload,const PageHeader * page_header,const ProtoTranslationTable * table,const FtraceDataSourceConfig * ds_config,CompactSchedBuffer * compact_sched_buffer,FtraceEventBundle * bundle,FtraceMetadata * metadata)485 size_t CpuReader::ParsePagePayload(const uint8_t* start_of_payload,
486 const PageHeader* page_header,
487 const ProtoTranslationTable* table,
488 const FtraceDataSourceConfig* ds_config,
489 CompactSchedBuffer* compact_sched_buffer,
490 FtraceEventBundle* bundle,
491 FtraceMetadata* metadata) {
492 const uint8_t* ptr = start_of_payload;
493 const uint8_t* const end = ptr + page_header->size;
494
495 uint64_t timestamp = page_header->timestamp;
496
497 while (ptr < end) {
498 EventHeader event_header;
499 if (!ReadAndAdvance(&ptr, end, &event_header))
500 return 0;
501
502 timestamp += event_header.time_delta;
503
504 switch (event_header.type_or_length) {
505 case kTypePadding: {
506 // Left over page padding or discarded event.
507 if (event_header.time_delta == 0) {
508 // Not clear what the correct behaviour is in this case.
509 PERFETTO_DFATAL("Empty padding event.");
510 return 0;
511 }
512 uint32_t length = 0;
513 if (!ReadAndAdvance<uint32_t>(&ptr, end, &length))
514 return 0;
515 // length includes itself (4 bytes)
516 if (length < 4)
517 return 0;
518 ptr += length - 4;
519 break;
520 }
521 case kTypeTimeExtend: {
522 // Extend the time delta.
523 uint32_t time_delta_ext = 0;
524 if (!ReadAndAdvance<uint32_t>(&ptr, end, &time_delta_ext))
525 return 0;
526 timestamp += (static_cast<uint64_t>(time_delta_ext)) << 27;
527 break;
528 }
529 case kTypeTimeStamp: {
530 // Absolute timestamp. This was historically partially implemented, but
531 // not written. Kernels 4.17+ reimplemented this record, changing its
532 // size in the process. We assume the newer layout. Parsed the same as
533 // kTypeTimeExtend, except that the timestamp is interpreted as an
534 // absolute, instead of a delta on top of the previous state.
535 timestamp = event_header.time_delta;
536 uint32_t time_delta_ext = 0;
537 if (!ReadAndAdvance<uint32_t>(&ptr, end, &time_delta_ext))
538 return 0;
539 timestamp += (static_cast<uint64_t>(time_delta_ext)) << 27;
540 break;
541 }
542 // Data record:
543 default: {
544 PERFETTO_CHECK(event_header.type_or_length <= kTypeDataTypeLengthMax);
545 // type_or_length is <=28 so it represents the length of a data
546 // record. if == 0, this is an extended record and the size of the
547 // record is stored in the first uint32_t word in the payload. See
548 // Kernel's include/linux/ring_buffer.h
549 uint32_t event_size = 0;
550 if (event_header.type_or_length == 0) {
551 if (!ReadAndAdvance<uint32_t>(&ptr, end, &event_size))
552 return 0;
553 // Size includes the size field itself.
554 if (event_size < 4)
555 return 0;
556 event_size -= 4;
557 } else {
558 event_size = 4 * event_header.type_or_length;
559 }
560 const uint8_t* start = ptr;
561 const uint8_t* next = ptr + event_size;
562
563 if (next > end)
564 return 0;
565
566 uint16_t ftrace_event_id;
567 if (!ReadAndAdvance<uint16_t>(&ptr, end, &ftrace_event_id))
568 return 0;
569
570 if (ds_config->event_filter.IsEventEnabled(ftrace_event_id)) {
571 // Special-cased handling of some scheduler events when compact format
572 // is enabled.
573 bool compact_sched_enabled = ds_config->compact_sched.enabled;
574 const CompactSchedSwitchFormat& sched_switch_format =
575 table->compact_sched_format().sched_switch;
576 const CompactSchedWakingFormat& sched_waking_format =
577 table->compact_sched_format().sched_waking;
578
579 // compact sched_switch
580 if (compact_sched_enabled &&
581 ftrace_event_id == sched_switch_format.event_id) {
582 if (event_size < sched_switch_format.size)
583 return 0;
584
585 ParseSchedSwitchCompact(start, timestamp, &sched_switch_format,
586 compact_sched_buffer, metadata);
587
588 // compact sched_waking
589 } else if (compact_sched_enabled &&
590 ftrace_event_id == sched_waking_format.event_id) {
591 if (event_size < sched_waking_format.size)
592 return 0;
593
594 ParseSchedWakingCompact(start, timestamp, &sched_waking_format,
595 compact_sched_buffer, metadata);
596
597 } else {
598 // Common case: parse all other types of enabled events.
599 protos::pbzero::FtraceEvent* event = bundle->add_event();
600 event->set_timestamp(timestamp);
601 if (!ParseEvent(ftrace_event_id, start, next, table, event,
602 metadata))
603 return 0;
604 }
605 }
606
607 // Jump to next event.
608 ptr = next;
609 }
610 }
611 }
612 return static_cast<size_t>(ptr - start_of_payload);
613 }
614
615 // |start| is the start of the current event.
616 // |end| is the end of the buffer.
ParseEvent(uint16_t ftrace_event_id,const uint8_t * start,const uint8_t * end,const ProtoTranslationTable * table,protozero::Message * message,FtraceMetadata * metadata)617 bool CpuReader::ParseEvent(uint16_t ftrace_event_id,
618 const uint8_t* start,
619 const uint8_t* end,
620 const ProtoTranslationTable* table,
621 protozero::Message* message,
622 FtraceMetadata* metadata) {
623 PERFETTO_DCHECK(start < end);
624 const size_t length = static_cast<size_t>(end - start);
625
626 // TODO(hjd): Rework to work even if the event is unknown.
627 const Event& info = *table->GetEventById(ftrace_event_id);
628
629 // TODO(hjd): Test truncated events.
630 // If the end of the buffer is before the end of the event give up.
631 if (info.size > length) {
632 PERFETTO_DFATAL("Buffer overflowed.");
633 return false;
634 }
635
636 bool success = true;
637 for (const Field& field : table->common_fields())
638 success &= ParseField(field, start, end, table, message, metadata);
639
640 protozero::Message* nested =
641 message->BeginNestedMessage<protozero::Message>(info.proto_field_id);
642
643 // Parse generic event.
644 if (PERFETTO_UNLIKELY(info.proto_field_id ==
645 protos::pbzero::FtraceEvent::kGenericFieldNumber)) {
646 nested->AppendString(GenericFtraceEvent::kEventNameFieldNumber, info.name);
647 for (const Field& field : info.fields) {
648 auto generic_field = nested->BeginNestedMessage<protozero::Message>(
649 GenericFtraceEvent::kFieldFieldNumber);
650 // TODO(hjd): Avoid outputting field names every time.
651 generic_field->AppendString(GenericFtraceEvent::Field::kNameFieldNumber,
652 field.ftrace_name);
653 success &= ParseField(field, start, end, table, generic_field, metadata);
654 }
655 } else { // Parse all other events.
656 for (const Field& field : info.fields) {
657 success &= ParseField(field, start, end, table, nested, metadata);
658 }
659 }
660
661 if (PERFETTO_UNLIKELY(info.proto_field_id ==
662 protos::pbzero::FtraceEvent::kTaskRenameFieldNumber)) {
663 // For task renames, we want to store that the pid was renamed. We use the
664 // common pid to reduce code complexity as in all the cases we care about,
665 // the common pid is the same as the renamed pid (the pid inside the event).
666 PERFETTO_DCHECK(metadata->last_seen_common_pid);
667 metadata->AddRenamePid(metadata->last_seen_common_pid);
668 }
669
670 // This finalizes |nested| and |proto_field| automatically.
671 message->Finalize();
672 metadata->FinishEvent();
673 return success;
674 }
675
676 // Caller must guarantee that the field fits in the range,
677 // explicitly: start + field.ftrace_offset + field.ftrace_size <= end
678 // The only exception is fields with strategy = kCStringToString
679 // where the total size isn't known up front. In this case ParseField
680 // will check the string terminates in the bounds and won't read past |end|.
ParseField(const Field & field,const uint8_t * start,const uint8_t * end,const ProtoTranslationTable * table,protozero::Message * message,FtraceMetadata * metadata)681 bool CpuReader::ParseField(const Field& field,
682 const uint8_t* start,
683 const uint8_t* end,
684 const ProtoTranslationTable* table,
685 protozero::Message* message,
686 FtraceMetadata* metadata) {
687 PERFETTO_DCHECK(start + field.ftrace_offset + field.ftrace_size <= end);
688 const uint8_t* field_start = start + field.ftrace_offset;
689 uint32_t field_id = field.proto_field_id;
690
691 switch (field.strategy) {
692 case kUint8ToUint32:
693 case kUint8ToUint64:
694 ReadIntoVarInt<uint8_t>(field_start, field_id, message);
695 return true;
696 case kUint16ToUint32:
697 case kUint16ToUint64:
698 ReadIntoVarInt<uint16_t>(field_start, field_id, message);
699 return true;
700 case kUint32ToUint32:
701 case kUint32ToUint64:
702 ReadIntoVarInt<uint32_t>(field_start, field_id, message);
703 return true;
704 case kUint64ToUint64:
705 ReadIntoVarInt<uint64_t>(field_start, field_id, message);
706 return true;
707 case kInt8ToInt32:
708 case kInt8ToInt64:
709 ReadIntoVarInt<int8_t>(field_start, field_id, message);
710 return true;
711 case kInt16ToInt32:
712 case kInt16ToInt64:
713 ReadIntoVarInt<int16_t>(field_start, field_id, message);
714 return true;
715 case kInt32ToInt32:
716 case kInt32ToInt64:
717 ReadIntoVarInt<int32_t>(field_start, field_id, message);
718 return true;
719 case kInt64ToInt64:
720 ReadIntoVarInt<int64_t>(field_start, field_id, message);
721 return true;
722 case kFixedCStringToString:
723 // TODO(hjd): Add AppendMaxLength string to protozero.
724 return ReadIntoString(field_start, field_start + field.ftrace_size,
725 field_id, message);
726 case kCStringToString:
727 // TODO(hjd): Kernel-dive to check this how size:0 char fields work.
728 return ReadIntoString(field_start, end, field_id, message);
729 case kStringPtrToString: {
730 uint64_t n = 0;
731 // The ftrace field may be 8 or 4 bytes and we need to copy it into the
732 // bottom of n. In the unlikely case where the field is >8 bytes we
733 // should avoid making things worse by corrupting the stack but we
734 // don't need to handle it correctly.
735 size_t size = std::min<size_t>(field.ftrace_size, sizeof(n));
736 memcpy(base::AssumeLittleEndian(&n),
737 reinterpret_cast<const void*>(field_start), size);
738 // Look up the adddress in the printk format map and write it into the
739 // proto.
740 base::StringView name = table->LookupTraceString(n);
741 message->AppendBytes(field_id, name.begin(), name.size());
742 return true;
743 }
744 case kDataLocToString:
745 return ReadDataLoc(start, field_start, end, field, message);
746 case kBoolToUint32:
747 case kBoolToUint64:
748 ReadIntoVarInt<uint8_t>(field_start, field_id, message);
749 return true;
750 case kInode32ToUint64:
751 ReadInode<uint32_t>(field_start, field_id, message, metadata);
752 return true;
753 case kInode64ToUint64:
754 ReadInode<uint64_t>(field_start, field_id, message, metadata);
755 return true;
756 case kPid32ToInt32:
757 case kPid32ToInt64:
758 ReadPid(field_start, field_id, message, metadata);
759 return true;
760 case kCommonPid32ToInt32:
761 case kCommonPid32ToInt64:
762 ReadCommonPid(field_start, field_id, message, metadata);
763 return true;
764 case kDevId32ToUint64:
765 ReadDevId<uint32_t>(field_start, field_id, message, metadata);
766 return true;
767 case kDevId64ToUint64:
768 ReadDevId<uint64_t>(field_start, field_id, message, metadata);
769 return true;
770 case kFtraceSymAddr64ToUint64:
771 ReadSymbolAddr<uint64_t>(field_start, field_id, message, metadata);
772 return true;
773 case kInvalidTranslationStrategy:
774 break;
775 }
776 PERFETTO_FATAL("Unexpected translation strategy");
777 }
778
779 // Parse a sched_switch event according to pre-validated format, and buffer the
780 // individual fields in the current compact batch. See the code populating
781 // |CompactSchedSwitchFormat| for the assumptions made around the format, which
782 // this code is closely tied to.
783 // static
ParseSchedSwitchCompact(const uint8_t * start,uint64_t timestamp,const CompactSchedSwitchFormat * format,CompactSchedBuffer * compact_buf,FtraceMetadata * metadata)784 void CpuReader::ParseSchedSwitchCompact(const uint8_t* start,
785 uint64_t timestamp,
786 const CompactSchedSwitchFormat* format,
787 CompactSchedBuffer* compact_buf,
788 FtraceMetadata* metadata) {
789 compact_buf->sched_switch().AppendTimestamp(timestamp);
790
791 int32_t next_pid = ReadValue<int32_t>(start + format->next_pid_offset);
792 compact_buf->sched_switch().next_pid().Append(next_pid);
793 metadata->AddPid(next_pid);
794
795 int32_t next_prio = ReadValue<int32_t>(start + format->next_prio_offset);
796 compact_buf->sched_switch().next_prio().Append(next_prio);
797
798 // Varint encoding of int32 and int64 is the same, so treat the value as
799 // int64 after reading.
800 int64_t prev_state = ReadSignedFtraceValue(start + format->prev_state_offset,
801 format->prev_state_type);
802 compact_buf->sched_switch().prev_state().Append(prev_state);
803
804 // next_comm
805 const char* comm_ptr =
806 reinterpret_cast<const char*>(start + format->next_comm_offset);
807 size_t iid = compact_buf->interner().InternComm(comm_ptr);
808 compact_buf->sched_switch().next_comm_index().Append(iid);
809 }
810
811 // static
ParseSchedWakingCompact(const uint8_t * start,uint64_t timestamp,const CompactSchedWakingFormat * format,CompactSchedBuffer * compact_buf,FtraceMetadata * metadata)812 void CpuReader::ParseSchedWakingCompact(const uint8_t* start,
813 uint64_t timestamp,
814 const CompactSchedWakingFormat* format,
815 CompactSchedBuffer* compact_buf,
816 FtraceMetadata* metadata) {
817 compact_buf->sched_waking().AppendTimestamp(timestamp);
818
819 int32_t pid = ReadValue<int32_t>(start + format->pid_offset);
820 compact_buf->sched_waking().pid().Append(pid);
821 metadata->AddPid(pid);
822
823 int32_t target_cpu = ReadValue<int32_t>(start + format->target_cpu_offset);
824 compact_buf->sched_waking().target_cpu().Append(target_cpu);
825
826 int32_t prio = ReadValue<int32_t>(start + format->prio_offset);
827 compact_buf->sched_waking().prio().Append(prio);
828
829 // comm
830 const char* comm_ptr =
831 reinterpret_cast<const char*>(start + format->comm_offset);
832 size_t iid = compact_buf->interner().InternComm(comm_ptr);
833 compact_buf->sched_waking().comm_index().Append(iid);
834 }
835
836 } // namespace perfetto
837