1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53
54 using namespace llvm;
55
getTypeString(Type * T)56 static std::string getTypeString(Type *T) {
57 std::string Result;
58 raw_string_ostream Tmp(Result);
59 Tmp << *T;
60 return Tmp.str();
61 }
62
63 /// Run: module ::= toplevelentity*
Run()64 bool LLParser::Run() {
65 // Prime the lexer.
66 Lex.Lex();
67
68 if (Context.shouldDiscardValueNames())
69 return Error(
70 Lex.getLoc(),
71 "Can't read textual IR with a Context that discards named Values");
72
73 return ParseTopLevelEntities() || ValidateEndOfModule() ||
74 ValidateEndOfIndex();
75 }
76
parseStandaloneConstantValue(Constant * & C,const SlotMapping * Slots)77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78 const SlotMapping *Slots) {
79 restoreParsingState(Slots);
80 Lex.Lex();
81
82 Type *Ty = nullptr;
83 if (ParseType(Ty) || parseConstantValue(Ty, C))
84 return true;
85 if (Lex.getKind() != lltok::Eof)
86 return Error(Lex.getLoc(), "expected end of string");
87 return false;
88 }
89
parseTypeAtBeginning(Type * & Ty,unsigned & Read,const SlotMapping * Slots)90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91 const SlotMapping *Slots) {
92 restoreParsingState(Slots);
93 Lex.Lex();
94
95 Read = 0;
96 SMLoc Start = Lex.getLoc();
97 Ty = nullptr;
98 if (ParseType(Ty))
99 return true;
100 SMLoc End = Lex.getLoc();
101 Read = End.getPointer() - Start.getPointer();
102
103 return false;
104 }
105
restoreParsingState(const SlotMapping * Slots)106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107 if (!Slots)
108 return;
109 NumberedVals = Slots->GlobalValues;
110 NumberedMetadata = Slots->MetadataNodes;
111 for (const auto &I : Slots->NamedTypes)
112 NamedTypes.insert(
113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114 for (const auto &I : Slots->Types)
115 NumberedTypes.insert(
116 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
ValidateEndOfModule()121 bool LLParser::ValidateEndOfModule() {
122 if (!M)
123 return false;
124 // Handle any function attribute group forward references.
125 for (const auto &RAG : ForwardRefAttrGroups) {
126 Value *V = RAG.first;
127 const std::vector<unsigned> &Attrs = RAG.second;
128 AttrBuilder B;
129
130 for (const auto &Attr : Attrs)
131 B.merge(NumberedAttrBuilders[Attr]);
132
133 if (Function *Fn = dyn_cast<Function>(V)) {
134 AttributeList AS = Fn->getAttributes();
135 AttrBuilder FnAttrs(AS.getFnAttributes());
136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137
138 FnAttrs.merge(B);
139
140 // If the alignment was parsed as an attribute, move to the alignment
141 // field.
142 if (FnAttrs.hasAlignmentAttr()) {
143 Fn->setAlignment(FnAttrs.getAlignment());
144 FnAttrs.removeAttribute(Attribute::Alignment);
145 }
146
147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148 AttributeSet::get(Context, FnAttrs));
149 Fn->setAttributes(AS);
150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151 AttributeList AS = CI->getAttributes();
152 AttrBuilder FnAttrs(AS.getFnAttributes());
153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154 FnAttrs.merge(B);
155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156 AttributeSet::get(Context, FnAttrs));
157 CI->setAttributes(AS);
158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159 AttributeList AS = II->getAttributes();
160 AttrBuilder FnAttrs(AS.getFnAttributes());
161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162 FnAttrs.merge(B);
163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164 AttributeSet::get(Context, FnAttrs));
165 II->setAttributes(AS);
166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167 AttributeList AS = CBI->getAttributes();
168 AttrBuilder FnAttrs(AS.getFnAttributes());
169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170 FnAttrs.merge(B);
171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172 AttributeSet::get(Context, FnAttrs));
173 CBI->setAttributes(AS);
174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175 AttrBuilder Attrs(GV->getAttributes());
176 Attrs.merge(B);
177 GV->setAttributes(AttributeSet::get(Context,Attrs));
178 } else {
179 llvm_unreachable("invalid object with forward attribute group reference");
180 }
181 }
182
183 // If there are entries in ForwardRefBlockAddresses at this point, the
184 // function was never defined.
185 if (!ForwardRefBlockAddresses.empty())
186 return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187 "expected function name in blockaddress");
188
189 for (const auto &NT : NumberedTypes)
190 if (NT.second.second.isValid())
191 return Error(NT.second.second,
192 "use of undefined type '%" + Twine(NT.first) + "'");
193
194 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196 if (I->second.second.isValid())
197 return Error(I->second.second,
198 "use of undefined type named '" + I->getKey() + "'");
199
200 if (!ForwardRefComdats.empty())
201 return Error(ForwardRefComdats.begin()->second,
202 "use of undefined comdat '$" +
203 ForwardRefComdats.begin()->first + "'");
204
205 if (!ForwardRefVals.empty())
206 return Error(ForwardRefVals.begin()->second.second,
207 "use of undefined value '@" + ForwardRefVals.begin()->first +
208 "'");
209
210 if (!ForwardRefValIDs.empty())
211 return Error(ForwardRefValIDs.begin()->second.second,
212 "use of undefined value '@" +
213 Twine(ForwardRefValIDs.begin()->first) + "'");
214
215 if (!ForwardRefMDNodes.empty())
216 return Error(ForwardRefMDNodes.begin()->second.second,
217 "use of undefined metadata '!" +
218 Twine(ForwardRefMDNodes.begin()->first) + "'");
219
220 // Resolve metadata cycles.
221 for (auto &N : NumberedMetadata) {
222 if (N.second && !N.second->isResolved())
223 N.second->resolveCycles();
224 }
225
226 for (auto *Inst : InstsWithTBAATag) {
227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229 auto *UpgradedMD = UpgradeTBAANode(*MD);
230 if (MD != UpgradedMD)
231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232 }
233
234 // Look for intrinsic functions and CallInst that need to be upgraded
235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237
238 // Some types could be renamed during loading if several modules are
239 // loaded in the same LLVMContext (LTO scenario). In this case we should
240 // remangle intrinsics names as well.
241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242 Function *F = &*FI++;
243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244 F->replaceAllUsesWith(Remangled.getValue());
245 F->eraseFromParent();
246 }
247 }
248
249 if (UpgradeDebugInfo)
250 llvm::UpgradeDebugInfo(*M);
251
252 UpgradeModuleFlags(*M);
253 UpgradeSectionAttributes(*M);
254
255 if (!Slots)
256 return false;
257 // Initialize the slot mapping.
258 // Because by this point we've parsed and validated everything, we can "steal"
259 // the mapping from LLParser as it doesn't need it anymore.
260 Slots->GlobalValues = std::move(NumberedVals);
261 Slots->MetadataNodes = std::move(NumberedMetadata);
262 for (const auto &I : NamedTypes)
263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264 for (const auto &I : NumberedTypes)
265 Slots->Types.insert(std::make_pair(I.first, I.second.first));
266
267 return false;
268 }
269
270 /// Do final validity and sanity checks at the end of the index.
ValidateEndOfIndex()271 bool LLParser::ValidateEndOfIndex() {
272 if (!Index)
273 return false;
274
275 if (!ForwardRefValueInfos.empty())
276 return Error(ForwardRefValueInfos.begin()->second.front().second,
277 "use of undefined summary '^" +
278 Twine(ForwardRefValueInfos.begin()->first) + "'");
279
280 if (!ForwardRefAliasees.empty())
281 return Error(ForwardRefAliasees.begin()->second.front().second,
282 "use of undefined summary '^" +
283 Twine(ForwardRefAliasees.begin()->first) + "'");
284
285 if (!ForwardRefTypeIds.empty())
286 return Error(ForwardRefTypeIds.begin()->second.front().second,
287 "use of undefined type id summary '^" +
288 Twine(ForwardRefTypeIds.begin()->first) + "'");
289
290 return false;
291 }
292
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296
ParseTopLevelEntities()297 bool LLParser::ParseTopLevelEntities() {
298 // If there is no Module, then parse just the summary index entries.
299 if (!M) {
300 while (true) {
301 switch (Lex.getKind()) {
302 case lltok::Eof:
303 return false;
304 case lltok::SummaryID:
305 if (ParseSummaryEntry())
306 return true;
307 break;
308 case lltok::kw_source_filename:
309 if (ParseSourceFileName())
310 return true;
311 break;
312 default:
313 // Skip everything else
314 Lex.Lex();
315 }
316 }
317 }
318 while (true) {
319 switch (Lex.getKind()) {
320 default: return TokError("expected top-level entity");
321 case lltok::Eof: return false;
322 case lltok::kw_declare: if (ParseDeclare()) return true; break;
323 case lltok::kw_define: if (ParseDefine()) return true; break;
324 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
326 case lltok::kw_source_filename:
327 if (ParseSourceFileName())
328 return true;
329 break;
330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332 case lltok::LocalVar: if (ParseNamedType()) return true; break;
333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
335 case lltok::ComdatVar: if (parseComdat()) return true; break;
336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
337 case lltok::SummaryID:
338 if (ParseSummaryEntry())
339 return true;
340 break;
341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344 case lltok::kw_uselistorder_bb:
345 if (ParseUseListOrderBB())
346 return true;
347 break;
348 }
349 }
350 }
351
352 /// toplevelentity
353 /// ::= 'module' 'asm' STRINGCONSTANT
ParseModuleAsm()354 bool LLParser::ParseModuleAsm() {
355 assert(Lex.getKind() == lltok::kw_module);
356 Lex.Lex();
357
358 std::string AsmStr;
359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360 ParseStringConstant(AsmStr)) return true;
361
362 M->appendModuleInlineAsm(AsmStr);
363 return false;
364 }
365
366 /// toplevelentity
367 /// ::= 'target' 'triple' '=' STRINGCONSTANT
368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
ParseTargetDefinition()369 bool LLParser::ParseTargetDefinition() {
370 assert(Lex.getKind() == lltok::kw_target);
371 std::string Str;
372 switch (Lex.Lex()) {
373 default: return TokError("unknown target property");
374 case lltok::kw_triple:
375 Lex.Lex();
376 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377 ParseStringConstant(Str))
378 return true;
379 M->setTargetTriple(Str);
380 return false;
381 case lltok::kw_datalayout:
382 Lex.Lex();
383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384 ParseStringConstant(Str))
385 return true;
386 if (DataLayoutStr.empty())
387 M->setDataLayout(Str);
388 return false;
389 }
390 }
391
392 /// toplevelentity
393 /// ::= 'source_filename' '=' STRINGCONSTANT
ParseSourceFileName()394 bool LLParser::ParseSourceFileName() {
395 assert(Lex.getKind() == lltok::kw_source_filename);
396 Lex.Lex();
397 if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398 ParseStringConstant(SourceFileName))
399 return true;
400 if (M)
401 M->setSourceFileName(SourceFileName);
402 return false;
403 }
404
405 /// toplevelentity
406 /// ::= 'deplibs' '=' '[' ']'
407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
ParseDepLibs()409 bool LLParser::ParseDepLibs() {
410 assert(Lex.getKind() == lltok::kw_deplibs);
411 Lex.Lex();
412 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414 return true;
415
416 if (EatIfPresent(lltok::rsquare))
417 return false;
418
419 do {
420 std::string Str;
421 if (ParseStringConstant(Str)) return true;
422 } while (EatIfPresent(lltok::comma));
423
424 return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426
427 /// ParseUnnamedType:
428 /// ::= LocalVarID '=' 'type' type
ParseUnnamedType()429 bool LLParser::ParseUnnamedType() {
430 LocTy TypeLoc = Lex.getLoc();
431 unsigned TypeID = Lex.getUIntVal();
432 Lex.Lex(); // eat LocalVarID;
433
434 if (ParseToken(lltok::equal, "expected '=' after name") ||
435 ParseToken(lltok::kw_type, "expected 'type' after '='"))
436 return true;
437
438 Type *Result = nullptr;
439 if (ParseStructDefinition(TypeLoc, "",
440 NumberedTypes[TypeID], Result)) return true;
441
442 if (!isa<StructType>(Result)) {
443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444 if (Entry.first)
445 return Error(TypeLoc, "non-struct types may not be recursive");
446 Entry.first = Result;
447 Entry.second = SMLoc();
448 }
449
450 return false;
451 }
452
453 /// toplevelentity
454 /// ::= LocalVar '=' 'type' type
ParseNamedType()455 bool LLParser::ParseNamedType() {
456 std::string Name = Lex.getStrVal();
457 LocTy NameLoc = Lex.getLoc();
458 Lex.Lex(); // eat LocalVar.
459
460 if (ParseToken(lltok::equal, "expected '=' after name") ||
461 ParseToken(lltok::kw_type, "expected 'type' after name"))
462 return true;
463
464 Type *Result = nullptr;
465 if (ParseStructDefinition(NameLoc, Name,
466 NamedTypes[Name], Result)) return true;
467
468 if (!isa<StructType>(Result)) {
469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470 if (Entry.first)
471 return Error(NameLoc, "non-struct types may not be recursive");
472 Entry.first = Result;
473 Entry.second = SMLoc();
474 }
475
476 return false;
477 }
478
479 /// toplevelentity
480 /// ::= 'declare' FunctionHeader
ParseDeclare()481 bool LLParser::ParseDeclare() {
482 assert(Lex.getKind() == lltok::kw_declare);
483 Lex.Lex();
484
485 std::vector<std::pair<unsigned, MDNode *>> MDs;
486 while (Lex.getKind() == lltok::MetadataVar) {
487 unsigned MDK;
488 MDNode *N;
489 if (ParseMetadataAttachment(MDK, N))
490 return true;
491 MDs.push_back({MDK, N});
492 }
493
494 Function *F;
495 if (ParseFunctionHeader(F, false))
496 return true;
497 for (auto &MD : MDs)
498 F->addMetadata(MD.first, *MD.second);
499 return false;
500 }
501
502 /// toplevelentity
503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
ParseDefine()504 bool LLParser::ParseDefine() {
505 assert(Lex.getKind() == lltok::kw_define);
506 Lex.Lex();
507
508 Function *F;
509 return ParseFunctionHeader(F, true) ||
510 ParseOptionalFunctionMetadata(*F) ||
511 ParseFunctionBody(*F);
512 }
513
514 /// ParseGlobalType
515 /// ::= 'constant'
516 /// ::= 'global'
ParseGlobalType(bool & IsConstant)517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518 if (Lex.getKind() == lltok::kw_constant)
519 IsConstant = true;
520 else if (Lex.getKind() == lltok::kw_global)
521 IsConstant = false;
522 else {
523 IsConstant = false;
524 return TokError("expected 'global' or 'constant'");
525 }
526 Lex.Lex();
527 return false;
528 }
529
ParseOptionalUnnamedAddr(GlobalVariable::UnnamedAddr & UnnamedAddr)530 bool LLParser::ParseOptionalUnnamedAddr(
531 GlobalVariable::UnnamedAddr &UnnamedAddr) {
532 if (EatIfPresent(lltok::kw_unnamed_addr))
533 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534 else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536 else
537 UnnamedAddr = GlobalValue::UnnamedAddr::None;
538 return false;
539 }
540
541 /// ParseUnnamedGlobal:
542 /// OptionalVisibility (ALIAS | IFUNC) ...
543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 /// OptionalDLLStorageClass
545 /// ... -> global variable
546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 /// OptionalDLLStorageClass
549 /// ... -> global variable
ParseUnnamedGlobal()550 bool LLParser::ParseUnnamedGlobal() {
551 unsigned VarID = NumberedVals.size();
552 std::string Name;
553 LocTy NameLoc = Lex.getLoc();
554
555 // Handle the GlobalID form.
556 if (Lex.getKind() == lltok::GlobalID) {
557 if (Lex.getUIntVal() != VarID)
558 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559 Twine(VarID) + "'");
560 Lex.Lex(); // eat GlobalID;
561
562 if (ParseToken(lltok::equal, "expected '=' after name"))
563 return true;
564 }
565
566 bool HasLinkage;
567 unsigned Linkage, Visibility, DLLStorageClass;
568 bool DSOLocal;
569 GlobalVariable::ThreadLocalMode TLM;
570 GlobalVariable::UnnamedAddr UnnamedAddr;
571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572 DSOLocal) ||
573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574 return true;
575
576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579
580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583
584 /// ParseNamedGlobal:
585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 /// OptionalVisibility OptionalDLLStorageClass
588 /// ... -> global variable
ParseNamedGlobal()589 bool LLParser::ParseNamedGlobal() {
590 assert(Lex.getKind() == lltok::GlobalVar);
591 LocTy NameLoc = Lex.getLoc();
592 std::string Name = Lex.getStrVal();
593 Lex.Lex();
594
595 bool HasLinkage;
596 unsigned Linkage, Visibility, DLLStorageClass;
597 bool DSOLocal;
598 GlobalVariable::ThreadLocalMode TLM;
599 GlobalVariable::UnnamedAddr UnnamedAddr;
600 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602 DSOLocal) ||
603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604 return true;
605
606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609
610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613
parseComdat()614 bool LLParser::parseComdat() {
615 assert(Lex.getKind() == lltok::ComdatVar);
616 std::string Name = Lex.getStrVal();
617 LocTy NameLoc = Lex.getLoc();
618 Lex.Lex();
619
620 if (ParseToken(lltok::equal, "expected '=' here"))
621 return true;
622
623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624 return TokError("expected comdat type");
625
626 Comdat::SelectionKind SK;
627 switch (Lex.getKind()) {
628 default:
629 return TokError("unknown selection kind");
630 case lltok::kw_any:
631 SK = Comdat::Any;
632 break;
633 case lltok::kw_exactmatch:
634 SK = Comdat::ExactMatch;
635 break;
636 case lltok::kw_largest:
637 SK = Comdat::Largest;
638 break;
639 case lltok::kw_noduplicates:
640 SK = Comdat::NoDuplicates;
641 break;
642 case lltok::kw_samesize:
643 SK = Comdat::SameSize;
644 break;
645 }
646 Lex.Lex();
647
648 // See if the comdat was forward referenced, if so, use the comdat.
649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653
654 Comdat *C;
655 if (I != ComdatSymTab.end())
656 C = &I->second;
657 else
658 C = M->getOrInsertComdat(Name);
659 C->setSelectionKind(SK);
660
661 return false;
662 }
663
664 // MDString:
665 // ::= '!' STRINGCONSTANT
ParseMDString(MDString * & Result)666 bool LLParser::ParseMDString(MDString *&Result) {
667 std::string Str;
668 if (ParseStringConstant(Str)) return true;
669 Result = MDString::get(Context, Str);
670 return false;
671 }
672
673 // MDNode:
674 // ::= '!' MDNodeNumber
ParseMDNodeID(MDNode * & Result)675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676 // !{ ..., !42, ... }
677 LocTy IDLoc = Lex.getLoc();
678 unsigned MID = 0;
679 if (ParseUInt32(MID))
680 return true;
681
682 // If not a forward reference, just return it now.
683 if (NumberedMetadata.count(MID)) {
684 Result = NumberedMetadata[MID];
685 return false;
686 }
687
688 // Otherwise, create MDNode forward reference.
689 auto &FwdRef = ForwardRefMDNodes[MID];
690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691
692 Result = FwdRef.first.get();
693 NumberedMetadata[MID].reset(Result);
694 return false;
695 }
696
697 /// ParseNamedMetadata:
698 /// !foo = !{ !1, !2 }
ParseNamedMetadata()699 bool LLParser::ParseNamedMetadata() {
700 assert(Lex.getKind() == lltok::MetadataVar);
701 std::string Name = Lex.getStrVal();
702 Lex.Lex();
703
704 if (ParseToken(lltok::equal, "expected '=' here") ||
705 ParseToken(lltok::exclaim, "Expected '!' here") ||
706 ParseToken(lltok::lbrace, "Expected '{' here"))
707 return true;
708
709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710 if (Lex.getKind() != lltok::rbrace)
711 do {
712 MDNode *N = nullptr;
713 // Parse DIExpressions inline as a special case. They are still MDNodes,
714 // so they can still appear in named metadata. Remove this logic if they
715 // become plain Metadata.
716 if (Lex.getKind() == lltok::MetadataVar &&
717 Lex.getStrVal() == "DIExpression") {
718 if (ParseDIExpression(N, /*IsDistinct=*/false))
719 return true;
720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721 ParseMDNodeID(N)) {
722 return true;
723 }
724 NMD->addOperand(N);
725 } while (EatIfPresent(lltok::comma));
726
727 return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729
730 /// ParseStandaloneMetadata:
731 /// !42 = !{...}
ParseStandaloneMetadata()732 bool LLParser::ParseStandaloneMetadata() {
733 assert(Lex.getKind() == lltok::exclaim);
734 Lex.Lex();
735 unsigned MetadataID = 0;
736
737 MDNode *Init;
738 if (ParseUInt32(MetadataID) ||
739 ParseToken(lltok::equal, "expected '=' here"))
740 return true;
741
742 // Detect common error, from old metadata syntax.
743 if (Lex.getKind() == lltok::Type)
744 return TokError("unexpected type in metadata definition");
745
746 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747 if (Lex.getKind() == lltok::MetadataVar) {
748 if (ParseSpecializedMDNode(Init, IsDistinct))
749 return true;
750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751 ParseMDTuple(Init, IsDistinct))
752 return true;
753
754 // See if this was forward referenced, if so, handle it.
755 auto FI = ForwardRefMDNodes.find(MetadataID);
756 if (FI != ForwardRefMDNodes.end()) {
757 FI->second.first->replaceAllUsesWith(Init);
758 ForwardRefMDNodes.erase(FI);
759
760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761 } else {
762 if (NumberedMetadata.count(MetadataID))
763 return TokError("Metadata id is already used");
764 NumberedMetadata[MetadataID].reset(Init);
765 }
766
767 return false;
768 }
769
770 // Skips a single module summary entry.
SkipModuleSummaryEntry()771 bool LLParser::SkipModuleSummaryEntry() {
772 // Each module summary entry consists of a tag for the entry
773 // type, followed by a colon, then the fields surrounded by nested sets of
774 // parentheses. The "tag:" looks like a Label. Once parsing support is
775 // in place we will look for the tokens corresponding to the expected tags.
776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777 Lex.getKind() != lltok::kw_typeid)
778 return TokError(
779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780 Lex.Lex();
781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782 ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783 return true;
784 // Now walk through the parenthesized entry, until the number of open
785 // parentheses goes back down to 0 (the first '(' was parsed above).
786 unsigned NumOpenParen = 1;
787 do {
788 switch (Lex.getKind()) {
789 case lltok::lparen:
790 NumOpenParen++;
791 break;
792 case lltok::rparen:
793 NumOpenParen--;
794 break;
795 case lltok::Eof:
796 return TokError("found end of file while parsing summary entry");
797 default:
798 // Skip everything in between parentheses.
799 break;
800 }
801 Lex.Lex();
802 } while (NumOpenParen > 0);
803 return false;
804 }
805
806 /// SummaryEntry
807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
ParseSummaryEntry()808 bool LLParser::ParseSummaryEntry() {
809 assert(Lex.getKind() == lltok::SummaryID);
810 unsigned SummaryID = Lex.getUIntVal();
811
812 // For summary entries, colons should be treated as distinct tokens,
813 // not an indication of the end of a label token.
814 Lex.setIgnoreColonInIdentifiers(true);
815
816 Lex.Lex();
817 if (ParseToken(lltok::equal, "expected '=' here"))
818 return true;
819
820 // If we don't have an index object, skip the summary entry.
821 if (!Index)
822 return SkipModuleSummaryEntry();
823
824 bool result = false;
825 switch (Lex.getKind()) {
826 case lltok::kw_gv:
827 result = ParseGVEntry(SummaryID);
828 break;
829 case lltok::kw_module:
830 result = ParseModuleEntry(SummaryID);
831 break;
832 case lltok::kw_typeid:
833 result = ParseTypeIdEntry(SummaryID);
834 break;
835 case lltok::kw_typeidCompatibleVTable:
836 result = ParseTypeIdCompatibleVtableEntry(SummaryID);
837 break;
838 default:
839 result = Error(Lex.getLoc(), "unexpected summary kind");
840 break;
841 }
842 Lex.setIgnoreColonInIdentifiers(false);
843 return result;
844 }
845
isValidVisibilityForLinkage(unsigned V,unsigned L)846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
849 }
850
851 // If there was an explicit dso_local, update GV. In the absence of an explicit
852 // dso_local we keep the default value.
maybeSetDSOLocal(bool DSOLocal,GlobalValue & GV)853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
854 if (DSOLocal)
855 GV.setDSOLocal(true);
856 }
857
858 /// parseIndirectSymbol:
859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
860 /// OptionalVisibility OptionalDLLStorageClass
861 /// OptionalThreadLocal OptionalUnnamedAddr
862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
863 ///
864 /// IndirectSymbol
865 /// ::= TypeAndValue
866 ///
867 /// IndirectSymbolAttr
868 /// ::= ',' 'partition' StringConstant
869 ///
870 /// Everything through OptionalUnnamedAddr has already been parsed.
871 ///
parseIndirectSymbol(const std::string & Name,LocTy NameLoc,unsigned L,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
873 unsigned L, unsigned Visibility,
874 unsigned DLLStorageClass, bool DSOLocal,
875 GlobalVariable::ThreadLocalMode TLM,
876 GlobalVariable::UnnamedAddr UnnamedAddr) {
877 bool IsAlias;
878 if (Lex.getKind() == lltok::kw_alias)
879 IsAlias = true;
880 else if (Lex.getKind() == lltok::kw_ifunc)
881 IsAlias = false;
882 else
883 llvm_unreachable("Not an alias or ifunc!");
884 Lex.Lex();
885
886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
887
888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
889 return Error(NameLoc, "invalid linkage type for alias");
890
891 if (!isValidVisibilityForLinkage(Visibility, L))
892 return Error(NameLoc,
893 "symbol with local linkage must have default visibility");
894
895 Type *Ty;
896 LocTy ExplicitTypeLoc = Lex.getLoc();
897 if (ParseType(Ty) ||
898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
899 return true;
900
901 Constant *Aliasee;
902 LocTy AliaseeLoc = Lex.getLoc();
903 if (Lex.getKind() != lltok::kw_bitcast &&
904 Lex.getKind() != lltok::kw_getelementptr &&
905 Lex.getKind() != lltok::kw_addrspacecast &&
906 Lex.getKind() != lltok::kw_inttoptr) {
907 if (ParseGlobalTypeAndValue(Aliasee))
908 return true;
909 } else {
910 // The bitcast dest type is not present, it is implied by the dest type.
911 ValID ID;
912 if (ParseValID(ID))
913 return true;
914 if (ID.Kind != ValID::t_Constant)
915 return Error(AliaseeLoc, "invalid aliasee");
916 Aliasee = ID.ConstantVal;
917 }
918
919 Type *AliaseeType = Aliasee->getType();
920 auto *PTy = dyn_cast<PointerType>(AliaseeType);
921 if (!PTy)
922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
923 unsigned AddrSpace = PTy->getAddressSpace();
924
925 if (IsAlias && Ty != PTy->getElementType())
926 return Error(
927 ExplicitTypeLoc,
928 "explicit pointee type doesn't match operand's pointee type");
929
930 if (!IsAlias && !PTy->getElementType()->isFunctionTy())
931 return Error(
932 ExplicitTypeLoc,
933 "explicit pointee type should be a function type");
934
935 GlobalValue *GVal = nullptr;
936
937 // See if the alias was forward referenced, if so, prepare to replace the
938 // forward reference.
939 if (!Name.empty()) {
940 GVal = M->getNamedValue(Name);
941 if (GVal) {
942 if (!ForwardRefVals.erase(Name))
943 return Error(NameLoc, "redefinition of global '@" + Name + "'");
944 }
945 } else {
946 auto I = ForwardRefValIDs.find(NumberedVals.size());
947 if (I != ForwardRefValIDs.end()) {
948 GVal = I->second.first;
949 ForwardRefValIDs.erase(I);
950 }
951 }
952
953 // Okay, create the alias but do not insert it into the module yet.
954 std::unique_ptr<GlobalIndirectSymbol> GA;
955 if (IsAlias)
956 GA.reset(GlobalAlias::create(Ty, AddrSpace,
957 (GlobalValue::LinkageTypes)Linkage, Name,
958 Aliasee, /*Parent*/ nullptr));
959 else
960 GA.reset(GlobalIFunc::create(Ty, AddrSpace,
961 (GlobalValue::LinkageTypes)Linkage, Name,
962 Aliasee, /*Parent*/ nullptr));
963 GA->setThreadLocalMode(TLM);
964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
966 GA->setUnnamedAddr(UnnamedAddr);
967 maybeSetDSOLocal(DSOLocal, *GA);
968
969 // At this point we've parsed everything except for the IndirectSymbolAttrs.
970 // Now parse them if there are any.
971 while (Lex.getKind() == lltok::comma) {
972 Lex.Lex();
973
974 if (Lex.getKind() == lltok::kw_partition) {
975 Lex.Lex();
976 GA->setPartition(Lex.getStrVal());
977 if (ParseToken(lltok::StringConstant, "expected partition string"))
978 return true;
979 } else {
980 return TokError("unknown alias or ifunc property!");
981 }
982 }
983
984 if (Name.empty())
985 NumberedVals.push_back(GA.get());
986
987 if (GVal) {
988 // Verify that types agree.
989 if (GVal->getType() != GA->getType())
990 return Error(
991 ExplicitTypeLoc,
992 "forward reference and definition of alias have different types");
993
994 // If they agree, just RAUW the old value with the alias and remove the
995 // forward ref info.
996 GVal->replaceAllUsesWith(GA.get());
997 GVal->eraseFromParent();
998 }
999
1000 // Insert into the module, we know its name won't collide now.
1001 if (IsAlias)
1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1003 else
1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1005 assert(GA->getName() == Name && "Should not be a name conflict!");
1006
1007 // The module owns this now
1008 GA.release();
1009
1010 return false;
1011 }
1012
1013 /// ParseGlobal
1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1015 /// OptionalVisibility OptionalDLLStorageClass
1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1021 /// Const OptionalAttrs
1022 ///
1023 /// Everything up to and including OptionalUnnamedAddr has been parsed
1024 /// already.
1025 ///
ParseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1027 unsigned Linkage, bool HasLinkage,
1028 unsigned Visibility, unsigned DLLStorageClass,
1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1030 GlobalVariable::UnnamedAddr UnnamedAddr) {
1031 if (!isValidVisibilityForLinkage(Visibility, Linkage))
1032 return Error(NameLoc,
1033 "symbol with local linkage must have default visibility");
1034
1035 unsigned AddrSpace;
1036 bool IsConstant, IsExternallyInitialized;
1037 LocTy IsExternallyInitializedLoc;
1038 LocTy TyLoc;
1039
1040 Type *Ty = nullptr;
1041 if (ParseOptionalAddrSpace(AddrSpace) ||
1042 ParseOptionalToken(lltok::kw_externally_initialized,
1043 IsExternallyInitialized,
1044 &IsExternallyInitializedLoc) ||
1045 ParseGlobalType(IsConstant) ||
1046 ParseType(Ty, TyLoc))
1047 return true;
1048
1049 // If the linkage is specified and is external, then no initializer is
1050 // present.
1051 Constant *Init = nullptr;
1052 if (!HasLinkage ||
1053 !GlobalValue::isValidDeclarationLinkage(
1054 (GlobalValue::LinkageTypes)Linkage)) {
1055 if (ParseGlobalValue(Ty, Init))
1056 return true;
1057 }
1058
1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1060 return Error(TyLoc, "invalid type for global variable");
1061
1062 GlobalValue *GVal = nullptr;
1063
1064 // See if the global was forward referenced, if so, use the global.
1065 if (!Name.empty()) {
1066 GVal = M->getNamedValue(Name);
1067 if (GVal) {
1068 if (!ForwardRefVals.erase(Name))
1069 return Error(NameLoc, "redefinition of global '@" + Name + "'");
1070 }
1071 } else {
1072 auto I = ForwardRefValIDs.find(NumberedVals.size());
1073 if (I != ForwardRefValIDs.end()) {
1074 GVal = I->second.first;
1075 ForwardRefValIDs.erase(I);
1076 }
1077 }
1078
1079 GlobalVariable *GV;
1080 if (!GVal) {
1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1082 Name, nullptr, GlobalVariable::NotThreadLocal,
1083 AddrSpace);
1084 } else {
1085 if (GVal->getValueType() != Ty)
1086 return Error(TyLoc,
1087 "forward reference and definition of global have different types");
1088
1089 GV = cast<GlobalVariable>(GVal);
1090
1091 // Move the forward-reference to the correct spot in the module.
1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1093 }
1094
1095 if (Name.empty())
1096 NumberedVals.push_back(GV);
1097
1098 // Set the parsed properties on the global.
1099 if (Init)
1100 GV->setInitializer(Init);
1101 GV->setConstant(IsConstant);
1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1103 maybeSetDSOLocal(DSOLocal, *GV);
1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1106 GV->setExternallyInitialized(IsExternallyInitialized);
1107 GV->setThreadLocalMode(TLM);
1108 GV->setUnnamedAddr(UnnamedAddr);
1109
1110 // Parse attributes on the global.
1111 while (Lex.getKind() == lltok::comma) {
1112 Lex.Lex();
1113
1114 if (Lex.getKind() == lltok::kw_section) {
1115 Lex.Lex();
1116 GV->setSection(Lex.getStrVal());
1117 if (ParseToken(lltok::StringConstant, "expected global section string"))
1118 return true;
1119 } else if (Lex.getKind() == lltok::kw_partition) {
1120 Lex.Lex();
1121 GV->setPartition(Lex.getStrVal());
1122 if (ParseToken(lltok::StringConstant, "expected partition string"))
1123 return true;
1124 } else if (Lex.getKind() == lltok::kw_align) {
1125 MaybeAlign Alignment;
1126 if (ParseOptionalAlignment(Alignment)) return true;
1127 GV->setAlignment(Alignment);
1128 } else if (Lex.getKind() == lltok::MetadataVar) {
1129 if (ParseGlobalObjectMetadataAttachment(*GV))
1130 return true;
1131 } else {
1132 Comdat *C;
1133 if (parseOptionalComdat(Name, C))
1134 return true;
1135 if (C)
1136 GV->setComdat(C);
1137 else
1138 return TokError("unknown global variable property!");
1139 }
1140 }
1141
1142 AttrBuilder Attrs;
1143 LocTy BuiltinLoc;
1144 std::vector<unsigned> FwdRefAttrGrps;
1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1146 return true;
1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1148 GV->setAttributes(AttributeSet::get(Context, Attrs));
1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1150 }
1151
1152 return false;
1153 }
1154
1155 /// ParseUnnamedAttrGrp
1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
ParseUnnamedAttrGrp()1157 bool LLParser::ParseUnnamedAttrGrp() {
1158 assert(Lex.getKind() == lltok::kw_attributes);
1159 LocTy AttrGrpLoc = Lex.getLoc();
1160 Lex.Lex();
1161
1162 if (Lex.getKind() != lltok::AttrGrpID)
1163 return TokError("expected attribute group id");
1164
1165 unsigned VarID = Lex.getUIntVal();
1166 std::vector<unsigned> unused;
1167 LocTy BuiltinLoc;
1168 Lex.Lex();
1169
1170 if (ParseToken(lltok::equal, "expected '=' here") ||
1171 ParseToken(lltok::lbrace, "expected '{' here") ||
1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1173 BuiltinLoc) ||
1174 ParseToken(lltok::rbrace, "expected end of attribute group"))
1175 return true;
1176
1177 if (!NumberedAttrBuilders[VarID].hasAttributes())
1178 return Error(AttrGrpLoc, "attribute group has no attributes");
1179
1180 return false;
1181 }
1182
1183 /// ParseFnAttributeValuePairs
1184 /// ::= <attr> | <attr> '=' <value>
ParseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool inAttrGrp,LocTy & BuiltinLoc)1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1186 std::vector<unsigned> &FwdRefAttrGrps,
1187 bool inAttrGrp, LocTy &BuiltinLoc) {
1188 bool HaveError = false;
1189
1190 B.clear();
1191
1192 while (true) {
1193 lltok::Kind Token = Lex.getKind();
1194 if (Token == lltok::kw_builtin)
1195 BuiltinLoc = Lex.getLoc();
1196 switch (Token) {
1197 default:
1198 if (!inAttrGrp) return HaveError;
1199 return Error(Lex.getLoc(), "unterminated attribute group");
1200 case lltok::rbrace:
1201 // Finished.
1202 return false;
1203
1204 case lltok::AttrGrpID: {
1205 // Allow a function to reference an attribute group:
1206 //
1207 // define void @foo() #1 { ... }
1208 if (inAttrGrp)
1209 HaveError |=
1210 Error(Lex.getLoc(),
1211 "cannot have an attribute group reference in an attribute group");
1212
1213 unsigned AttrGrpNum = Lex.getUIntVal();
1214 if (inAttrGrp) break;
1215
1216 // Save the reference to the attribute group. We'll fill it in later.
1217 FwdRefAttrGrps.push_back(AttrGrpNum);
1218 break;
1219 }
1220 // Target-dependent attributes:
1221 case lltok::StringConstant: {
1222 if (ParseStringAttribute(B))
1223 return true;
1224 continue;
1225 }
1226
1227 // Target-independent attributes:
1228 case lltok::kw_align: {
1229 // As a hack, we allow function alignment to be initially parsed as an
1230 // attribute on a function declaration/definition or added to an attribute
1231 // group and later moved to the alignment field.
1232 MaybeAlign Alignment;
1233 if (inAttrGrp) {
1234 Lex.Lex();
1235 uint32_t Value = 0;
1236 if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1237 return true;
1238 Alignment = Align(Value);
1239 } else {
1240 if (ParseOptionalAlignment(Alignment))
1241 return true;
1242 }
1243 B.addAlignmentAttr(Alignment);
1244 continue;
1245 }
1246 case lltok::kw_alignstack: {
1247 unsigned Alignment;
1248 if (inAttrGrp) {
1249 Lex.Lex();
1250 if (ParseToken(lltok::equal, "expected '=' here") ||
1251 ParseUInt32(Alignment))
1252 return true;
1253 } else {
1254 if (ParseOptionalStackAlignment(Alignment))
1255 return true;
1256 }
1257 B.addStackAlignmentAttr(Alignment);
1258 continue;
1259 }
1260 case lltok::kw_allocsize: {
1261 unsigned ElemSizeArg;
1262 Optional<unsigned> NumElemsArg;
1263 // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1264 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1265 return true;
1266 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1267 continue;
1268 }
1269 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1270 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1271 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1272 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1273 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1274 case lltok::kw_inaccessiblememonly:
1275 B.addAttribute(Attribute::InaccessibleMemOnly); break;
1276 case lltok::kw_inaccessiblemem_or_argmemonly:
1277 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1278 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1279 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1280 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1281 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1282 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1283 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1284 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1285 case lltok::kw_noimplicitfloat:
1286 B.addAttribute(Attribute::NoImplicitFloat); break;
1287 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1288 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1289 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1290 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1291 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1292 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1293 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1294 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1295 case lltok::kw_optforfuzzing:
1296 B.addAttribute(Attribute::OptForFuzzing); break;
1297 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1298 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1299 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1300 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1301 case lltok::kw_returns_twice:
1302 B.addAttribute(Attribute::ReturnsTwice); break;
1303 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1304 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1305 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1306 case lltok::kw_sspstrong:
1307 B.addAttribute(Attribute::StackProtectStrong); break;
1308 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1309 case lltok::kw_shadowcallstack:
1310 B.addAttribute(Attribute::ShadowCallStack); break;
1311 case lltok::kw_sanitize_address:
1312 B.addAttribute(Attribute::SanitizeAddress); break;
1313 case lltok::kw_sanitize_hwaddress:
1314 B.addAttribute(Attribute::SanitizeHWAddress); break;
1315 case lltok::kw_sanitize_memtag:
1316 B.addAttribute(Attribute::SanitizeMemTag); break;
1317 case lltok::kw_sanitize_thread:
1318 B.addAttribute(Attribute::SanitizeThread); break;
1319 case lltok::kw_sanitize_memory:
1320 B.addAttribute(Attribute::SanitizeMemory); break;
1321 case lltok::kw_speculative_load_hardening:
1322 B.addAttribute(Attribute::SpeculativeLoadHardening);
1323 break;
1324 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1325 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1326 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1327 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1328
1329 // Error handling.
1330 case lltok::kw_inreg:
1331 case lltok::kw_signext:
1332 case lltok::kw_zeroext:
1333 HaveError |=
1334 Error(Lex.getLoc(),
1335 "invalid use of attribute on a function");
1336 break;
1337 case lltok::kw_byval:
1338 case lltok::kw_dereferenceable:
1339 case lltok::kw_dereferenceable_or_null:
1340 case lltok::kw_inalloca:
1341 case lltok::kw_nest:
1342 case lltok::kw_noalias:
1343 case lltok::kw_nocapture:
1344 case lltok::kw_nonnull:
1345 case lltok::kw_returned:
1346 case lltok::kw_sret:
1347 case lltok::kw_swifterror:
1348 case lltok::kw_swiftself:
1349 case lltok::kw_immarg:
1350 HaveError |=
1351 Error(Lex.getLoc(),
1352 "invalid use of parameter-only attribute on a function");
1353 break;
1354 }
1355
1356 Lex.Lex();
1357 }
1358 }
1359
1360 //===----------------------------------------------------------------------===//
1361 // GlobalValue Reference/Resolution Routines.
1362 //===----------------------------------------------------------------------===//
1363
createGlobalFwdRef(Module * M,PointerType * PTy,const std::string & Name)1364 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1365 const std::string &Name) {
1366 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1367 return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1368 PTy->getAddressSpace(), Name, M);
1369 else
1370 return new GlobalVariable(*M, PTy->getElementType(), false,
1371 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1372 nullptr, GlobalVariable::NotThreadLocal,
1373 PTy->getAddressSpace());
1374 }
1375
checkValidVariableType(LocTy Loc,const Twine & Name,Type * Ty,Value * Val,bool IsCall)1376 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1377 Value *Val, bool IsCall) {
1378 if (Val->getType() == Ty)
1379 return Val;
1380 // For calls we also accept variables in the program address space.
1381 Type *SuggestedTy = Ty;
1382 if (IsCall && isa<PointerType>(Ty)) {
1383 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1384 M->getDataLayout().getProgramAddressSpace());
1385 SuggestedTy = TyInProgAS;
1386 if (Val->getType() == TyInProgAS)
1387 return Val;
1388 }
1389 if (Ty->isLabelTy())
1390 Error(Loc, "'" + Name + "' is not a basic block");
1391 else
1392 Error(Loc, "'" + Name + "' defined with type '" +
1393 getTypeString(Val->getType()) + "' but expected '" +
1394 getTypeString(SuggestedTy) + "'");
1395 return nullptr;
1396 }
1397
1398 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1399 /// forward reference record if needed. This can return null if the value
1400 /// exists but does not have the right type.
GetGlobalVal(const std::string & Name,Type * Ty,LocTy Loc,bool IsCall)1401 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1402 LocTy Loc, bool IsCall) {
1403 PointerType *PTy = dyn_cast<PointerType>(Ty);
1404 if (!PTy) {
1405 Error(Loc, "global variable reference must have pointer type");
1406 return nullptr;
1407 }
1408
1409 // Look this name up in the normal function symbol table.
1410 GlobalValue *Val =
1411 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1412
1413 // If this is a forward reference for the value, see if we already created a
1414 // forward ref record.
1415 if (!Val) {
1416 auto I = ForwardRefVals.find(Name);
1417 if (I != ForwardRefVals.end())
1418 Val = I->second.first;
1419 }
1420
1421 // If we have the value in the symbol table or fwd-ref table, return it.
1422 if (Val)
1423 return cast_or_null<GlobalValue>(
1424 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1425
1426 // Otherwise, create a new forward reference for this value and remember it.
1427 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1428 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1429 return FwdVal;
1430 }
1431
GetGlobalVal(unsigned ID,Type * Ty,LocTy Loc,bool IsCall)1432 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1433 bool IsCall) {
1434 PointerType *PTy = dyn_cast<PointerType>(Ty);
1435 if (!PTy) {
1436 Error(Loc, "global variable reference must have pointer type");
1437 return nullptr;
1438 }
1439
1440 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1441
1442 // If this is a forward reference for the value, see if we already created a
1443 // forward ref record.
1444 if (!Val) {
1445 auto I = ForwardRefValIDs.find(ID);
1446 if (I != ForwardRefValIDs.end())
1447 Val = I->second.first;
1448 }
1449
1450 // If we have the value in the symbol table or fwd-ref table, return it.
1451 if (Val)
1452 return cast_or_null<GlobalValue>(
1453 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1454
1455 // Otherwise, create a new forward reference for this value and remember it.
1456 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1457 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1458 return FwdVal;
1459 }
1460
1461 //===----------------------------------------------------------------------===//
1462 // Comdat Reference/Resolution Routines.
1463 //===----------------------------------------------------------------------===//
1464
getComdat(const std::string & Name,LocTy Loc)1465 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1466 // Look this name up in the comdat symbol table.
1467 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1468 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1469 if (I != ComdatSymTab.end())
1470 return &I->second;
1471
1472 // Otherwise, create a new forward reference for this value and remember it.
1473 Comdat *C = M->getOrInsertComdat(Name);
1474 ForwardRefComdats[Name] = Loc;
1475 return C;
1476 }
1477
1478 //===----------------------------------------------------------------------===//
1479 // Helper Routines.
1480 //===----------------------------------------------------------------------===//
1481
1482 /// ParseToken - If the current token has the specified kind, eat it and return
1483 /// success. Otherwise, emit the specified error and return failure.
ParseToken(lltok::Kind T,const char * ErrMsg)1484 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1485 if (Lex.getKind() != T)
1486 return TokError(ErrMsg);
1487 Lex.Lex();
1488 return false;
1489 }
1490
1491 /// ParseStringConstant
1492 /// ::= StringConstant
ParseStringConstant(std::string & Result)1493 bool LLParser::ParseStringConstant(std::string &Result) {
1494 if (Lex.getKind() != lltok::StringConstant)
1495 return TokError("expected string constant");
1496 Result = Lex.getStrVal();
1497 Lex.Lex();
1498 return false;
1499 }
1500
1501 /// ParseUInt32
1502 /// ::= uint32
ParseUInt32(uint32_t & Val)1503 bool LLParser::ParseUInt32(uint32_t &Val) {
1504 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1505 return TokError("expected integer");
1506 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1507 if (Val64 != unsigned(Val64))
1508 return TokError("expected 32-bit integer (too large)");
1509 Val = Val64;
1510 Lex.Lex();
1511 return false;
1512 }
1513
1514 /// ParseUInt64
1515 /// ::= uint64
ParseUInt64(uint64_t & Val)1516 bool LLParser::ParseUInt64(uint64_t &Val) {
1517 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1518 return TokError("expected integer");
1519 Val = Lex.getAPSIntVal().getLimitedValue();
1520 Lex.Lex();
1521 return false;
1522 }
1523
1524 /// ParseTLSModel
1525 /// := 'localdynamic'
1526 /// := 'initialexec'
1527 /// := 'localexec'
ParseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1528 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1529 switch (Lex.getKind()) {
1530 default:
1531 return TokError("expected localdynamic, initialexec or localexec");
1532 case lltok::kw_localdynamic:
1533 TLM = GlobalVariable::LocalDynamicTLSModel;
1534 break;
1535 case lltok::kw_initialexec:
1536 TLM = GlobalVariable::InitialExecTLSModel;
1537 break;
1538 case lltok::kw_localexec:
1539 TLM = GlobalVariable::LocalExecTLSModel;
1540 break;
1541 }
1542
1543 Lex.Lex();
1544 return false;
1545 }
1546
1547 /// ParseOptionalThreadLocal
1548 /// := /*empty*/
1549 /// := 'thread_local'
1550 /// := 'thread_local' '(' tlsmodel ')'
ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1551 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1552 TLM = GlobalVariable::NotThreadLocal;
1553 if (!EatIfPresent(lltok::kw_thread_local))
1554 return false;
1555
1556 TLM = GlobalVariable::GeneralDynamicTLSModel;
1557 if (Lex.getKind() == lltok::lparen) {
1558 Lex.Lex();
1559 return ParseTLSModel(TLM) ||
1560 ParseToken(lltok::rparen, "expected ')' after thread local model");
1561 }
1562 return false;
1563 }
1564
1565 /// ParseOptionalAddrSpace
1566 /// := /*empty*/
1567 /// := 'addrspace' '(' uint32 ')'
ParseOptionalAddrSpace(unsigned & AddrSpace,unsigned DefaultAS)1568 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1569 AddrSpace = DefaultAS;
1570 if (!EatIfPresent(lltok::kw_addrspace))
1571 return false;
1572 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1573 ParseUInt32(AddrSpace) ||
1574 ParseToken(lltok::rparen, "expected ')' in address space");
1575 }
1576
1577 /// ParseStringAttribute
1578 /// := StringConstant
1579 /// := StringConstant '=' StringConstant
ParseStringAttribute(AttrBuilder & B)1580 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1581 std::string Attr = Lex.getStrVal();
1582 Lex.Lex();
1583 std::string Val;
1584 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1585 return true;
1586 B.addAttribute(Attr, Val);
1587 return false;
1588 }
1589
1590 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
ParseOptionalParamAttrs(AttrBuilder & B)1591 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1592 bool HaveError = false;
1593
1594 B.clear();
1595
1596 while (true) {
1597 lltok::Kind Token = Lex.getKind();
1598 switch (Token) {
1599 default: // End of attributes.
1600 return HaveError;
1601 case lltok::StringConstant: {
1602 if (ParseStringAttribute(B))
1603 return true;
1604 continue;
1605 }
1606 case lltok::kw_align: {
1607 MaybeAlign Alignment;
1608 if (ParseOptionalAlignment(Alignment))
1609 return true;
1610 B.addAlignmentAttr(Alignment);
1611 continue;
1612 }
1613 case lltok::kw_byval: {
1614 Type *Ty;
1615 if (ParseByValWithOptionalType(Ty))
1616 return true;
1617 B.addByValAttr(Ty);
1618 continue;
1619 }
1620 case lltok::kw_dereferenceable: {
1621 uint64_t Bytes;
1622 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1623 return true;
1624 B.addDereferenceableAttr(Bytes);
1625 continue;
1626 }
1627 case lltok::kw_dereferenceable_or_null: {
1628 uint64_t Bytes;
1629 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1630 return true;
1631 B.addDereferenceableOrNullAttr(Bytes);
1632 continue;
1633 }
1634 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1635 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1636 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1637 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1638 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1639 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1640 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1641 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1642 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1643 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1644 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1645 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1646 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1647 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1648 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1649 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1650 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break;
1651
1652 case lltok::kw_alignstack:
1653 case lltok::kw_alwaysinline:
1654 case lltok::kw_argmemonly:
1655 case lltok::kw_builtin:
1656 case lltok::kw_inlinehint:
1657 case lltok::kw_jumptable:
1658 case lltok::kw_minsize:
1659 case lltok::kw_naked:
1660 case lltok::kw_nobuiltin:
1661 case lltok::kw_noduplicate:
1662 case lltok::kw_noimplicitfloat:
1663 case lltok::kw_noinline:
1664 case lltok::kw_nonlazybind:
1665 case lltok::kw_noredzone:
1666 case lltok::kw_noreturn:
1667 case lltok::kw_nocf_check:
1668 case lltok::kw_nounwind:
1669 case lltok::kw_optforfuzzing:
1670 case lltok::kw_optnone:
1671 case lltok::kw_optsize:
1672 case lltok::kw_returns_twice:
1673 case lltok::kw_sanitize_address:
1674 case lltok::kw_sanitize_hwaddress:
1675 case lltok::kw_sanitize_memtag:
1676 case lltok::kw_sanitize_memory:
1677 case lltok::kw_sanitize_thread:
1678 case lltok::kw_speculative_load_hardening:
1679 case lltok::kw_ssp:
1680 case lltok::kw_sspreq:
1681 case lltok::kw_sspstrong:
1682 case lltok::kw_safestack:
1683 case lltok::kw_shadowcallstack:
1684 case lltok::kw_strictfp:
1685 case lltok::kw_uwtable:
1686 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1687 break;
1688 }
1689
1690 Lex.Lex();
1691 }
1692 }
1693
1694 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
ParseOptionalReturnAttrs(AttrBuilder & B)1695 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1696 bool HaveError = false;
1697
1698 B.clear();
1699
1700 while (true) {
1701 lltok::Kind Token = Lex.getKind();
1702 switch (Token) {
1703 default: // End of attributes.
1704 return HaveError;
1705 case lltok::StringConstant: {
1706 if (ParseStringAttribute(B))
1707 return true;
1708 continue;
1709 }
1710 case lltok::kw_dereferenceable: {
1711 uint64_t Bytes;
1712 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1713 return true;
1714 B.addDereferenceableAttr(Bytes);
1715 continue;
1716 }
1717 case lltok::kw_dereferenceable_or_null: {
1718 uint64_t Bytes;
1719 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1720 return true;
1721 B.addDereferenceableOrNullAttr(Bytes);
1722 continue;
1723 }
1724 case lltok::kw_align: {
1725 MaybeAlign Alignment;
1726 if (ParseOptionalAlignment(Alignment))
1727 return true;
1728 B.addAlignmentAttr(Alignment);
1729 continue;
1730 }
1731 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1732 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1733 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1734 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1735 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1736
1737 // Error handling.
1738 case lltok::kw_byval:
1739 case lltok::kw_inalloca:
1740 case lltok::kw_nest:
1741 case lltok::kw_nocapture:
1742 case lltok::kw_returned:
1743 case lltok::kw_sret:
1744 case lltok::kw_swifterror:
1745 case lltok::kw_swiftself:
1746 case lltok::kw_immarg:
1747 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1748 break;
1749
1750 case lltok::kw_alignstack:
1751 case lltok::kw_alwaysinline:
1752 case lltok::kw_argmemonly:
1753 case lltok::kw_builtin:
1754 case lltok::kw_cold:
1755 case lltok::kw_inlinehint:
1756 case lltok::kw_jumptable:
1757 case lltok::kw_minsize:
1758 case lltok::kw_naked:
1759 case lltok::kw_nobuiltin:
1760 case lltok::kw_noduplicate:
1761 case lltok::kw_noimplicitfloat:
1762 case lltok::kw_noinline:
1763 case lltok::kw_nonlazybind:
1764 case lltok::kw_noredzone:
1765 case lltok::kw_noreturn:
1766 case lltok::kw_nocf_check:
1767 case lltok::kw_nounwind:
1768 case lltok::kw_optforfuzzing:
1769 case lltok::kw_optnone:
1770 case lltok::kw_optsize:
1771 case lltok::kw_returns_twice:
1772 case lltok::kw_sanitize_address:
1773 case lltok::kw_sanitize_hwaddress:
1774 case lltok::kw_sanitize_memtag:
1775 case lltok::kw_sanitize_memory:
1776 case lltok::kw_sanitize_thread:
1777 case lltok::kw_speculative_load_hardening:
1778 case lltok::kw_ssp:
1779 case lltok::kw_sspreq:
1780 case lltok::kw_sspstrong:
1781 case lltok::kw_safestack:
1782 case lltok::kw_shadowcallstack:
1783 case lltok::kw_strictfp:
1784 case lltok::kw_uwtable:
1785 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1786 break;
1787
1788 case lltok::kw_readnone:
1789 case lltok::kw_readonly:
1790 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1791 }
1792
1793 Lex.Lex();
1794 }
1795 }
1796
parseOptionalLinkageAux(lltok::Kind Kind,bool & HasLinkage)1797 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1798 HasLinkage = true;
1799 switch (Kind) {
1800 default:
1801 HasLinkage = false;
1802 return GlobalValue::ExternalLinkage;
1803 case lltok::kw_private:
1804 return GlobalValue::PrivateLinkage;
1805 case lltok::kw_internal:
1806 return GlobalValue::InternalLinkage;
1807 case lltok::kw_weak:
1808 return GlobalValue::WeakAnyLinkage;
1809 case lltok::kw_weak_odr:
1810 return GlobalValue::WeakODRLinkage;
1811 case lltok::kw_linkonce:
1812 return GlobalValue::LinkOnceAnyLinkage;
1813 case lltok::kw_linkonce_odr:
1814 return GlobalValue::LinkOnceODRLinkage;
1815 case lltok::kw_available_externally:
1816 return GlobalValue::AvailableExternallyLinkage;
1817 case lltok::kw_appending:
1818 return GlobalValue::AppendingLinkage;
1819 case lltok::kw_common:
1820 return GlobalValue::CommonLinkage;
1821 case lltok::kw_extern_weak:
1822 return GlobalValue::ExternalWeakLinkage;
1823 case lltok::kw_external:
1824 return GlobalValue::ExternalLinkage;
1825 }
1826 }
1827
1828 /// ParseOptionalLinkage
1829 /// ::= /*empty*/
1830 /// ::= 'private'
1831 /// ::= 'internal'
1832 /// ::= 'weak'
1833 /// ::= 'weak_odr'
1834 /// ::= 'linkonce'
1835 /// ::= 'linkonce_odr'
1836 /// ::= 'available_externally'
1837 /// ::= 'appending'
1838 /// ::= 'common'
1839 /// ::= 'extern_weak'
1840 /// ::= 'external'
ParseOptionalLinkage(unsigned & Res,bool & HasLinkage,unsigned & Visibility,unsigned & DLLStorageClass,bool & DSOLocal)1841 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1842 unsigned &Visibility,
1843 unsigned &DLLStorageClass,
1844 bool &DSOLocal) {
1845 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1846 if (HasLinkage)
1847 Lex.Lex();
1848 ParseOptionalDSOLocal(DSOLocal);
1849 ParseOptionalVisibility(Visibility);
1850 ParseOptionalDLLStorageClass(DLLStorageClass);
1851
1852 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1853 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1854 }
1855
1856 return false;
1857 }
1858
ParseOptionalDSOLocal(bool & DSOLocal)1859 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1860 switch (Lex.getKind()) {
1861 default:
1862 DSOLocal = false;
1863 break;
1864 case lltok::kw_dso_local:
1865 DSOLocal = true;
1866 Lex.Lex();
1867 break;
1868 case lltok::kw_dso_preemptable:
1869 DSOLocal = false;
1870 Lex.Lex();
1871 break;
1872 }
1873 }
1874
1875 /// ParseOptionalVisibility
1876 /// ::= /*empty*/
1877 /// ::= 'default'
1878 /// ::= 'hidden'
1879 /// ::= 'protected'
1880 ///
ParseOptionalVisibility(unsigned & Res)1881 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1882 switch (Lex.getKind()) {
1883 default:
1884 Res = GlobalValue::DefaultVisibility;
1885 return;
1886 case lltok::kw_default:
1887 Res = GlobalValue::DefaultVisibility;
1888 break;
1889 case lltok::kw_hidden:
1890 Res = GlobalValue::HiddenVisibility;
1891 break;
1892 case lltok::kw_protected:
1893 Res = GlobalValue::ProtectedVisibility;
1894 break;
1895 }
1896 Lex.Lex();
1897 }
1898
1899 /// ParseOptionalDLLStorageClass
1900 /// ::= /*empty*/
1901 /// ::= 'dllimport'
1902 /// ::= 'dllexport'
1903 ///
ParseOptionalDLLStorageClass(unsigned & Res)1904 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1905 switch (Lex.getKind()) {
1906 default:
1907 Res = GlobalValue::DefaultStorageClass;
1908 return;
1909 case lltok::kw_dllimport:
1910 Res = GlobalValue::DLLImportStorageClass;
1911 break;
1912 case lltok::kw_dllexport:
1913 Res = GlobalValue::DLLExportStorageClass;
1914 break;
1915 }
1916 Lex.Lex();
1917 }
1918
1919 /// ParseOptionalCallingConv
1920 /// ::= /*empty*/
1921 /// ::= 'ccc'
1922 /// ::= 'fastcc'
1923 /// ::= 'intel_ocl_bicc'
1924 /// ::= 'coldcc'
1925 /// ::= 'cfguard_checkcc'
1926 /// ::= 'x86_stdcallcc'
1927 /// ::= 'x86_fastcallcc'
1928 /// ::= 'x86_thiscallcc'
1929 /// ::= 'x86_vectorcallcc'
1930 /// ::= 'arm_apcscc'
1931 /// ::= 'arm_aapcscc'
1932 /// ::= 'arm_aapcs_vfpcc'
1933 /// ::= 'aarch64_vector_pcs'
1934 /// ::= 'aarch64_sve_vector_pcs'
1935 /// ::= 'msp430_intrcc'
1936 /// ::= 'avr_intrcc'
1937 /// ::= 'avr_signalcc'
1938 /// ::= 'ptx_kernel'
1939 /// ::= 'ptx_device'
1940 /// ::= 'spir_func'
1941 /// ::= 'spir_kernel'
1942 /// ::= 'x86_64_sysvcc'
1943 /// ::= 'win64cc'
1944 /// ::= 'webkit_jscc'
1945 /// ::= 'anyregcc'
1946 /// ::= 'preserve_mostcc'
1947 /// ::= 'preserve_allcc'
1948 /// ::= 'ghccc'
1949 /// ::= 'swiftcc'
1950 /// ::= 'x86_intrcc'
1951 /// ::= 'hhvmcc'
1952 /// ::= 'hhvm_ccc'
1953 /// ::= 'cxx_fast_tlscc'
1954 /// ::= 'amdgpu_vs'
1955 /// ::= 'amdgpu_ls'
1956 /// ::= 'amdgpu_hs'
1957 /// ::= 'amdgpu_es'
1958 /// ::= 'amdgpu_gs'
1959 /// ::= 'amdgpu_ps'
1960 /// ::= 'amdgpu_cs'
1961 /// ::= 'amdgpu_kernel'
1962 /// ::= 'tailcc'
1963 /// ::= 'cc' UINT
1964 ///
ParseOptionalCallingConv(unsigned & CC)1965 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1966 switch (Lex.getKind()) {
1967 default: CC = CallingConv::C; return false;
1968 case lltok::kw_ccc: CC = CallingConv::C; break;
1969 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1970 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1971 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1972 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1973 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1974 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
1975 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1976 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1977 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1978 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1979 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1980 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1981 case lltok::kw_aarch64_sve_vector_pcs:
1982 CC = CallingConv::AArch64_SVE_VectorCall;
1983 break;
1984 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1985 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1986 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
1987 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1988 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1989 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1990 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1991 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1992 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1993 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1994 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1995 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1996 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1997 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1998 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1999 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
2000 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
2001 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
2002 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
2003 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2004 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
2005 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
2006 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
2007 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
2008 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
2009 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
2010 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
2011 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
2012 case lltok::kw_tailcc: CC = CallingConv::Tail; break;
2013 case lltok::kw_cc: {
2014 Lex.Lex();
2015 return ParseUInt32(CC);
2016 }
2017 }
2018
2019 Lex.Lex();
2020 return false;
2021 }
2022
2023 /// ParseMetadataAttachment
2024 /// ::= !dbg !42
ParseMetadataAttachment(unsigned & Kind,MDNode * & MD)2025 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2026 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2027
2028 std::string Name = Lex.getStrVal();
2029 Kind = M->getMDKindID(Name);
2030 Lex.Lex();
2031
2032 return ParseMDNode(MD);
2033 }
2034
2035 /// ParseInstructionMetadata
2036 /// ::= !dbg !42 (',' !dbg !57)*
ParseInstructionMetadata(Instruction & Inst)2037 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2038 do {
2039 if (Lex.getKind() != lltok::MetadataVar)
2040 return TokError("expected metadata after comma");
2041
2042 unsigned MDK;
2043 MDNode *N;
2044 if (ParseMetadataAttachment(MDK, N))
2045 return true;
2046
2047 Inst.setMetadata(MDK, N);
2048 if (MDK == LLVMContext::MD_tbaa)
2049 InstsWithTBAATag.push_back(&Inst);
2050
2051 // If this is the end of the list, we're done.
2052 } while (EatIfPresent(lltok::comma));
2053 return false;
2054 }
2055
2056 /// ParseGlobalObjectMetadataAttachment
2057 /// ::= !dbg !57
ParseGlobalObjectMetadataAttachment(GlobalObject & GO)2058 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2059 unsigned MDK;
2060 MDNode *N;
2061 if (ParseMetadataAttachment(MDK, N))
2062 return true;
2063
2064 GO.addMetadata(MDK, *N);
2065 return false;
2066 }
2067
2068 /// ParseOptionalFunctionMetadata
2069 /// ::= (!dbg !57)*
ParseOptionalFunctionMetadata(Function & F)2070 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2071 while (Lex.getKind() == lltok::MetadataVar)
2072 if (ParseGlobalObjectMetadataAttachment(F))
2073 return true;
2074 return false;
2075 }
2076
2077 /// ParseOptionalAlignment
2078 /// ::= /* empty */
2079 /// ::= 'align' 4
ParseOptionalAlignment(MaybeAlign & Alignment)2080 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2081 Alignment = None;
2082 if (!EatIfPresent(lltok::kw_align))
2083 return false;
2084 LocTy AlignLoc = Lex.getLoc();
2085 uint32_t Value = 0;
2086 if (ParseUInt32(Value))
2087 return true;
2088 if (!isPowerOf2_32(Value))
2089 return Error(AlignLoc, "alignment is not a power of two");
2090 if (Value > Value::MaximumAlignment)
2091 return Error(AlignLoc, "huge alignments are not supported yet");
2092 Alignment = Align(Value);
2093 return false;
2094 }
2095
2096 /// ParseOptionalDerefAttrBytes
2097 /// ::= /* empty */
2098 /// ::= AttrKind '(' 4 ')'
2099 ///
2100 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,uint64_t & Bytes)2101 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2102 uint64_t &Bytes) {
2103 assert((AttrKind == lltok::kw_dereferenceable ||
2104 AttrKind == lltok::kw_dereferenceable_or_null) &&
2105 "contract!");
2106
2107 Bytes = 0;
2108 if (!EatIfPresent(AttrKind))
2109 return false;
2110 LocTy ParenLoc = Lex.getLoc();
2111 if (!EatIfPresent(lltok::lparen))
2112 return Error(ParenLoc, "expected '('");
2113 LocTy DerefLoc = Lex.getLoc();
2114 if (ParseUInt64(Bytes)) return true;
2115 ParenLoc = Lex.getLoc();
2116 if (!EatIfPresent(lltok::rparen))
2117 return Error(ParenLoc, "expected ')'");
2118 if (!Bytes)
2119 return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2120 return false;
2121 }
2122
2123 /// ParseOptionalCommaAlign
2124 /// ::=
2125 /// ::= ',' align 4
2126 ///
2127 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2128 /// end.
ParseOptionalCommaAlign(MaybeAlign & Alignment,bool & AteExtraComma)2129 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2130 bool &AteExtraComma) {
2131 AteExtraComma = false;
2132 while (EatIfPresent(lltok::comma)) {
2133 // Metadata at the end is an early exit.
2134 if (Lex.getKind() == lltok::MetadataVar) {
2135 AteExtraComma = true;
2136 return false;
2137 }
2138
2139 if (Lex.getKind() != lltok::kw_align)
2140 return Error(Lex.getLoc(), "expected metadata or 'align'");
2141
2142 if (ParseOptionalAlignment(Alignment)) return true;
2143 }
2144
2145 return false;
2146 }
2147
2148 /// ParseOptionalCommaAddrSpace
2149 /// ::=
2150 /// ::= ',' addrspace(1)
2151 ///
2152 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2153 /// end.
ParseOptionalCommaAddrSpace(unsigned & AddrSpace,LocTy & Loc,bool & AteExtraComma)2154 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2155 LocTy &Loc,
2156 bool &AteExtraComma) {
2157 AteExtraComma = false;
2158 while (EatIfPresent(lltok::comma)) {
2159 // Metadata at the end is an early exit.
2160 if (Lex.getKind() == lltok::MetadataVar) {
2161 AteExtraComma = true;
2162 return false;
2163 }
2164
2165 Loc = Lex.getLoc();
2166 if (Lex.getKind() != lltok::kw_addrspace)
2167 return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2168
2169 if (ParseOptionalAddrSpace(AddrSpace))
2170 return true;
2171 }
2172
2173 return false;
2174 }
2175
parseAllocSizeArguments(unsigned & BaseSizeArg,Optional<unsigned> & HowManyArg)2176 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2177 Optional<unsigned> &HowManyArg) {
2178 Lex.Lex();
2179
2180 auto StartParen = Lex.getLoc();
2181 if (!EatIfPresent(lltok::lparen))
2182 return Error(StartParen, "expected '('");
2183
2184 if (ParseUInt32(BaseSizeArg))
2185 return true;
2186
2187 if (EatIfPresent(lltok::comma)) {
2188 auto HowManyAt = Lex.getLoc();
2189 unsigned HowMany;
2190 if (ParseUInt32(HowMany))
2191 return true;
2192 if (HowMany == BaseSizeArg)
2193 return Error(HowManyAt,
2194 "'allocsize' indices can't refer to the same parameter");
2195 HowManyArg = HowMany;
2196 } else
2197 HowManyArg = None;
2198
2199 auto EndParen = Lex.getLoc();
2200 if (!EatIfPresent(lltok::rparen))
2201 return Error(EndParen, "expected ')'");
2202 return false;
2203 }
2204
2205 /// ParseScopeAndOrdering
2206 /// if isAtomic: ::= SyncScope? AtomicOrdering
2207 /// else: ::=
2208 ///
2209 /// This sets Scope and Ordering to the parsed values.
ParseScopeAndOrdering(bool isAtomic,SyncScope::ID & SSID,AtomicOrdering & Ordering)2210 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2211 AtomicOrdering &Ordering) {
2212 if (!isAtomic)
2213 return false;
2214
2215 return ParseScope(SSID) || ParseOrdering(Ordering);
2216 }
2217
2218 /// ParseScope
2219 /// ::= syncscope("singlethread" | "<target scope>")?
2220 ///
2221 /// This sets synchronization scope ID to the ID of the parsed value.
ParseScope(SyncScope::ID & SSID)2222 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2223 SSID = SyncScope::System;
2224 if (EatIfPresent(lltok::kw_syncscope)) {
2225 auto StartParenAt = Lex.getLoc();
2226 if (!EatIfPresent(lltok::lparen))
2227 return Error(StartParenAt, "Expected '(' in syncscope");
2228
2229 std::string SSN;
2230 auto SSNAt = Lex.getLoc();
2231 if (ParseStringConstant(SSN))
2232 return Error(SSNAt, "Expected synchronization scope name");
2233
2234 auto EndParenAt = Lex.getLoc();
2235 if (!EatIfPresent(lltok::rparen))
2236 return Error(EndParenAt, "Expected ')' in syncscope");
2237
2238 SSID = Context.getOrInsertSyncScopeID(SSN);
2239 }
2240
2241 return false;
2242 }
2243
2244 /// ParseOrdering
2245 /// ::= AtomicOrdering
2246 ///
2247 /// This sets Ordering to the parsed value.
ParseOrdering(AtomicOrdering & Ordering)2248 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2249 switch (Lex.getKind()) {
2250 default: return TokError("Expected ordering on atomic instruction");
2251 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2252 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2253 // Not specified yet:
2254 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2255 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2256 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2257 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2258 case lltok::kw_seq_cst:
2259 Ordering = AtomicOrdering::SequentiallyConsistent;
2260 break;
2261 }
2262 Lex.Lex();
2263 return false;
2264 }
2265
2266 /// ParseOptionalStackAlignment
2267 /// ::= /* empty */
2268 /// ::= 'alignstack' '(' 4 ')'
ParseOptionalStackAlignment(unsigned & Alignment)2269 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2270 Alignment = 0;
2271 if (!EatIfPresent(lltok::kw_alignstack))
2272 return false;
2273 LocTy ParenLoc = Lex.getLoc();
2274 if (!EatIfPresent(lltok::lparen))
2275 return Error(ParenLoc, "expected '('");
2276 LocTy AlignLoc = Lex.getLoc();
2277 if (ParseUInt32(Alignment)) return true;
2278 ParenLoc = Lex.getLoc();
2279 if (!EatIfPresent(lltok::rparen))
2280 return Error(ParenLoc, "expected ')'");
2281 if (!isPowerOf2_32(Alignment))
2282 return Error(AlignLoc, "stack alignment is not a power of two");
2283 return false;
2284 }
2285
2286 /// ParseIndexList - This parses the index list for an insert/extractvalue
2287 /// instruction. This sets AteExtraComma in the case where we eat an extra
2288 /// comma at the end of the line and find that it is followed by metadata.
2289 /// Clients that don't allow metadata can call the version of this function that
2290 /// only takes one argument.
2291 ///
2292 /// ParseIndexList
2293 /// ::= (',' uint32)+
2294 ///
ParseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)2295 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2296 bool &AteExtraComma) {
2297 AteExtraComma = false;
2298
2299 if (Lex.getKind() != lltok::comma)
2300 return TokError("expected ',' as start of index list");
2301
2302 while (EatIfPresent(lltok::comma)) {
2303 if (Lex.getKind() == lltok::MetadataVar) {
2304 if (Indices.empty()) return TokError("expected index");
2305 AteExtraComma = true;
2306 return false;
2307 }
2308 unsigned Idx = 0;
2309 if (ParseUInt32(Idx)) return true;
2310 Indices.push_back(Idx);
2311 }
2312
2313 return false;
2314 }
2315
2316 //===----------------------------------------------------------------------===//
2317 // Type Parsing.
2318 //===----------------------------------------------------------------------===//
2319
2320 /// ParseType - Parse a type.
ParseType(Type * & Result,const Twine & Msg,bool AllowVoid)2321 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2322 SMLoc TypeLoc = Lex.getLoc();
2323 switch (Lex.getKind()) {
2324 default:
2325 return TokError(Msg);
2326 case lltok::Type:
2327 // Type ::= 'float' | 'void' (etc)
2328 Result = Lex.getTyVal();
2329 Lex.Lex();
2330 break;
2331 case lltok::lbrace:
2332 // Type ::= StructType
2333 if (ParseAnonStructType(Result, false))
2334 return true;
2335 break;
2336 case lltok::lsquare:
2337 // Type ::= '[' ... ']'
2338 Lex.Lex(); // eat the lsquare.
2339 if (ParseArrayVectorType(Result, false))
2340 return true;
2341 break;
2342 case lltok::less: // Either vector or packed struct.
2343 // Type ::= '<' ... '>'
2344 Lex.Lex();
2345 if (Lex.getKind() == lltok::lbrace) {
2346 if (ParseAnonStructType(Result, true) ||
2347 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2348 return true;
2349 } else if (ParseArrayVectorType(Result, true))
2350 return true;
2351 break;
2352 case lltok::LocalVar: {
2353 // Type ::= %foo
2354 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2355
2356 // If the type hasn't been defined yet, create a forward definition and
2357 // remember where that forward def'n was seen (in case it never is defined).
2358 if (!Entry.first) {
2359 Entry.first = StructType::create(Context, Lex.getStrVal());
2360 Entry.second = Lex.getLoc();
2361 }
2362 Result = Entry.first;
2363 Lex.Lex();
2364 break;
2365 }
2366
2367 case lltok::LocalVarID: {
2368 // Type ::= %4
2369 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2370
2371 // If the type hasn't been defined yet, create a forward definition and
2372 // remember where that forward def'n was seen (in case it never is defined).
2373 if (!Entry.first) {
2374 Entry.first = StructType::create(Context);
2375 Entry.second = Lex.getLoc();
2376 }
2377 Result = Entry.first;
2378 Lex.Lex();
2379 break;
2380 }
2381 }
2382
2383 // Parse the type suffixes.
2384 while (true) {
2385 switch (Lex.getKind()) {
2386 // End of type.
2387 default:
2388 if (!AllowVoid && Result->isVoidTy())
2389 return Error(TypeLoc, "void type only allowed for function results");
2390 return false;
2391
2392 // Type ::= Type '*'
2393 case lltok::star:
2394 if (Result->isLabelTy())
2395 return TokError("basic block pointers are invalid");
2396 if (Result->isVoidTy())
2397 return TokError("pointers to void are invalid - use i8* instead");
2398 if (!PointerType::isValidElementType(Result))
2399 return TokError("pointer to this type is invalid");
2400 Result = PointerType::getUnqual(Result);
2401 Lex.Lex();
2402 break;
2403
2404 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2405 case lltok::kw_addrspace: {
2406 if (Result->isLabelTy())
2407 return TokError("basic block pointers are invalid");
2408 if (Result->isVoidTy())
2409 return TokError("pointers to void are invalid; use i8* instead");
2410 if (!PointerType::isValidElementType(Result))
2411 return TokError("pointer to this type is invalid");
2412 unsigned AddrSpace;
2413 if (ParseOptionalAddrSpace(AddrSpace) ||
2414 ParseToken(lltok::star, "expected '*' in address space"))
2415 return true;
2416
2417 Result = PointerType::get(Result, AddrSpace);
2418 break;
2419 }
2420
2421 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2422 case lltok::lparen:
2423 if (ParseFunctionType(Result))
2424 return true;
2425 break;
2426 }
2427 }
2428 }
2429
2430 /// ParseParameterList
2431 /// ::= '(' ')'
2432 /// ::= '(' Arg (',' Arg)* ')'
2433 /// Arg
2434 /// ::= Type OptionalAttributes Value OptionalAttributes
ParseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS,bool IsMustTailCall,bool InVarArgsFunc)2435 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2436 PerFunctionState &PFS, bool IsMustTailCall,
2437 bool InVarArgsFunc) {
2438 if (ParseToken(lltok::lparen, "expected '(' in call"))
2439 return true;
2440
2441 while (Lex.getKind() != lltok::rparen) {
2442 // If this isn't the first argument, we need a comma.
2443 if (!ArgList.empty() &&
2444 ParseToken(lltok::comma, "expected ',' in argument list"))
2445 return true;
2446
2447 // Parse an ellipsis if this is a musttail call in a variadic function.
2448 if (Lex.getKind() == lltok::dotdotdot) {
2449 const char *Msg = "unexpected ellipsis in argument list for ";
2450 if (!IsMustTailCall)
2451 return TokError(Twine(Msg) + "non-musttail call");
2452 if (!InVarArgsFunc)
2453 return TokError(Twine(Msg) + "musttail call in non-varargs function");
2454 Lex.Lex(); // Lex the '...', it is purely for readability.
2455 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2456 }
2457
2458 // Parse the argument.
2459 LocTy ArgLoc;
2460 Type *ArgTy = nullptr;
2461 AttrBuilder ArgAttrs;
2462 Value *V;
2463 if (ParseType(ArgTy, ArgLoc))
2464 return true;
2465
2466 if (ArgTy->isMetadataTy()) {
2467 if (ParseMetadataAsValue(V, PFS))
2468 return true;
2469 } else {
2470 // Otherwise, handle normal operands.
2471 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2472 return true;
2473 }
2474 ArgList.push_back(ParamInfo(
2475 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2476 }
2477
2478 if (IsMustTailCall && InVarArgsFunc)
2479 return TokError("expected '...' at end of argument list for musttail call "
2480 "in varargs function");
2481
2482 Lex.Lex(); // Lex the ')'.
2483 return false;
2484 }
2485
2486 /// ParseByValWithOptionalType
2487 /// ::= byval
2488 /// ::= byval(<ty>)
ParseByValWithOptionalType(Type * & Result)2489 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2490 Result = nullptr;
2491 if (!EatIfPresent(lltok::kw_byval))
2492 return true;
2493 if (!EatIfPresent(lltok::lparen))
2494 return false;
2495 if (ParseType(Result))
2496 return true;
2497 if (!EatIfPresent(lltok::rparen))
2498 return Error(Lex.getLoc(), "expected ')'");
2499 return false;
2500 }
2501
2502 /// ParseOptionalOperandBundles
2503 /// ::= /*empty*/
2504 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2505 ///
2506 /// OperandBundle
2507 /// ::= bundle-tag '(' ')'
2508 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2509 ///
2510 /// bundle-tag ::= String Constant
ParseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> & BundleList,PerFunctionState & PFS)2511 bool LLParser::ParseOptionalOperandBundles(
2512 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2513 LocTy BeginLoc = Lex.getLoc();
2514 if (!EatIfPresent(lltok::lsquare))
2515 return false;
2516
2517 while (Lex.getKind() != lltok::rsquare) {
2518 // If this isn't the first operand bundle, we need a comma.
2519 if (!BundleList.empty() &&
2520 ParseToken(lltok::comma, "expected ',' in input list"))
2521 return true;
2522
2523 std::string Tag;
2524 if (ParseStringConstant(Tag))
2525 return true;
2526
2527 if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2528 return true;
2529
2530 std::vector<Value *> Inputs;
2531 while (Lex.getKind() != lltok::rparen) {
2532 // If this isn't the first input, we need a comma.
2533 if (!Inputs.empty() &&
2534 ParseToken(lltok::comma, "expected ',' in input list"))
2535 return true;
2536
2537 Type *Ty = nullptr;
2538 Value *Input = nullptr;
2539 if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2540 return true;
2541 Inputs.push_back(Input);
2542 }
2543
2544 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2545
2546 Lex.Lex(); // Lex the ')'.
2547 }
2548
2549 if (BundleList.empty())
2550 return Error(BeginLoc, "operand bundle set must not be empty");
2551
2552 Lex.Lex(); // Lex the ']'.
2553 return false;
2554 }
2555
2556 /// ParseArgumentList - Parse the argument list for a function type or function
2557 /// prototype.
2558 /// ::= '(' ArgTypeListI ')'
2559 /// ArgTypeListI
2560 /// ::= /*empty*/
2561 /// ::= '...'
2562 /// ::= ArgTypeList ',' '...'
2563 /// ::= ArgType (',' ArgType)*
2564 ///
ParseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & isVarArg)2565 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2566 bool &isVarArg){
2567 unsigned CurValID = 0;
2568 isVarArg = false;
2569 assert(Lex.getKind() == lltok::lparen);
2570 Lex.Lex(); // eat the (.
2571
2572 if (Lex.getKind() == lltok::rparen) {
2573 // empty
2574 } else if (Lex.getKind() == lltok::dotdotdot) {
2575 isVarArg = true;
2576 Lex.Lex();
2577 } else {
2578 LocTy TypeLoc = Lex.getLoc();
2579 Type *ArgTy = nullptr;
2580 AttrBuilder Attrs;
2581 std::string Name;
2582
2583 if (ParseType(ArgTy) ||
2584 ParseOptionalParamAttrs(Attrs)) return true;
2585
2586 if (ArgTy->isVoidTy())
2587 return Error(TypeLoc, "argument can not have void type");
2588
2589 if (Lex.getKind() == lltok::LocalVar) {
2590 Name = Lex.getStrVal();
2591 Lex.Lex();
2592 } else if (Lex.getKind() == lltok::LocalVarID) {
2593 if (Lex.getUIntVal() != CurValID)
2594 return Error(TypeLoc, "argument expected to be numbered '%" +
2595 Twine(CurValID) + "'");
2596 ++CurValID;
2597 Lex.Lex();
2598 }
2599
2600 if (!FunctionType::isValidArgumentType(ArgTy))
2601 return Error(TypeLoc, "invalid type for function argument");
2602
2603 ArgList.emplace_back(TypeLoc, ArgTy,
2604 AttributeSet::get(ArgTy->getContext(), Attrs),
2605 std::move(Name));
2606
2607 while (EatIfPresent(lltok::comma)) {
2608 // Handle ... at end of arg list.
2609 if (EatIfPresent(lltok::dotdotdot)) {
2610 isVarArg = true;
2611 break;
2612 }
2613
2614 // Otherwise must be an argument type.
2615 TypeLoc = Lex.getLoc();
2616 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2617
2618 if (ArgTy->isVoidTy())
2619 return Error(TypeLoc, "argument can not have void type");
2620
2621 if (Lex.getKind() == lltok::LocalVar) {
2622 Name = Lex.getStrVal();
2623 Lex.Lex();
2624 } else {
2625 if (Lex.getKind() == lltok::LocalVarID) {
2626 if (Lex.getUIntVal() != CurValID)
2627 return Error(TypeLoc, "argument expected to be numbered '%" +
2628 Twine(CurValID) + "'");
2629 Lex.Lex();
2630 }
2631 ++CurValID;
2632 Name = "";
2633 }
2634
2635 if (!ArgTy->isFirstClassType())
2636 return Error(TypeLoc, "invalid type for function argument");
2637
2638 ArgList.emplace_back(TypeLoc, ArgTy,
2639 AttributeSet::get(ArgTy->getContext(), Attrs),
2640 std::move(Name));
2641 }
2642 }
2643
2644 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2645 }
2646
2647 /// ParseFunctionType
2648 /// ::= Type ArgumentList OptionalAttrs
ParseFunctionType(Type * & Result)2649 bool LLParser::ParseFunctionType(Type *&Result) {
2650 assert(Lex.getKind() == lltok::lparen);
2651
2652 if (!FunctionType::isValidReturnType(Result))
2653 return TokError("invalid function return type");
2654
2655 SmallVector<ArgInfo, 8> ArgList;
2656 bool isVarArg;
2657 if (ParseArgumentList(ArgList, isVarArg))
2658 return true;
2659
2660 // Reject names on the arguments lists.
2661 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2662 if (!ArgList[i].Name.empty())
2663 return Error(ArgList[i].Loc, "argument name invalid in function type");
2664 if (ArgList[i].Attrs.hasAttributes())
2665 return Error(ArgList[i].Loc,
2666 "argument attributes invalid in function type");
2667 }
2668
2669 SmallVector<Type*, 16> ArgListTy;
2670 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2671 ArgListTy.push_back(ArgList[i].Ty);
2672
2673 Result = FunctionType::get(Result, ArgListTy, isVarArg);
2674 return false;
2675 }
2676
2677 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2678 /// other structs.
ParseAnonStructType(Type * & Result,bool Packed)2679 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2680 SmallVector<Type*, 8> Elts;
2681 if (ParseStructBody(Elts)) return true;
2682
2683 Result = StructType::get(Context, Elts, Packed);
2684 return false;
2685 }
2686
2687 /// ParseStructDefinition - Parse a struct in a 'type' definition.
ParseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)2688 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2689 std::pair<Type*, LocTy> &Entry,
2690 Type *&ResultTy) {
2691 // If the type was already defined, diagnose the redefinition.
2692 if (Entry.first && !Entry.second.isValid())
2693 return Error(TypeLoc, "redefinition of type");
2694
2695 // If we have opaque, just return without filling in the definition for the
2696 // struct. This counts as a definition as far as the .ll file goes.
2697 if (EatIfPresent(lltok::kw_opaque)) {
2698 // This type is being defined, so clear the location to indicate this.
2699 Entry.second = SMLoc();
2700
2701 // If this type number has never been uttered, create it.
2702 if (!Entry.first)
2703 Entry.first = StructType::create(Context, Name);
2704 ResultTy = Entry.first;
2705 return false;
2706 }
2707
2708 // If the type starts with '<', then it is either a packed struct or a vector.
2709 bool isPacked = EatIfPresent(lltok::less);
2710
2711 // If we don't have a struct, then we have a random type alias, which we
2712 // accept for compatibility with old files. These types are not allowed to be
2713 // forward referenced and not allowed to be recursive.
2714 if (Lex.getKind() != lltok::lbrace) {
2715 if (Entry.first)
2716 return Error(TypeLoc, "forward references to non-struct type");
2717
2718 ResultTy = nullptr;
2719 if (isPacked)
2720 return ParseArrayVectorType(ResultTy, true);
2721 return ParseType(ResultTy);
2722 }
2723
2724 // This type is being defined, so clear the location to indicate this.
2725 Entry.second = SMLoc();
2726
2727 // If this type number has never been uttered, create it.
2728 if (!Entry.first)
2729 Entry.first = StructType::create(Context, Name);
2730
2731 StructType *STy = cast<StructType>(Entry.first);
2732
2733 SmallVector<Type*, 8> Body;
2734 if (ParseStructBody(Body) ||
2735 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2736 return true;
2737
2738 STy->setBody(Body, isPacked);
2739 ResultTy = STy;
2740 return false;
2741 }
2742
2743 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2744 /// StructType
2745 /// ::= '{' '}'
2746 /// ::= '{' Type (',' Type)* '}'
2747 /// ::= '<' '{' '}' '>'
2748 /// ::= '<' '{' Type (',' Type)* '}' '>'
ParseStructBody(SmallVectorImpl<Type * > & Body)2749 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2750 assert(Lex.getKind() == lltok::lbrace);
2751 Lex.Lex(); // Consume the '{'
2752
2753 // Handle the empty struct.
2754 if (EatIfPresent(lltok::rbrace))
2755 return false;
2756
2757 LocTy EltTyLoc = Lex.getLoc();
2758 Type *Ty = nullptr;
2759 if (ParseType(Ty)) return true;
2760 Body.push_back(Ty);
2761
2762 if (!StructType::isValidElementType(Ty))
2763 return Error(EltTyLoc, "invalid element type for struct");
2764
2765 while (EatIfPresent(lltok::comma)) {
2766 EltTyLoc = Lex.getLoc();
2767 if (ParseType(Ty)) return true;
2768
2769 if (!StructType::isValidElementType(Ty))
2770 return Error(EltTyLoc, "invalid element type for struct");
2771
2772 Body.push_back(Ty);
2773 }
2774
2775 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2776 }
2777
2778 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2779 /// token has already been consumed.
2780 /// Type
2781 /// ::= '[' APSINTVAL 'x' Types ']'
2782 /// ::= '<' APSINTVAL 'x' Types '>'
2783 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
ParseArrayVectorType(Type * & Result,bool isVector)2784 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2785 bool Scalable = false;
2786
2787 if (isVector && Lex.getKind() == lltok::kw_vscale) {
2788 Lex.Lex(); // consume the 'vscale'
2789 if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2790 return true;
2791
2792 Scalable = true;
2793 }
2794
2795 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2796 Lex.getAPSIntVal().getBitWidth() > 64)
2797 return TokError("expected number in address space");
2798
2799 LocTy SizeLoc = Lex.getLoc();
2800 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2801 Lex.Lex();
2802
2803 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2804 return true;
2805
2806 LocTy TypeLoc = Lex.getLoc();
2807 Type *EltTy = nullptr;
2808 if (ParseType(EltTy)) return true;
2809
2810 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2811 "expected end of sequential type"))
2812 return true;
2813
2814 if (isVector) {
2815 if (Size == 0)
2816 return Error(SizeLoc, "zero element vector is illegal");
2817 if ((unsigned)Size != Size)
2818 return Error(SizeLoc, "size too large for vector");
2819 if (!VectorType::isValidElementType(EltTy))
2820 return Error(TypeLoc, "invalid vector element type");
2821 Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2822 } else {
2823 if (!ArrayType::isValidElementType(EltTy))
2824 return Error(TypeLoc, "invalid array element type");
2825 Result = ArrayType::get(EltTy, Size);
2826 }
2827 return false;
2828 }
2829
2830 //===----------------------------------------------------------------------===//
2831 // Function Semantic Analysis.
2832 //===----------------------------------------------------------------------===//
2833
PerFunctionState(LLParser & p,Function & f,int functionNumber)2834 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2835 int functionNumber)
2836 : P(p), F(f), FunctionNumber(functionNumber) {
2837
2838 // Insert unnamed arguments into the NumberedVals list.
2839 for (Argument &A : F.args())
2840 if (!A.hasName())
2841 NumberedVals.push_back(&A);
2842 }
2843
~PerFunctionState()2844 LLParser::PerFunctionState::~PerFunctionState() {
2845 // If there were any forward referenced non-basicblock values, delete them.
2846
2847 for (const auto &P : ForwardRefVals) {
2848 if (isa<BasicBlock>(P.second.first))
2849 continue;
2850 P.second.first->replaceAllUsesWith(
2851 UndefValue::get(P.second.first->getType()));
2852 P.second.first->deleteValue();
2853 }
2854
2855 for (const auto &P : ForwardRefValIDs) {
2856 if (isa<BasicBlock>(P.second.first))
2857 continue;
2858 P.second.first->replaceAllUsesWith(
2859 UndefValue::get(P.second.first->getType()));
2860 P.second.first->deleteValue();
2861 }
2862 }
2863
FinishFunction()2864 bool LLParser::PerFunctionState::FinishFunction() {
2865 if (!ForwardRefVals.empty())
2866 return P.Error(ForwardRefVals.begin()->second.second,
2867 "use of undefined value '%" + ForwardRefVals.begin()->first +
2868 "'");
2869 if (!ForwardRefValIDs.empty())
2870 return P.Error(ForwardRefValIDs.begin()->second.second,
2871 "use of undefined value '%" +
2872 Twine(ForwardRefValIDs.begin()->first) + "'");
2873 return false;
2874 }
2875
2876 /// GetVal - Get a value with the specified name or ID, creating a
2877 /// forward reference record if needed. This can return null if the value
2878 /// exists but does not have the right type.
GetVal(const std::string & Name,Type * Ty,LocTy Loc,bool IsCall)2879 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2880 LocTy Loc, bool IsCall) {
2881 // Look this name up in the normal function symbol table.
2882 Value *Val = F.getValueSymbolTable()->lookup(Name);
2883
2884 // If this is a forward reference for the value, see if we already created a
2885 // forward ref record.
2886 if (!Val) {
2887 auto I = ForwardRefVals.find(Name);
2888 if (I != ForwardRefVals.end())
2889 Val = I->second.first;
2890 }
2891
2892 // If we have the value in the symbol table or fwd-ref table, return it.
2893 if (Val)
2894 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2895
2896 // Don't make placeholders with invalid type.
2897 if (!Ty->isFirstClassType()) {
2898 P.Error(Loc, "invalid use of a non-first-class type");
2899 return nullptr;
2900 }
2901
2902 // Otherwise, create a new forward reference for this value and remember it.
2903 Value *FwdVal;
2904 if (Ty->isLabelTy()) {
2905 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2906 } else {
2907 FwdVal = new Argument(Ty, Name);
2908 }
2909
2910 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2911 return FwdVal;
2912 }
2913
GetVal(unsigned ID,Type * Ty,LocTy Loc,bool IsCall)2914 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2915 bool IsCall) {
2916 // Look this name up in the normal function symbol table.
2917 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2918
2919 // If this is a forward reference for the value, see if we already created a
2920 // forward ref record.
2921 if (!Val) {
2922 auto I = ForwardRefValIDs.find(ID);
2923 if (I != ForwardRefValIDs.end())
2924 Val = I->second.first;
2925 }
2926
2927 // If we have the value in the symbol table or fwd-ref table, return it.
2928 if (Val)
2929 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2930
2931 if (!Ty->isFirstClassType()) {
2932 P.Error(Loc, "invalid use of a non-first-class type");
2933 return nullptr;
2934 }
2935
2936 // Otherwise, create a new forward reference for this value and remember it.
2937 Value *FwdVal;
2938 if (Ty->isLabelTy()) {
2939 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2940 } else {
2941 FwdVal = new Argument(Ty);
2942 }
2943
2944 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2945 return FwdVal;
2946 }
2947
2948 /// SetInstName - After an instruction is parsed and inserted into its
2949 /// basic block, this installs its name.
SetInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)2950 bool LLParser::PerFunctionState::SetInstName(int NameID,
2951 const std::string &NameStr,
2952 LocTy NameLoc, Instruction *Inst) {
2953 // If this instruction has void type, it cannot have a name or ID specified.
2954 if (Inst->getType()->isVoidTy()) {
2955 if (NameID != -1 || !NameStr.empty())
2956 return P.Error(NameLoc, "instructions returning void cannot have a name");
2957 return false;
2958 }
2959
2960 // If this was a numbered instruction, verify that the instruction is the
2961 // expected value and resolve any forward references.
2962 if (NameStr.empty()) {
2963 // If neither a name nor an ID was specified, just use the next ID.
2964 if (NameID == -1)
2965 NameID = NumberedVals.size();
2966
2967 if (unsigned(NameID) != NumberedVals.size())
2968 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2969 Twine(NumberedVals.size()) + "'");
2970
2971 auto FI = ForwardRefValIDs.find(NameID);
2972 if (FI != ForwardRefValIDs.end()) {
2973 Value *Sentinel = FI->second.first;
2974 if (Sentinel->getType() != Inst->getType())
2975 return P.Error(NameLoc, "instruction forward referenced with type '" +
2976 getTypeString(FI->second.first->getType()) + "'");
2977
2978 Sentinel->replaceAllUsesWith(Inst);
2979 Sentinel->deleteValue();
2980 ForwardRefValIDs.erase(FI);
2981 }
2982
2983 NumberedVals.push_back(Inst);
2984 return false;
2985 }
2986
2987 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2988 auto FI = ForwardRefVals.find(NameStr);
2989 if (FI != ForwardRefVals.end()) {
2990 Value *Sentinel = FI->second.first;
2991 if (Sentinel->getType() != Inst->getType())
2992 return P.Error(NameLoc, "instruction forward referenced with type '" +
2993 getTypeString(FI->second.first->getType()) + "'");
2994
2995 Sentinel->replaceAllUsesWith(Inst);
2996 Sentinel->deleteValue();
2997 ForwardRefVals.erase(FI);
2998 }
2999
3000 // Set the name on the instruction.
3001 Inst->setName(NameStr);
3002
3003 if (Inst->getName() != NameStr)
3004 return P.Error(NameLoc, "multiple definition of local value named '" +
3005 NameStr + "'");
3006 return false;
3007 }
3008
3009 /// GetBB - Get a basic block with the specified name or ID, creating a
3010 /// forward reference record if needed.
GetBB(const std::string & Name,LocTy Loc)3011 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3012 LocTy Loc) {
3013 return dyn_cast_or_null<BasicBlock>(
3014 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3015 }
3016
GetBB(unsigned ID,LocTy Loc)3017 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3018 return dyn_cast_or_null<BasicBlock>(
3019 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3020 }
3021
3022 /// DefineBB - Define the specified basic block, which is either named or
3023 /// unnamed. If there is an error, this returns null otherwise it returns
3024 /// the block being defined.
DefineBB(const std::string & Name,int NameID,LocTy Loc)3025 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3026 int NameID, LocTy Loc) {
3027 BasicBlock *BB;
3028 if (Name.empty()) {
3029 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3030 P.Error(Loc, "label expected to be numbered '" +
3031 Twine(NumberedVals.size()) + "'");
3032 return nullptr;
3033 }
3034 BB = GetBB(NumberedVals.size(), Loc);
3035 if (!BB) {
3036 P.Error(Loc, "unable to create block numbered '" +
3037 Twine(NumberedVals.size()) + "'");
3038 return nullptr;
3039 }
3040 } else {
3041 BB = GetBB(Name, Loc);
3042 if (!BB) {
3043 P.Error(Loc, "unable to create block named '" + Name + "'");
3044 return nullptr;
3045 }
3046 }
3047
3048 // Move the block to the end of the function. Forward ref'd blocks are
3049 // inserted wherever they happen to be referenced.
3050 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3051
3052 // Remove the block from forward ref sets.
3053 if (Name.empty()) {
3054 ForwardRefValIDs.erase(NumberedVals.size());
3055 NumberedVals.push_back(BB);
3056 } else {
3057 // BB forward references are already in the function symbol table.
3058 ForwardRefVals.erase(Name);
3059 }
3060
3061 return BB;
3062 }
3063
3064 //===----------------------------------------------------------------------===//
3065 // Constants.
3066 //===----------------------------------------------------------------------===//
3067
3068 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3069 /// type implied. For example, if we parse "4" we don't know what integer type
3070 /// it has. The value will later be combined with its type and checked for
3071 /// sanity. PFS is used to convert function-local operands of metadata (since
3072 /// metadata operands are not just parsed here but also converted to values).
3073 /// PFS can be null when we are not parsing metadata values inside a function.
ParseValID(ValID & ID,PerFunctionState * PFS)3074 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3075 ID.Loc = Lex.getLoc();
3076 switch (Lex.getKind()) {
3077 default: return TokError("expected value token");
3078 case lltok::GlobalID: // @42
3079 ID.UIntVal = Lex.getUIntVal();
3080 ID.Kind = ValID::t_GlobalID;
3081 break;
3082 case lltok::GlobalVar: // @foo
3083 ID.StrVal = Lex.getStrVal();
3084 ID.Kind = ValID::t_GlobalName;
3085 break;
3086 case lltok::LocalVarID: // %42
3087 ID.UIntVal = Lex.getUIntVal();
3088 ID.Kind = ValID::t_LocalID;
3089 break;
3090 case lltok::LocalVar: // %foo
3091 ID.StrVal = Lex.getStrVal();
3092 ID.Kind = ValID::t_LocalName;
3093 break;
3094 case lltok::APSInt:
3095 ID.APSIntVal = Lex.getAPSIntVal();
3096 ID.Kind = ValID::t_APSInt;
3097 break;
3098 case lltok::APFloat:
3099 ID.APFloatVal = Lex.getAPFloatVal();
3100 ID.Kind = ValID::t_APFloat;
3101 break;
3102 case lltok::kw_true:
3103 ID.ConstantVal = ConstantInt::getTrue(Context);
3104 ID.Kind = ValID::t_Constant;
3105 break;
3106 case lltok::kw_false:
3107 ID.ConstantVal = ConstantInt::getFalse(Context);
3108 ID.Kind = ValID::t_Constant;
3109 break;
3110 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3111 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3112 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3113 case lltok::kw_none: ID.Kind = ValID::t_None; break;
3114
3115 case lltok::lbrace: {
3116 // ValID ::= '{' ConstVector '}'
3117 Lex.Lex();
3118 SmallVector<Constant*, 16> Elts;
3119 if (ParseGlobalValueVector(Elts) ||
3120 ParseToken(lltok::rbrace, "expected end of struct constant"))
3121 return true;
3122
3123 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3124 ID.UIntVal = Elts.size();
3125 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3126 Elts.size() * sizeof(Elts[0]));
3127 ID.Kind = ValID::t_ConstantStruct;
3128 return false;
3129 }
3130 case lltok::less: {
3131 // ValID ::= '<' ConstVector '>' --> Vector.
3132 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3133 Lex.Lex();
3134 bool isPackedStruct = EatIfPresent(lltok::lbrace);
3135
3136 SmallVector<Constant*, 16> Elts;
3137 LocTy FirstEltLoc = Lex.getLoc();
3138 if (ParseGlobalValueVector(Elts) ||
3139 (isPackedStruct &&
3140 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3141 ParseToken(lltok::greater, "expected end of constant"))
3142 return true;
3143
3144 if (isPackedStruct) {
3145 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3146 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3147 Elts.size() * sizeof(Elts[0]));
3148 ID.UIntVal = Elts.size();
3149 ID.Kind = ValID::t_PackedConstantStruct;
3150 return false;
3151 }
3152
3153 if (Elts.empty())
3154 return Error(ID.Loc, "constant vector must not be empty");
3155
3156 if (!Elts[0]->getType()->isIntegerTy() &&
3157 !Elts[0]->getType()->isFloatingPointTy() &&
3158 !Elts[0]->getType()->isPointerTy())
3159 return Error(FirstEltLoc,
3160 "vector elements must have integer, pointer or floating point type");
3161
3162 // Verify that all the vector elements have the same type.
3163 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3164 if (Elts[i]->getType() != Elts[0]->getType())
3165 return Error(FirstEltLoc,
3166 "vector element #" + Twine(i) +
3167 " is not of type '" + getTypeString(Elts[0]->getType()));
3168
3169 ID.ConstantVal = ConstantVector::get(Elts);
3170 ID.Kind = ValID::t_Constant;
3171 return false;
3172 }
3173 case lltok::lsquare: { // Array Constant
3174 Lex.Lex();
3175 SmallVector<Constant*, 16> Elts;
3176 LocTy FirstEltLoc = Lex.getLoc();
3177 if (ParseGlobalValueVector(Elts) ||
3178 ParseToken(lltok::rsquare, "expected end of array constant"))
3179 return true;
3180
3181 // Handle empty element.
3182 if (Elts.empty()) {
3183 // Use undef instead of an array because it's inconvenient to determine
3184 // the element type at this point, there being no elements to examine.
3185 ID.Kind = ValID::t_EmptyArray;
3186 return false;
3187 }
3188
3189 if (!Elts[0]->getType()->isFirstClassType())
3190 return Error(FirstEltLoc, "invalid array element type: " +
3191 getTypeString(Elts[0]->getType()));
3192
3193 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3194
3195 // Verify all elements are correct type!
3196 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3197 if (Elts[i]->getType() != Elts[0]->getType())
3198 return Error(FirstEltLoc,
3199 "array element #" + Twine(i) +
3200 " is not of type '" + getTypeString(Elts[0]->getType()));
3201 }
3202
3203 ID.ConstantVal = ConstantArray::get(ATy, Elts);
3204 ID.Kind = ValID::t_Constant;
3205 return false;
3206 }
3207 case lltok::kw_c: // c "foo"
3208 Lex.Lex();
3209 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3210 false);
3211 if (ParseToken(lltok::StringConstant, "expected string")) return true;
3212 ID.Kind = ValID::t_Constant;
3213 return false;
3214
3215 case lltok::kw_asm: {
3216 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3217 // STRINGCONSTANT
3218 bool HasSideEffect, AlignStack, AsmDialect;
3219 Lex.Lex();
3220 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3221 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3222 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3223 ParseStringConstant(ID.StrVal) ||
3224 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3225 ParseToken(lltok::StringConstant, "expected constraint string"))
3226 return true;
3227 ID.StrVal2 = Lex.getStrVal();
3228 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3229 (unsigned(AsmDialect)<<2);
3230 ID.Kind = ValID::t_InlineAsm;
3231 return false;
3232 }
3233
3234 case lltok::kw_blockaddress: {
3235 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3236 Lex.Lex();
3237
3238 ValID Fn, Label;
3239
3240 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3241 ParseValID(Fn) ||
3242 ParseToken(lltok::comma, "expected comma in block address expression")||
3243 ParseValID(Label) ||
3244 ParseToken(lltok::rparen, "expected ')' in block address expression"))
3245 return true;
3246
3247 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3248 return Error(Fn.Loc, "expected function name in blockaddress");
3249 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3250 return Error(Label.Loc, "expected basic block name in blockaddress");
3251
3252 // Try to find the function (but skip it if it's forward-referenced).
3253 GlobalValue *GV = nullptr;
3254 if (Fn.Kind == ValID::t_GlobalID) {
3255 if (Fn.UIntVal < NumberedVals.size())
3256 GV = NumberedVals[Fn.UIntVal];
3257 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3258 GV = M->getNamedValue(Fn.StrVal);
3259 }
3260 Function *F = nullptr;
3261 if (GV) {
3262 // Confirm that it's actually a function with a definition.
3263 if (!isa<Function>(GV))
3264 return Error(Fn.Loc, "expected function name in blockaddress");
3265 F = cast<Function>(GV);
3266 if (F->isDeclaration())
3267 return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3268 }
3269
3270 if (!F) {
3271 // Make a global variable as a placeholder for this reference.
3272 GlobalValue *&FwdRef =
3273 ForwardRefBlockAddresses.insert(std::make_pair(
3274 std::move(Fn),
3275 std::map<ValID, GlobalValue *>()))
3276 .first->second.insert(std::make_pair(std::move(Label), nullptr))
3277 .first->second;
3278 if (!FwdRef)
3279 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3280 GlobalValue::InternalLinkage, nullptr, "");
3281 ID.ConstantVal = FwdRef;
3282 ID.Kind = ValID::t_Constant;
3283 return false;
3284 }
3285
3286 // We found the function; now find the basic block. Don't use PFS, since we
3287 // might be inside a constant expression.
3288 BasicBlock *BB;
3289 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3290 if (Label.Kind == ValID::t_LocalID)
3291 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3292 else
3293 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3294 if (!BB)
3295 return Error(Label.Loc, "referenced value is not a basic block");
3296 } else {
3297 if (Label.Kind == ValID::t_LocalID)
3298 return Error(Label.Loc, "cannot take address of numeric label after "
3299 "the function is defined");
3300 BB = dyn_cast_or_null<BasicBlock>(
3301 F->getValueSymbolTable()->lookup(Label.StrVal));
3302 if (!BB)
3303 return Error(Label.Loc, "referenced value is not a basic block");
3304 }
3305
3306 ID.ConstantVal = BlockAddress::get(F, BB);
3307 ID.Kind = ValID::t_Constant;
3308 return false;
3309 }
3310
3311 case lltok::kw_trunc:
3312 case lltok::kw_zext:
3313 case lltok::kw_sext:
3314 case lltok::kw_fptrunc:
3315 case lltok::kw_fpext:
3316 case lltok::kw_bitcast:
3317 case lltok::kw_addrspacecast:
3318 case lltok::kw_uitofp:
3319 case lltok::kw_sitofp:
3320 case lltok::kw_fptoui:
3321 case lltok::kw_fptosi:
3322 case lltok::kw_inttoptr:
3323 case lltok::kw_ptrtoint: {
3324 unsigned Opc = Lex.getUIntVal();
3325 Type *DestTy = nullptr;
3326 Constant *SrcVal;
3327 Lex.Lex();
3328 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3329 ParseGlobalTypeAndValue(SrcVal) ||
3330 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3331 ParseType(DestTy) ||
3332 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3333 return true;
3334 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3335 return Error(ID.Loc, "invalid cast opcode for cast from '" +
3336 getTypeString(SrcVal->getType()) + "' to '" +
3337 getTypeString(DestTy) + "'");
3338 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3339 SrcVal, DestTy);
3340 ID.Kind = ValID::t_Constant;
3341 return false;
3342 }
3343 case lltok::kw_extractvalue: {
3344 Lex.Lex();
3345 Constant *Val;
3346 SmallVector<unsigned, 4> Indices;
3347 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3348 ParseGlobalTypeAndValue(Val) ||
3349 ParseIndexList(Indices) ||
3350 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3351 return true;
3352
3353 if (!Val->getType()->isAggregateType())
3354 return Error(ID.Loc, "extractvalue operand must be aggregate type");
3355 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3356 return Error(ID.Loc, "invalid indices for extractvalue");
3357 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3358 ID.Kind = ValID::t_Constant;
3359 return false;
3360 }
3361 case lltok::kw_insertvalue: {
3362 Lex.Lex();
3363 Constant *Val0, *Val1;
3364 SmallVector<unsigned, 4> Indices;
3365 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3366 ParseGlobalTypeAndValue(Val0) ||
3367 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3368 ParseGlobalTypeAndValue(Val1) ||
3369 ParseIndexList(Indices) ||
3370 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3371 return true;
3372 if (!Val0->getType()->isAggregateType())
3373 return Error(ID.Loc, "insertvalue operand must be aggregate type");
3374 Type *IndexedType =
3375 ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3376 if (!IndexedType)
3377 return Error(ID.Loc, "invalid indices for insertvalue");
3378 if (IndexedType != Val1->getType())
3379 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3380 getTypeString(Val1->getType()) +
3381 "' instead of '" + getTypeString(IndexedType) +
3382 "'");
3383 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3384 ID.Kind = ValID::t_Constant;
3385 return false;
3386 }
3387 case lltok::kw_icmp:
3388 case lltok::kw_fcmp: {
3389 unsigned PredVal, Opc = Lex.getUIntVal();
3390 Constant *Val0, *Val1;
3391 Lex.Lex();
3392 if (ParseCmpPredicate(PredVal, Opc) ||
3393 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3394 ParseGlobalTypeAndValue(Val0) ||
3395 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3396 ParseGlobalTypeAndValue(Val1) ||
3397 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3398 return true;
3399
3400 if (Val0->getType() != Val1->getType())
3401 return Error(ID.Loc, "compare operands must have the same type");
3402
3403 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3404
3405 if (Opc == Instruction::FCmp) {
3406 if (!Val0->getType()->isFPOrFPVectorTy())
3407 return Error(ID.Loc, "fcmp requires floating point operands");
3408 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3409 } else {
3410 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3411 if (!Val0->getType()->isIntOrIntVectorTy() &&
3412 !Val0->getType()->isPtrOrPtrVectorTy())
3413 return Error(ID.Loc, "icmp requires pointer or integer operands");
3414 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3415 }
3416 ID.Kind = ValID::t_Constant;
3417 return false;
3418 }
3419
3420 // Unary Operators.
3421 case lltok::kw_fneg: {
3422 unsigned Opc = Lex.getUIntVal();
3423 Constant *Val;
3424 Lex.Lex();
3425 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3426 ParseGlobalTypeAndValue(Val) ||
3427 ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3428 return true;
3429
3430 // Check that the type is valid for the operator.
3431 switch (Opc) {
3432 case Instruction::FNeg:
3433 if (!Val->getType()->isFPOrFPVectorTy())
3434 return Error(ID.Loc, "constexpr requires fp operands");
3435 break;
3436 default: llvm_unreachable("Unknown unary operator!");
3437 }
3438 unsigned Flags = 0;
3439 Constant *C = ConstantExpr::get(Opc, Val, Flags);
3440 ID.ConstantVal = C;
3441 ID.Kind = ValID::t_Constant;
3442 return false;
3443 }
3444 // Binary Operators.
3445 case lltok::kw_add:
3446 case lltok::kw_fadd:
3447 case lltok::kw_sub:
3448 case lltok::kw_fsub:
3449 case lltok::kw_mul:
3450 case lltok::kw_fmul:
3451 case lltok::kw_udiv:
3452 case lltok::kw_sdiv:
3453 case lltok::kw_fdiv:
3454 case lltok::kw_urem:
3455 case lltok::kw_srem:
3456 case lltok::kw_frem:
3457 case lltok::kw_shl:
3458 case lltok::kw_lshr:
3459 case lltok::kw_ashr: {
3460 bool NUW = false;
3461 bool NSW = false;
3462 bool Exact = false;
3463 unsigned Opc = Lex.getUIntVal();
3464 Constant *Val0, *Val1;
3465 Lex.Lex();
3466 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3467 Opc == Instruction::Mul || Opc == Instruction::Shl) {
3468 if (EatIfPresent(lltok::kw_nuw))
3469 NUW = true;
3470 if (EatIfPresent(lltok::kw_nsw)) {
3471 NSW = true;
3472 if (EatIfPresent(lltok::kw_nuw))
3473 NUW = true;
3474 }
3475 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3476 Opc == Instruction::LShr || Opc == Instruction::AShr) {
3477 if (EatIfPresent(lltok::kw_exact))
3478 Exact = true;
3479 }
3480 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3481 ParseGlobalTypeAndValue(Val0) ||
3482 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3483 ParseGlobalTypeAndValue(Val1) ||
3484 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3485 return true;
3486 if (Val0->getType() != Val1->getType())
3487 return Error(ID.Loc, "operands of constexpr must have same type");
3488 // Check that the type is valid for the operator.
3489 switch (Opc) {
3490 case Instruction::Add:
3491 case Instruction::Sub:
3492 case Instruction::Mul:
3493 case Instruction::UDiv:
3494 case Instruction::SDiv:
3495 case Instruction::URem:
3496 case Instruction::SRem:
3497 case Instruction::Shl:
3498 case Instruction::AShr:
3499 case Instruction::LShr:
3500 if (!Val0->getType()->isIntOrIntVectorTy())
3501 return Error(ID.Loc, "constexpr requires integer operands");
3502 break;
3503 case Instruction::FAdd:
3504 case Instruction::FSub:
3505 case Instruction::FMul:
3506 case Instruction::FDiv:
3507 case Instruction::FRem:
3508 if (!Val0->getType()->isFPOrFPVectorTy())
3509 return Error(ID.Loc, "constexpr requires fp operands");
3510 break;
3511 default: llvm_unreachable("Unknown binary operator!");
3512 }
3513 unsigned Flags = 0;
3514 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3515 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3516 if (Exact) Flags |= PossiblyExactOperator::IsExact;
3517 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3518 ID.ConstantVal = C;
3519 ID.Kind = ValID::t_Constant;
3520 return false;
3521 }
3522
3523 // Logical Operations
3524 case lltok::kw_and:
3525 case lltok::kw_or:
3526 case lltok::kw_xor: {
3527 unsigned Opc = Lex.getUIntVal();
3528 Constant *Val0, *Val1;
3529 Lex.Lex();
3530 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3531 ParseGlobalTypeAndValue(Val0) ||
3532 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3533 ParseGlobalTypeAndValue(Val1) ||
3534 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3535 return true;
3536 if (Val0->getType() != Val1->getType())
3537 return Error(ID.Loc, "operands of constexpr must have same type");
3538 if (!Val0->getType()->isIntOrIntVectorTy())
3539 return Error(ID.Loc,
3540 "constexpr requires integer or integer vector operands");
3541 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3542 ID.Kind = ValID::t_Constant;
3543 return false;
3544 }
3545
3546 case lltok::kw_getelementptr:
3547 case lltok::kw_shufflevector:
3548 case lltok::kw_insertelement:
3549 case lltok::kw_extractelement:
3550 case lltok::kw_select: {
3551 unsigned Opc = Lex.getUIntVal();
3552 SmallVector<Constant*, 16> Elts;
3553 bool InBounds = false;
3554 Type *Ty;
3555 Lex.Lex();
3556
3557 if (Opc == Instruction::GetElementPtr)
3558 InBounds = EatIfPresent(lltok::kw_inbounds);
3559
3560 if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3561 return true;
3562
3563 LocTy ExplicitTypeLoc = Lex.getLoc();
3564 if (Opc == Instruction::GetElementPtr) {
3565 if (ParseType(Ty) ||
3566 ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3567 return true;
3568 }
3569
3570 Optional<unsigned> InRangeOp;
3571 if (ParseGlobalValueVector(
3572 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3573 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3574 return true;
3575
3576 if (Opc == Instruction::GetElementPtr) {
3577 if (Elts.size() == 0 ||
3578 !Elts[0]->getType()->isPtrOrPtrVectorTy())
3579 return Error(ID.Loc, "base of getelementptr must be a pointer");
3580
3581 Type *BaseType = Elts[0]->getType();
3582 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3583 if (Ty != BasePointerType->getElementType())
3584 return Error(
3585 ExplicitTypeLoc,
3586 "explicit pointee type doesn't match operand's pointee type");
3587
3588 unsigned GEPWidth =
3589 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3590
3591 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3592 for (Constant *Val : Indices) {
3593 Type *ValTy = Val->getType();
3594 if (!ValTy->isIntOrIntVectorTy())
3595 return Error(ID.Loc, "getelementptr index must be an integer");
3596 if (ValTy->isVectorTy()) {
3597 unsigned ValNumEl = ValTy->getVectorNumElements();
3598 if (GEPWidth && (ValNumEl != GEPWidth))
3599 return Error(
3600 ID.Loc,
3601 "getelementptr vector index has a wrong number of elements");
3602 // GEPWidth may have been unknown because the base is a scalar,
3603 // but it is known now.
3604 GEPWidth = ValNumEl;
3605 }
3606 }
3607
3608 SmallPtrSet<Type*, 4> Visited;
3609 if (!Indices.empty() && !Ty->isSized(&Visited))
3610 return Error(ID.Loc, "base element of getelementptr must be sized");
3611
3612 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3613 return Error(ID.Loc, "invalid getelementptr indices");
3614
3615 if (InRangeOp) {
3616 if (*InRangeOp == 0)
3617 return Error(ID.Loc,
3618 "inrange keyword may not appear on pointer operand");
3619 --*InRangeOp;
3620 }
3621
3622 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3623 InBounds, InRangeOp);
3624 } else if (Opc == Instruction::Select) {
3625 if (Elts.size() != 3)
3626 return Error(ID.Loc, "expected three operands to select");
3627 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3628 Elts[2]))
3629 return Error(ID.Loc, Reason);
3630 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3631 } else if (Opc == Instruction::ShuffleVector) {
3632 if (Elts.size() != 3)
3633 return Error(ID.Loc, "expected three operands to shufflevector");
3634 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3635 return Error(ID.Loc, "invalid operands to shufflevector");
3636 ID.ConstantVal =
3637 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3638 } else if (Opc == Instruction::ExtractElement) {
3639 if (Elts.size() != 2)
3640 return Error(ID.Loc, "expected two operands to extractelement");
3641 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3642 return Error(ID.Loc, "invalid extractelement operands");
3643 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3644 } else {
3645 assert(Opc == Instruction::InsertElement && "Unknown opcode");
3646 if (Elts.size() != 3)
3647 return Error(ID.Loc, "expected three operands to insertelement");
3648 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3649 return Error(ID.Loc, "invalid insertelement operands");
3650 ID.ConstantVal =
3651 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3652 }
3653
3654 ID.Kind = ValID::t_Constant;
3655 return false;
3656 }
3657 }
3658
3659 Lex.Lex();
3660 return false;
3661 }
3662
3663 /// ParseGlobalValue - Parse a global value with the specified type.
ParseGlobalValue(Type * Ty,Constant * & C)3664 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3665 C = nullptr;
3666 ValID ID;
3667 Value *V = nullptr;
3668 bool Parsed = ParseValID(ID) ||
3669 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3670 if (V && !(C = dyn_cast<Constant>(V)))
3671 return Error(ID.Loc, "global values must be constants");
3672 return Parsed;
3673 }
3674
ParseGlobalTypeAndValue(Constant * & V)3675 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3676 Type *Ty = nullptr;
3677 return ParseType(Ty) ||
3678 ParseGlobalValue(Ty, V);
3679 }
3680
parseOptionalComdat(StringRef GlobalName,Comdat * & C)3681 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3682 C = nullptr;
3683
3684 LocTy KwLoc = Lex.getLoc();
3685 if (!EatIfPresent(lltok::kw_comdat))
3686 return false;
3687
3688 if (EatIfPresent(lltok::lparen)) {
3689 if (Lex.getKind() != lltok::ComdatVar)
3690 return TokError("expected comdat variable");
3691 C = getComdat(Lex.getStrVal(), Lex.getLoc());
3692 Lex.Lex();
3693 if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3694 return true;
3695 } else {
3696 if (GlobalName.empty())
3697 return TokError("comdat cannot be unnamed");
3698 C = getComdat(GlobalName, KwLoc);
3699 }
3700
3701 return false;
3702 }
3703
3704 /// ParseGlobalValueVector
3705 /// ::= /*empty*/
3706 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
ParseGlobalValueVector(SmallVectorImpl<Constant * > & Elts,Optional<unsigned> * InRangeOp)3707 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3708 Optional<unsigned> *InRangeOp) {
3709 // Empty list.
3710 if (Lex.getKind() == lltok::rbrace ||
3711 Lex.getKind() == lltok::rsquare ||
3712 Lex.getKind() == lltok::greater ||
3713 Lex.getKind() == lltok::rparen)
3714 return false;
3715
3716 do {
3717 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3718 *InRangeOp = Elts.size();
3719
3720 Constant *C;
3721 if (ParseGlobalTypeAndValue(C)) return true;
3722 Elts.push_back(C);
3723 } while (EatIfPresent(lltok::comma));
3724
3725 return false;
3726 }
3727
ParseMDTuple(MDNode * & MD,bool IsDistinct)3728 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3729 SmallVector<Metadata *, 16> Elts;
3730 if (ParseMDNodeVector(Elts))
3731 return true;
3732
3733 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3734 return false;
3735 }
3736
3737 /// MDNode:
3738 /// ::= !{ ... }
3739 /// ::= !7
3740 /// ::= !DILocation(...)
ParseMDNode(MDNode * & N)3741 bool LLParser::ParseMDNode(MDNode *&N) {
3742 if (Lex.getKind() == lltok::MetadataVar)
3743 return ParseSpecializedMDNode(N);
3744
3745 return ParseToken(lltok::exclaim, "expected '!' here") ||
3746 ParseMDNodeTail(N);
3747 }
3748
ParseMDNodeTail(MDNode * & N)3749 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3750 // !{ ... }
3751 if (Lex.getKind() == lltok::lbrace)
3752 return ParseMDTuple(N);
3753
3754 // !42
3755 return ParseMDNodeID(N);
3756 }
3757
3758 namespace {
3759
3760 /// Structure to represent an optional metadata field.
3761 template <class FieldTy> struct MDFieldImpl {
3762 typedef MDFieldImpl ImplTy;
3763 FieldTy Val;
3764 bool Seen;
3765
assign__anon507262fd0111::MDFieldImpl3766 void assign(FieldTy Val) {
3767 Seen = true;
3768 this->Val = std::move(Val);
3769 }
3770
MDFieldImpl__anon507262fd0111::MDFieldImpl3771 explicit MDFieldImpl(FieldTy Default)
3772 : Val(std::move(Default)), Seen(false) {}
3773 };
3774
3775 /// Structure to represent an optional metadata field that
3776 /// can be of either type (A or B) and encapsulates the
3777 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3778 /// to reimplement the specifics for representing each Field.
3779 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3780 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3781 FieldTypeA A;
3782 FieldTypeB B;
3783 bool Seen;
3784
3785 enum {
3786 IsInvalid = 0,
3787 IsTypeA = 1,
3788 IsTypeB = 2
3789 } WhatIs;
3790
assign__anon507262fd0111::MDEitherFieldImpl3791 void assign(FieldTypeA A) {
3792 Seen = true;
3793 this->A = std::move(A);
3794 WhatIs = IsTypeA;
3795 }
3796
assign__anon507262fd0111::MDEitherFieldImpl3797 void assign(FieldTypeB B) {
3798 Seen = true;
3799 this->B = std::move(B);
3800 WhatIs = IsTypeB;
3801 }
3802
MDEitherFieldImpl__anon507262fd0111::MDEitherFieldImpl3803 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3804 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3805 WhatIs(IsInvalid) {}
3806 };
3807
3808 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3809 uint64_t Max;
3810
MDUnsignedField__anon507262fd0111::MDUnsignedField3811 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3812 : ImplTy(Default), Max(Max) {}
3813 };
3814
3815 struct LineField : public MDUnsignedField {
LineField__anon507262fd0111::LineField3816 LineField() : MDUnsignedField(0, UINT32_MAX) {}
3817 };
3818
3819 struct ColumnField : public MDUnsignedField {
ColumnField__anon507262fd0111::ColumnField3820 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3821 };
3822
3823 struct DwarfTagField : public MDUnsignedField {
DwarfTagField__anon507262fd0111::DwarfTagField3824 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField__anon507262fd0111::DwarfTagField3825 DwarfTagField(dwarf::Tag DefaultTag)
3826 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3827 };
3828
3829 struct DwarfMacinfoTypeField : public MDUnsignedField {
DwarfMacinfoTypeField__anon507262fd0111::DwarfMacinfoTypeField3830 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
DwarfMacinfoTypeField__anon507262fd0111::DwarfMacinfoTypeField3831 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3832 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3833 };
3834
3835 struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField__anon507262fd0111::DwarfAttEncodingField3836 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3837 };
3838
3839 struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField__anon507262fd0111::DwarfVirtualityField3840 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3841 };
3842
3843 struct DwarfLangField : public MDUnsignedField {
DwarfLangField__anon507262fd0111::DwarfLangField3844 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3845 };
3846
3847 struct DwarfCCField : public MDUnsignedField {
DwarfCCField__anon507262fd0111::DwarfCCField3848 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3849 };
3850
3851 struct EmissionKindField : public MDUnsignedField {
EmissionKindField__anon507262fd0111::EmissionKindField3852 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3853 };
3854
3855 struct NameTableKindField : public MDUnsignedField {
NameTableKindField__anon507262fd0111::NameTableKindField3856 NameTableKindField()
3857 : MDUnsignedField(
3858 0, (unsigned)
3859 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3860 };
3861
3862 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
DIFlagField__anon507262fd0111::DIFlagField3863 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3864 };
3865
3866 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
DISPFlagField__anon507262fd0111::DISPFlagField3867 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3868 };
3869
3870 struct MDSignedField : public MDFieldImpl<int64_t> {
3871 int64_t Min;
3872 int64_t Max;
3873
MDSignedField__anon507262fd0111::MDSignedField3874 MDSignedField(int64_t Default = 0)
3875 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
MDSignedField__anon507262fd0111::MDSignedField3876 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3877 : ImplTy(Default), Min(Min), Max(Max) {}
3878 };
3879
3880 struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField__anon507262fd0111::MDBoolField3881 MDBoolField(bool Default = false) : ImplTy(Default) {}
3882 };
3883
3884 struct MDField : public MDFieldImpl<Metadata *> {
3885 bool AllowNull;
3886
MDField__anon507262fd0111::MDField3887 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3888 };
3889
3890 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
MDConstant__anon507262fd0111::MDConstant3891 MDConstant() : ImplTy(nullptr) {}
3892 };
3893
3894 struct MDStringField : public MDFieldImpl<MDString *> {
3895 bool AllowEmpty;
MDStringField__anon507262fd0111::MDStringField3896 MDStringField(bool AllowEmpty = true)
3897 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3898 };
3899
3900 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList__anon507262fd0111::MDFieldList3901 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3902 };
3903
3904 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
ChecksumKindField__anon507262fd0111::ChecksumKindField3905 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3906 };
3907
3908 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
MDSignedOrMDField__anon507262fd0111::MDSignedOrMDField3909 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3910 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3911
MDSignedOrMDField__anon507262fd0111::MDSignedOrMDField3912 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3913 bool AllowNull = true)
3914 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3915
isMDSignedField__anon507262fd0111::MDSignedOrMDField3916 bool isMDSignedField() const { return WhatIs == IsTypeA; }
isMDField__anon507262fd0111::MDSignedOrMDField3917 bool isMDField() const { return WhatIs == IsTypeB; }
getMDSignedValue__anon507262fd0111::MDSignedOrMDField3918 int64_t getMDSignedValue() const {
3919 assert(isMDSignedField() && "Wrong field type");
3920 return A.Val;
3921 }
getMDFieldValue__anon507262fd0111::MDSignedOrMDField3922 Metadata *getMDFieldValue() const {
3923 assert(isMDField() && "Wrong field type");
3924 return B.Val;
3925 }
3926 };
3927
3928 struct MDSignedOrUnsignedField
3929 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
MDSignedOrUnsignedField__anon507262fd0111::MDSignedOrUnsignedField3930 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3931
isMDSignedField__anon507262fd0111::MDSignedOrUnsignedField3932 bool isMDSignedField() const { return WhatIs == IsTypeA; }
isMDUnsignedField__anon507262fd0111::MDSignedOrUnsignedField3933 bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
getMDSignedValue__anon507262fd0111::MDSignedOrUnsignedField3934 int64_t getMDSignedValue() const {
3935 assert(isMDSignedField() && "Wrong field type");
3936 return A.Val;
3937 }
getMDUnsignedValue__anon507262fd0111::MDSignedOrUnsignedField3938 uint64_t getMDUnsignedValue() const {
3939 assert(isMDUnsignedField() && "Wrong field type");
3940 return B.Val;
3941 }
3942 };
3943
3944 } // end anonymous namespace
3945
3946 namespace llvm {
3947
3948 template <>
ParseMDField(LocTy Loc,StringRef Name,MDUnsignedField & Result)3949 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3950 MDUnsignedField &Result) {
3951 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3952 return TokError("expected unsigned integer");
3953
3954 auto &U = Lex.getAPSIntVal();
3955 if (U.ugt(Result.Max))
3956 return TokError("value for '" + Name + "' too large, limit is " +
3957 Twine(Result.Max));
3958 Result.assign(U.getZExtValue());
3959 assert(Result.Val <= Result.Max && "Expected value in range");
3960 Lex.Lex();
3961 return false;
3962 }
3963
3964 template <>
ParseMDField(LocTy Loc,StringRef Name,LineField & Result)3965 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3966 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3967 }
3968 template <>
ParseMDField(LocTy Loc,StringRef Name,ColumnField & Result)3969 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3970 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3971 }
3972
3973 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfTagField & Result)3974 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3975 if (Lex.getKind() == lltok::APSInt)
3976 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3977
3978 if (Lex.getKind() != lltok::DwarfTag)
3979 return TokError("expected DWARF tag");
3980
3981 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3982 if (Tag == dwarf::DW_TAG_invalid)
3983 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3984 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3985
3986 Result.assign(Tag);
3987 Lex.Lex();
3988 return false;
3989 }
3990
3991 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfMacinfoTypeField & Result)3992 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3993 DwarfMacinfoTypeField &Result) {
3994 if (Lex.getKind() == lltok::APSInt)
3995 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3996
3997 if (Lex.getKind() != lltok::DwarfMacinfo)
3998 return TokError("expected DWARF macinfo type");
3999
4000 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4001 if (Macinfo == dwarf::DW_MACINFO_invalid)
4002 return TokError(
4003 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4004 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4005
4006 Result.assign(Macinfo);
4007 Lex.Lex();
4008 return false;
4009 }
4010
4011 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfVirtualityField & Result)4012 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4013 DwarfVirtualityField &Result) {
4014 if (Lex.getKind() == lltok::APSInt)
4015 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4016
4017 if (Lex.getKind() != lltok::DwarfVirtuality)
4018 return TokError("expected DWARF virtuality code");
4019
4020 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4021 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4022 return TokError("invalid DWARF virtuality code" + Twine(" '") +
4023 Lex.getStrVal() + "'");
4024 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4025 Result.assign(Virtuality);
4026 Lex.Lex();
4027 return false;
4028 }
4029
4030 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfLangField & Result)4031 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4032 if (Lex.getKind() == lltok::APSInt)
4033 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4034
4035 if (Lex.getKind() != lltok::DwarfLang)
4036 return TokError("expected DWARF language");
4037
4038 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4039 if (!Lang)
4040 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4041 "'");
4042 assert(Lang <= Result.Max && "Expected valid DWARF language");
4043 Result.assign(Lang);
4044 Lex.Lex();
4045 return false;
4046 }
4047
4048 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfCCField & Result)4049 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4050 if (Lex.getKind() == lltok::APSInt)
4051 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4052
4053 if (Lex.getKind() != lltok::DwarfCC)
4054 return TokError("expected DWARF calling convention");
4055
4056 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4057 if (!CC)
4058 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4059 "'");
4060 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4061 Result.assign(CC);
4062 Lex.Lex();
4063 return false;
4064 }
4065
4066 template <>
ParseMDField(LocTy Loc,StringRef Name,EmissionKindField & Result)4067 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4068 if (Lex.getKind() == lltok::APSInt)
4069 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4070
4071 if (Lex.getKind() != lltok::EmissionKind)
4072 return TokError("expected emission kind");
4073
4074 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4075 if (!Kind)
4076 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4077 "'");
4078 assert(*Kind <= Result.Max && "Expected valid emission kind");
4079 Result.assign(*Kind);
4080 Lex.Lex();
4081 return false;
4082 }
4083
4084 template <>
ParseMDField(LocTy Loc,StringRef Name,NameTableKindField & Result)4085 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4086 NameTableKindField &Result) {
4087 if (Lex.getKind() == lltok::APSInt)
4088 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4089
4090 if (Lex.getKind() != lltok::NameTableKind)
4091 return TokError("expected nameTable kind");
4092
4093 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4094 if (!Kind)
4095 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4096 "'");
4097 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4098 Result.assign((unsigned)*Kind);
4099 Lex.Lex();
4100 return false;
4101 }
4102
4103 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfAttEncodingField & Result)4104 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4105 DwarfAttEncodingField &Result) {
4106 if (Lex.getKind() == lltok::APSInt)
4107 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4108
4109 if (Lex.getKind() != lltok::DwarfAttEncoding)
4110 return TokError("expected DWARF type attribute encoding");
4111
4112 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4113 if (!Encoding)
4114 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4115 Lex.getStrVal() + "'");
4116 assert(Encoding <= Result.Max && "Expected valid DWARF language");
4117 Result.assign(Encoding);
4118 Lex.Lex();
4119 return false;
4120 }
4121
4122 /// DIFlagField
4123 /// ::= uint32
4124 /// ::= DIFlagVector
4125 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4126 template <>
ParseMDField(LocTy Loc,StringRef Name,DIFlagField & Result)4127 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4128
4129 // Parser for a single flag.
4130 auto parseFlag = [&](DINode::DIFlags &Val) {
4131 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4132 uint32_t TempVal = static_cast<uint32_t>(Val);
4133 bool Res = ParseUInt32(TempVal);
4134 Val = static_cast<DINode::DIFlags>(TempVal);
4135 return Res;
4136 }
4137
4138 if (Lex.getKind() != lltok::DIFlag)
4139 return TokError("expected debug info flag");
4140
4141 Val = DINode::getFlag(Lex.getStrVal());
4142 if (!Val)
4143 return TokError(Twine("invalid debug info flag flag '") +
4144 Lex.getStrVal() + "'");
4145 Lex.Lex();
4146 return false;
4147 };
4148
4149 // Parse the flags and combine them together.
4150 DINode::DIFlags Combined = DINode::FlagZero;
4151 do {
4152 DINode::DIFlags Val;
4153 if (parseFlag(Val))
4154 return true;
4155 Combined |= Val;
4156 } while (EatIfPresent(lltok::bar));
4157
4158 Result.assign(Combined);
4159 return false;
4160 }
4161
4162 /// DISPFlagField
4163 /// ::= uint32
4164 /// ::= DISPFlagVector
4165 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4166 template <>
ParseMDField(LocTy Loc,StringRef Name,DISPFlagField & Result)4167 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4168
4169 // Parser for a single flag.
4170 auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4171 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4172 uint32_t TempVal = static_cast<uint32_t>(Val);
4173 bool Res = ParseUInt32(TempVal);
4174 Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4175 return Res;
4176 }
4177
4178 if (Lex.getKind() != lltok::DISPFlag)
4179 return TokError("expected debug info flag");
4180
4181 Val = DISubprogram::getFlag(Lex.getStrVal());
4182 if (!Val)
4183 return TokError(Twine("invalid subprogram debug info flag '") +
4184 Lex.getStrVal() + "'");
4185 Lex.Lex();
4186 return false;
4187 };
4188
4189 // Parse the flags and combine them together.
4190 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4191 do {
4192 DISubprogram::DISPFlags Val;
4193 if (parseFlag(Val))
4194 return true;
4195 Combined |= Val;
4196 } while (EatIfPresent(lltok::bar));
4197
4198 Result.assign(Combined);
4199 return false;
4200 }
4201
4202 template <>
ParseMDField(LocTy Loc,StringRef Name,MDSignedField & Result)4203 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4204 MDSignedField &Result) {
4205 if (Lex.getKind() != lltok::APSInt)
4206 return TokError("expected signed integer");
4207
4208 auto &S = Lex.getAPSIntVal();
4209 if (S < Result.Min)
4210 return TokError("value for '" + Name + "' too small, limit is " +
4211 Twine(Result.Min));
4212 if (S > Result.Max)
4213 return TokError("value for '" + Name + "' too large, limit is " +
4214 Twine(Result.Max));
4215 Result.assign(S.getExtValue());
4216 assert(Result.Val >= Result.Min && "Expected value in range");
4217 assert(Result.Val <= Result.Max && "Expected value in range");
4218 Lex.Lex();
4219 return false;
4220 }
4221
4222 template <>
ParseMDField(LocTy Loc,StringRef Name,MDBoolField & Result)4223 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4224 switch (Lex.getKind()) {
4225 default:
4226 return TokError("expected 'true' or 'false'");
4227 case lltok::kw_true:
4228 Result.assign(true);
4229 break;
4230 case lltok::kw_false:
4231 Result.assign(false);
4232 break;
4233 }
4234 Lex.Lex();
4235 return false;
4236 }
4237
4238 template <>
ParseMDField(LocTy Loc,StringRef Name,MDField & Result)4239 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4240 if (Lex.getKind() == lltok::kw_null) {
4241 if (!Result.AllowNull)
4242 return TokError("'" + Name + "' cannot be null");
4243 Lex.Lex();
4244 Result.assign(nullptr);
4245 return false;
4246 }
4247
4248 Metadata *MD;
4249 if (ParseMetadata(MD, nullptr))
4250 return true;
4251
4252 Result.assign(MD);
4253 return false;
4254 }
4255
4256 template <>
ParseMDField(LocTy Loc,StringRef Name,MDSignedOrMDField & Result)4257 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4258 MDSignedOrMDField &Result) {
4259 // Try to parse a signed int.
4260 if (Lex.getKind() == lltok::APSInt) {
4261 MDSignedField Res = Result.A;
4262 if (!ParseMDField(Loc, Name, Res)) {
4263 Result.assign(Res);
4264 return false;
4265 }
4266 return true;
4267 }
4268
4269 // Otherwise, try to parse as an MDField.
4270 MDField Res = Result.B;
4271 if (!ParseMDField(Loc, Name, Res)) {
4272 Result.assign(Res);
4273 return false;
4274 }
4275
4276 return true;
4277 }
4278
4279 template <>
ParseMDField(LocTy Loc,StringRef Name,MDSignedOrUnsignedField & Result)4280 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4281 MDSignedOrUnsignedField &Result) {
4282 if (Lex.getKind() != lltok::APSInt)
4283 return false;
4284
4285 if (Lex.getAPSIntVal().isSigned()) {
4286 MDSignedField Res = Result.A;
4287 if (ParseMDField(Loc, Name, Res))
4288 return true;
4289 Result.assign(Res);
4290 return false;
4291 }
4292
4293 MDUnsignedField Res = Result.B;
4294 if (ParseMDField(Loc, Name, Res))
4295 return true;
4296 Result.assign(Res);
4297 return false;
4298 }
4299
4300 template <>
ParseMDField(LocTy Loc,StringRef Name,MDStringField & Result)4301 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4302 LocTy ValueLoc = Lex.getLoc();
4303 std::string S;
4304 if (ParseStringConstant(S))
4305 return true;
4306
4307 if (!Result.AllowEmpty && S.empty())
4308 return Error(ValueLoc, "'" + Name + "' cannot be empty");
4309
4310 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4311 return false;
4312 }
4313
4314 template <>
ParseMDField(LocTy Loc,StringRef Name,MDFieldList & Result)4315 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4316 SmallVector<Metadata *, 4> MDs;
4317 if (ParseMDNodeVector(MDs))
4318 return true;
4319
4320 Result.assign(std::move(MDs));
4321 return false;
4322 }
4323
4324 template <>
ParseMDField(LocTy Loc,StringRef Name,ChecksumKindField & Result)4325 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4326 ChecksumKindField &Result) {
4327 Optional<DIFile::ChecksumKind> CSKind =
4328 DIFile::getChecksumKind(Lex.getStrVal());
4329
4330 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4331 return TokError(
4332 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4333
4334 Result.assign(*CSKind);
4335 Lex.Lex();
4336 return false;
4337 }
4338
4339 } // end namespace llvm
4340
4341 template <class ParserTy>
ParseMDFieldsImplBody(ParserTy parseField)4342 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4343 do {
4344 if (Lex.getKind() != lltok::LabelStr)
4345 return TokError("expected field label here");
4346
4347 if (parseField())
4348 return true;
4349 } while (EatIfPresent(lltok::comma));
4350
4351 return false;
4352 }
4353
4354 template <class ParserTy>
ParseMDFieldsImpl(ParserTy parseField,LocTy & ClosingLoc)4355 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4356 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4357 Lex.Lex();
4358
4359 if (ParseToken(lltok::lparen, "expected '(' here"))
4360 return true;
4361 if (Lex.getKind() != lltok::rparen)
4362 if (ParseMDFieldsImplBody(parseField))
4363 return true;
4364
4365 ClosingLoc = Lex.getLoc();
4366 return ParseToken(lltok::rparen, "expected ')' here");
4367 }
4368
4369 template <class FieldTy>
ParseMDField(StringRef Name,FieldTy & Result)4370 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4371 if (Result.Seen)
4372 return TokError("field '" + Name + "' cannot be specified more than once");
4373
4374 LocTy Loc = Lex.getLoc();
4375 Lex.Lex();
4376 return ParseMDField(Loc, Name, Result);
4377 }
4378
ParseSpecializedMDNode(MDNode * & N,bool IsDistinct)4379 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4380 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4381
4382 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4383 if (Lex.getStrVal() == #CLASS) \
4384 return Parse##CLASS(N, IsDistinct);
4385 #include "llvm/IR/Metadata.def"
4386
4387 return TokError("expected metadata type");
4388 }
4389
4390 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4391 #define NOP_FIELD(NAME, TYPE, INIT)
4392 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4393 if (!NAME.Seen) \
4394 return Error(ClosingLoc, "missing required field '" #NAME "'");
4395 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4396 if (Lex.getStrVal() == #NAME) \
4397 return ParseMDField(#NAME, NAME);
4398 #define PARSE_MD_FIELDS() \
4399 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4400 do { \
4401 LocTy ClosingLoc; \
4402 if (ParseMDFieldsImpl([&]() -> bool { \
4403 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4404 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4405 }, ClosingLoc)) \
4406 return true; \
4407 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4408 } while (false)
4409 #define GET_OR_DISTINCT(CLASS, ARGS) \
4410 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4411
4412 /// ParseDILocationFields:
4413 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4414 /// isImplicitCode: true)
ParseDILocation(MDNode * & Result,bool IsDistinct)4415 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4416 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4417 OPTIONAL(line, LineField, ); \
4418 OPTIONAL(column, ColumnField, ); \
4419 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4420 OPTIONAL(inlinedAt, MDField, ); \
4421 OPTIONAL(isImplicitCode, MDBoolField, (false));
4422 PARSE_MD_FIELDS();
4423 #undef VISIT_MD_FIELDS
4424
4425 Result =
4426 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4427 inlinedAt.Val, isImplicitCode.Val));
4428 return false;
4429 }
4430
4431 /// ParseGenericDINode:
4432 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
ParseGenericDINode(MDNode * & Result,bool IsDistinct)4433 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4434 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4435 REQUIRED(tag, DwarfTagField, ); \
4436 OPTIONAL(header, MDStringField, ); \
4437 OPTIONAL(operands, MDFieldList, );
4438 PARSE_MD_FIELDS();
4439 #undef VISIT_MD_FIELDS
4440
4441 Result = GET_OR_DISTINCT(GenericDINode,
4442 (Context, tag.Val, header.Val, operands.Val));
4443 return false;
4444 }
4445
4446 /// ParseDISubrange:
4447 /// ::= !DISubrange(count: 30, lowerBound: 2)
4448 /// ::= !DISubrange(count: !node, lowerBound: 2)
ParseDISubrange(MDNode * & Result,bool IsDistinct)4449 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4450 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4451 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4452 OPTIONAL(lowerBound, MDSignedField, );
4453 PARSE_MD_FIELDS();
4454 #undef VISIT_MD_FIELDS
4455
4456 if (count.isMDSignedField())
4457 Result = GET_OR_DISTINCT(
4458 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4459 else if (count.isMDField())
4460 Result = GET_OR_DISTINCT(
4461 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4462 else
4463 return true;
4464
4465 return false;
4466 }
4467
4468 /// ParseDIEnumerator:
4469 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
ParseDIEnumerator(MDNode * & Result,bool IsDistinct)4470 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4471 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4472 REQUIRED(name, MDStringField, ); \
4473 REQUIRED(value, MDSignedOrUnsignedField, ); \
4474 OPTIONAL(isUnsigned, MDBoolField, (false));
4475 PARSE_MD_FIELDS();
4476 #undef VISIT_MD_FIELDS
4477
4478 if (isUnsigned.Val && value.isMDSignedField())
4479 return TokError("unsigned enumerator with negative value");
4480
4481 int64_t Value = value.isMDSignedField()
4482 ? value.getMDSignedValue()
4483 : static_cast<int64_t>(value.getMDUnsignedValue());
4484 Result =
4485 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4486
4487 return false;
4488 }
4489
4490 /// ParseDIBasicType:
4491 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4492 /// encoding: DW_ATE_encoding, flags: 0)
ParseDIBasicType(MDNode * & Result,bool IsDistinct)4493 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4494 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4495 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4496 OPTIONAL(name, MDStringField, ); \
4497 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4498 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4499 OPTIONAL(encoding, DwarfAttEncodingField, ); \
4500 OPTIONAL(flags, DIFlagField, );
4501 PARSE_MD_FIELDS();
4502 #undef VISIT_MD_FIELDS
4503
4504 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4505 align.Val, encoding.Val, flags.Val));
4506 return false;
4507 }
4508
4509 /// ParseDIDerivedType:
4510 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4511 /// line: 7, scope: !1, baseType: !2, size: 32,
4512 /// align: 32, offset: 0, flags: 0, extraData: !3,
4513 /// dwarfAddressSpace: 3)
ParseDIDerivedType(MDNode * & Result,bool IsDistinct)4514 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4515 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4516 REQUIRED(tag, DwarfTagField, ); \
4517 OPTIONAL(name, MDStringField, ); \
4518 OPTIONAL(file, MDField, ); \
4519 OPTIONAL(line, LineField, ); \
4520 OPTIONAL(scope, MDField, ); \
4521 REQUIRED(baseType, MDField, ); \
4522 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4523 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4524 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4525 OPTIONAL(flags, DIFlagField, ); \
4526 OPTIONAL(extraData, MDField, ); \
4527 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4528 PARSE_MD_FIELDS();
4529 #undef VISIT_MD_FIELDS
4530
4531 Optional<unsigned> DWARFAddressSpace;
4532 if (dwarfAddressSpace.Val != UINT32_MAX)
4533 DWARFAddressSpace = dwarfAddressSpace.Val;
4534
4535 Result = GET_OR_DISTINCT(DIDerivedType,
4536 (Context, tag.Val, name.Val, file.Val, line.Val,
4537 scope.Val, baseType.Val, size.Val, align.Val,
4538 offset.Val, DWARFAddressSpace, flags.Val,
4539 extraData.Val));
4540 return false;
4541 }
4542
ParseDICompositeType(MDNode * & Result,bool IsDistinct)4543 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4544 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4545 REQUIRED(tag, DwarfTagField, ); \
4546 OPTIONAL(name, MDStringField, ); \
4547 OPTIONAL(file, MDField, ); \
4548 OPTIONAL(line, LineField, ); \
4549 OPTIONAL(scope, MDField, ); \
4550 OPTIONAL(baseType, MDField, ); \
4551 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4552 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4553 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4554 OPTIONAL(flags, DIFlagField, ); \
4555 OPTIONAL(elements, MDField, ); \
4556 OPTIONAL(runtimeLang, DwarfLangField, ); \
4557 OPTIONAL(vtableHolder, MDField, ); \
4558 OPTIONAL(templateParams, MDField, ); \
4559 OPTIONAL(identifier, MDStringField, ); \
4560 OPTIONAL(discriminator, MDField, );
4561 PARSE_MD_FIELDS();
4562 #undef VISIT_MD_FIELDS
4563
4564 // If this has an identifier try to build an ODR type.
4565 if (identifier.Val)
4566 if (auto *CT = DICompositeType::buildODRType(
4567 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4568 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4569 elements.Val, runtimeLang.Val, vtableHolder.Val,
4570 templateParams.Val, discriminator.Val)) {
4571 Result = CT;
4572 return false;
4573 }
4574
4575 // Create a new node, and save it in the context if it belongs in the type
4576 // map.
4577 Result = GET_OR_DISTINCT(
4578 DICompositeType,
4579 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4580 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4581 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4582 discriminator.Val));
4583 return false;
4584 }
4585
ParseDISubroutineType(MDNode * & Result,bool IsDistinct)4586 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4587 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4588 OPTIONAL(flags, DIFlagField, ); \
4589 OPTIONAL(cc, DwarfCCField, ); \
4590 REQUIRED(types, MDField, );
4591 PARSE_MD_FIELDS();
4592 #undef VISIT_MD_FIELDS
4593
4594 Result = GET_OR_DISTINCT(DISubroutineType,
4595 (Context, flags.Val, cc.Val, types.Val));
4596 return false;
4597 }
4598
4599 /// ParseDIFileType:
4600 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4601 /// checksumkind: CSK_MD5,
4602 /// checksum: "000102030405060708090a0b0c0d0e0f",
4603 /// source: "source file contents")
ParseDIFile(MDNode * & Result,bool IsDistinct)4604 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4605 // The default constructed value for checksumkind is required, but will never
4606 // be used, as the parser checks if the field was actually Seen before using
4607 // the Val.
4608 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4609 REQUIRED(filename, MDStringField, ); \
4610 REQUIRED(directory, MDStringField, ); \
4611 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4612 OPTIONAL(checksum, MDStringField, ); \
4613 OPTIONAL(source, MDStringField, );
4614 PARSE_MD_FIELDS();
4615 #undef VISIT_MD_FIELDS
4616
4617 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4618 if (checksumkind.Seen && checksum.Seen)
4619 OptChecksum.emplace(checksumkind.Val, checksum.Val);
4620 else if (checksumkind.Seen || checksum.Seen)
4621 return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4622
4623 Optional<MDString *> OptSource;
4624 if (source.Seen)
4625 OptSource = source.Val;
4626 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4627 OptChecksum, OptSource));
4628 return false;
4629 }
4630
4631 /// ParseDICompileUnit:
4632 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4633 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4634 /// splitDebugFilename: "abc.debug",
4635 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4636 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
ParseDICompileUnit(MDNode * & Result,bool IsDistinct)4637 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4638 if (!IsDistinct)
4639 return Lex.Error("missing 'distinct', required for !DICompileUnit");
4640
4641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4642 REQUIRED(language, DwarfLangField, ); \
4643 REQUIRED(file, MDField, (/* AllowNull */ false)); \
4644 OPTIONAL(producer, MDStringField, ); \
4645 OPTIONAL(isOptimized, MDBoolField, ); \
4646 OPTIONAL(flags, MDStringField, ); \
4647 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4648 OPTIONAL(splitDebugFilename, MDStringField, ); \
4649 OPTIONAL(emissionKind, EmissionKindField, ); \
4650 OPTIONAL(enums, MDField, ); \
4651 OPTIONAL(retainedTypes, MDField, ); \
4652 OPTIONAL(globals, MDField, ); \
4653 OPTIONAL(imports, MDField, ); \
4654 OPTIONAL(macros, MDField, ); \
4655 OPTIONAL(dwoId, MDUnsignedField, ); \
4656 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4657 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4658 OPTIONAL(nameTableKind, NameTableKindField, ); \
4659 OPTIONAL(debugBaseAddress, MDBoolField, = false);
4660 PARSE_MD_FIELDS();
4661 #undef VISIT_MD_FIELDS
4662
4663 Result = DICompileUnit::getDistinct(
4664 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4665 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4666 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4667 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4668 debugBaseAddress.Val);
4669 return false;
4670 }
4671
4672 /// ParseDISubprogram:
4673 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4674 /// file: !1, line: 7, type: !2, isLocal: false,
4675 /// isDefinition: true, scopeLine: 8, containingType: !3,
4676 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4677 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4678 /// spFlags: 10, isOptimized: false, templateParams: !4,
4679 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
ParseDISubprogram(MDNode * & Result,bool IsDistinct)4680 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4681 auto Loc = Lex.getLoc();
4682 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4683 OPTIONAL(scope, MDField, ); \
4684 OPTIONAL(name, MDStringField, ); \
4685 OPTIONAL(linkageName, MDStringField, ); \
4686 OPTIONAL(file, MDField, ); \
4687 OPTIONAL(line, LineField, ); \
4688 OPTIONAL(type, MDField, ); \
4689 OPTIONAL(isLocal, MDBoolField, ); \
4690 OPTIONAL(isDefinition, MDBoolField, (true)); \
4691 OPTIONAL(scopeLine, LineField, ); \
4692 OPTIONAL(containingType, MDField, ); \
4693 OPTIONAL(virtuality, DwarfVirtualityField, ); \
4694 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4695 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4696 OPTIONAL(flags, DIFlagField, ); \
4697 OPTIONAL(spFlags, DISPFlagField, ); \
4698 OPTIONAL(isOptimized, MDBoolField, ); \
4699 OPTIONAL(unit, MDField, ); \
4700 OPTIONAL(templateParams, MDField, ); \
4701 OPTIONAL(declaration, MDField, ); \
4702 OPTIONAL(retainedNodes, MDField, ); \
4703 OPTIONAL(thrownTypes, MDField, );
4704 PARSE_MD_FIELDS();
4705 #undef VISIT_MD_FIELDS
4706
4707 // An explicit spFlags field takes precedence over individual fields in
4708 // older IR versions.
4709 DISubprogram::DISPFlags SPFlags =
4710 spFlags.Seen ? spFlags.Val
4711 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4712 isOptimized.Val, virtuality.Val);
4713 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4714 return Lex.Error(
4715 Loc,
4716 "missing 'distinct', required for !DISubprogram that is a Definition");
4717 Result = GET_OR_DISTINCT(
4718 DISubprogram,
4719 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4720 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4721 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4722 declaration.Val, retainedNodes.Val, thrownTypes.Val));
4723 return false;
4724 }
4725
4726 /// ParseDILexicalBlock:
4727 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
ParseDILexicalBlock(MDNode * & Result,bool IsDistinct)4728 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4729 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4730 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4731 OPTIONAL(file, MDField, ); \
4732 OPTIONAL(line, LineField, ); \
4733 OPTIONAL(column, ColumnField, );
4734 PARSE_MD_FIELDS();
4735 #undef VISIT_MD_FIELDS
4736
4737 Result = GET_OR_DISTINCT(
4738 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4739 return false;
4740 }
4741
4742 /// ParseDILexicalBlockFile:
4743 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
ParseDILexicalBlockFile(MDNode * & Result,bool IsDistinct)4744 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4745 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4746 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4747 OPTIONAL(file, MDField, ); \
4748 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4749 PARSE_MD_FIELDS();
4750 #undef VISIT_MD_FIELDS
4751
4752 Result = GET_OR_DISTINCT(DILexicalBlockFile,
4753 (Context, scope.Val, file.Val, discriminator.Val));
4754 return false;
4755 }
4756
4757 /// ParseDICommonBlock:
4758 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
ParseDICommonBlock(MDNode * & Result,bool IsDistinct)4759 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4760 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4761 REQUIRED(scope, MDField, ); \
4762 OPTIONAL(declaration, MDField, ); \
4763 OPTIONAL(name, MDStringField, ); \
4764 OPTIONAL(file, MDField, ); \
4765 OPTIONAL(line, LineField, );
4766 PARSE_MD_FIELDS();
4767 #undef VISIT_MD_FIELDS
4768
4769 Result = GET_OR_DISTINCT(DICommonBlock,
4770 (Context, scope.Val, declaration.Val, name.Val,
4771 file.Val, line.Val));
4772 return false;
4773 }
4774
4775 /// ParseDINamespace:
4776 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
ParseDINamespace(MDNode * & Result,bool IsDistinct)4777 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4778 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4779 REQUIRED(scope, MDField, ); \
4780 OPTIONAL(name, MDStringField, ); \
4781 OPTIONAL(exportSymbols, MDBoolField, );
4782 PARSE_MD_FIELDS();
4783 #undef VISIT_MD_FIELDS
4784
4785 Result = GET_OR_DISTINCT(DINamespace,
4786 (Context, scope.Val, name.Val, exportSymbols.Val));
4787 return false;
4788 }
4789
4790 /// ParseDIMacro:
4791 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
ParseDIMacro(MDNode * & Result,bool IsDistinct)4792 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4793 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4794 REQUIRED(type, DwarfMacinfoTypeField, ); \
4795 OPTIONAL(line, LineField, ); \
4796 REQUIRED(name, MDStringField, ); \
4797 OPTIONAL(value, MDStringField, );
4798 PARSE_MD_FIELDS();
4799 #undef VISIT_MD_FIELDS
4800
4801 Result = GET_OR_DISTINCT(DIMacro,
4802 (Context, type.Val, line.Val, name.Val, value.Val));
4803 return false;
4804 }
4805
4806 /// ParseDIMacroFile:
4807 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
ParseDIMacroFile(MDNode * & Result,bool IsDistinct)4808 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4809 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4810 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4811 OPTIONAL(line, LineField, ); \
4812 REQUIRED(file, MDField, ); \
4813 OPTIONAL(nodes, MDField, );
4814 PARSE_MD_FIELDS();
4815 #undef VISIT_MD_FIELDS
4816
4817 Result = GET_OR_DISTINCT(DIMacroFile,
4818 (Context, type.Val, line.Val, file.Val, nodes.Val));
4819 return false;
4820 }
4821
4822 /// ParseDIModule:
4823 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4824 /// includePath: "/usr/include", sysroot: "/")
ParseDIModule(MDNode * & Result,bool IsDistinct)4825 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4826 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4827 REQUIRED(scope, MDField, ); \
4828 REQUIRED(name, MDStringField, ); \
4829 OPTIONAL(configMacros, MDStringField, ); \
4830 OPTIONAL(includePath, MDStringField, ); \
4831 OPTIONAL(sysroot, MDStringField, );
4832 PARSE_MD_FIELDS();
4833 #undef VISIT_MD_FIELDS
4834
4835 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4836 configMacros.Val, includePath.Val, sysroot.Val));
4837 return false;
4838 }
4839
4840 /// ParseDITemplateTypeParameter:
4841 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
ParseDITemplateTypeParameter(MDNode * & Result,bool IsDistinct)4842 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4843 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4844 OPTIONAL(name, MDStringField, ); \
4845 REQUIRED(type, MDField, );
4846 PARSE_MD_FIELDS();
4847 #undef VISIT_MD_FIELDS
4848
4849 Result =
4850 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4851 return false;
4852 }
4853
4854 /// ParseDITemplateValueParameter:
4855 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4856 /// name: "V", type: !1, value: i32 7)
ParseDITemplateValueParameter(MDNode * & Result,bool IsDistinct)4857 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4858 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4859 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4860 OPTIONAL(name, MDStringField, ); \
4861 OPTIONAL(type, MDField, ); \
4862 REQUIRED(value, MDField, );
4863 PARSE_MD_FIELDS();
4864 #undef VISIT_MD_FIELDS
4865
4866 Result = GET_OR_DISTINCT(DITemplateValueParameter,
4867 (Context, tag.Val, name.Val, type.Val, value.Val));
4868 return false;
4869 }
4870
4871 /// ParseDIGlobalVariable:
4872 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4873 /// file: !1, line: 7, type: !2, isLocal: false,
4874 /// isDefinition: true, templateParams: !3,
4875 /// declaration: !4, align: 8)
ParseDIGlobalVariable(MDNode * & Result,bool IsDistinct)4876 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4877 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4878 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4879 OPTIONAL(scope, MDField, ); \
4880 OPTIONAL(linkageName, MDStringField, ); \
4881 OPTIONAL(file, MDField, ); \
4882 OPTIONAL(line, LineField, ); \
4883 OPTIONAL(type, MDField, ); \
4884 OPTIONAL(isLocal, MDBoolField, ); \
4885 OPTIONAL(isDefinition, MDBoolField, (true)); \
4886 OPTIONAL(templateParams, MDField, ); \
4887 OPTIONAL(declaration, MDField, ); \
4888 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4889 PARSE_MD_FIELDS();
4890 #undef VISIT_MD_FIELDS
4891
4892 Result =
4893 GET_OR_DISTINCT(DIGlobalVariable,
4894 (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4895 line.Val, type.Val, isLocal.Val, isDefinition.Val,
4896 declaration.Val, templateParams.Val, align.Val));
4897 return false;
4898 }
4899
4900 /// ParseDILocalVariable:
4901 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4902 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4903 /// align: 8)
4904 /// ::= !DILocalVariable(scope: !0, name: "foo",
4905 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4906 /// align: 8)
ParseDILocalVariable(MDNode * & Result,bool IsDistinct)4907 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4908 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4909 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4910 OPTIONAL(name, MDStringField, ); \
4911 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4912 OPTIONAL(file, MDField, ); \
4913 OPTIONAL(line, LineField, ); \
4914 OPTIONAL(type, MDField, ); \
4915 OPTIONAL(flags, DIFlagField, ); \
4916 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4917 PARSE_MD_FIELDS();
4918 #undef VISIT_MD_FIELDS
4919
4920 Result = GET_OR_DISTINCT(DILocalVariable,
4921 (Context, scope.Val, name.Val, file.Val, line.Val,
4922 type.Val, arg.Val, flags.Val, align.Val));
4923 return false;
4924 }
4925
4926 /// ParseDILabel:
4927 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
ParseDILabel(MDNode * & Result,bool IsDistinct)4928 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4929 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4930 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4931 REQUIRED(name, MDStringField, ); \
4932 REQUIRED(file, MDField, ); \
4933 REQUIRED(line, LineField, );
4934 PARSE_MD_FIELDS();
4935 #undef VISIT_MD_FIELDS
4936
4937 Result = GET_OR_DISTINCT(DILabel,
4938 (Context, scope.Val, name.Val, file.Val, line.Val));
4939 return false;
4940 }
4941
4942 /// ParseDIExpression:
4943 /// ::= !DIExpression(0, 7, -1)
ParseDIExpression(MDNode * & Result,bool IsDistinct)4944 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4945 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4946 Lex.Lex();
4947
4948 if (ParseToken(lltok::lparen, "expected '(' here"))
4949 return true;
4950
4951 SmallVector<uint64_t, 8> Elements;
4952 if (Lex.getKind() != lltok::rparen)
4953 do {
4954 if (Lex.getKind() == lltok::DwarfOp) {
4955 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4956 Lex.Lex();
4957 Elements.push_back(Op);
4958 continue;
4959 }
4960 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4961 }
4962
4963 if (Lex.getKind() == lltok::DwarfAttEncoding) {
4964 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4965 Lex.Lex();
4966 Elements.push_back(Op);
4967 continue;
4968 }
4969 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4970 }
4971
4972 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4973 return TokError("expected unsigned integer");
4974
4975 auto &U = Lex.getAPSIntVal();
4976 if (U.ugt(UINT64_MAX))
4977 return TokError("element too large, limit is " + Twine(UINT64_MAX));
4978 Elements.push_back(U.getZExtValue());
4979 Lex.Lex();
4980 } while (EatIfPresent(lltok::comma));
4981
4982 if (ParseToken(lltok::rparen, "expected ')' here"))
4983 return true;
4984
4985 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4986 return false;
4987 }
4988
4989 /// ParseDIGlobalVariableExpression:
4990 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
ParseDIGlobalVariableExpression(MDNode * & Result,bool IsDistinct)4991 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4992 bool IsDistinct) {
4993 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4994 REQUIRED(var, MDField, ); \
4995 REQUIRED(expr, MDField, );
4996 PARSE_MD_FIELDS();
4997 #undef VISIT_MD_FIELDS
4998
4999 Result =
5000 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5001 return false;
5002 }
5003
5004 /// ParseDIObjCProperty:
5005 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5006 /// getter: "getFoo", attributes: 7, type: !2)
ParseDIObjCProperty(MDNode * & Result,bool IsDistinct)5007 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5008 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5009 OPTIONAL(name, MDStringField, ); \
5010 OPTIONAL(file, MDField, ); \
5011 OPTIONAL(line, LineField, ); \
5012 OPTIONAL(setter, MDStringField, ); \
5013 OPTIONAL(getter, MDStringField, ); \
5014 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
5015 OPTIONAL(type, MDField, );
5016 PARSE_MD_FIELDS();
5017 #undef VISIT_MD_FIELDS
5018
5019 Result = GET_OR_DISTINCT(DIObjCProperty,
5020 (Context, name.Val, file.Val, line.Val, setter.Val,
5021 getter.Val, attributes.Val, type.Val));
5022 return false;
5023 }
5024
5025 /// ParseDIImportedEntity:
5026 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5027 /// line: 7, name: "foo")
ParseDIImportedEntity(MDNode * & Result,bool IsDistinct)5028 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5029 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5030 REQUIRED(tag, DwarfTagField, ); \
5031 REQUIRED(scope, MDField, ); \
5032 OPTIONAL(entity, MDField, ); \
5033 OPTIONAL(file, MDField, ); \
5034 OPTIONAL(line, LineField, ); \
5035 OPTIONAL(name, MDStringField, );
5036 PARSE_MD_FIELDS();
5037 #undef VISIT_MD_FIELDS
5038
5039 Result = GET_OR_DISTINCT(
5040 DIImportedEntity,
5041 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5042 return false;
5043 }
5044
5045 #undef PARSE_MD_FIELD
5046 #undef NOP_FIELD
5047 #undef REQUIRE_FIELD
5048 #undef DECLARE_FIELD
5049
5050 /// ParseMetadataAsValue
5051 /// ::= metadata i32 %local
5052 /// ::= metadata i32 @global
5053 /// ::= metadata i32 7
5054 /// ::= metadata !0
5055 /// ::= metadata !{...}
5056 /// ::= metadata !"string"
ParseMetadataAsValue(Value * & V,PerFunctionState & PFS)5057 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5058 // Note: the type 'metadata' has already been parsed.
5059 Metadata *MD;
5060 if (ParseMetadata(MD, &PFS))
5061 return true;
5062
5063 V = MetadataAsValue::get(Context, MD);
5064 return false;
5065 }
5066
5067 /// ParseValueAsMetadata
5068 /// ::= i32 %local
5069 /// ::= i32 @global
5070 /// ::= i32 7
ParseValueAsMetadata(Metadata * & MD,const Twine & TypeMsg,PerFunctionState * PFS)5071 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5072 PerFunctionState *PFS) {
5073 Type *Ty;
5074 LocTy Loc;
5075 if (ParseType(Ty, TypeMsg, Loc))
5076 return true;
5077 if (Ty->isMetadataTy())
5078 return Error(Loc, "invalid metadata-value-metadata roundtrip");
5079
5080 Value *V;
5081 if (ParseValue(Ty, V, PFS))
5082 return true;
5083
5084 MD = ValueAsMetadata::get(V);
5085 return false;
5086 }
5087
5088 /// ParseMetadata
5089 /// ::= i32 %local
5090 /// ::= i32 @global
5091 /// ::= i32 7
5092 /// ::= !42
5093 /// ::= !{...}
5094 /// ::= !"string"
5095 /// ::= !DILocation(...)
ParseMetadata(Metadata * & MD,PerFunctionState * PFS)5096 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5097 if (Lex.getKind() == lltok::MetadataVar) {
5098 MDNode *N;
5099 if (ParseSpecializedMDNode(N))
5100 return true;
5101 MD = N;
5102 return false;
5103 }
5104
5105 // ValueAsMetadata:
5106 // <type> <value>
5107 if (Lex.getKind() != lltok::exclaim)
5108 return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5109
5110 // '!'.
5111 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5112 Lex.Lex();
5113
5114 // MDString:
5115 // ::= '!' STRINGCONSTANT
5116 if (Lex.getKind() == lltok::StringConstant) {
5117 MDString *S;
5118 if (ParseMDString(S))
5119 return true;
5120 MD = S;
5121 return false;
5122 }
5123
5124 // MDNode:
5125 // !{ ... }
5126 // !7
5127 MDNode *N;
5128 if (ParseMDNodeTail(N))
5129 return true;
5130 MD = N;
5131 return false;
5132 }
5133
5134 //===----------------------------------------------------------------------===//
5135 // Function Parsing.
5136 //===----------------------------------------------------------------------===//
5137
ConvertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS,bool IsCall)5138 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5139 PerFunctionState *PFS, bool IsCall) {
5140 if (Ty->isFunctionTy())
5141 return Error(ID.Loc, "functions are not values, refer to them as pointers");
5142
5143 switch (ID.Kind) {
5144 case ValID::t_LocalID:
5145 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5146 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5147 return V == nullptr;
5148 case ValID::t_LocalName:
5149 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5150 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5151 return V == nullptr;
5152 case ValID::t_InlineAsm: {
5153 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5154 return Error(ID.Loc, "invalid type for inline asm constraint string");
5155 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5156 (ID.UIntVal >> 1) & 1,
5157 (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5158 return false;
5159 }
5160 case ValID::t_GlobalName:
5161 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5162 return V == nullptr;
5163 case ValID::t_GlobalID:
5164 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5165 return V == nullptr;
5166 case ValID::t_APSInt:
5167 if (!Ty->isIntegerTy())
5168 return Error(ID.Loc, "integer constant must have integer type");
5169 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5170 V = ConstantInt::get(Context, ID.APSIntVal);
5171 return false;
5172 case ValID::t_APFloat:
5173 if (!Ty->isFloatingPointTy() ||
5174 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5175 return Error(ID.Loc, "floating point constant invalid for type");
5176
5177 // The lexer has no type info, so builds all half, float, and double FP
5178 // constants as double. Fix this here. Long double does not need this.
5179 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5180 bool Ignored;
5181 if (Ty->isHalfTy())
5182 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5183 &Ignored);
5184 else if (Ty->isFloatTy())
5185 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5186 &Ignored);
5187 }
5188 V = ConstantFP::get(Context, ID.APFloatVal);
5189
5190 if (V->getType() != Ty)
5191 return Error(ID.Loc, "floating point constant does not have type '" +
5192 getTypeString(Ty) + "'");
5193
5194 return false;
5195 case ValID::t_Null:
5196 if (!Ty->isPointerTy())
5197 return Error(ID.Loc, "null must be a pointer type");
5198 V = ConstantPointerNull::get(cast<PointerType>(Ty));
5199 return false;
5200 case ValID::t_Undef:
5201 // FIXME: LabelTy should not be a first-class type.
5202 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5203 return Error(ID.Loc, "invalid type for undef constant");
5204 V = UndefValue::get(Ty);
5205 return false;
5206 case ValID::t_EmptyArray:
5207 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5208 return Error(ID.Loc, "invalid empty array initializer");
5209 V = UndefValue::get(Ty);
5210 return false;
5211 case ValID::t_Zero:
5212 // FIXME: LabelTy should not be a first-class type.
5213 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5214 return Error(ID.Loc, "invalid type for null constant");
5215 V = Constant::getNullValue(Ty);
5216 return false;
5217 case ValID::t_None:
5218 if (!Ty->isTokenTy())
5219 return Error(ID.Loc, "invalid type for none constant");
5220 V = Constant::getNullValue(Ty);
5221 return false;
5222 case ValID::t_Constant:
5223 if (ID.ConstantVal->getType() != Ty)
5224 return Error(ID.Loc, "constant expression type mismatch");
5225
5226 V = ID.ConstantVal;
5227 return false;
5228 case ValID::t_ConstantStruct:
5229 case ValID::t_PackedConstantStruct:
5230 if (StructType *ST = dyn_cast<StructType>(Ty)) {
5231 if (ST->getNumElements() != ID.UIntVal)
5232 return Error(ID.Loc,
5233 "initializer with struct type has wrong # elements");
5234 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5235 return Error(ID.Loc, "packed'ness of initializer and type don't match");
5236
5237 // Verify that the elements are compatible with the structtype.
5238 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5239 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5240 return Error(ID.Loc, "element " + Twine(i) +
5241 " of struct initializer doesn't match struct element type");
5242
5243 V = ConstantStruct::get(
5244 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5245 } else
5246 return Error(ID.Loc, "constant expression type mismatch");
5247 return false;
5248 }
5249 llvm_unreachable("Invalid ValID");
5250 }
5251
parseConstantValue(Type * Ty,Constant * & C)5252 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5253 C = nullptr;
5254 ValID ID;
5255 auto Loc = Lex.getLoc();
5256 if (ParseValID(ID, /*PFS=*/nullptr))
5257 return true;
5258 switch (ID.Kind) {
5259 case ValID::t_APSInt:
5260 case ValID::t_APFloat:
5261 case ValID::t_Undef:
5262 case ValID::t_Constant:
5263 case ValID::t_ConstantStruct:
5264 case ValID::t_PackedConstantStruct: {
5265 Value *V;
5266 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5267 return true;
5268 assert(isa<Constant>(V) && "Expected a constant value");
5269 C = cast<Constant>(V);
5270 return false;
5271 }
5272 case ValID::t_Null:
5273 C = Constant::getNullValue(Ty);
5274 return false;
5275 default:
5276 return Error(Loc, "expected a constant value");
5277 }
5278 }
5279
ParseValue(Type * Ty,Value * & V,PerFunctionState * PFS)5280 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5281 V = nullptr;
5282 ValID ID;
5283 return ParseValID(ID, PFS) ||
5284 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5285 }
5286
ParseTypeAndValue(Value * & V,PerFunctionState * PFS)5287 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5288 Type *Ty = nullptr;
5289 return ParseType(Ty) ||
5290 ParseValue(Ty, V, PFS);
5291 }
5292
ParseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)5293 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5294 PerFunctionState &PFS) {
5295 Value *V;
5296 Loc = Lex.getLoc();
5297 if (ParseTypeAndValue(V, PFS)) return true;
5298 if (!isa<BasicBlock>(V))
5299 return Error(Loc, "expected a basic block");
5300 BB = cast<BasicBlock>(V);
5301 return false;
5302 }
5303
5304 /// FunctionHeader
5305 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5306 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5307 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5308 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
ParseFunctionHeader(Function * & Fn,bool isDefine)5309 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5310 // Parse the linkage.
5311 LocTy LinkageLoc = Lex.getLoc();
5312 unsigned Linkage;
5313 unsigned Visibility;
5314 unsigned DLLStorageClass;
5315 bool DSOLocal;
5316 AttrBuilder RetAttrs;
5317 unsigned CC;
5318 bool HasLinkage;
5319 Type *RetType = nullptr;
5320 LocTy RetTypeLoc = Lex.getLoc();
5321 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5322 DSOLocal) ||
5323 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5324 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5325 return true;
5326
5327 // Verify that the linkage is ok.
5328 switch ((GlobalValue::LinkageTypes)Linkage) {
5329 case GlobalValue::ExternalLinkage:
5330 break; // always ok.
5331 case GlobalValue::ExternalWeakLinkage:
5332 if (isDefine)
5333 return Error(LinkageLoc, "invalid linkage for function definition");
5334 break;
5335 case GlobalValue::PrivateLinkage:
5336 case GlobalValue::InternalLinkage:
5337 case GlobalValue::AvailableExternallyLinkage:
5338 case GlobalValue::LinkOnceAnyLinkage:
5339 case GlobalValue::LinkOnceODRLinkage:
5340 case GlobalValue::WeakAnyLinkage:
5341 case GlobalValue::WeakODRLinkage:
5342 if (!isDefine)
5343 return Error(LinkageLoc, "invalid linkage for function declaration");
5344 break;
5345 case GlobalValue::AppendingLinkage:
5346 case GlobalValue::CommonLinkage:
5347 return Error(LinkageLoc, "invalid function linkage type");
5348 }
5349
5350 if (!isValidVisibilityForLinkage(Visibility, Linkage))
5351 return Error(LinkageLoc,
5352 "symbol with local linkage must have default visibility");
5353
5354 if (!FunctionType::isValidReturnType(RetType))
5355 return Error(RetTypeLoc, "invalid function return type");
5356
5357 LocTy NameLoc = Lex.getLoc();
5358
5359 std::string FunctionName;
5360 if (Lex.getKind() == lltok::GlobalVar) {
5361 FunctionName = Lex.getStrVal();
5362 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5363 unsigned NameID = Lex.getUIntVal();
5364
5365 if (NameID != NumberedVals.size())
5366 return TokError("function expected to be numbered '%" +
5367 Twine(NumberedVals.size()) + "'");
5368 } else {
5369 return TokError("expected function name");
5370 }
5371
5372 Lex.Lex();
5373
5374 if (Lex.getKind() != lltok::lparen)
5375 return TokError("expected '(' in function argument list");
5376
5377 SmallVector<ArgInfo, 8> ArgList;
5378 bool isVarArg;
5379 AttrBuilder FuncAttrs;
5380 std::vector<unsigned> FwdRefAttrGrps;
5381 LocTy BuiltinLoc;
5382 std::string Section;
5383 std::string Partition;
5384 MaybeAlign Alignment;
5385 std::string GC;
5386 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5387 unsigned AddrSpace = 0;
5388 Constant *Prefix = nullptr;
5389 Constant *Prologue = nullptr;
5390 Constant *PersonalityFn = nullptr;
5391 Comdat *C;
5392
5393 if (ParseArgumentList(ArgList, isVarArg) ||
5394 ParseOptionalUnnamedAddr(UnnamedAddr) ||
5395 ParseOptionalProgramAddrSpace(AddrSpace) ||
5396 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5397 BuiltinLoc) ||
5398 (EatIfPresent(lltok::kw_section) &&
5399 ParseStringConstant(Section)) ||
5400 (EatIfPresent(lltok::kw_partition) &&
5401 ParseStringConstant(Partition)) ||
5402 parseOptionalComdat(FunctionName, C) ||
5403 ParseOptionalAlignment(Alignment) ||
5404 (EatIfPresent(lltok::kw_gc) &&
5405 ParseStringConstant(GC)) ||
5406 (EatIfPresent(lltok::kw_prefix) &&
5407 ParseGlobalTypeAndValue(Prefix)) ||
5408 (EatIfPresent(lltok::kw_prologue) &&
5409 ParseGlobalTypeAndValue(Prologue)) ||
5410 (EatIfPresent(lltok::kw_personality) &&
5411 ParseGlobalTypeAndValue(PersonalityFn)))
5412 return true;
5413
5414 if (FuncAttrs.contains(Attribute::Builtin))
5415 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5416
5417 // If the alignment was parsed as an attribute, move to the alignment field.
5418 if (FuncAttrs.hasAlignmentAttr()) {
5419 Alignment = FuncAttrs.getAlignment();
5420 FuncAttrs.removeAttribute(Attribute::Alignment);
5421 }
5422
5423 // Okay, if we got here, the function is syntactically valid. Convert types
5424 // and do semantic checks.
5425 std::vector<Type*> ParamTypeList;
5426 SmallVector<AttributeSet, 8> Attrs;
5427
5428 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5429 ParamTypeList.push_back(ArgList[i].Ty);
5430 Attrs.push_back(ArgList[i].Attrs);
5431 }
5432
5433 AttributeList PAL =
5434 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5435 AttributeSet::get(Context, RetAttrs), Attrs);
5436
5437 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5438 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5439
5440 FunctionType *FT =
5441 FunctionType::get(RetType, ParamTypeList, isVarArg);
5442 PointerType *PFT = PointerType::get(FT, AddrSpace);
5443
5444 Fn = nullptr;
5445 if (!FunctionName.empty()) {
5446 // If this was a definition of a forward reference, remove the definition
5447 // from the forward reference table and fill in the forward ref.
5448 auto FRVI = ForwardRefVals.find(FunctionName);
5449 if (FRVI != ForwardRefVals.end()) {
5450 Fn = M->getFunction(FunctionName);
5451 if (!Fn)
5452 return Error(FRVI->second.second, "invalid forward reference to "
5453 "function as global value!");
5454 if (Fn->getType() != PFT)
5455 return Error(FRVI->second.second, "invalid forward reference to "
5456 "function '" + FunctionName + "' with wrong type: "
5457 "expected '" + getTypeString(PFT) + "' but was '" +
5458 getTypeString(Fn->getType()) + "'");
5459 ForwardRefVals.erase(FRVI);
5460 } else if ((Fn = M->getFunction(FunctionName))) {
5461 // Reject redefinitions.
5462 return Error(NameLoc, "invalid redefinition of function '" +
5463 FunctionName + "'");
5464 } else if (M->getNamedValue(FunctionName)) {
5465 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5466 }
5467
5468 } else {
5469 // If this is a definition of a forward referenced function, make sure the
5470 // types agree.
5471 auto I = ForwardRefValIDs.find(NumberedVals.size());
5472 if (I != ForwardRefValIDs.end()) {
5473 Fn = cast<Function>(I->second.first);
5474 if (Fn->getType() != PFT)
5475 return Error(NameLoc, "type of definition and forward reference of '@" +
5476 Twine(NumberedVals.size()) + "' disagree: "
5477 "expected '" + getTypeString(PFT) + "' but was '" +
5478 getTypeString(Fn->getType()) + "'");
5479 ForwardRefValIDs.erase(I);
5480 }
5481 }
5482
5483 if (!Fn)
5484 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5485 FunctionName, M);
5486 else // Move the forward-reference to the correct spot in the module.
5487 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5488
5489 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5490
5491 if (FunctionName.empty())
5492 NumberedVals.push_back(Fn);
5493
5494 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5495 maybeSetDSOLocal(DSOLocal, *Fn);
5496 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5497 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5498 Fn->setCallingConv(CC);
5499 Fn->setAttributes(PAL);
5500 Fn->setUnnamedAddr(UnnamedAddr);
5501 Fn->setAlignment(MaybeAlign(Alignment));
5502 Fn->setSection(Section);
5503 Fn->setPartition(Partition);
5504 Fn->setComdat(C);
5505 Fn->setPersonalityFn(PersonalityFn);
5506 if (!GC.empty()) Fn->setGC(GC);
5507 Fn->setPrefixData(Prefix);
5508 Fn->setPrologueData(Prologue);
5509 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5510
5511 // Add all of the arguments we parsed to the function.
5512 Function::arg_iterator ArgIt = Fn->arg_begin();
5513 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5514 // If the argument has a name, insert it into the argument symbol table.
5515 if (ArgList[i].Name.empty()) continue;
5516
5517 // Set the name, if it conflicted, it will be auto-renamed.
5518 ArgIt->setName(ArgList[i].Name);
5519
5520 if (ArgIt->getName() != ArgList[i].Name)
5521 return Error(ArgList[i].Loc, "redefinition of argument '%" +
5522 ArgList[i].Name + "'");
5523 }
5524
5525 if (isDefine)
5526 return false;
5527
5528 // Check the declaration has no block address forward references.
5529 ValID ID;
5530 if (FunctionName.empty()) {
5531 ID.Kind = ValID::t_GlobalID;
5532 ID.UIntVal = NumberedVals.size() - 1;
5533 } else {
5534 ID.Kind = ValID::t_GlobalName;
5535 ID.StrVal = FunctionName;
5536 }
5537 auto Blocks = ForwardRefBlockAddresses.find(ID);
5538 if (Blocks != ForwardRefBlockAddresses.end())
5539 return Error(Blocks->first.Loc,
5540 "cannot take blockaddress inside a declaration");
5541 return false;
5542 }
5543
resolveForwardRefBlockAddresses()5544 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5545 ValID ID;
5546 if (FunctionNumber == -1) {
5547 ID.Kind = ValID::t_GlobalName;
5548 ID.StrVal = F.getName();
5549 } else {
5550 ID.Kind = ValID::t_GlobalID;
5551 ID.UIntVal = FunctionNumber;
5552 }
5553
5554 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5555 if (Blocks == P.ForwardRefBlockAddresses.end())
5556 return false;
5557
5558 for (const auto &I : Blocks->second) {
5559 const ValID &BBID = I.first;
5560 GlobalValue *GV = I.second;
5561
5562 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5563 "Expected local id or name");
5564 BasicBlock *BB;
5565 if (BBID.Kind == ValID::t_LocalName)
5566 BB = GetBB(BBID.StrVal, BBID.Loc);
5567 else
5568 BB = GetBB(BBID.UIntVal, BBID.Loc);
5569 if (!BB)
5570 return P.Error(BBID.Loc, "referenced value is not a basic block");
5571
5572 GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5573 GV->eraseFromParent();
5574 }
5575
5576 P.ForwardRefBlockAddresses.erase(Blocks);
5577 return false;
5578 }
5579
5580 /// ParseFunctionBody
5581 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
ParseFunctionBody(Function & Fn)5582 bool LLParser::ParseFunctionBody(Function &Fn) {
5583 if (Lex.getKind() != lltok::lbrace)
5584 return TokError("expected '{' in function body");
5585 Lex.Lex(); // eat the {.
5586
5587 int FunctionNumber = -1;
5588 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5589
5590 PerFunctionState PFS(*this, Fn, FunctionNumber);
5591
5592 // Resolve block addresses and allow basic blocks to be forward-declared
5593 // within this function.
5594 if (PFS.resolveForwardRefBlockAddresses())
5595 return true;
5596 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5597
5598 // We need at least one basic block.
5599 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5600 return TokError("function body requires at least one basic block");
5601
5602 while (Lex.getKind() != lltok::rbrace &&
5603 Lex.getKind() != lltok::kw_uselistorder)
5604 if (ParseBasicBlock(PFS)) return true;
5605
5606 while (Lex.getKind() != lltok::rbrace)
5607 if (ParseUseListOrder(&PFS))
5608 return true;
5609
5610 // Eat the }.
5611 Lex.Lex();
5612
5613 // Verify function is ok.
5614 return PFS.FinishFunction();
5615 }
5616
5617 /// ParseBasicBlock
5618 /// ::= (LabelStr|LabelID)? Instruction*
ParseBasicBlock(PerFunctionState & PFS)5619 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5620 // If this basic block starts out with a name, remember it.
5621 std::string Name;
5622 int NameID = -1;
5623 LocTy NameLoc = Lex.getLoc();
5624 if (Lex.getKind() == lltok::LabelStr) {
5625 Name = Lex.getStrVal();
5626 Lex.Lex();
5627 } else if (Lex.getKind() == lltok::LabelID) {
5628 NameID = Lex.getUIntVal();
5629 Lex.Lex();
5630 }
5631
5632 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5633 if (!BB)
5634 return true;
5635
5636 std::string NameStr;
5637
5638 // Parse the instructions in this block until we get a terminator.
5639 Instruction *Inst;
5640 do {
5641 // This instruction may have three possibilities for a name: a) none
5642 // specified, b) name specified "%foo =", c) number specified: "%4 =".
5643 LocTy NameLoc = Lex.getLoc();
5644 int NameID = -1;
5645 NameStr = "";
5646
5647 if (Lex.getKind() == lltok::LocalVarID) {
5648 NameID = Lex.getUIntVal();
5649 Lex.Lex();
5650 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5651 return true;
5652 } else if (Lex.getKind() == lltok::LocalVar) {
5653 NameStr = Lex.getStrVal();
5654 Lex.Lex();
5655 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5656 return true;
5657 }
5658
5659 switch (ParseInstruction(Inst, BB, PFS)) {
5660 default: llvm_unreachable("Unknown ParseInstruction result!");
5661 case InstError: return true;
5662 case InstNormal:
5663 BB->getInstList().push_back(Inst);
5664
5665 // With a normal result, we check to see if the instruction is followed by
5666 // a comma and metadata.
5667 if (EatIfPresent(lltok::comma))
5668 if (ParseInstructionMetadata(*Inst))
5669 return true;
5670 break;
5671 case InstExtraComma:
5672 BB->getInstList().push_back(Inst);
5673
5674 // If the instruction parser ate an extra comma at the end of it, it
5675 // *must* be followed by metadata.
5676 if (ParseInstructionMetadata(*Inst))
5677 return true;
5678 break;
5679 }
5680
5681 // Set the name on the instruction.
5682 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5683 } while (!Inst->isTerminator());
5684
5685 return false;
5686 }
5687
5688 //===----------------------------------------------------------------------===//
5689 // Instruction Parsing.
5690 //===----------------------------------------------------------------------===//
5691
5692 /// ParseInstruction - Parse one of the many different instructions.
5693 ///
ParseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)5694 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5695 PerFunctionState &PFS) {
5696 lltok::Kind Token = Lex.getKind();
5697 if (Token == lltok::Eof)
5698 return TokError("found end of file when expecting more instructions");
5699 LocTy Loc = Lex.getLoc();
5700 unsigned KeywordVal = Lex.getUIntVal();
5701 Lex.Lex(); // Eat the keyword.
5702
5703 switch (Token) {
5704 default: return Error(Loc, "expected instruction opcode");
5705 // Terminator Instructions.
5706 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5707 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
5708 case lltok::kw_br: return ParseBr(Inst, PFS);
5709 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
5710 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
5711 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
5712 case lltok::kw_resume: return ParseResume(Inst, PFS);
5713 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS);
5714 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS);
5715 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5716 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS);
5717 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS);
5718 case lltok::kw_callbr: return ParseCallBr(Inst, PFS);
5719 // Unary Operators.
5720 case lltok::kw_fneg: {
5721 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5722 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5723 if (Res != 0)
5724 return Res;
5725 if (FMF.any())
5726 Inst->setFastMathFlags(FMF);
5727 return false;
5728 }
5729 // Binary Operators.
5730 case lltok::kw_add:
5731 case lltok::kw_sub:
5732 case lltok::kw_mul:
5733 case lltok::kw_shl: {
5734 bool NUW = EatIfPresent(lltok::kw_nuw);
5735 bool NSW = EatIfPresent(lltok::kw_nsw);
5736 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5737
5738 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5739
5740 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5741 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5742 return false;
5743 }
5744 case lltok::kw_fadd:
5745 case lltok::kw_fsub:
5746 case lltok::kw_fmul:
5747 case lltok::kw_fdiv:
5748 case lltok::kw_frem: {
5749 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5750 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5751 if (Res != 0)
5752 return Res;
5753 if (FMF.any())
5754 Inst->setFastMathFlags(FMF);
5755 return 0;
5756 }
5757
5758 case lltok::kw_sdiv:
5759 case lltok::kw_udiv:
5760 case lltok::kw_lshr:
5761 case lltok::kw_ashr: {
5762 bool Exact = EatIfPresent(lltok::kw_exact);
5763
5764 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5765 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5766 return false;
5767 }
5768
5769 case lltok::kw_urem:
5770 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal,
5771 /*IsFP*/false);
5772 case lltok::kw_and:
5773 case lltok::kw_or:
5774 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
5775 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
5776 case lltok::kw_fcmp: {
5777 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5778 int Res = ParseCompare(Inst, PFS, KeywordVal);
5779 if (Res != 0)
5780 return Res;
5781 if (FMF.any())
5782 Inst->setFastMathFlags(FMF);
5783 return 0;
5784 }
5785
5786 // Casts.
5787 case lltok::kw_trunc:
5788 case lltok::kw_zext:
5789 case lltok::kw_sext:
5790 case lltok::kw_fptrunc:
5791 case lltok::kw_fpext:
5792 case lltok::kw_bitcast:
5793 case lltok::kw_addrspacecast:
5794 case lltok::kw_uitofp:
5795 case lltok::kw_sitofp:
5796 case lltok::kw_fptoui:
5797 case lltok::kw_fptosi:
5798 case lltok::kw_inttoptr:
5799 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
5800 // Other.
5801 case lltok::kw_select: {
5802 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5803 int Res = ParseSelect(Inst, PFS);
5804 if (Res != 0)
5805 return Res;
5806 if (FMF.any()) {
5807 if (!isa<FPMathOperator>(Inst))
5808 return Error(Loc, "fast-math-flags specified for select without "
5809 "floating-point scalar or vector return type");
5810 Inst->setFastMathFlags(FMF);
5811 }
5812 return 0;
5813 }
5814 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
5815 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5816 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
5817 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
5818 case lltok::kw_phi: {
5819 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5820 int Res = ParsePHI(Inst, PFS);
5821 if (Res != 0)
5822 return Res;
5823 if (FMF.any()) {
5824 if (!isa<FPMathOperator>(Inst))
5825 return Error(Loc, "fast-math-flags specified for phi without "
5826 "floating-point scalar or vector return type");
5827 Inst->setFastMathFlags(FMF);
5828 }
5829 return 0;
5830 }
5831 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
5832 case lltok::kw_freeze: return ParseFreeze(Inst, PFS);
5833 // Call.
5834 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
5835 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5836 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5837 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5838 // Memory.
5839 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
5840 case lltok::kw_load: return ParseLoad(Inst, PFS);
5841 case lltok::kw_store: return ParseStore(Inst, PFS);
5842 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
5843 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
5844 case lltok::kw_fence: return ParseFence(Inst, PFS);
5845 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5846 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
5847 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
5848 }
5849 }
5850
5851 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
ParseCmpPredicate(unsigned & P,unsigned Opc)5852 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5853 if (Opc == Instruction::FCmp) {
5854 switch (Lex.getKind()) {
5855 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5856 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5857 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5858 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5859 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5860 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5861 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5862 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5863 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5864 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5865 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5866 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5867 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5868 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5869 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5870 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5871 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5872 }
5873 } else {
5874 switch (Lex.getKind()) {
5875 default: return TokError("expected icmp predicate (e.g. 'eq')");
5876 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
5877 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
5878 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5879 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5880 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5881 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5882 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5883 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5884 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5885 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5886 }
5887 }
5888 Lex.Lex();
5889 return false;
5890 }
5891
5892 //===----------------------------------------------------------------------===//
5893 // Terminator Instructions.
5894 //===----------------------------------------------------------------------===//
5895
5896 /// ParseRet - Parse a return instruction.
5897 /// ::= 'ret' void (',' !dbg, !1)*
5898 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
ParseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)5899 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5900 PerFunctionState &PFS) {
5901 SMLoc TypeLoc = Lex.getLoc();
5902 Type *Ty = nullptr;
5903 if (ParseType(Ty, true /*void allowed*/)) return true;
5904
5905 Type *ResType = PFS.getFunction().getReturnType();
5906
5907 if (Ty->isVoidTy()) {
5908 if (!ResType->isVoidTy())
5909 return Error(TypeLoc, "value doesn't match function result type '" +
5910 getTypeString(ResType) + "'");
5911
5912 Inst = ReturnInst::Create(Context);
5913 return false;
5914 }
5915
5916 Value *RV;
5917 if (ParseValue(Ty, RV, PFS)) return true;
5918
5919 if (ResType != RV->getType())
5920 return Error(TypeLoc, "value doesn't match function result type '" +
5921 getTypeString(ResType) + "'");
5922
5923 Inst = ReturnInst::Create(Context, RV);
5924 return false;
5925 }
5926
5927 /// ParseBr
5928 /// ::= 'br' TypeAndValue
5929 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseBr(Instruction * & Inst,PerFunctionState & PFS)5930 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5931 LocTy Loc, Loc2;
5932 Value *Op0;
5933 BasicBlock *Op1, *Op2;
5934 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5935
5936 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5937 Inst = BranchInst::Create(BB);
5938 return false;
5939 }
5940
5941 if (Op0->getType() != Type::getInt1Ty(Context))
5942 return Error(Loc, "branch condition must have 'i1' type");
5943
5944 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5945 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5946 ParseToken(lltok::comma, "expected ',' after true destination") ||
5947 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5948 return true;
5949
5950 Inst = BranchInst::Create(Op1, Op2, Op0);
5951 return false;
5952 }
5953
5954 /// ParseSwitch
5955 /// Instruction
5956 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5957 /// JumpTable
5958 /// ::= (TypeAndValue ',' TypeAndValue)*
ParseSwitch(Instruction * & Inst,PerFunctionState & PFS)5959 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5960 LocTy CondLoc, BBLoc;
5961 Value *Cond;
5962 BasicBlock *DefaultBB;
5963 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5964 ParseToken(lltok::comma, "expected ',' after switch condition") ||
5965 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5966 ParseToken(lltok::lsquare, "expected '[' with switch table"))
5967 return true;
5968
5969 if (!Cond->getType()->isIntegerTy())
5970 return Error(CondLoc, "switch condition must have integer type");
5971
5972 // Parse the jump table pairs.
5973 SmallPtrSet<Value*, 32> SeenCases;
5974 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5975 while (Lex.getKind() != lltok::rsquare) {
5976 Value *Constant;
5977 BasicBlock *DestBB;
5978
5979 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5980 ParseToken(lltok::comma, "expected ',' after case value") ||
5981 ParseTypeAndBasicBlock(DestBB, PFS))
5982 return true;
5983
5984 if (!SeenCases.insert(Constant).second)
5985 return Error(CondLoc, "duplicate case value in switch");
5986 if (!isa<ConstantInt>(Constant))
5987 return Error(CondLoc, "case value is not a constant integer");
5988
5989 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5990 }
5991
5992 Lex.Lex(); // Eat the ']'.
5993
5994 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5995 for (unsigned i = 0, e = Table.size(); i != e; ++i)
5996 SI->addCase(Table[i].first, Table[i].second);
5997 Inst = SI;
5998 return false;
5999 }
6000
6001 /// ParseIndirectBr
6002 /// Instruction
6003 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
ParseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)6004 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6005 LocTy AddrLoc;
6006 Value *Address;
6007 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6008 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6009 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6010 return true;
6011
6012 if (!Address->getType()->isPointerTy())
6013 return Error(AddrLoc, "indirectbr address must have pointer type");
6014
6015 // Parse the destination list.
6016 SmallVector<BasicBlock*, 16> DestList;
6017
6018 if (Lex.getKind() != lltok::rsquare) {
6019 BasicBlock *DestBB;
6020 if (ParseTypeAndBasicBlock(DestBB, PFS))
6021 return true;
6022 DestList.push_back(DestBB);
6023
6024 while (EatIfPresent(lltok::comma)) {
6025 if (ParseTypeAndBasicBlock(DestBB, PFS))
6026 return true;
6027 DestList.push_back(DestBB);
6028 }
6029 }
6030
6031 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6032 return true;
6033
6034 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6035 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6036 IBI->addDestination(DestList[i]);
6037 Inst = IBI;
6038 return false;
6039 }
6040
6041 /// ParseInvoke
6042 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6043 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
ParseInvoke(Instruction * & Inst,PerFunctionState & PFS)6044 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6045 LocTy CallLoc = Lex.getLoc();
6046 AttrBuilder RetAttrs, FnAttrs;
6047 std::vector<unsigned> FwdRefAttrGrps;
6048 LocTy NoBuiltinLoc;
6049 unsigned CC;
6050 unsigned InvokeAddrSpace;
6051 Type *RetType = nullptr;
6052 LocTy RetTypeLoc;
6053 ValID CalleeID;
6054 SmallVector<ParamInfo, 16> ArgList;
6055 SmallVector<OperandBundleDef, 2> BundleList;
6056
6057 BasicBlock *NormalBB, *UnwindBB;
6058 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6059 ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6060 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6061 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6062 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6063 NoBuiltinLoc) ||
6064 ParseOptionalOperandBundles(BundleList, PFS) ||
6065 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6066 ParseTypeAndBasicBlock(NormalBB, PFS) ||
6067 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6068 ParseTypeAndBasicBlock(UnwindBB, PFS))
6069 return true;
6070
6071 // If RetType is a non-function pointer type, then this is the short syntax
6072 // for the call, which means that RetType is just the return type. Infer the
6073 // rest of the function argument types from the arguments that are present.
6074 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6075 if (!Ty) {
6076 // Pull out the types of all of the arguments...
6077 std::vector<Type*> ParamTypes;
6078 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6079 ParamTypes.push_back(ArgList[i].V->getType());
6080
6081 if (!FunctionType::isValidReturnType(RetType))
6082 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6083
6084 Ty = FunctionType::get(RetType, ParamTypes, false);
6085 }
6086
6087 CalleeID.FTy = Ty;
6088
6089 // Look up the callee.
6090 Value *Callee;
6091 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6092 Callee, &PFS, /*IsCall=*/true))
6093 return true;
6094
6095 // Set up the Attribute for the function.
6096 SmallVector<Value *, 8> Args;
6097 SmallVector<AttributeSet, 8> ArgAttrs;
6098
6099 // Loop through FunctionType's arguments and ensure they are specified
6100 // correctly. Also, gather any parameter attributes.
6101 FunctionType::param_iterator I = Ty->param_begin();
6102 FunctionType::param_iterator E = Ty->param_end();
6103 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6104 Type *ExpectedTy = nullptr;
6105 if (I != E) {
6106 ExpectedTy = *I++;
6107 } else if (!Ty->isVarArg()) {
6108 return Error(ArgList[i].Loc, "too many arguments specified");
6109 }
6110
6111 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6112 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6113 getTypeString(ExpectedTy) + "'");
6114 Args.push_back(ArgList[i].V);
6115 ArgAttrs.push_back(ArgList[i].Attrs);
6116 }
6117
6118 if (I != E)
6119 return Error(CallLoc, "not enough parameters specified for call");
6120
6121 if (FnAttrs.hasAlignmentAttr())
6122 return Error(CallLoc, "invoke instructions may not have an alignment");
6123
6124 // Finish off the Attribute and check them
6125 AttributeList PAL =
6126 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6127 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6128
6129 InvokeInst *II =
6130 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6131 II->setCallingConv(CC);
6132 II->setAttributes(PAL);
6133 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6134 Inst = II;
6135 return false;
6136 }
6137
6138 /// ParseResume
6139 /// ::= 'resume' TypeAndValue
ParseResume(Instruction * & Inst,PerFunctionState & PFS)6140 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6141 Value *Exn; LocTy ExnLoc;
6142 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6143 return true;
6144
6145 ResumeInst *RI = ResumeInst::Create(Exn);
6146 Inst = RI;
6147 return false;
6148 }
6149
ParseExceptionArgs(SmallVectorImpl<Value * > & Args,PerFunctionState & PFS)6150 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6151 PerFunctionState &PFS) {
6152 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6153 return true;
6154
6155 while (Lex.getKind() != lltok::rsquare) {
6156 // If this isn't the first argument, we need a comma.
6157 if (!Args.empty() &&
6158 ParseToken(lltok::comma, "expected ',' in argument list"))
6159 return true;
6160
6161 // Parse the argument.
6162 LocTy ArgLoc;
6163 Type *ArgTy = nullptr;
6164 if (ParseType(ArgTy, ArgLoc))
6165 return true;
6166
6167 Value *V;
6168 if (ArgTy->isMetadataTy()) {
6169 if (ParseMetadataAsValue(V, PFS))
6170 return true;
6171 } else {
6172 if (ParseValue(ArgTy, V, PFS))
6173 return true;
6174 }
6175 Args.push_back(V);
6176 }
6177
6178 Lex.Lex(); // Lex the ']'.
6179 return false;
6180 }
6181
6182 /// ParseCleanupRet
6183 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
ParseCleanupRet(Instruction * & Inst,PerFunctionState & PFS)6184 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6185 Value *CleanupPad = nullptr;
6186
6187 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6188 return true;
6189
6190 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6191 return true;
6192
6193 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6194 return true;
6195
6196 BasicBlock *UnwindBB = nullptr;
6197 if (Lex.getKind() == lltok::kw_to) {
6198 Lex.Lex();
6199 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6200 return true;
6201 } else {
6202 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6203 return true;
6204 }
6205 }
6206
6207 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6208 return false;
6209 }
6210
6211 /// ParseCatchRet
6212 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
ParseCatchRet(Instruction * & Inst,PerFunctionState & PFS)6213 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6214 Value *CatchPad = nullptr;
6215
6216 if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6217 return true;
6218
6219 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6220 return true;
6221
6222 BasicBlock *BB;
6223 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6224 ParseTypeAndBasicBlock(BB, PFS))
6225 return true;
6226
6227 Inst = CatchReturnInst::Create(CatchPad, BB);
6228 return false;
6229 }
6230
6231 /// ParseCatchSwitch
6232 /// ::= 'catchswitch' within Parent
ParseCatchSwitch(Instruction * & Inst,PerFunctionState & PFS)6233 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6234 Value *ParentPad;
6235
6236 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6237 return true;
6238
6239 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6240 Lex.getKind() != lltok::LocalVarID)
6241 return TokError("expected scope value for catchswitch");
6242
6243 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6244 return true;
6245
6246 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6247 return true;
6248
6249 SmallVector<BasicBlock *, 32> Table;
6250 do {
6251 BasicBlock *DestBB;
6252 if (ParseTypeAndBasicBlock(DestBB, PFS))
6253 return true;
6254 Table.push_back(DestBB);
6255 } while (EatIfPresent(lltok::comma));
6256
6257 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6258 return true;
6259
6260 if (ParseToken(lltok::kw_unwind,
6261 "expected 'unwind' after catchswitch scope"))
6262 return true;
6263
6264 BasicBlock *UnwindBB = nullptr;
6265 if (EatIfPresent(lltok::kw_to)) {
6266 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6267 return true;
6268 } else {
6269 if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6270 return true;
6271 }
6272
6273 auto *CatchSwitch =
6274 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6275 for (BasicBlock *DestBB : Table)
6276 CatchSwitch->addHandler(DestBB);
6277 Inst = CatchSwitch;
6278 return false;
6279 }
6280
6281 /// ParseCatchPad
6282 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
ParseCatchPad(Instruction * & Inst,PerFunctionState & PFS)6283 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6284 Value *CatchSwitch = nullptr;
6285
6286 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6287 return true;
6288
6289 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6290 return TokError("expected scope value for catchpad");
6291
6292 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6293 return true;
6294
6295 SmallVector<Value *, 8> Args;
6296 if (ParseExceptionArgs(Args, PFS))
6297 return true;
6298
6299 Inst = CatchPadInst::Create(CatchSwitch, Args);
6300 return false;
6301 }
6302
6303 /// ParseCleanupPad
6304 /// ::= 'cleanuppad' within Parent ParamList
ParseCleanupPad(Instruction * & Inst,PerFunctionState & PFS)6305 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6306 Value *ParentPad = nullptr;
6307
6308 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6309 return true;
6310
6311 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6312 Lex.getKind() != lltok::LocalVarID)
6313 return TokError("expected scope value for cleanuppad");
6314
6315 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6316 return true;
6317
6318 SmallVector<Value *, 8> Args;
6319 if (ParseExceptionArgs(Args, PFS))
6320 return true;
6321
6322 Inst = CleanupPadInst::Create(ParentPad, Args);
6323 return false;
6324 }
6325
6326 //===----------------------------------------------------------------------===//
6327 // Unary Operators.
6328 //===----------------------------------------------------------------------===//
6329
6330 /// ParseUnaryOp
6331 /// ::= UnaryOp TypeAndValue ',' Value
6332 ///
6333 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6334 /// operand is allowed.
ParseUnaryOp(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,bool IsFP)6335 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6336 unsigned Opc, bool IsFP) {
6337 LocTy Loc; Value *LHS;
6338 if (ParseTypeAndValue(LHS, Loc, PFS))
6339 return true;
6340
6341 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6342 : LHS->getType()->isIntOrIntVectorTy();
6343
6344 if (!Valid)
6345 return Error(Loc, "invalid operand type for instruction");
6346
6347 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6348 return false;
6349 }
6350
6351 /// ParseCallBr
6352 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6353 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6354 /// '[' LabelList ']'
ParseCallBr(Instruction * & Inst,PerFunctionState & PFS)6355 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6356 LocTy CallLoc = Lex.getLoc();
6357 AttrBuilder RetAttrs, FnAttrs;
6358 std::vector<unsigned> FwdRefAttrGrps;
6359 LocTy NoBuiltinLoc;
6360 unsigned CC;
6361 Type *RetType = nullptr;
6362 LocTy RetTypeLoc;
6363 ValID CalleeID;
6364 SmallVector<ParamInfo, 16> ArgList;
6365 SmallVector<OperandBundleDef, 2> BundleList;
6366
6367 BasicBlock *DefaultDest;
6368 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6369 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6370 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6371 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6372 NoBuiltinLoc) ||
6373 ParseOptionalOperandBundles(BundleList, PFS) ||
6374 ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6375 ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6376 ParseToken(lltok::lsquare, "expected '[' in callbr"))
6377 return true;
6378
6379 // Parse the destination list.
6380 SmallVector<BasicBlock *, 16> IndirectDests;
6381
6382 if (Lex.getKind() != lltok::rsquare) {
6383 BasicBlock *DestBB;
6384 if (ParseTypeAndBasicBlock(DestBB, PFS))
6385 return true;
6386 IndirectDests.push_back(DestBB);
6387
6388 while (EatIfPresent(lltok::comma)) {
6389 if (ParseTypeAndBasicBlock(DestBB, PFS))
6390 return true;
6391 IndirectDests.push_back(DestBB);
6392 }
6393 }
6394
6395 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6396 return true;
6397
6398 // If RetType is a non-function pointer type, then this is the short syntax
6399 // for the call, which means that RetType is just the return type. Infer the
6400 // rest of the function argument types from the arguments that are present.
6401 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6402 if (!Ty) {
6403 // Pull out the types of all of the arguments...
6404 std::vector<Type *> ParamTypes;
6405 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6406 ParamTypes.push_back(ArgList[i].V->getType());
6407
6408 if (!FunctionType::isValidReturnType(RetType))
6409 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6410
6411 Ty = FunctionType::get(RetType, ParamTypes, false);
6412 }
6413
6414 CalleeID.FTy = Ty;
6415
6416 // Look up the callee.
6417 Value *Callee;
6418 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6419 /*IsCall=*/true))
6420 return true;
6421
6422 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6423 return Error(RetTypeLoc, "asm-goto outputs not supported");
6424
6425 // Set up the Attribute for the function.
6426 SmallVector<Value *, 8> Args;
6427 SmallVector<AttributeSet, 8> ArgAttrs;
6428
6429 // Loop through FunctionType's arguments and ensure they are specified
6430 // correctly. Also, gather any parameter attributes.
6431 FunctionType::param_iterator I = Ty->param_begin();
6432 FunctionType::param_iterator E = Ty->param_end();
6433 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6434 Type *ExpectedTy = nullptr;
6435 if (I != E) {
6436 ExpectedTy = *I++;
6437 } else if (!Ty->isVarArg()) {
6438 return Error(ArgList[i].Loc, "too many arguments specified");
6439 }
6440
6441 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6442 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6443 getTypeString(ExpectedTy) + "'");
6444 Args.push_back(ArgList[i].V);
6445 ArgAttrs.push_back(ArgList[i].Attrs);
6446 }
6447
6448 if (I != E)
6449 return Error(CallLoc, "not enough parameters specified for call");
6450
6451 if (FnAttrs.hasAlignmentAttr())
6452 return Error(CallLoc, "callbr instructions may not have an alignment");
6453
6454 // Finish off the Attribute and check them
6455 AttributeList PAL =
6456 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6457 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6458
6459 CallBrInst *CBI =
6460 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6461 BundleList);
6462 CBI->setCallingConv(CC);
6463 CBI->setAttributes(PAL);
6464 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6465 Inst = CBI;
6466 return false;
6467 }
6468
6469 //===----------------------------------------------------------------------===//
6470 // Binary Operators.
6471 //===----------------------------------------------------------------------===//
6472
6473 /// ParseArithmetic
6474 /// ::= ArithmeticOps TypeAndValue ',' Value
6475 ///
6476 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6477 /// operand is allowed.
ParseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,bool IsFP)6478 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6479 unsigned Opc, bool IsFP) {
6480 LocTy Loc; Value *LHS, *RHS;
6481 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6482 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6483 ParseValue(LHS->getType(), RHS, PFS))
6484 return true;
6485
6486 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6487 : LHS->getType()->isIntOrIntVectorTy();
6488
6489 if (!Valid)
6490 return Error(Loc, "invalid operand type for instruction");
6491
6492 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6493 return false;
6494 }
6495
6496 /// ParseLogical
6497 /// ::= ArithmeticOps TypeAndValue ',' Value {
ParseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)6498 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6499 unsigned Opc) {
6500 LocTy Loc; Value *LHS, *RHS;
6501 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6502 ParseToken(lltok::comma, "expected ',' in logical operation") ||
6503 ParseValue(LHS->getType(), RHS, PFS))
6504 return true;
6505
6506 if (!LHS->getType()->isIntOrIntVectorTy())
6507 return Error(Loc,"instruction requires integer or integer vector operands");
6508
6509 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6510 return false;
6511 }
6512
6513 /// ParseCompare
6514 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
6515 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
ParseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)6516 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6517 unsigned Opc) {
6518 // Parse the integer/fp comparison predicate.
6519 LocTy Loc;
6520 unsigned Pred;
6521 Value *LHS, *RHS;
6522 if (ParseCmpPredicate(Pred, Opc) ||
6523 ParseTypeAndValue(LHS, Loc, PFS) ||
6524 ParseToken(lltok::comma, "expected ',' after compare value") ||
6525 ParseValue(LHS->getType(), RHS, PFS))
6526 return true;
6527
6528 if (Opc == Instruction::FCmp) {
6529 if (!LHS->getType()->isFPOrFPVectorTy())
6530 return Error(Loc, "fcmp requires floating point operands");
6531 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6532 } else {
6533 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6534 if (!LHS->getType()->isIntOrIntVectorTy() &&
6535 !LHS->getType()->isPtrOrPtrVectorTy())
6536 return Error(Loc, "icmp requires integer operands");
6537 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6538 }
6539 return false;
6540 }
6541
6542 //===----------------------------------------------------------------------===//
6543 // Other Instructions.
6544 //===----------------------------------------------------------------------===//
6545
6546
6547 /// ParseCast
6548 /// ::= CastOpc TypeAndValue 'to' Type
ParseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)6549 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6550 unsigned Opc) {
6551 LocTy Loc;
6552 Value *Op;
6553 Type *DestTy = nullptr;
6554 if (ParseTypeAndValue(Op, Loc, PFS) ||
6555 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6556 ParseType(DestTy))
6557 return true;
6558
6559 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6560 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6561 return Error(Loc, "invalid cast opcode for cast from '" +
6562 getTypeString(Op->getType()) + "' to '" +
6563 getTypeString(DestTy) + "'");
6564 }
6565 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6566 return false;
6567 }
6568
6569 /// ParseSelect
6570 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseSelect(Instruction * & Inst,PerFunctionState & PFS)6571 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6572 LocTy Loc;
6573 Value *Op0, *Op1, *Op2;
6574 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6575 ParseToken(lltok::comma, "expected ',' after select condition") ||
6576 ParseTypeAndValue(Op1, PFS) ||
6577 ParseToken(lltok::comma, "expected ',' after select value") ||
6578 ParseTypeAndValue(Op2, PFS))
6579 return true;
6580
6581 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6582 return Error(Loc, Reason);
6583
6584 Inst = SelectInst::Create(Op0, Op1, Op2);
6585 return false;
6586 }
6587
6588 /// ParseVA_Arg
6589 /// ::= 'va_arg' TypeAndValue ',' Type
ParseVA_Arg(Instruction * & Inst,PerFunctionState & PFS)6590 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6591 Value *Op;
6592 Type *EltTy = nullptr;
6593 LocTy TypeLoc;
6594 if (ParseTypeAndValue(Op, PFS) ||
6595 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6596 ParseType(EltTy, TypeLoc))
6597 return true;
6598
6599 if (!EltTy->isFirstClassType())
6600 return Error(TypeLoc, "va_arg requires operand with first class type");
6601
6602 Inst = new VAArgInst(Op, EltTy);
6603 return false;
6604 }
6605
6606 /// ParseExtractElement
6607 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
ParseExtractElement(Instruction * & Inst,PerFunctionState & PFS)6608 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6609 LocTy Loc;
6610 Value *Op0, *Op1;
6611 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6612 ParseToken(lltok::comma, "expected ',' after extract value") ||
6613 ParseTypeAndValue(Op1, PFS))
6614 return true;
6615
6616 if (!ExtractElementInst::isValidOperands(Op0, Op1))
6617 return Error(Loc, "invalid extractelement operands");
6618
6619 Inst = ExtractElementInst::Create(Op0, Op1);
6620 return false;
6621 }
6622
6623 /// ParseInsertElement
6624 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseInsertElement(Instruction * & Inst,PerFunctionState & PFS)6625 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6626 LocTy Loc;
6627 Value *Op0, *Op1, *Op2;
6628 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6629 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6630 ParseTypeAndValue(Op1, PFS) ||
6631 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6632 ParseTypeAndValue(Op2, PFS))
6633 return true;
6634
6635 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6636 return Error(Loc, "invalid insertelement operands");
6637
6638 Inst = InsertElementInst::Create(Op0, Op1, Op2);
6639 return false;
6640 }
6641
6642 /// ParseShuffleVector
6643 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)6644 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6645 LocTy Loc;
6646 Value *Op0, *Op1, *Op2;
6647 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6648 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6649 ParseTypeAndValue(Op1, PFS) ||
6650 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6651 ParseTypeAndValue(Op2, PFS))
6652 return true;
6653
6654 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6655 return Error(Loc, "invalid shufflevector operands");
6656
6657 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6658 return false;
6659 }
6660
6661 /// ParsePHI
6662 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
ParsePHI(Instruction * & Inst,PerFunctionState & PFS)6663 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6664 Type *Ty = nullptr; LocTy TypeLoc;
6665 Value *Op0, *Op1;
6666
6667 if (ParseType(Ty, TypeLoc) ||
6668 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6669 ParseValue(Ty, Op0, PFS) ||
6670 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6671 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6672 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6673 return true;
6674
6675 bool AteExtraComma = false;
6676 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6677
6678 while (true) {
6679 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6680
6681 if (!EatIfPresent(lltok::comma))
6682 break;
6683
6684 if (Lex.getKind() == lltok::MetadataVar) {
6685 AteExtraComma = true;
6686 break;
6687 }
6688
6689 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6690 ParseValue(Ty, Op0, PFS) ||
6691 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6692 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6693 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6694 return true;
6695 }
6696
6697 if (!Ty->isFirstClassType())
6698 return Error(TypeLoc, "phi node must have first class type");
6699
6700 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6701 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6702 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6703 Inst = PN;
6704 return AteExtraComma ? InstExtraComma : InstNormal;
6705 }
6706
6707 /// ParseLandingPad
6708 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6709 /// Clause
6710 /// ::= 'catch' TypeAndValue
6711 /// ::= 'filter'
6712 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
ParseLandingPad(Instruction * & Inst,PerFunctionState & PFS)6713 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6714 Type *Ty = nullptr; LocTy TyLoc;
6715
6716 if (ParseType(Ty, TyLoc))
6717 return true;
6718
6719 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6720 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6721
6722 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6723 LandingPadInst::ClauseType CT;
6724 if (EatIfPresent(lltok::kw_catch))
6725 CT = LandingPadInst::Catch;
6726 else if (EatIfPresent(lltok::kw_filter))
6727 CT = LandingPadInst::Filter;
6728 else
6729 return TokError("expected 'catch' or 'filter' clause type");
6730
6731 Value *V;
6732 LocTy VLoc;
6733 if (ParseTypeAndValue(V, VLoc, PFS))
6734 return true;
6735
6736 // A 'catch' type expects a non-array constant. A filter clause expects an
6737 // array constant.
6738 if (CT == LandingPadInst::Catch) {
6739 if (isa<ArrayType>(V->getType()))
6740 Error(VLoc, "'catch' clause has an invalid type");
6741 } else {
6742 if (!isa<ArrayType>(V->getType()))
6743 Error(VLoc, "'filter' clause has an invalid type");
6744 }
6745
6746 Constant *CV = dyn_cast<Constant>(V);
6747 if (!CV)
6748 return Error(VLoc, "clause argument must be a constant");
6749 LP->addClause(CV);
6750 }
6751
6752 Inst = LP.release();
6753 return false;
6754 }
6755
6756 /// ParseFreeze
6757 /// ::= 'freeze' Type Value
ParseFreeze(Instruction * & Inst,PerFunctionState & PFS)6758 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6759 LocTy Loc;
6760 Value *Op;
6761 if (ParseTypeAndValue(Op, Loc, PFS))
6762 return true;
6763
6764 Inst = new FreezeInst(Op);
6765 return false;
6766 }
6767
6768 /// ParseCall
6769 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
6770 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6771 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6772 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6773 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6774 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6775 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
6776 /// OptionalAttrs Type Value ParameterList OptionalAttrs
ParseCall(Instruction * & Inst,PerFunctionState & PFS,CallInst::TailCallKind TCK)6777 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6778 CallInst::TailCallKind TCK) {
6779 AttrBuilder RetAttrs, FnAttrs;
6780 std::vector<unsigned> FwdRefAttrGrps;
6781 LocTy BuiltinLoc;
6782 unsigned CallAddrSpace;
6783 unsigned CC;
6784 Type *RetType = nullptr;
6785 LocTy RetTypeLoc;
6786 ValID CalleeID;
6787 SmallVector<ParamInfo, 16> ArgList;
6788 SmallVector<OperandBundleDef, 2> BundleList;
6789 LocTy CallLoc = Lex.getLoc();
6790
6791 if (TCK != CallInst::TCK_None &&
6792 ParseToken(lltok::kw_call,
6793 "expected 'tail call', 'musttail call', or 'notail call'"))
6794 return true;
6795
6796 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6797
6798 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6799 ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6800 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6801 ParseValID(CalleeID) ||
6802 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6803 PFS.getFunction().isVarArg()) ||
6804 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6805 ParseOptionalOperandBundles(BundleList, PFS))
6806 return true;
6807
6808 // If RetType is a non-function pointer type, then this is the short syntax
6809 // for the call, which means that RetType is just the return type. Infer the
6810 // rest of the function argument types from the arguments that are present.
6811 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6812 if (!Ty) {
6813 // Pull out the types of all of the arguments...
6814 std::vector<Type*> ParamTypes;
6815 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6816 ParamTypes.push_back(ArgList[i].V->getType());
6817
6818 if (!FunctionType::isValidReturnType(RetType))
6819 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6820
6821 Ty = FunctionType::get(RetType, ParamTypes, false);
6822 }
6823
6824 CalleeID.FTy = Ty;
6825
6826 // Look up the callee.
6827 Value *Callee;
6828 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6829 &PFS, /*IsCall=*/true))
6830 return true;
6831
6832 // Set up the Attribute for the function.
6833 SmallVector<AttributeSet, 8> Attrs;
6834
6835 SmallVector<Value*, 8> Args;
6836
6837 // Loop through FunctionType's arguments and ensure they are specified
6838 // correctly. Also, gather any parameter attributes.
6839 FunctionType::param_iterator I = Ty->param_begin();
6840 FunctionType::param_iterator E = Ty->param_end();
6841 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6842 Type *ExpectedTy = nullptr;
6843 if (I != E) {
6844 ExpectedTy = *I++;
6845 } else if (!Ty->isVarArg()) {
6846 return Error(ArgList[i].Loc, "too many arguments specified");
6847 }
6848
6849 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6850 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6851 getTypeString(ExpectedTy) + "'");
6852 Args.push_back(ArgList[i].V);
6853 Attrs.push_back(ArgList[i].Attrs);
6854 }
6855
6856 if (I != E)
6857 return Error(CallLoc, "not enough parameters specified for call");
6858
6859 if (FnAttrs.hasAlignmentAttr())
6860 return Error(CallLoc, "call instructions may not have an alignment");
6861
6862 // Finish off the Attribute and check them
6863 AttributeList PAL =
6864 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6865 AttributeSet::get(Context, RetAttrs), Attrs);
6866
6867 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6868 CI->setTailCallKind(TCK);
6869 CI->setCallingConv(CC);
6870 if (FMF.any()) {
6871 if (!isa<FPMathOperator>(CI))
6872 return Error(CallLoc, "fast-math-flags specified for call without "
6873 "floating-point scalar or vector return type");
6874 CI->setFastMathFlags(FMF);
6875 }
6876 CI->setAttributes(PAL);
6877 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6878 Inst = CI;
6879 return false;
6880 }
6881
6882 //===----------------------------------------------------------------------===//
6883 // Memory Instructions.
6884 //===----------------------------------------------------------------------===//
6885
6886 /// ParseAlloc
6887 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6888 /// (',' 'align' i32)? (',', 'addrspace(n))?
ParseAlloc(Instruction * & Inst,PerFunctionState & PFS)6889 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6890 Value *Size = nullptr;
6891 LocTy SizeLoc, TyLoc, ASLoc;
6892 MaybeAlign Alignment;
6893 unsigned AddrSpace = 0;
6894 Type *Ty = nullptr;
6895
6896 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6897 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6898
6899 if (ParseType(Ty, TyLoc)) return true;
6900
6901 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6902 return Error(TyLoc, "invalid type for alloca");
6903
6904 bool AteExtraComma = false;
6905 if (EatIfPresent(lltok::comma)) {
6906 if (Lex.getKind() == lltok::kw_align) {
6907 if (ParseOptionalAlignment(Alignment))
6908 return true;
6909 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6910 return true;
6911 } else if (Lex.getKind() == lltok::kw_addrspace) {
6912 ASLoc = Lex.getLoc();
6913 if (ParseOptionalAddrSpace(AddrSpace))
6914 return true;
6915 } else if (Lex.getKind() == lltok::MetadataVar) {
6916 AteExtraComma = true;
6917 } else {
6918 if (ParseTypeAndValue(Size, SizeLoc, PFS))
6919 return true;
6920 if (EatIfPresent(lltok::comma)) {
6921 if (Lex.getKind() == lltok::kw_align) {
6922 if (ParseOptionalAlignment(Alignment))
6923 return true;
6924 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6925 return true;
6926 } else if (Lex.getKind() == lltok::kw_addrspace) {
6927 ASLoc = Lex.getLoc();
6928 if (ParseOptionalAddrSpace(AddrSpace))
6929 return true;
6930 } else if (Lex.getKind() == lltok::MetadataVar) {
6931 AteExtraComma = true;
6932 }
6933 }
6934 }
6935 }
6936
6937 if (Size && !Size->getType()->isIntegerTy())
6938 return Error(SizeLoc, "element count must have integer type");
6939
6940 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6941 AI->setUsedWithInAlloca(IsInAlloca);
6942 AI->setSwiftError(IsSwiftError);
6943 Inst = AI;
6944 return AteExtraComma ? InstExtraComma : InstNormal;
6945 }
6946
6947 /// ParseLoad
6948 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6949 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
6950 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseLoad(Instruction * & Inst,PerFunctionState & PFS)6951 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6952 Value *Val; LocTy Loc;
6953 MaybeAlign Alignment;
6954 bool AteExtraComma = false;
6955 bool isAtomic = false;
6956 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6957 SyncScope::ID SSID = SyncScope::System;
6958
6959 if (Lex.getKind() == lltok::kw_atomic) {
6960 isAtomic = true;
6961 Lex.Lex();
6962 }
6963
6964 bool isVolatile = false;
6965 if (Lex.getKind() == lltok::kw_volatile) {
6966 isVolatile = true;
6967 Lex.Lex();
6968 }
6969
6970 Type *Ty;
6971 LocTy ExplicitTypeLoc = Lex.getLoc();
6972 if (ParseType(Ty) ||
6973 ParseToken(lltok::comma, "expected comma after load's type") ||
6974 ParseTypeAndValue(Val, Loc, PFS) ||
6975 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6976 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6977 return true;
6978
6979 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6980 return Error(Loc, "load operand must be a pointer to a first class type");
6981 if (isAtomic && !Alignment)
6982 return Error(Loc, "atomic load must have explicit non-zero alignment");
6983 if (Ordering == AtomicOrdering::Release ||
6984 Ordering == AtomicOrdering::AcquireRelease)
6985 return Error(Loc, "atomic load cannot use Release ordering");
6986
6987 if (Ty != cast<PointerType>(Val->getType())->getElementType())
6988 return Error(ExplicitTypeLoc,
6989 "explicit pointee type doesn't match operand's pointee type");
6990
6991 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6992 return AteExtraComma ? InstExtraComma : InstNormal;
6993 }
6994
6995 /// ParseStore
6996
6997 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6998 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6999 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseStore(Instruction * & Inst,PerFunctionState & PFS)7000 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7001 Value *Val, *Ptr; LocTy Loc, PtrLoc;
7002 MaybeAlign Alignment;
7003 bool AteExtraComma = false;
7004 bool isAtomic = false;
7005 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7006 SyncScope::ID SSID = SyncScope::System;
7007
7008 if (Lex.getKind() == lltok::kw_atomic) {
7009 isAtomic = true;
7010 Lex.Lex();
7011 }
7012
7013 bool isVolatile = false;
7014 if (Lex.getKind() == lltok::kw_volatile) {
7015 isVolatile = true;
7016 Lex.Lex();
7017 }
7018
7019 if (ParseTypeAndValue(Val, Loc, PFS) ||
7020 ParseToken(lltok::comma, "expected ',' after store operand") ||
7021 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7022 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7023 ParseOptionalCommaAlign(Alignment, AteExtraComma))
7024 return true;
7025
7026 if (!Ptr->getType()->isPointerTy())
7027 return Error(PtrLoc, "store operand must be a pointer");
7028 if (!Val->getType()->isFirstClassType())
7029 return Error(Loc, "store operand must be a first class value");
7030 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7031 return Error(Loc, "stored value and pointer type do not match");
7032 if (isAtomic && !Alignment)
7033 return Error(Loc, "atomic store must have explicit non-zero alignment");
7034 if (Ordering == AtomicOrdering::Acquire ||
7035 Ordering == AtomicOrdering::AcquireRelease)
7036 return Error(Loc, "atomic store cannot use Acquire ordering");
7037
7038 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7039 return AteExtraComma ? InstExtraComma : InstNormal;
7040 }
7041
7042 /// ParseCmpXchg
7043 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7044 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
ParseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)7045 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7046 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7047 bool AteExtraComma = false;
7048 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7049 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7050 SyncScope::ID SSID = SyncScope::System;
7051 bool isVolatile = false;
7052 bool isWeak = false;
7053
7054 if (EatIfPresent(lltok::kw_weak))
7055 isWeak = true;
7056
7057 if (EatIfPresent(lltok::kw_volatile))
7058 isVolatile = true;
7059
7060 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7061 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7062 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7063 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7064 ParseTypeAndValue(New, NewLoc, PFS) ||
7065 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7066 ParseOrdering(FailureOrdering))
7067 return true;
7068
7069 if (SuccessOrdering == AtomicOrdering::Unordered ||
7070 FailureOrdering == AtomicOrdering::Unordered)
7071 return TokError("cmpxchg cannot be unordered");
7072 if (isStrongerThan(FailureOrdering, SuccessOrdering))
7073 return TokError("cmpxchg failure argument shall be no stronger than the "
7074 "success argument");
7075 if (FailureOrdering == AtomicOrdering::Release ||
7076 FailureOrdering == AtomicOrdering::AcquireRelease)
7077 return TokError(
7078 "cmpxchg failure ordering cannot include release semantics");
7079 if (!Ptr->getType()->isPointerTy())
7080 return Error(PtrLoc, "cmpxchg operand must be a pointer");
7081 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7082 return Error(CmpLoc, "compare value and pointer type do not match");
7083 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7084 return Error(NewLoc, "new value and pointer type do not match");
7085 if (!New->getType()->isFirstClassType())
7086 return Error(NewLoc, "cmpxchg operand must be a first class value");
7087 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7088 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7089 CXI->setVolatile(isVolatile);
7090 CXI->setWeak(isWeak);
7091 Inst = CXI;
7092 return AteExtraComma ? InstExtraComma : InstNormal;
7093 }
7094
7095 /// ParseAtomicRMW
7096 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7097 /// 'singlethread'? AtomicOrdering
ParseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)7098 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7099 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7100 bool AteExtraComma = false;
7101 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7102 SyncScope::ID SSID = SyncScope::System;
7103 bool isVolatile = false;
7104 bool IsFP = false;
7105 AtomicRMWInst::BinOp Operation;
7106
7107 if (EatIfPresent(lltok::kw_volatile))
7108 isVolatile = true;
7109
7110 switch (Lex.getKind()) {
7111 default: return TokError("expected binary operation in atomicrmw");
7112 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7113 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7114 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7115 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7116 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7117 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7118 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7119 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7120 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7121 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7122 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7123 case lltok::kw_fadd:
7124 Operation = AtomicRMWInst::FAdd;
7125 IsFP = true;
7126 break;
7127 case lltok::kw_fsub:
7128 Operation = AtomicRMWInst::FSub;
7129 IsFP = true;
7130 break;
7131 }
7132 Lex.Lex(); // Eat the operation.
7133
7134 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7135 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7136 ParseTypeAndValue(Val, ValLoc, PFS) ||
7137 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7138 return true;
7139
7140 if (Ordering == AtomicOrdering::Unordered)
7141 return TokError("atomicrmw cannot be unordered");
7142 if (!Ptr->getType()->isPointerTy())
7143 return Error(PtrLoc, "atomicrmw operand must be a pointer");
7144 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7145 return Error(ValLoc, "atomicrmw value and pointer type do not match");
7146
7147 if (Operation == AtomicRMWInst::Xchg) {
7148 if (!Val->getType()->isIntegerTy() &&
7149 !Val->getType()->isFloatingPointTy()) {
7150 return Error(ValLoc, "atomicrmw " +
7151 AtomicRMWInst::getOperationName(Operation) +
7152 " operand must be an integer or floating point type");
7153 }
7154 } else if (IsFP) {
7155 if (!Val->getType()->isFloatingPointTy()) {
7156 return Error(ValLoc, "atomicrmw " +
7157 AtomicRMWInst::getOperationName(Operation) +
7158 " operand must be a floating point type");
7159 }
7160 } else {
7161 if (!Val->getType()->isIntegerTy()) {
7162 return Error(ValLoc, "atomicrmw " +
7163 AtomicRMWInst::getOperationName(Operation) +
7164 " operand must be an integer");
7165 }
7166 }
7167
7168 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7169 if (Size < 8 || (Size & (Size - 1)))
7170 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7171 " integer");
7172
7173 AtomicRMWInst *RMWI =
7174 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7175 RMWI->setVolatile(isVolatile);
7176 Inst = RMWI;
7177 return AteExtraComma ? InstExtraComma : InstNormal;
7178 }
7179
7180 /// ParseFence
7181 /// ::= 'fence' 'singlethread'? AtomicOrdering
ParseFence(Instruction * & Inst,PerFunctionState & PFS)7182 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7183 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7184 SyncScope::ID SSID = SyncScope::System;
7185 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7186 return true;
7187
7188 if (Ordering == AtomicOrdering::Unordered)
7189 return TokError("fence cannot be unordered");
7190 if (Ordering == AtomicOrdering::Monotonic)
7191 return TokError("fence cannot be monotonic");
7192
7193 Inst = new FenceInst(Context, Ordering, SSID);
7194 return InstNormal;
7195 }
7196
7197 /// ParseGetElementPtr
7198 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
ParseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)7199 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7200 Value *Ptr = nullptr;
7201 Value *Val = nullptr;
7202 LocTy Loc, EltLoc;
7203
7204 bool InBounds = EatIfPresent(lltok::kw_inbounds);
7205
7206 Type *Ty = nullptr;
7207 LocTy ExplicitTypeLoc = Lex.getLoc();
7208 if (ParseType(Ty) ||
7209 ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7210 ParseTypeAndValue(Ptr, Loc, PFS))
7211 return true;
7212
7213 Type *BaseType = Ptr->getType();
7214 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7215 if (!BasePointerType)
7216 return Error(Loc, "base of getelementptr must be a pointer");
7217
7218 if (Ty != BasePointerType->getElementType())
7219 return Error(ExplicitTypeLoc,
7220 "explicit pointee type doesn't match operand's pointee type");
7221
7222 SmallVector<Value*, 16> Indices;
7223 bool AteExtraComma = false;
7224 // GEP returns a vector of pointers if at least one of parameters is a vector.
7225 // All vector parameters should have the same vector width.
7226 unsigned GEPWidth = BaseType->isVectorTy() ?
7227 BaseType->getVectorNumElements() : 0;
7228
7229 while (EatIfPresent(lltok::comma)) {
7230 if (Lex.getKind() == lltok::MetadataVar) {
7231 AteExtraComma = true;
7232 break;
7233 }
7234 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7235 if (!Val->getType()->isIntOrIntVectorTy())
7236 return Error(EltLoc, "getelementptr index must be an integer");
7237
7238 if (Val->getType()->isVectorTy()) {
7239 unsigned ValNumEl = Val->getType()->getVectorNumElements();
7240 if (GEPWidth && GEPWidth != ValNumEl)
7241 return Error(EltLoc,
7242 "getelementptr vector index has a wrong number of elements");
7243 GEPWidth = ValNumEl;
7244 }
7245 Indices.push_back(Val);
7246 }
7247
7248 SmallPtrSet<Type*, 4> Visited;
7249 if (!Indices.empty() && !Ty->isSized(&Visited))
7250 return Error(Loc, "base element of getelementptr must be sized");
7251
7252 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7253 return Error(Loc, "invalid getelementptr indices");
7254 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7255 if (InBounds)
7256 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7257 return AteExtraComma ? InstExtraComma : InstNormal;
7258 }
7259
7260 /// ParseExtractValue
7261 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
ParseExtractValue(Instruction * & Inst,PerFunctionState & PFS)7262 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7263 Value *Val; LocTy Loc;
7264 SmallVector<unsigned, 4> Indices;
7265 bool AteExtraComma;
7266 if (ParseTypeAndValue(Val, Loc, PFS) ||
7267 ParseIndexList(Indices, AteExtraComma))
7268 return true;
7269
7270 if (!Val->getType()->isAggregateType())
7271 return Error(Loc, "extractvalue operand must be aggregate type");
7272
7273 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7274 return Error(Loc, "invalid indices for extractvalue");
7275 Inst = ExtractValueInst::Create(Val, Indices);
7276 return AteExtraComma ? InstExtraComma : InstNormal;
7277 }
7278
7279 /// ParseInsertValue
7280 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
ParseInsertValue(Instruction * & Inst,PerFunctionState & PFS)7281 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7282 Value *Val0, *Val1; LocTy Loc0, Loc1;
7283 SmallVector<unsigned, 4> Indices;
7284 bool AteExtraComma;
7285 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7286 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7287 ParseTypeAndValue(Val1, Loc1, PFS) ||
7288 ParseIndexList(Indices, AteExtraComma))
7289 return true;
7290
7291 if (!Val0->getType()->isAggregateType())
7292 return Error(Loc0, "insertvalue operand must be aggregate type");
7293
7294 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7295 if (!IndexedType)
7296 return Error(Loc0, "invalid indices for insertvalue");
7297 if (IndexedType != Val1->getType())
7298 return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7299 getTypeString(Val1->getType()) + "' instead of '" +
7300 getTypeString(IndexedType) + "'");
7301 Inst = InsertValueInst::Create(Val0, Val1, Indices);
7302 return AteExtraComma ? InstExtraComma : InstNormal;
7303 }
7304
7305 //===----------------------------------------------------------------------===//
7306 // Embedded metadata.
7307 //===----------------------------------------------------------------------===//
7308
7309 /// ParseMDNodeVector
7310 /// ::= { Element (',' Element)* }
7311 /// Element
7312 /// ::= 'null' | TypeAndValue
ParseMDNodeVector(SmallVectorImpl<Metadata * > & Elts)7313 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7314 if (ParseToken(lltok::lbrace, "expected '{' here"))
7315 return true;
7316
7317 // Check for an empty list.
7318 if (EatIfPresent(lltok::rbrace))
7319 return false;
7320
7321 do {
7322 // Null is a special case since it is typeless.
7323 if (EatIfPresent(lltok::kw_null)) {
7324 Elts.push_back(nullptr);
7325 continue;
7326 }
7327
7328 Metadata *MD;
7329 if (ParseMetadata(MD, nullptr))
7330 return true;
7331 Elts.push_back(MD);
7332 } while (EatIfPresent(lltok::comma));
7333
7334 return ParseToken(lltok::rbrace, "expected end of metadata node");
7335 }
7336
7337 //===----------------------------------------------------------------------===//
7338 // Use-list order directives.
7339 //===----------------------------------------------------------------------===//
sortUseListOrder(Value * V,ArrayRef<unsigned> Indexes,SMLoc Loc)7340 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7341 SMLoc Loc) {
7342 if (V->use_empty())
7343 return Error(Loc, "value has no uses");
7344
7345 unsigned NumUses = 0;
7346 SmallDenseMap<const Use *, unsigned, 16> Order;
7347 for (const Use &U : V->uses()) {
7348 if (++NumUses > Indexes.size())
7349 break;
7350 Order[&U] = Indexes[NumUses - 1];
7351 }
7352 if (NumUses < 2)
7353 return Error(Loc, "value only has one use");
7354 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7355 return Error(Loc,
7356 "wrong number of indexes, expected " + Twine(V->getNumUses()));
7357
7358 V->sortUseList([&](const Use &L, const Use &R) {
7359 return Order.lookup(&L) < Order.lookup(&R);
7360 });
7361 return false;
7362 }
7363
7364 /// ParseUseListOrderIndexes
7365 /// ::= '{' uint32 (',' uint32)+ '}'
ParseUseListOrderIndexes(SmallVectorImpl<unsigned> & Indexes)7366 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7367 SMLoc Loc = Lex.getLoc();
7368 if (ParseToken(lltok::lbrace, "expected '{' here"))
7369 return true;
7370 if (Lex.getKind() == lltok::rbrace)
7371 return Lex.Error("expected non-empty list of uselistorder indexes");
7372
7373 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
7374 // indexes should be distinct numbers in the range [0, size-1], and should
7375 // not be in order.
7376 unsigned Offset = 0;
7377 unsigned Max = 0;
7378 bool IsOrdered = true;
7379 assert(Indexes.empty() && "Expected empty order vector");
7380 do {
7381 unsigned Index;
7382 if (ParseUInt32(Index))
7383 return true;
7384
7385 // Update consistency checks.
7386 Offset += Index - Indexes.size();
7387 Max = std::max(Max, Index);
7388 IsOrdered &= Index == Indexes.size();
7389
7390 Indexes.push_back(Index);
7391 } while (EatIfPresent(lltok::comma));
7392
7393 if (ParseToken(lltok::rbrace, "expected '}' here"))
7394 return true;
7395
7396 if (Indexes.size() < 2)
7397 return Error(Loc, "expected >= 2 uselistorder indexes");
7398 if (Offset != 0 || Max >= Indexes.size())
7399 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7400 if (IsOrdered)
7401 return Error(Loc, "expected uselistorder indexes to change the order");
7402
7403 return false;
7404 }
7405
7406 /// ParseUseListOrder
7407 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
ParseUseListOrder(PerFunctionState * PFS)7408 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7409 SMLoc Loc = Lex.getLoc();
7410 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7411 return true;
7412
7413 Value *V;
7414 SmallVector<unsigned, 16> Indexes;
7415 if (ParseTypeAndValue(V, PFS) ||
7416 ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7417 ParseUseListOrderIndexes(Indexes))
7418 return true;
7419
7420 return sortUseListOrder(V, Indexes, Loc);
7421 }
7422
7423 /// ParseUseListOrderBB
7424 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
ParseUseListOrderBB()7425 bool LLParser::ParseUseListOrderBB() {
7426 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7427 SMLoc Loc = Lex.getLoc();
7428 Lex.Lex();
7429
7430 ValID Fn, Label;
7431 SmallVector<unsigned, 16> Indexes;
7432 if (ParseValID(Fn) ||
7433 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7434 ParseValID(Label) ||
7435 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7436 ParseUseListOrderIndexes(Indexes))
7437 return true;
7438
7439 // Check the function.
7440 GlobalValue *GV;
7441 if (Fn.Kind == ValID::t_GlobalName)
7442 GV = M->getNamedValue(Fn.StrVal);
7443 else if (Fn.Kind == ValID::t_GlobalID)
7444 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7445 else
7446 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7447 if (!GV)
7448 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7449 auto *F = dyn_cast<Function>(GV);
7450 if (!F)
7451 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7452 if (F->isDeclaration())
7453 return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7454
7455 // Check the basic block.
7456 if (Label.Kind == ValID::t_LocalID)
7457 return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7458 if (Label.Kind != ValID::t_LocalName)
7459 return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7460 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7461 if (!V)
7462 return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7463 if (!isa<BasicBlock>(V))
7464 return Error(Label.Loc, "expected basic block in uselistorder_bb");
7465
7466 return sortUseListOrder(V, Indexes, Loc);
7467 }
7468
7469 /// ModuleEntry
7470 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7471 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
ParseModuleEntry(unsigned ID)7472 bool LLParser::ParseModuleEntry(unsigned ID) {
7473 assert(Lex.getKind() == lltok::kw_module);
7474 Lex.Lex();
7475
7476 std::string Path;
7477 if (ParseToken(lltok::colon, "expected ':' here") ||
7478 ParseToken(lltok::lparen, "expected '(' here") ||
7479 ParseToken(lltok::kw_path, "expected 'path' here") ||
7480 ParseToken(lltok::colon, "expected ':' here") ||
7481 ParseStringConstant(Path) ||
7482 ParseToken(lltok::comma, "expected ',' here") ||
7483 ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7484 ParseToken(lltok::colon, "expected ':' here") ||
7485 ParseToken(lltok::lparen, "expected '(' here"))
7486 return true;
7487
7488 ModuleHash Hash;
7489 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7490 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7491 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7492 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7493 ParseUInt32(Hash[4]))
7494 return true;
7495
7496 if (ParseToken(lltok::rparen, "expected ')' here") ||
7497 ParseToken(lltok::rparen, "expected ')' here"))
7498 return true;
7499
7500 auto ModuleEntry = Index->addModule(Path, ID, Hash);
7501 ModuleIdMap[ID] = ModuleEntry->first();
7502
7503 return false;
7504 }
7505
7506 /// TypeIdEntry
7507 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
ParseTypeIdEntry(unsigned ID)7508 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7509 assert(Lex.getKind() == lltok::kw_typeid);
7510 Lex.Lex();
7511
7512 std::string Name;
7513 if (ParseToken(lltok::colon, "expected ':' here") ||
7514 ParseToken(lltok::lparen, "expected '(' here") ||
7515 ParseToken(lltok::kw_name, "expected 'name' here") ||
7516 ParseToken(lltok::colon, "expected ':' here") ||
7517 ParseStringConstant(Name))
7518 return true;
7519
7520 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7521 if (ParseToken(lltok::comma, "expected ',' here") ||
7522 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7523 return true;
7524
7525 // Check if this ID was forward referenced, and if so, update the
7526 // corresponding GUIDs.
7527 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7528 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7529 for (auto TIDRef : FwdRefTIDs->second) {
7530 assert(!*TIDRef.first &&
7531 "Forward referenced type id GUID expected to be 0");
7532 *TIDRef.first = GlobalValue::getGUID(Name);
7533 }
7534 ForwardRefTypeIds.erase(FwdRefTIDs);
7535 }
7536
7537 return false;
7538 }
7539
7540 /// TypeIdSummary
7541 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
ParseTypeIdSummary(TypeIdSummary & TIS)7542 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7543 if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7544 ParseToken(lltok::colon, "expected ':' here") ||
7545 ParseToken(lltok::lparen, "expected '(' here") ||
7546 ParseTypeTestResolution(TIS.TTRes))
7547 return true;
7548
7549 if (EatIfPresent(lltok::comma)) {
7550 // Expect optional wpdResolutions field
7551 if (ParseOptionalWpdResolutions(TIS.WPDRes))
7552 return true;
7553 }
7554
7555 if (ParseToken(lltok::rparen, "expected ')' here"))
7556 return true;
7557
7558 return false;
7559 }
7560
7561 static ValueInfo EmptyVI =
7562 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7563
7564 /// TypeIdCompatibleVtableEntry
7565 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7566 /// TypeIdCompatibleVtableInfo
7567 /// ')'
ParseTypeIdCompatibleVtableEntry(unsigned ID)7568 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7569 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7570 Lex.Lex();
7571
7572 std::string Name;
7573 if (ParseToken(lltok::colon, "expected ':' here") ||
7574 ParseToken(lltok::lparen, "expected '(' here") ||
7575 ParseToken(lltok::kw_name, "expected 'name' here") ||
7576 ParseToken(lltok::colon, "expected ':' here") ||
7577 ParseStringConstant(Name))
7578 return true;
7579
7580 TypeIdCompatibleVtableInfo &TI =
7581 Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7582 if (ParseToken(lltok::comma, "expected ',' here") ||
7583 ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7584 ParseToken(lltok::colon, "expected ':' here") ||
7585 ParseToken(lltok::lparen, "expected '(' here"))
7586 return true;
7587
7588 IdToIndexMapType IdToIndexMap;
7589 // Parse each call edge
7590 do {
7591 uint64_t Offset;
7592 if (ParseToken(lltok::lparen, "expected '(' here") ||
7593 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7594 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7595 ParseToken(lltok::comma, "expected ',' here"))
7596 return true;
7597
7598 LocTy Loc = Lex.getLoc();
7599 unsigned GVId;
7600 ValueInfo VI;
7601 if (ParseGVReference(VI, GVId))
7602 return true;
7603
7604 // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7605 // forward reference. We will save the location of the ValueInfo needing an
7606 // update, but can only do so once the std::vector is finalized.
7607 if (VI == EmptyVI)
7608 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7609 TI.push_back({Offset, VI});
7610
7611 if (ParseToken(lltok::rparen, "expected ')' in call"))
7612 return true;
7613 } while (EatIfPresent(lltok::comma));
7614
7615 // Now that the TI vector is finalized, it is safe to save the locations
7616 // of any forward GV references that need updating later.
7617 for (auto I : IdToIndexMap) {
7618 for (auto P : I.second) {
7619 assert(TI[P.first].VTableVI == EmptyVI &&
7620 "Forward referenced ValueInfo expected to be empty");
7621 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7622 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7623 FwdRef.first->second.push_back(
7624 std::make_pair(&TI[P.first].VTableVI, P.second));
7625 }
7626 }
7627
7628 if (ParseToken(lltok::rparen, "expected ')' here") ||
7629 ParseToken(lltok::rparen, "expected ')' here"))
7630 return true;
7631
7632 // Check if this ID was forward referenced, and if so, update the
7633 // corresponding GUIDs.
7634 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7635 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7636 for (auto TIDRef : FwdRefTIDs->second) {
7637 assert(!*TIDRef.first &&
7638 "Forward referenced type id GUID expected to be 0");
7639 *TIDRef.first = GlobalValue::getGUID(Name);
7640 }
7641 ForwardRefTypeIds.erase(FwdRefTIDs);
7642 }
7643
7644 return false;
7645 }
7646
7647 /// TypeTestResolution
7648 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
7649 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7650 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7651 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7652 /// [',' 'inlinesBits' ':' UInt64]? ')'
ParseTypeTestResolution(TypeTestResolution & TTRes)7653 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7654 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7655 ParseToken(lltok::colon, "expected ':' here") ||
7656 ParseToken(lltok::lparen, "expected '(' here") ||
7657 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7658 ParseToken(lltok::colon, "expected ':' here"))
7659 return true;
7660
7661 switch (Lex.getKind()) {
7662 case lltok::kw_unsat:
7663 TTRes.TheKind = TypeTestResolution::Unsat;
7664 break;
7665 case lltok::kw_byteArray:
7666 TTRes.TheKind = TypeTestResolution::ByteArray;
7667 break;
7668 case lltok::kw_inline:
7669 TTRes.TheKind = TypeTestResolution::Inline;
7670 break;
7671 case lltok::kw_single:
7672 TTRes.TheKind = TypeTestResolution::Single;
7673 break;
7674 case lltok::kw_allOnes:
7675 TTRes.TheKind = TypeTestResolution::AllOnes;
7676 break;
7677 default:
7678 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7679 }
7680 Lex.Lex();
7681
7682 if (ParseToken(lltok::comma, "expected ',' here") ||
7683 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7684 ParseToken(lltok::colon, "expected ':' here") ||
7685 ParseUInt32(TTRes.SizeM1BitWidth))
7686 return true;
7687
7688 // Parse optional fields
7689 while (EatIfPresent(lltok::comma)) {
7690 switch (Lex.getKind()) {
7691 case lltok::kw_alignLog2:
7692 Lex.Lex();
7693 if (ParseToken(lltok::colon, "expected ':'") ||
7694 ParseUInt64(TTRes.AlignLog2))
7695 return true;
7696 break;
7697 case lltok::kw_sizeM1:
7698 Lex.Lex();
7699 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7700 return true;
7701 break;
7702 case lltok::kw_bitMask: {
7703 unsigned Val;
7704 Lex.Lex();
7705 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7706 return true;
7707 assert(Val <= 0xff);
7708 TTRes.BitMask = (uint8_t)Val;
7709 break;
7710 }
7711 case lltok::kw_inlineBits:
7712 Lex.Lex();
7713 if (ParseToken(lltok::colon, "expected ':'") ||
7714 ParseUInt64(TTRes.InlineBits))
7715 return true;
7716 break;
7717 default:
7718 return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7719 }
7720 }
7721
7722 if (ParseToken(lltok::rparen, "expected ')' here"))
7723 return true;
7724
7725 return false;
7726 }
7727
7728 /// OptionalWpdResolutions
7729 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7730 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
ParseOptionalWpdResolutions(std::map<uint64_t,WholeProgramDevirtResolution> & WPDResMap)7731 bool LLParser::ParseOptionalWpdResolutions(
7732 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7733 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7734 ParseToken(lltok::colon, "expected ':' here") ||
7735 ParseToken(lltok::lparen, "expected '(' here"))
7736 return true;
7737
7738 do {
7739 uint64_t Offset;
7740 WholeProgramDevirtResolution WPDRes;
7741 if (ParseToken(lltok::lparen, "expected '(' here") ||
7742 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7743 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7744 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7745 ParseToken(lltok::rparen, "expected ')' here"))
7746 return true;
7747 WPDResMap[Offset] = WPDRes;
7748 } while (EatIfPresent(lltok::comma));
7749
7750 if (ParseToken(lltok::rparen, "expected ')' here"))
7751 return true;
7752
7753 return false;
7754 }
7755
7756 /// WpdRes
7757 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7758 /// [',' OptionalResByArg]? ')'
7759 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7760 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
7761 /// [',' OptionalResByArg]? ')'
7762 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7763 /// [',' OptionalResByArg]? ')'
ParseWpdRes(WholeProgramDevirtResolution & WPDRes)7764 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7765 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7766 ParseToken(lltok::colon, "expected ':' here") ||
7767 ParseToken(lltok::lparen, "expected '(' here") ||
7768 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7769 ParseToken(lltok::colon, "expected ':' here"))
7770 return true;
7771
7772 switch (Lex.getKind()) {
7773 case lltok::kw_indir:
7774 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7775 break;
7776 case lltok::kw_singleImpl:
7777 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7778 break;
7779 case lltok::kw_branchFunnel:
7780 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7781 break;
7782 default:
7783 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7784 }
7785 Lex.Lex();
7786
7787 // Parse optional fields
7788 while (EatIfPresent(lltok::comma)) {
7789 switch (Lex.getKind()) {
7790 case lltok::kw_singleImplName:
7791 Lex.Lex();
7792 if (ParseToken(lltok::colon, "expected ':' here") ||
7793 ParseStringConstant(WPDRes.SingleImplName))
7794 return true;
7795 break;
7796 case lltok::kw_resByArg:
7797 if (ParseOptionalResByArg(WPDRes.ResByArg))
7798 return true;
7799 break;
7800 default:
7801 return Error(Lex.getLoc(),
7802 "expected optional WholeProgramDevirtResolution field");
7803 }
7804 }
7805
7806 if (ParseToken(lltok::rparen, "expected ')' here"))
7807 return true;
7808
7809 return false;
7810 }
7811
7812 /// OptionalResByArg
7813 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7814 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7815 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7816 /// 'virtualConstProp' )
7817 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7818 /// [',' 'bit' ':' UInt32]? ')'
ParseOptionalResByArg(std::map<std::vector<uint64_t>,WholeProgramDevirtResolution::ByArg> & ResByArg)7819 bool LLParser::ParseOptionalResByArg(
7820 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7821 &ResByArg) {
7822 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7823 ParseToken(lltok::colon, "expected ':' here") ||
7824 ParseToken(lltok::lparen, "expected '(' here"))
7825 return true;
7826
7827 do {
7828 std::vector<uint64_t> Args;
7829 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7830 ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7831 ParseToken(lltok::colon, "expected ':' here") ||
7832 ParseToken(lltok::lparen, "expected '(' here") ||
7833 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7834 ParseToken(lltok::colon, "expected ':' here"))
7835 return true;
7836
7837 WholeProgramDevirtResolution::ByArg ByArg;
7838 switch (Lex.getKind()) {
7839 case lltok::kw_indir:
7840 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7841 break;
7842 case lltok::kw_uniformRetVal:
7843 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7844 break;
7845 case lltok::kw_uniqueRetVal:
7846 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7847 break;
7848 case lltok::kw_virtualConstProp:
7849 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7850 break;
7851 default:
7852 return Error(Lex.getLoc(),
7853 "unexpected WholeProgramDevirtResolution::ByArg kind");
7854 }
7855 Lex.Lex();
7856
7857 // Parse optional fields
7858 while (EatIfPresent(lltok::comma)) {
7859 switch (Lex.getKind()) {
7860 case lltok::kw_info:
7861 Lex.Lex();
7862 if (ParseToken(lltok::colon, "expected ':' here") ||
7863 ParseUInt64(ByArg.Info))
7864 return true;
7865 break;
7866 case lltok::kw_byte:
7867 Lex.Lex();
7868 if (ParseToken(lltok::colon, "expected ':' here") ||
7869 ParseUInt32(ByArg.Byte))
7870 return true;
7871 break;
7872 case lltok::kw_bit:
7873 Lex.Lex();
7874 if (ParseToken(lltok::colon, "expected ':' here") ||
7875 ParseUInt32(ByArg.Bit))
7876 return true;
7877 break;
7878 default:
7879 return Error(Lex.getLoc(),
7880 "expected optional whole program devirt field");
7881 }
7882 }
7883
7884 if (ParseToken(lltok::rparen, "expected ')' here"))
7885 return true;
7886
7887 ResByArg[Args] = ByArg;
7888 } while (EatIfPresent(lltok::comma));
7889
7890 if (ParseToken(lltok::rparen, "expected ')' here"))
7891 return true;
7892
7893 return false;
7894 }
7895
7896 /// OptionalResByArg
7897 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
ParseArgs(std::vector<uint64_t> & Args)7898 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7899 if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7900 ParseToken(lltok::colon, "expected ':' here") ||
7901 ParseToken(lltok::lparen, "expected '(' here"))
7902 return true;
7903
7904 do {
7905 uint64_t Val;
7906 if (ParseUInt64(Val))
7907 return true;
7908 Args.push_back(Val);
7909 } while (EatIfPresent(lltok::comma));
7910
7911 if (ParseToken(lltok::rparen, "expected ')' here"))
7912 return true;
7913
7914 return false;
7915 }
7916
7917 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7918
resolveFwdRef(ValueInfo * Fwd,ValueInfo & Resolved)7919 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7920 bool ReadOnly = Fwd->isReadOnly();
7921 bool WriteOnly = Fwd->isWriteOnly();
7922 assert(!(ReadOnly && WriteOnly));
7923 *Fwd = Resolved;
7924 if (ReadOnly)
7925 Fwd->setReadOnly();
7926 if (WriteOnly)
7927 Fwd->setWriteOnly();
7928 }
7929
7930 /// Stores the given Name/GUID and associated summary into the Index.
7931 /// Also updates any forward references to the associated entry ID.
AddGlobalValueToIndex(std::string Name,GlobalValue::GUID GUID,GlobalValue::LinkageTypes Linkage,unsigned ID,std::unique_ptr<GlobalValueSummary> Summary)7932 void LLParser::AddGlobalValueToIndex(
7933 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7934 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7935 // First create the ValueInfo utilizing the Name or GUID.
7936 ValueInfo VI;
7937 if (GUID != 0) {
7938 assert(Name.empty());
7939 VI = Index->getOrInsertValueInfo(GUID);
7940 } else {
7941 assert(!Name.empty());
7942 if (M) {
7943 auto *GV = M->getNamedValue(Name);
7944 assert(GV);
7945 VI = Index->getOrInsertValueInfo(GV);
7946 } else {
7947 assert(
7948 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7949 "Need a source_filename to compute GUID for local");
7950 GUID = GlobalValue::getGUID(
7951 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7952 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7953 }
7954 }
7955
7956 // Resolve forward references from calls/refs
7957 auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7958 if (FwdRefVIs != ForwardRefValueInfos.end()) {
7959 for (auto VIRef : FwdRefVIs->second) {
7960 assert(VIRef.first->getRef() == FwdVIRef &&
7961 "Forward referenced ValueInfo expected to be empty");
7962 resolveFwdRef(VIRef.first, VI);
7963 }
7964 ForwardRefValueInfos.erase(FwdRefVIs);
7965 }
7966
7967 // Resolve forward references from aliases
7968 auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7969 if (FwdRefAliasees != ForwardRefAliasees.end()) {
7970 for (auto AliaseeRef : FwdRefAliasees->second) {
7971 assert(!AliaseeRef.first->hasAliasee() &&
7972 "Forward referencing alias already has aliasee");
7973 assert(Summary && "Aliasee must be a definition");
7974 AliaseeRef.first->setAliasee(VI, Summary.get());
7975 }
7976 ForwardRefAliasees.erase(FwdRefAliasees);
7977 }
7978
7979 // Add the summary if one was provided.
7980 if (Summary)
7981 Index->addGlobalValueSummary(VI, std::move(Summary));
7982
7983 // Save the associated ValueInfo for use in later references by ID.
7984 if (ID == NumberedValueInfos.size())
7985 NumberedValueInfos.push_back(VI);
7986 else {
7987 // Handle non-continuous numbers (to make test simplification easier).
7988 if (ID > NumberedValueInfos.size())
7989 NumberedValueInfos.resize(ID + 1);
7990 NumberedValueInfos[ID] = VI;
7991 }
7992 }
7993
7994 /// ParseGVEntry
7995 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7996 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7997 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
ParseGVEntry(unsigned ID)7998 bool LLParser::ParseGVEntry(unsigned ID) {
7999 assert(Lex.getKind() == lltok::kw_gv);
8000 Lex.Lex();
8001
8002 if (ParseToken(lltok::colon, "expected ':' here") ||
8003 ParseToken(lltok::lparen, "expected '(' here"))
8004 return true;
8005
8006 std::string Name;
8007 GlobalValue::GUID GUID = 0;
8008 switch (Lex.getKind()) {
8009 case lltok::kw_name:
8010 Lex.Lex();
8011 if (ParseToken(lltok::colon, "expected ':' here") ||
8012 ParseStringConstant(Name))
8013 return true;
8014 // Can't create GUID/ValueInfo until we have the linkage.
8015 break;
8016 case lltok::kw_guid:
8017 Lex.Lex();
8018 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8019 return true;
8020 break;
8021 default:
8022 return Error(Lex.getLoc(), "expected name or guid tag");
8023 }
8024
8025 if (!EatIfPresent(lltok::comma)) {
8026 // No summaries. Wrap up.
8027 if (ParseToken(lltok::rparen, "expected ')' here"))
8028 return true;
8029 // This was created for a call to an external or indirect target.
8030 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8031 // created for indirect calls with VP. A Name with no GUID came from
8032 // an external definition. We pass ExternalLinkage since that is only
8033 // used when the GUID must be computed from Name, and in that case
8034 // the symbol must have external linkage.
8035 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8036 nullptr);
8037 return false;
8038 }
8039
8040 // Have a list of summaries
8041 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8042 ParseToken(lltok::colon, "expected ':' here"))
8043 return true;
8044
8045 do {
8046 if (ParseToken(lltok::lparen, "expected '(' here"))
8047 return true;
8048 switch (Lex.getKind()) {
8049 case lltok::kw_function:
8050 if (ParseFunctionSummary(Name, GUID, ID))
8051 return true;
8052 break;
8053 case lltok::kw_variable:
8054 if (ParseVariableSummary(Name, GUID, ID))
8055 return true;
8056 break;
8057 case lltok::kw_alias:
8058 if (ParseAliasSummary(Name, GUID, ID))
8059 return true;
8060 break;
8061 default:
8062 return Error(Lex.getLoc(), "expected summary type");
8063 }
8064 if (ParseToken(lltok::rparen, "expected ')' here"))
8065 return true;
8066 } while (EatIfPresent(lltok::comma));
8067
8068 if (ParseToken(lltok::rparen, "expected ')' here"))
8069 return true;
8070
8071 return false;
8072 }
8073
8074 /// FunctionSummary
8075 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8076 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8077 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
ParseFunctionSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)8078 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8079 unsigned ID) {
8080 assert(Lex.getKind() == lltok::kw_function);
8081 Lex.Lex();
8082
8083 StringRef ModulePath;
8084 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8085 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8086 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8087 unsigned InstCount;
8088 std::vector<FunctionSummary::EdgeTy> Calls;
8089 FunctionSummary::TypeIdInfo TypeIdInfo;
8090 std::vector<ValueInfo> Refs;
8091 // Default is all-zeros (conservative values).
8092 FunctionSummary::FFlags FFlags = {};
8093 if (ParseToken(lltok::colon, "expected ':' here") ||
8094 ParseToken(lltok::lparen, "expected '(' here") ||
8095 ParseModuleReference(ModulePath) ||
8096 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8097 ParseToken(lltok::comma, "expected ',' here") ||
8098 ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8099 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8100 return true;
8101
8102 // Parse optional fields
8103 while (EatIfPresent(lltok::comma)) {
8104 switch (Lex.getKind()) {
8105 case lltok::kw_funcFlags:
8106 if (ParseOptionalFFlags(FFlags))
8107 return true;
8108 break;
8109 case lltok::kw_calls:
8110 if (ParseOptionalCalls(Calls))
8111 return true;
8112 break;
8113 case lltok::kw_typeIdInfo:
8114 if (ParseOptionalTypeIdInfo(TypeIdInfo))
8115 return true;
8116 break;
8117 case lltok::kw_refs:
8118 if (ParseOptionalRefs(Refs))
8119 return true;
8120 break;
8121 default:
8122 return Error(Lex.getLoc(), "expected optional function summary field");
8123 }
8124 }
8125
8126 if (ParseToken(lltok::rparen, "expected ')' here"))
8127 return true;
8128
8129 auto FS = std::make_unique<FunctionSummary>(
8130 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8131 std::move(Calls), std::move(TypeIdInfo.TypeTests),
8132 std::move(TypeIdInfo.TypeTestAssumeVCalls),
8133 std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8134 std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8135 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8136
8137 FS->setModulePath(ModulePath);
8138
8139 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8140 ID, std::move(FS));
8141
8142 return false;
8143 }
8144
8145 /// VariableSummary
8146 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8147 /// [',' OptionalRefs]? ')'
ParseVariableSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)8148 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8149 unsigned ID) {
8150 assert(Lex.getKind() == lltok::kw_variable);
8151 Lex.Lex();
8152
8153 StringRef ModulePath;
8154 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8155 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8156 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8157 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8158 /* WriteOnly */ false);
8159 std::vector<ValueInfo> Refs;
8160 VTableFuncList VTableFuncs;
8161 if (ParseToken(lltok::colon, "expected ':' here") ||
8162 ParseToken(lltok::lparen, "expected '(' here") ||
8163 ParseModuleReference(ModulePath) ||
8164 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8165 ParseToken(lltok::comma, "expected ',' here") ||
8166 ParseGVarFlags(GVarFlags))
8167 return true;
8168
8169 // Parse optional fields
8170 while (EatIfPresent(lltok::comma)) {
8171 switch (Lex.getKind()) {
8172 case lltok::kw_vTableFuncs:
8173 if (ParseOptionalVTableFuncs(VTableFuncs))
8174 return true;
8175 break;
8176 case lltok::kw_refs:
8177 if (ParseOptionalRefs(Refs))
8178 return true;
8179 break;
8180 default:
8181 return Error(Lex.getLoc(), "expected optional variable summary field");
8182 }
8183 }
8184
8185 if (ParseToken(lltok::rparen, "expected ')' here"))
8186 return true;
8187
8188 auto GS =
8189 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8190
8191 GS->setModulePath(ModulePath);
8192 GS->setVTableFuncs(std::move(VTableFuncs));
8193
8194 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8195 ID, std::move(GS));
8196
8197 return false;
8198 }
8199
8200 /// AliasSummary
8201 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8202 /// 'aliasee' ':' GVReference ')'
ParseAliasSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)8203 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8204 unsigned ID) {
8205 assert(Lex.getKind() == lltok::kw_alias);
8206 LocTy Loc = Lex.getLoc();
8207 Lex.Lex();
8208
8209 StringRef ModulePath;
8210 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8211 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8212 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8213 if (ParseToken(lltok::colon, "expected ':' here") ||
8214 ParseToken(lltok::lparen, "expected '(' here") ||
8215 ParseModuleReference(ModulePath) ||
8216 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8217 ParseToken(lltok::comma, "expected ',' here") ||
8218 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8219 ParseToken(lltok::colon, "expected ':' here"))
8220 return true;
8221
8222 ValueInfo AliaseeVI;
8223 unsigned GVId;
8224 if (ParseGVReference(AliaseeVI, GVId))
8225 return true;
8226
8227 if (ParseToken(lltok::rparen, "expected ')' here"))
8228 return true;
8229
8230 auto AS = std::make_unique<AliasSummary>(GVFlags);
8231
8232 AS->setModulePath(ModulePath);
8233
8234 // Record forward reference if the aliasee is not parsed yet.
8235 if (AliaseeVI.getRef() == FwdVIRef) {
8236 auto FwdRef = ForwardRefAliasees.insert(
8237 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8238 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8239 } else {
8240 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8241 assert(Summary && "Aliasee must be a definition");
8242 AS->setAliasee(AliaseeVI, Summary);
8243 }
8244
8245 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8246 ID, std::move(AS));
8247
8248 return false;
8249 }
8250
8251 /// Flag
8252 /// ::= [0|1]
ParseFlag(unsigned & Val)8253 bool LLParser::ParseFlag(unsigned &Val) {
8254 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8255 return TokError("expected integer");
8256 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8257 Lex.Lex();
8258 return false;
8259 }
8260
8261 /// OptionalFFlags
8262 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8263 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8264 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
8265 /// [',' 'noInline' ':' Flag]? ')'
8266 /// [',' 'alwaysInline' ':' Flag]? ')'
8267
ParseOptionalFFlags(FunctionSummary::FFlags & FFlags)8268 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8269 assert(Lex.getKind() == lltok::kw_funcFlags);
8270 Lex.Lex();
8271
8272 if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8273 ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8274 return true;
8275
8276 do {
8277 unsigned Val = 0;
8278 switch (Lex.getKind()) {
8279 case lltok::kw_readNone:
8280 Lex.Lex();
8281 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8282 return true;
8283 FFlags.ReadNone = Val;
8284 break;
8285 case lltok::kw_readOnly:
8286 Lex.Lex();
8287 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8288 return true;
8289 FFlags.ReadOnly = Val;
8290 break;
8291 case lltok::kw_noRecurse:
8292 Lex.Lex();
8293 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8294 return true;
8295 FFlags.NoRecurse = Val;
8296 break;
8297 case lltok::kw_returnDoesNotAlias:
8298 Lex.Lex();
8299 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8300 return true;
8301 FFlags.ReturnDoesNotAlias = Val;
8302 break;
8303 case lltok::kw_noInline:
8304 Lex.Lex();
8305 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8306 return true;
8307 FFlags.NoInline = Val;
8308 break;
8309 case lltok::kw_alwaysInline:
8310 Lex.Lex();
8311 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8312 return true;
8313 FFlags.AlwaysInline = Val;
8314 break;
8315 default:
8316 return Error(Lex.getLoc(), "expected function flag type");
8317 }
8318 } while (EatIfPresent(lltok::comma));
8319
8320 if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8321 return true;
8322
8323 return false;
8324 }
8325
8326 /// OptionalCalls
8327 /// := 'calls' ':' '(' Call [',' Call]* ')'
8328 /// Call ::= '(' 'callee' ':' GVReference
8329 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> & Calls)8330 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8331 assert(Lex.getKind() == lltok::kw_calls);
8332 Lex.Lex();
8333
8334 if (ParseToken(lltok::colon, "expected ':' in calls") |
8335 ParseToken(lltok::lparen, "expected '(' in calls"))
8336 return true;
8337
8338 IdToIndexMapType IdToIndexMap;
8339 // Parse each call edge
8340 do {
8341 ValueInfo VI;
8342 if (ParseToken(lltok::lparen, "expected '(' in call") ||
8343 ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8344 ParseToken(lltok::colon, "expected ':'"))
8345 return true;
8346
8347 LocTy Loc = Lex.getLoc();
8348 unsigned GVId;
8349 if (ParseGVReference(VI, GVId))
8350 return true;
8351
8352 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8353 unsigned RelBF = 0;
8354 if (EatIfPresent(lltok::comma)) {
8355 // Expect either hotness or relbf
8356 if (EatIfPresent(lltok::kw_hotness)) {
8357 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8358 return true;
8359 } else {
8360 if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8361 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8362 return true;
8363 }
8364 }
8365 // Keep track of the Call array index needing a forward reference.
8366 // We will save the location of the ValueInfo needing an update, but
8367 // can only do so once the std::vector is finalized.
8368 if (VI.getRef() == FwdVIRef)
8369 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8370 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8371
8372 if (ParseToken(lltok::rparen, "expected ')' in call"))
8373 return true;
8374 } while (EatIfPresent(lltok::comma));
8375
8376 // Now that the Calls vector is finalized, it is safe to save the locations
8377 // of any forward GV references that need updating later.
8378 for (auto I : IdToIndexMap) {
8379 for (auto P : I.second) {
8380 assert(Calls[P.first].first.getRef() == FwdVIRef &&
8381 "Forward referenced ValueInfo expected to be empty");
8382 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8383 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8384 FwdRef.first->second.push_back(
8385 std::make_pair(&Calls[P.first].first, P.second));
8386 }
8387 }
8388
8389 if (ParseToken(lltok::rparen, "expected ')' in calls"))
8390 return true;
8391
8392 return false;
8393 }
8394
8395 /// Hotness
8396 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
ParseHotness(CalleeInfo::HotnessType & Hotness)8397 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8398 switch (Lex.getKind()) {
8399 case lltok::kw_unknown:
8400 Hotness = CalleeInfo::HotnessType::Unknown;
8401 break;
8402 case lltok::kw_cold:
8403 Hotness = CalleeInfo::HotnessType::Cold;
8404 break;
8405 case lltok::kw_none:
8406 Hotness = CalleeInfo::HotnessType::None;
8407 break;
8408 case lltok::kw_hot:
8409 Hotness = CalleeInfo::HotnessType::Hot;
8410 break;
8411 case lltok::kw_critical:
8412 Hotness = CalleeInfo::HotnessType::Critical;
8413 break;
8414 default:
8415 return Error(Lex.getLoc(), "invalid call edge hotness");
8416 }
8417 Lex.Lex();
8418 return false;
8419 }
8420
8421 /// OptionalVTableFuncs
8422 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8423 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
ParseOptionalVTableFuncs(VTableFuncList & VTableFuncs)8424 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8425 assert(Lex.getKind() == lltok::kw_vTableFuncs);
8426 Lex.Lex();
8427
8428 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8429 ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8430 return true;
8431
8432 IdToIndexMapType IdToIndexMap;
8433 // Parse each virtual function pair
8434 do {
8435 ValueInfo VI;
8436 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8437 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8438 ParseToken(lltok::colon, "expected ':'"))
8439 return true;
8440
8441 LocTy Loc = Lex.getLoc();
8442 unsigned GVId;
8443 if (ParseGVReference(VI, GVId))
8444 return true;
8445
8446 uint64_t Offset;
8447 if (ParseToken(lltok::comma, "expected comma") ||
8448 ParseToken(lltok::kw_offset, "expected offset") ||
8449 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8450 return true;
8451
8452 // Keep track of the VTableFuncs array index needing a forward reference.
8453 // We will save the location of the ValueInfo needing an update, but
8454 // can only do so once the std::vector is finalized.
8455 if (VI == EmptyVI)
8456 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8457 VTableFuncs.push_back({VI, Offset});
8458
8459 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8460 return true;
8461 } while (EatIfPresent(lltok::comma));
8462
8463 // Now that the VTableFuncs vector is finalized, it is safe to save the
8464 // locations of any forward GV references that need updating later.
8465 for (auto I : IdToIndexMap) {
8466 for (auto P : I.second) {
8467 assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8468 "Forward referenced ValueInfo expected to be empty");
8469 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8470 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8471 FwdRef.first->second.push_back(
8472 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8473 }
8474 }
8475
8476 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8477 return true;
8478
8479 return false;
8480 }
8481
8482 /// OptionalRefs
8483 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
ParseOptionalRefs(std::vector<ValueInfo> & Refs)8484 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8485 assert(Lex.getKind() == lltok::kw_refs);
8486 Lex.Lex();
8487
8488 if (ParseToken(lltok::colon, "expected ':' in refs") |
8489 ParseToken(lltok::lparen, "expected '(' in refs"))
8490 return true;
8491
8492 struct ValueContext {
8493 ValueInfo VI;
8494 unsigned GVId;
8495 LocTy Loc;
8496 };
8497 std::vector<ValueContext> VContexts;
8498 // Parse each ref edge
8499 do {
8500 ValueContext VC;
8501 VC.Loc = Lex.getLoc();
8502 if (ParseGVReference(VC.VI, VC.GVId))
8503 return true;
8504 VContexts.push_back(VC);
8505 } while (EatIfPresent(lltok::comma));
8506
8507 // Sort value contexts so that ones with writeonly
8508 // and readonly ValueInfo are at the end of VContexts vector.
8509 // See FunctionSummary::specialRefCounts()
8510 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8511 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8512 });
8513
8514 IdToIndexMapType IdToIndexMap;
8515 for (auto &VC : VContexts) {
8516 // Keep track of the Refs array index needing a forward reference.
8517 // We will save the location of the ValueInfo needing an update, but
8518 // can only do so once the std::vector is finalized.
8519 if (VC.VI.getRef() == FwdVIRef)
8520 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8521 Refs.push_back(VC.VI);
8522 }
8523
8524 // Now that the Refs vector is finalized, it is safe to save the locations
8525 // of any forward GV references that need updating later.
8526 for (auto I : IdToIndexMap) {
8527 for (auto P : I.second) {
8528 assert(Refs[P.first].getRef() == FwdVIRef &&
8529 "Forward referenced ValueInfo expected to be empty");
8530 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8531 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8532 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8533 }
8534 }
8535
8536 if (ParseToken(lltok::rparen, "expected ')' in refs"))
8537 return true;
8538
8539 return false;
8540 }
8541
8542 /// OptionalTypeIdInfo
8543 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8544 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
8545 /// [',' TypeCheckedLoadConstVCalls]? ')'
ParseOptionalTypeIdInfo(FunctionSummary::TypeIdInfo & TypeIdInfo)8546 bool LLParser::ParseOptionalTypeIdInfo(
8547 FunctionSummary::TypeIdInfo &TypeIdInfo) {
8548 assert(Lex.getKind() == lltok::kw_typeIdInfo);
8549 Lex.Lex();
8550
8551 if (ParseToken(lltok::colon, "expected ':' here") ||
8552 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8553 return true;
8554
8555 do {
8556 switch (Lex.getKind()) {
8557 case lltok::kw_typeTests:
8558 if (ParseTypeTests(TypeIdInfo.TypeTests))
8559 return true;
8560 break;
8561 case lltok::kw_typeTestAssumeVCalls:
8562 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8563 TypeIdInfo.TypeTestAssumeVCalls))
8564 return true;
8565 break;
8566 case lltok::kw_typeCheckedLoadVCalls:
8567 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8568 TypeIdInfo.TypeCheckedLoadVCalls))
8569 return true;
8570 break;
8571 case lltok::kw_typeTestAssumeConstVCalls:
8572 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8573 TypeIdInfo.TypeTestAssumeConstVCalls))
8574 return true;
8575 break;
8576 case lltok::kw_typeCheckedLoadConstVCalls:
8577 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8578 TypeIdInfo.TypeCheckedLoadConstVCalls))
8579 return true;
8580 break;
8581 default:
8582 return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8583 }
8584 } while (EatIfPresent(lltok::comma));
8585
8586 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8587 return true;
8588
8589 return false;
8590 }
8591
8592 /// TypeTests
8593 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8594 /// [',' (SummaryID | UInt64)]* ')'
ParseTypeTests(std::vector<GlobalValue::GUID> & TypeTests)8595 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8596 assert(Lex.getKind() == lltok::kw_typeTests);
8597 Lex.Lex();
8598
8599 if (ParseToken(lltok::colon, "expected ':' here") ||
8600 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8601 return true;
8602
8603 IdToIndexMapType IdToIndexMap;
8604 do {
8605 GlobalValue::GUID GUID = 0;
8606 if (Lex.getKind() == lltok::SummaryID) {
8607 unsigned ID = Lex.getUIntVal();
8608 LocTy Loc = Lex.getLoc();
8609 // Keep track of the TypeTests array index needing a forward reference.
8610 // We will save the location of the GUID needing an update, but
8611 // can only do so once the std::vector is finalized.
8612 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8613 Lex.Lex();
8614 } else if (ParseUInt64(GUID))
8615 return true;
8616 TypeTests.push_back(GUID);
8617 } while (EatIfPresent(lltok::comma));
8618
8619 // Now that the TypeTests vector is finalized, it is safe to save the
8620 // locations of any forward GV references that need updating later.
8621 for (auto I : IdToIndexMap) {
8622 for (auto P : I.second) {
8623 assert(TypeTests[P.first] == 0 &&
8624 "Forward referenced type id GUID expected to be 0");
8625 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8626 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8627 FwdRef.first->second.push_back(
8628 std::make_pair(&TypeTests[P.first], P.second));
8629 }
8630 }
8631
8632 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8633 return true;
8634
8635 return false;
8636 }
8637
8638 /// VFuncIdList
8639 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
ParseVFuncIdList(lltok::Kind Kind,std::vector<FunctionSummary::VFuncId> & VFuncIdList)8640 bool LLParser::ParseVFuncIdList(
8641 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8642 assert(Lex.getKind() == Kind);
8643 Lex.Lex();
8644
8645 if (ParseToken(lltok::colon, "expected ':' here") ||
8646 ParseToken(lltok::lparen, "expected '(' here"))
8647 return true;
8648
8649 IdToIndexMapType IdToIndexMap;
8650 do {
8651 FunctionSummary::VFuncId VFuncId;
8652 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8653 return true;
8654 VFuncIdList.push_back(VFuncId);
8655 } while (EatIfPresent(lltok::comma));
8656
8657 if (ParseToken(lltok::rparen, "expected ')' here"))
8658 return true;
8659
8660 // Now that the VFuncIdList vector is finalized, it is safe to save the
8661 // locations of any forward GV references that need updating later.
8662 for (auto I : IdToIndexMap) {
8663 for (auto P : I.second) {
8664 assert(VFuncIdList[P.first].GUID == 0 &&
8665 "Forward referenced type id GUID expected to be 0");
8666 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8667 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8668 FwdRef.first->second.push_back(
8669 std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8670 }
8671 }
8672
8673 return false;
8674 }
8675
8676 /// ConstVCallList
8677 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
ParseConstVCallList(lltok::Kind Kind,std::vector<FunctionSummary::ConstVCall> & ConstVCallList)8678 bool LLParser::ParseConstVCallList(
8679 lltok::Kind Kind,
8680 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8681 assert(Lex.getKind() == Kind);
8682 Lex.Lex();
8683
8684 if (ParseToken(lltok::colon, "expected ':' here") ||
8685 ParseToken(lltok::lparen, "expected '(' here"))
8686 return true;
8687
8688 IdToIndexMapType IdToIndexMap;
8689 do {
8690 FunctionSummary::ConstVCall ConstVCall;
8691 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8692 return true;
8693 ConstVCallList.push_back(ConstVCall);
8694 } while (EatIfPresent(lltok::comma));
8695
8696 if (ParseToken(lltok::rparen, "expected ')' here"))
8697 return true;
8698
8699 // Now that the ConstVCallList vector is finalized, it is safe to save the
8700 // locations of any forward GV references that need updating later.
8701 for (auto I : IdToIndexMap) {
8702 for (auto P : I.second) {
8703 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8704 "Forward referenced type id GUID expected to be 0");
8705 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8706 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8707 FwdRef.first->second.push_back(
8708 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8709 }
8710 }
8711
8712 return false;
8713 }
8714
8715 /// ConstVCall
8716 /// ::= '(' VFuncId ',' Args ')'
ParseConstVCall(FunctionSummary::ConstVCall & ConstVCall,IdToIndexMapType & IdToIndexMap,unsigned Index)8717 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8718 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8719 if (ParseToken(lltok::lparen, "expected '(' here") ||
8720 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8721 return true;
8722
8723 if (EatIfPresent(lltok::comma))
8724 if (ParseArgs(ConstVCall.Args))
8725 return true;
8726
8727 if (ParseToken(lltok::rparen, "expected ')' here"))
8728 return true;
8729
8730 return false;
8731 }
8732
8733 /// VFuncId
8734 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8735 /// 'offset' ':' UInt64 ')'
ParseVFuncId(FunctionSummary::VFuncId & VFuncId,IdToIndexMapType & IdToIndexMap,unsigned Index)8736 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8737 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8738 assert(Lex.getKind() == lltok::kw_vFuncId);
8739 Lex.Lex();
8740
8741 if (ParseToken(lltok::colon, "expected ':' here") ||
8742 ParseToken(lltok::lparen, "expected '(' here"))
8743 return true;
8744
8745 if (Lex.getKind() == lltok::SummaryID) {
8746 VFuncId.GUID = 0;
8747 unsigned ID = Lex.getUIntVal();
8748 LocTy Loc = Lex.getLoc();
8749 // Keep track of the array index needing a forward reference.
8750 // We will save the location of the GUID needing an update, but
8751 // can only do so once the caller's std::vector is finalized.
8752 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8753 Lex.Lex();
8754 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8755 ParseToken(lltok::colon, "expected ':' here") ||
8756 ParseUInt64(VFuncId.GUID))
8757 return true;
8758
8759 if (ParseToken(lltok::comma, "expected ',' here") ||
8760 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8761 ParseToken(lltok::colon, "expected ':' here") ||
8762 ParseUInt64(VFuncId.Offset) ||
8763 ParseToken(lltok::rparen, "expected ')' here"))
8764 return true;
8765
8766 return false;
8767 }
8768
8769 /// GVFlags
8770 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8771 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8772 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
ParseGVFlags(GlobalValueSummary::GVFlags & GVFlags)8773 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8774 assert(Lex.getKind() == lltok::kw_flags);
8775 Lex.Lex();
8776
8777 if (ParseToken(lltok::colon, "expected ':' here") ||
8778 ParseToken(lltok::lparen, "expected '(' here"))
8779 return true;
8780
8781 do {
8782 unsigned Flag = 0;
8783 switch (Lex.getKind()) {
8784 case lltok::kw_linkage:
8785 Lex.Lex();
8786 if (ParseToken(lltok::colon, "expected ':'"))
8787 return true;
8788 bool HasLinkage;
8789 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8790 assert(HasLinkage && "Linkage not optional in summary entry");
8791 Lex.Lex();
8792 break;
8793 case lltok::kw_notEligibleToImport:
8794 Lex.Lex();
8795 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8796 return true;
8797 GVFlags.NotEligibleToImport = Flag;
8798 break;
8799 case lltok::kw_live:
8800 Lex.Lex();
8801 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8802 return true;
8803 GVFlags.Live = Flag;
8804 break;
8805 case lltok::kw_dsoLocal:
8806 Lex.Lex();
8807 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8808 return true;
8809 GVFlags.DSOLocal = Flag;
8810 break;
8811 case lltok::kw_canAutoHide:
8812 Lex.Lex();
8813 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8814 return true;
8815 GVFlags.CanAutoHide = Flag;
8816 break;
8817 default:
8818 return Error(Lex.getLoc(), "expected gv flag type");
8819 }
8820 } while (EatIfPresent(lltok::comma));
8821
8822 if (ParseToken(lltok::rparen, "expected ')' here"))
8823 return true;
8824
8825 return false;
8826 }
8827
8828 /// GVarFlags
8829 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8830 /// ',' 'writeonly' ':' Flag ')'
ParseGVarFlags(GlobalVarSummary::GVarFlags & GVarFlags)8831 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8832 assert(Lex.getKind() == lltok::kw_varFlags);
8833 Lex.Lex();
8834
8835 if (ParseToken(lltok::colon, "expected ':' here") ||
8836 ParseToken(lltok::lparen, "expected '(' here"))
8837 return true;
8838
8839 auto ParseRest = [this](unsigned int &Val) {
8840 Lex.Lex();
8841 if (ParseToken(lltok::colon, "expected ':'"))
8842 return true;
8843 return ParseFlag(Val);
8844 };
8845
8846 do {
8847 unsigned Flag = 0;
8848 switch (Lex.getKind()) {
8849 case lltok::kw_readonly:
8850 if (ParseRest(Flag))
8851 return true;
8852 GVarFlags.MaybeReadOnly = Flag;
8853 break;
8854 case lltok::kw_writeonly:
8855 if (ParseRest(Flag))
8856 return true;
8857 GVarFlags.MaybeWriteOnly = Flag;
8858 break;
8859 default:
8860 return Error(Lex.getLoc(), "expected gvar flag type");
8861 }
8862 } while (EatIfPresent(lltok::comma));
8863 return ParseToken(lltok::rparen, "expected ')' here");
8864 }
8865
8866 /// ModuleReference
8867 /// ::= 'module' ':' UInt
ParseModuleReference(StringRef & ModulePath)8868 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8869 // Parse module id.
8870 if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8871 ParseToken(lltok::colon, "expected ':' here") ||
8872 ParseToken(lltok::SummaryID, "expected module ID"))
8873 return true;
8874
8875 unsigned ModuleID = Lex.getUIntVal();
8876 auto I = ModuleIdMap.find(ModuleID);
8877 // We should have already parsed all module IDs
8878 assert(I != ModuleIdMap.end());
8879 ModulePath = I->second;
8880 return false;
8881 }
8882
8883 /// GVReference
8884 /// ::= SummaryID
ParseGVReference(ValueInfo & VI,unsigned & GVId)8885 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8886 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8887 if (!ReadOnly)
8888 WriteOnly = EatIfPresent(lltok::kw_writeonly);
8889 if (ParseToken(lltok::SummaryID, "expected GV ID"))
8890 return true;
8891
8892 GVId = Lex.getUIntVal();
8893 // Check if we already have a VI for this GV
8894 if (GVId < NumberedValueInfos.size()) {
8895 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8896 VI = NumberedValueInfos[GVId];
8897 } else
8898 // We will create a forward reference to the stored location.
8899 VI = ValueInfo(false, FwdVIRef);
8900
8901 if (ReadOnly)
8902 VI.setReadOnly();
8903 if (WriteOnly)
8904 VI.setWriteOnly();
8905 return false;
8906 }
8907