• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/private/SkSLProgramElement.h"
9 #include "include/private/SkSLStatement.h"
10 #include "include/private/SkTArray.h"
11 #include "include/private/SkTPin.h"
12 #include "src/sksl/SkSLCompiler.h"
13 #include "src/sksl/SkSLOperators.h"
14 #include "src/sksl/codegen/SkSLCodeGenerator.h"
15 #include "src/sksl/codegen/SkSLVMCodeGenerator.h"
16 #include "src/sksl/ir/SkSLBinaryExpression.h"
17 #include "src/sksl/ir/SkSLBlock.h"
18 #include "src/sksl/ir/SkSLBoolLiteral.h"
19 #include "src/sksl/ir/SkSLBreakStatement.h"
20 #include "src/sksl/ir/SkSLConstructor.h"
21 #include "src/sksl/ir/SkSLConstructorArray.h"
22 #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
23 #include "src/sksl/ir/SkSLConstructorMatrixResize.h"
24 #include "src/sksl/ir/SkSLConstructorSplat.h"
25 #include "src/sksl/ir/SkSLConstructorStruct.h"
26 #include "src/sksl/ir/SkSLContinueStatement.h"
27 #include "src/sksl/ir/SkSLDoStatement.h"
28 #include "src/sksl/ir/SkSLExpressionStatement.h"
29 #include "src/sksl/ir/SkSLExternalFunctionCall.h"
30 #include "src/sksl/ir/SkSLExternalFunctionReference.h"
31 #include "src/sksl/ir/SkSLFieldAccess.h"
32 #include "src/sksl/ir/SkSLFloatLiteral.h"
33 #include "src/sksl/ir/SkSLForStatement.h"
34 #include "src/sksl/ir/SkSLFunctionCall.h"
35 #include "src/sksl/ir/SkSLFunctionDeclaration.h"
36 #include "src/sksl/ir/SkSLFunctionDefinition.h"
37 #include "src/sksl/ir/SkSLIfStatement.h"
38 #include "src/sksl/ir/SkSLIndexExpression.h"
39 #include "src/sksl/ir/SkSLIntLiteral.h"
40 #include "src/sksl/ir/SkSLPostfixExpression.h"
41 #include "src/sksl/ir/SkSLPrefixExpression.h"
42 #include "src/sksl/ir/SkSLReturnStatement.h"
43 #include "src/sksl/ir/SkSLSwitchStatement.h"
44 #include "src/sksl/ir/SkSLSwizzle.h"
45 #include "src/sksl/ir/SkSLTernaryExpression.h"
46 #include "src/sksl/ir/SkSLVarDeclarations.h"
47 #include "src/sksl/ir/SkSLVariableReference.h"
48 
49 #include <algorithm>
50 #include <unordered_map>
51 
52 namespace {
53     // sksl allows the optimizations of fast_mul(), so we want to use that most of the time.
54     // This little sneaky snippet of code lets us use ** as a fast multiply infix operator.
55     struct FastF32 { skvm::F32 val; };
operator *(skvm::F32 y)56     static FastF32 operator*(skvm::F32 y) { return {y}; }
operator *(skvm::F32 x,FastF32 y)57     static skvm::F32 operator*(skvm::F32 x, FastF32 y) { return fast_mul(x, y.val); }
operator *(float x,FastF32 y)58     static skvm::F32 operator*(float     x, FastF32 y) { return fast_mul(x, y.val); }
59 }
60 
61 namespace SkSL {
62 
63 namespace {
64 
65 // Holds scalars, vectors, or matrices
66 struct Value {
67     Value() = default;
ValueSkSL::__anon2fef52890211::Value68     explicit Value(size_t slots) {
69         fVals.resize(slots);
70     }
ValueSkSL::__anon2fef52890211::Value71     Value(skvm::F32 x) : fVals({ x.id }) {}
ValueSkSL::__anon2fef52890211::Value72     Value(skvm::I32 x) : fVals({ x.id }) {}
73 
operator boolSkSL::__anon2fef52890211::Value74     explicit operator bool() const { return !fVals.empty(); }
75 
slotsSkSL::__anon2fef52890211::Value76     size_t slots() const { return fVals.size(); }
77 
78     struct ValRef {
ValRefSkSL::__anon2fef52890211::Value::ValRef79         ValRef(skvm::Val& val) : fVal(val) {}
80 
operator =SkSL::__anon2fef52890211::Value::ValRef81         ValRef& operator=(ValRef    v) { fVal = v.fVal; return *this; }
operator =SkSL::__anon2fef52890211::Value::ValRef82         ValRef& operator=(skvm::Val v) { fVal = v;      return *this; }
operator =SkSL::__anon2fef52890211::Value::ValRef83         ValRef& operator=(skvm::F32 v) { fVal = v.id;   return *this; }
operator =SkSL::__anon2fef52890211::Value::ValRef84         ValRef& operator=(skvm::I32 v) { fVal = v.id;   return *this; }
85 
operator skvm::ValSkSL::__anon2fef52890211::Value::ValRef86         operator skvm::Val() { return fVal; }
87 
88         skvm::Val& fVal;
89     };
90 
operator []SkSL::__anon2fef52890211::Value91     ValRef    operator[](size_t i) {
92         // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
93         // 32-bit x86 Debug builds.
94         SkASSERT(i < fVals.size());
95         return fVals[i];
96     }
operator []SkSL::__anon2fef52890211::Value97     skvm::Val operator[](size_t i) const {
98         // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
99         // 32-bit x86 Debug builds.
100         SkASSERT(i < fVals.size());
101         return fVals[i];
102     }
103 
asSpanSkSL::__anon2fef52890211::Value104     SkSpan<skvm::Val> asSpan() { return SkMakeSpan(fVals); }
105 
106 private:
107     SkSTArray<4, skvm::Val, true> fVals;
108 };
109 
110 }  // namespace
111 
112 class SkVMGenerator {
113 public:
114     SkVMGenerator(const Program& program,
115                   skvm::Builder* builder,
116                   SkSpan<skvm::Val> uniforms,
117                   skvm::Coord device,
118                   skvm::Coord local,
119                   skvm::Color inputColor,
120                   SampleChildFn sampleChild);
121 
122     void writeFunction(const FunctionDefinition& function,
123                        SkSpan<skvm::Val> arguments,
124                        SkSpan<skvm::Val> outReturn);
125 
126 private:
127     enum class Intrinsic {
128         // sksl_public.sksl declares these intrinsics (and defines some other inline)
129 
130         // Angle & Trigonometry
131         kRadians,
132         kDegrees,
133         kSin,
134         kCos,
135         kTan,
136 
137         kASin,
138         kACos,
139         kATan,
140 
141         // Exponential
142         kPow,
143         kExp,
144         kLog,
145         kExp2,
146         kLog2,
147 
148         kSqrt,
149         kInverseSqrt,
150 
151         // Common
152         kAbs,
153         kSign,
154         kFloor,
155         kCeil,
156         kFract,
157         kMod,
158 
159         kMin,
160         kMax,
161         kClamp,
162         kSaturate,
163         kMix,
164         kStep,
165         kSmoothstep,
166 
167         // Geometric
168         kLength,
169         kDistance,
170         kDot,
171         kCross,
172         kNormalize,
173         kFaceforward,
174         kReflect,
175         kRefract,
176 
177         // Matrix
178         kMatrixCompMult,
179         kInverse,
180 
181         // Vector Relational
182         kLessThan,
183         kLessThanEqual,
184         kGreaterThan,
185         kGreaterThanEqual,
186         kEqual,
187         kNotEqual,
188 
189         kAny,
190         kAll,
191         kNot,
192 
193         // SkSL
194         kSample,
195     };
196 
197     /**
198      * In SkSL, a Variable represents a named, typed value (along with qualifiers, etc).
199      * Every Variable is mapped to one (or several, contiguous) indices into our vector of
200      * skvm::Val. Those skvm::Val entries hold the current actual value of that variable.
201      *
202      * NOTE: Conceptually, each Variable is just mapped to a Value. We could implement it that way,
203      * (and eliminate the indirection), but it would add overhead for each Variable,
204      * and add additional (different) bookkeeping for things like lvalue-swizzles.
205      *
206      * Any time a variable appears in an expression, that's a VariableReference, which is a kind of
207      * Expression. Evaluating that VariableReference (or any other Expression) produces a Value,
208      * which is a set of skvm::Val. (This allows an Expression to produce a vector or matrix, in
209      * addition to a scalar).
210      *
211      * For a VariableReference, producing a Value is straightforward - we get the slot of the
212      * Variable (from fVariableMap), use that to look up the current skvm::Vals holding the
213      * variable's contents, and construct a Value with those ids.
214      */
215 
216     /**
217      * Returns the slot holding v's Val(s). Allocates storage if this is first time 'v' is
218      * referenced. Compound variables (e.g. vectors) will consume more than one slot, with
219      * getSlot returning the start of the contiguous chunk of slots.
220      */
221     size_t getSlot(const Variable& v);
222 
f32(skvm::Val id)223     skvm::F32 f32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
i32(skvm::Val id)224     skvm::I32 i32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
225 
226     // Shorthand for scalars
f32(const Value & v)227     skvm::F32 f32(const Value& v) { SkASSERT(v.slots() == 1); return f32(v[0]); }
i32(const Value & v)228     skvm::I32 i32(const Value& v) { SkASSERT(v.slots() == 1); return i32(v[0]); }
229 
230     template <typename Fn>
unary(const Value & v,Fn && fn)231     Value unary(const Value& v, Fn&& fn) {
232         Value result(v.slots());
233         for (size_t i = 0; i < v.slots(); ++i) {
234             result[i] = fn({fBuilder, v[i]});
235         }
236         return result;
237     }
238 
mask()239     skvm::I32 mask() {
240         // As we encounter (possibly conditional) return statements, fReturned is updated to store
241         // the lanes that have already returned. For the remainder of the current function, those
242         // lanes should be disabled.
243         return fConditionMask & fLoopMask & ~currentFunction().fReturned;
244     }
245 
246     size_t fieldSlotOffset(const FieldAccess& expr);
247     size_t indexSlotOffset(const IndexExpression& expr);
248 
249     Value writeExpression(const Expression& expr);
250     Value writeBinaryExpression(const BinaryExpression& b);
251     Value writeAggregationConstructor(const AnyConstructor& c);
252     Value writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c);
253     Value writeConstructorMatrixResize(const ConstructorMatrixResize& c);
254     Value writeConstructorCast(const AnyConstructor& c);
255     Value writeConstructorSplat(const ConstructorSplat& c);
256     Value writeFunctionCall(const FunctionCall& c);
257     Value writeExternalFunctionCall(const ExternalFunctionCall& c);
258     Value writeFieldAccess(const FieldAccess& expr);
259     Value writeIndexExpression(const IndexExpression& expr);
260     Value writeIntrinsicCall(const FunctionCall& c);
261     Value writePostfixExpression(const PostfixExpression& p);
262     Value writePrefixExpression(const PrefixExpression& p);
263     Value writeSwizzle(const Swizzle& swizzle);
264     Value writeTernaryExpression(const TernaryExpression& t);
265     Value writeVariableExpression(const VariableReference& expr);
266 
267     Value writeTypeConversion(const Value& src, Type::NumberKind srcKind, Type::NumberKind dstKind);
268 
269     void writeStatement(const Statement& s);
270     void writeBlock(const Block& b);
271     void writeBreakStatement();
272     void writeContinueStatement();
273     void writeForStatement(const ForStatement& f);
274     void writeIfStatement(const IfStatement& stmt);
275     void writeReturnStatement(const ReturnStatement& r);
276     void writeVarDeclaration(const VarDeclaration& decl);
277 
278     Value writeStore(const Expression& lhs, const Value& rhs);
279 
280     Value writeMatrixInverse2x2(const Value& m);
281     Value writeMatrixInverse3x3(const Value& m);
282     Value writeMatrixInverse4x4(const Value& m);
283 
284     //
285     // Global state for the lifetime of the generator:
286     //
287     const Program& fProgram;
288     skvm::Builder* fBuilder;
289 
290     const skvm::Coord fLocalCoord;
291     const skvm::Color fInputColor;
292     const SampleChildFn fSampleChild;
293 
294     // [Variable, first slot in fSlots]
295     std::unordered_map<const Variable*, size_t> fVariableMap;
296     std::vector<skvm::Val> fSlots;
297 
298     // Conditional execution mask (managed by ScopedCondition, and tied to control-flow scopes)
299     skvm::I32 fConditionMask;
300 
301     // Similar: loop execution masks. Each loop starts with all lanes active (fLoopMask).
302     // 'break' disables a lane in fLoopMask until the loop finishes
303     // 'continue' disables a lane in fLoopMask, and sets fContinueMask to be re-enabled on the next
304     //   iteration
305     skvm::I32 fLoopMask;
306     skvm::I32 fContinueMask;
307 
308     //
309     // State that's local to the generation of a single function:
310     //
311     struct Function {
312         const SkSpan<skvm::Val> fReturnValue;
313         skvm::I32               fReturned;
314     };
315     std::vector<Function> fFunctionStack;
currentFunction()316     Function& currentFunction() { return fFunctionStack.back(); }
317 
318     class ScopedCondition {
319     public:
ScopedCondition(SkVMGenerator * generator,skvm::I32 mask)320         ScopedCondition(SkVMGenerator* generator, skvm::I32 mask)
321                 : fGenerator(generator), fOldConditionMask(fGenerator->fConditionMask) {
322             fGenerator->fConditionMask &= mask;
323         }
324 
~ScopedCondition()325         ~ScopedCondition() { fGenerator->fConditionMask = fOldConditionMask; }
326 
327     private:
328         SkVMGenerator* fGenerator;
329         skvm::I32 fOldConditionMask;
330     };
331 };
332 
base_number_kind(const Type & type)333 static Type::NumberKind base_number_kind(const Type& type) {
334     if (type.typeKind() == Type::TypeKind::kMatrix || type.typeKind() == Type::TypeKind::kVector) {
335         return base_number_kind(type.componentType());
336     }
337     return type.numberKind();
338 }
339 
is_uniform(const SkSL::Variable & var)340 static inline bool is_uniform(const SkSL::Variable& var) {
341     return var.modifiers().fFlags & Modifiers::kUniform_Flag;
342 }
343 
SkVMGenerator(const Program & program,skvm::Builder * builder,SkSpan<skvm::Val> uniforms,skvm::Coord device,skvm::Coord local,skvm::Color inputColor,SampleChildFn sampleChild)344 SkVMGenerator::SkVMGenerator(const Program& program,
345                              skvm::Builder* builder,
346                              SkSpan<skvm::Val> uniforms,
347                              skvm::Coord device,
348                              skvm::Coord local,
349                              skvm::Color inputColor,
350                              SampleChildFn sampleChild)
351         : fProgram(program)
352         , fBuilder(builder)
353         , fLocalCoord(local)
354         , fInputColor(inputColor)
355         , fSampleChild(std::move(sampleChild)) {
356     fConditionMask = fLoopMask = fBuilder->splat(0xffff'ffff);
357 
358     // Now, add storage for each global variable (including uniforms) to fSlots, and entries in
359     // fVariableMap to remember where every variable is stored.
360     const skvm::Val* uniformIter = uniforms.begin();
361     size_t fpCount = 0;
362     for (const ProgramElement* e : fProgram.elements()) {
363         if (e->is<GlobalVarDeclaration>()) {
364             const GlobalVarDeclaration& gvd = e->as<GlobalVarDeclaration>();
365             const VarDeclaration& decl = gvd.declaration()->as<VarDeclaration>();
366             const Variable& var = decl.var();
367             SkASSERT(fVariableMap.find(&var) == fVariableMap.end());
368 
369             // For most variables, fVariableMap stores an index into fSlots, but for children,
370             // fVariableMap stores the index to pass to fSampleChild().
371             if (var.type().isEffectChild()) {
372                 fVariableMap[&var] = fpCount++;
373                 continue;
374             }
375 
376             // Opaque types include fragment processors, GL objects (samplers, textures, etc), and
377             // special types like 'void'. Of those, only fragment processors are legal variables.
378             SkASSERT(!var.type().isOpaque());
379 
380             // getSlot() allocates space for the variable's value in fSlots, initializes it to zero,
381             // and populates fVariableMap.
382             size_t slot   = this->getSlot(var),
383                    nslots = var.type().slotCount();
384 
385             if (int builtin = var.modifiers().fLayout.fBuiltin; builtin >= 0) {
386                 // builtin variables are system-defined, with special semantics. The only builtin
387                 // variable exposed to runtime effects is sk_FragCoord.
388                 switch (builtin) {
389                     case SK_FRAGCOORD_BUILTIN:
390                         SkASSERT(nslots == 4);
391                         fSlots[slot + 0] = device.x.id;
392                         fSlots[slot + 1] = device.y.id;
393                         fSlots[slot + 2] = fBuilder->splat(0.0f).id;
394                         fSlots[slot + 3] = fBuilder->splat(1.0f).id;
395                         break;
396                     default:
397                         SkDEBUGFAIL("Unsupported builtin");
398                 }
399             } else if (is_uniform(var)) {
400                 // For uniforms, copy the supplied IDs over
401                 SkASSERT(uniformIter + nslots <= uniforms.end());
402                 std::copy(uniformIter, uniformIter + nslots, fSlots.begin() + slot);
403                 uniformIter += nslots;
404             } else if (decl.value()) {
405                 // For other globals, populate with the initializer expression (if there is one)
406                 Value val = this->writeExpression(*decl.value());
407                 for (size_t i = 0; i < nslots; ++i) {
408                     fSlots[slot + i] = val[i];
409                 }
410             }
411         }
412     }
413     SkASSERT(uniformIter == uniforms.end());
414 }
415 
writeFunction(const FunctionDefinition & function,SkSpan<skvm::Val> arguments,SkSpan<skvm::Val> outReturn)416 void SkVMGenerator::writeFunction(const FunctionDefinition& function,
417                                   SkSpan<skvm::Val> arguments,
418                                   SkSpan<skvm::Val> outReturn) {
419     const FunctionDeclaration& decl = function.declaration();
420     SkASSERT(decl.returnType().slotCount() == outReturn.size());
421 
422     fFunctionStack.push_back({outReturn, /*returned=*/fBuilder->splat(0)});
423 
424     // For all parameters, copy incoming argument IDs to our vector of (all) variable IDs
425     size_t argIdx = 0;
426     for (const Variable* p : decl.parameters()) {
427         size_t paramSlot = this->getSlot(*p),
428                nslots    = p->type().slotCount();
429 
430         for (size_t i = 0; i < nslots; ++i) {
431             fSlots[paramSlot + i] = arguments[argIdx + i];
432         }
433         argIdx += nslots;
434     }
435     SkASSERT(argIdx == arguments.size());
436 
437     this->writeStatement(*function.body());
438 
439     // Copy 'out' and 'inout' parameters back to their caller-supplied argument storage
440     argIdx = 0;
441     for (const Variable* p : decl.parameters()) {
442         size_t nslots = p->type().slotCount();
443 
444         if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
445             size_t paramSlot = this->getSlot(*p);
446             for (size_t i = 0; i < nslots; ++i) {
447                 arguments[argIdx + i] = fSlots[paramSlot + i];
448             }
449         }
450         argIdx += nslots;
451     }
452     SkASSERT(argIdx == arguments.size());
453 
454     fFunctionStack.pop_back();
455 }
456 
getSlot(const Variable & v)457 size_t SkVMGenerator::getSlot(const Variable& v) {
458     auto entry = fVariableMap.find(&v);
459     if (entry != fVariableMap.end()) {
460         return entry->second;
461     }
462 
463     size_t slot   = fSlots.size(),
464            nslots = v.type().slotCount();
465     fSlots.resize(slot + nslots, fBuilder->splat(0.0f).id);
466     fVariableMap[&v] = slot;
467     return slot;
468 }
469 
writeBinaryExpression(const BinaryExpression & b)470 Value SkVMGenerator::writeBinaryExpression(const BinaryExpression& b) {
471     const Expression& left = *b.left();
472     const Expression& right = *b.right();
473     Operator op = b.getOperator();
474     if (op.kind() == Token::Kind::TK_EQ) {
475         return this->writeStore(left, this->writeExpression(right));
476     }
477 
478     const Type& lType = left.type();
479     const Type& rType = right.type();
480     bool lVecOrMtx = (lType.isVector() || lType.isMatrix());
481     bool rVecOrMtx = (rType.isVector() || rType.isMatrix());
482     bool isAssignment = op.isAssignment();
483     if (isAssignment) {
484         op = op.removeAssignment();
485     }
486     Type::NumberKind nk = base_number_kind(lType);
487 
488     // A few ops require special treatment:
489     switch (op.kind()) {
490         case Token::Kind::TK_LOGICALAND: {
491             SkASSERT(!isAssignment);
492             SkASSERT(nk == Type::NumberKind::kBoolean);
493             skvm::I32 lVal = i32(this->writeExpression(left));
494             ScopedCondition shortCircuit(this, lVal);
495             skvm::I32 rVal = i32(this->writeExpression(right));
496             return lVal & rVal;
497         }
498         case Token::Kind::TK_LOGICALOR: {
499             SkASSERT(!isAssignment);
500             SkASSERT(nk == Type::NumberKind::kBoolean);
501             skvm::I32 lVal = i32(this->writeExpression(left));
502             ScopedCondition shortCircuit(this, ~lVal);
503             skvm::I32 rVal = i32(this->writeExpression(right));
504             return lVal | rVal;
505         }
506         case Token::Kind::TK_COMMA:
507             // We write the left side of the expression to preserve its side effects, even though we
508             // immediately discard the result.
509             this->writeExpression(left);
510             return this->writeExpression(right);
511         default:
512             break;
513     }
514 
515     // All of the other ops always evaluate both sides of the expression
516     Value lVal = this->writeExpression(left),
517           rVal = this->writeExpression(right);
518 
519     // Special case for M*V, V*M, M*M (but not V*V!)
520     if (op.kind() == Token::Kind::TK_STAR
521         && lVecOrMtx && rVecOrMtx && !(lType.isVector() && rType.isVector())) {
522         int rCols = rType.columns(),
523             rRows = rType.rows(),
524             lCols = lType.columns(),
525             lRows = lType.rows();
526         // M*V treats the vector as a column
527         if (rType.isVector()) {
528             std::swap(rCols, rRows);
529         }
530         SkASSERT(lCols == rRows);
531         SkASSERT(b.type().slotCount() == static_cast<size_t>(lRows * rCols));
532         Value result(lRows * rCols);
533         size_t resultIdx = 0;
534         for (int c = 0; c < rCols; ++c)
535         for (int r = 0; r < lRows; ++r) {
536             skvm::F32 sum = fBuilder->splat(0.0f);
537             for (int j = 0; j < lCols; ++j) {
538                 sum += f32(lVal[j*lRows + r]) * f32(rVal[c*rRows + j]);
539             }
540             result[resultIdx++] = sum;
541         }
542         SkASSERT(resultIdx == result.slots());
543         return isAssignment ? this->writeStore(left, result) : result;
544     }
545 
546     size_t nslots = std::max(lVal.slots(), rVal.slots());
547 
548     auto binary = [&](auto&& f_fn, auto&& i_fn) {
549         Value result(nslots);
550         for (size_t i = 0; i < nslots; ++i) {
551             // If one side is scalar, replicate it to all channels
552             skvm::Val L = lVal.slots() == 1 ? lVal[0] : lVal[i],
553                       R = rVal.slots() == 1 ? rVal[0] : rVal[i];
554             if (nk == Type::NumberKind::kFloat) {
555                 result[i] = f_fn(f32(L), f32(R));
556             } else {
557                 result[i] = i_fn(i32(L), i32(R));
558             }
559         }
560         return isAssignment ? this->writeStore(left, result) : result;
561     };
562 
563     auto unsupported_f = [&](skvm::F32, skvm::F32) {
564         SkDEBUGFAIL("Unsupported operator");
565         return skvm::F32{};
566     };
567 
568     switch (op.kind()) {
569         case Token::Kind::TK_EQEQ: {
570             SkASSERT(!isAssignment);
571             Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x == y; },
572                                [](skvm::I32 x, skvm::I32 y) { return x == y; });
573             skvm::I32 folded = i32(cmp[0]);
574             for (size_t i = 1; i < nslots; ++i) {
575                 folded &= i32(cmp[i]);
576             }
577             return folded;
578         }
579         case Token::Kind::TK_NEQ: {
580             SkASSERT(!isAssignment);
581             Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x != y; },
582                                [](skvm::I32 x, skvm::I32 y) { return x != y; });
583             skvm::I32 folded = i32(cmp[0]);
584             for (size_t i = 1; i < nslots; ++i) {
585                 folded |= i32(cmp[i]);
586             }
587             return folded;
588         }
589         case Token::Kind::TK_GT:
590             return binary([](skvm::F32 x, skvm::F32 y) { return x > y; },
591                           [](skvm::I32 x, skvm::I32 y) { return x > y; });
592         case Token::Kind::TK_GTEQ:
593             return binary([](skvm::F32 x, skvm::F32 y) { return x >= y; },
594                           [](skvm::I32 x, skvm::I32 y) { return x >= y; });
595         case Token::Kind::TK_LT:
596             return binary([](skvm::F32 x, skvm::F32 y) { return x < y; },
597                           [](skvm::I32 x, skvm::I32 y) { return x < y; });
598         case Token::Kind::TK_LTEQ:
599             return binary([](skvm::F32 x, skvm::F32 y) { return x <= y; },
600                           [](skvm::I32 x, skvm::I32 y) { return x <= y; });
601 
602         case Token::Kind::TK_PLUS:
603             return binary([](skvm::F32 x, skvm::F32 y) { return x + y; },
604                           [](skvm::I32 x, skvm::I32 y) { return x + y; });
605         case Token::Kind::TK_MINUS:
606             return binary([](skvm::F32 x, skvm::F32 y) { return x - y; },
607                           [](skvm::I32 x, skvm::I32 y) { return x - y; });
608         case Token::Kind::TK_STAR:
609             return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; },
610                           [](skvm::I32 x, skvm::I32 y) { return x * y; });
611         case Token::Kind::TK_SLASH:
612             // Minimum spec (GLSL ES 1.0) has very loose requirements for integer operations.
613             // (Low-end GPUs may not have integer ALUs). Given that, we are allowed to do floating
614             // point division plus rounding. Section 10.28 of the spec even clarifies that the
615             // rounding mode is undefined (but round-towards-zero is the obvious/common choice).
616             return binary([](skvm::F32 x, skvm::F32 y) { return x / y; },
617                           [](skvm::I32 x, skvm::I32 y) {
618                               return skvm::trunc(skvm::to_F32(x) / skvm::to_F32(y));
619                           });
620 
621         case Token::Kind::TK_BITWISEXOR:
622         case Token::Kind::TK_LOGICALXOR:
623             return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x ^ y; });
624         case Token::Kind::TK_BITWISEAND:
625             return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x & y; });
626         case Token::Kind::TK_BITWISEOR:
627             return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x | y; });
628 
629         // These three operators are all 'reserved' (illegal) in our minimum spec, but will require
630         // implementation in the future.
631         case Token::Kind::TK_PERCENT:
632         case Token::Kind::TK_SHL:
633         case Token::Kind::TK_SHR:
634         default:
635             SkDEBUGFAIL("Unsupported operator");
636             return {};
637     }
638 }
639 
writeAggregationConstructor(const AnyConstructor & c)640 Value SkVMGenerator::writeAggregationConstructor(const AnyConstructor& c) {
641     Value result(c.type().slotCount());
642     size_t resultIdx = 0;
643     for (const auto &arg : c.argumentSpan()) {
644         Value tmp = this->writeExpression(*arg);
645         for (size_t tmpSlot = 0; tmpSlot < tmp.slots(); ++tmpSlot) {
646             result[resultIdx++] = tmp[tmpSlot];
647         }
648     }
649     return result;
650 }
651 
writeTypeConversion(const Value & src,Type::NumberKind srcKind,Type::NumberKind dstKind)652 Value SkVMGenerator::writeTypeConversion(const Value& src,
653                                          Type::NumberKind srcKind,
654                                          Type::NumberKind dstKind) {
655     // Conversion among "similar" types (floatN <-> halfN), (shortN <-> intN), etc. is a no-op.
656     if (srcKind == dstKind) {
657         return src;
658     }
659 
660     // TODO: Handle signed vs. unsigned. GLSL ES 1.0 only has 'int', so no problem yet.
661     Value dst(src.slots());
662     switch (dstKind) {
663         case Type::NumberKind::kFloat:
664             if (srcKind == Type::NumberKind::kSigned) {
665                 // int -> float
666                 for (size_t i = 0; i < src.slots(); ++i) {
667                     dst[i] = skvm::to_F32(i32(src[i]));
668                 }
669                 return dst;
670             }
671             if (srcKind == Type::NumberKind::kBoolean) {
672                 // bool -> float
673                 for (size_t i = 0; i < src.slots(); ++i) {
674                     dst[i] = skvm::select(i32(src[i]), 1.0f, 0.0f);
675                 }
676                 return dst;
677             }
678             break;
679 
680         case Type::NumberKind::kSigned:
681             if (srcKind == Type::NumberKind::kFloat) {
682                 // float -> int
683                 for (size_t i = 0; i < src.slots(); ++i) {
684                     dst[i] = skvm::trunc(f32(src[i]));
685                 }
686                 return dst;
687             }
688             if (srcKind == Type::NumberKind::kBoolean) {
689                 // bool -> int
690                 for (size_t i = 0; i < src.slots(); ++i) {
691                     dst[i] = skvm::select(i32(src[i]), 1, 0);
692                 }
693                 return dst;
694             }
695             break;
696 
697         case Type::NumberKind::kBoolean:
698             if (srcKind == Type::NumberKind::kSigned) {
699                 // int -> bool
700                 for (size_t i = 0; i < src.slots(); ++i) {
701                     dst[i] = i32(src[i]) != 0;
702                 }
703                 return dst;
704             }
705             if (srcKind == Type::NumberKind::kFloat) {
706                 // float -> bool
707                 for (size_t i = 0; i < src.slots(); ++i) {
708                     dst[i] = f32(src[i]) != 0.0;
709                 }
710                 return dst;
711             }
712             break;
713 
714         default:
715             break;
716     }
717     SkDEBUGFAILF("Unsupported type conversion: %d -> %d", srcKind, dstKind);
718     return {};
719 }
720 
writeConstructorCast(const AnyConstructor & c)721 Value SkVMGenerator::writeConstructorCast(const AnyConstructor& c) {
722     auto arguments = c.argumentSpan();
723     SkASSERT(arguments.size() == 1);
724     const Expression& argument = *arguments.front();
725 
726     const Type& srcType = argument.type();
727     const Type& dstType = c.type();
728     Type::NumberKind srcKind = base_number_kind(srcType);
729     Type::NumberKind dstKind = base_number_kind(dstType);
730     Value src = this->writeExpression(argument);
731     return this->writeTypeConversion(src, srcKind, dstKind);
732 }
733 
writeConstructorSplat(const ConstructorSplat & c)734 Value SkVMGenerator::writeConstructorSplat(const ConstructorSplat& c) {
735     SkASSERT(c.type().isVector());
736     SkASSERT(c.argument()->type().isScalar());
737     int columns = c.type().columns();
738 
739     // Splat the argument across all components of a vector.
740     Value src = this->writeExpression(*c.argument());
741     Value dst(columns);
742     for (int i = 0; i < columns; ++i) {
743         dst[i] = src[0];
744     }
745     return dst;
746 }
747 
writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix & c)748 Value SkVMGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c) {
749     const Type& dstType = c.type();
750     SkASSERT(dstType.isMatrix());
751     SkASSERT(c.argument()->type() == dstType.componentType());
752 
753     Value src = this->writeExpression(*c.argument());
754     Value dst(dstType.rows() * dstType.columns());
755     size_t dstIndex = 0;
756 
757     // Matrix-from-scalar builds a diagonal scale matrix
758     for (int c = 0; c < dstType.columns(); ++c) {
759         for (int r = 0; r < dstType.rows(); ++r) {
760             dst[dstIndex++] = (c == r ? f32(src) : fBuilder->splat(0.0f));
761         }
762     }
763 
764     SkASSERT(dstIndex == dst.slots());
765     return dst;
766 }
767 
writeConstructorMatrixResize(const ConstructorMatrixResize & c)768 Value SkVMGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c) {
769     const Type& srcType = c.argument()->type();
770     const Type& dstType = c.type();
771     Value src = this->writeExpression(*c.argument());
772     Value dst(dstType.rows() * dstType.columns());
773 
774     // Matrix-from-matrix uses src where it overlaps, and fills in missing fields with identity.
775     size_t dstIndex = 0;
776     for (int c = 0; c < dstType.columns(); ++c) {
777         for (int r = 0; r < dstType.rows(); ++r) {
778             if (c < srcType.columns() && r < srcType.rows()) {
779                 dst[dstIndex++] = src[c * srcType.rows() + r];
780             } else {
781                 dst[dstIndex++] = fBuilder->splat(c == r ? 1.0f : 0.0f);
782             }
783         }
784     }
785 
786     SkASSERT(dstIndex == dst.slots());
787     return dst;
788 }
789 
fieldSlotOffset(const FieldAccess & expr)790 size_t SkVMGenerator::fieldSlotOffset(const FieldAccess& expr) {
791     size_t offset = 0;
792     for (int i = 0; i < expr.fieldIndex(); ++i) {
793         offset += (*expr.base()->type().fields()[i].fType).slotCount();
794     }
795     return offset;
796 }
797 
writeFieldAccess(const FieldAccess & expr)798 Value SkVMGenerator::writeFieldAccess(const FieldAccess& expr) {
799     Value base = this->writeExpression(*expr.base());
800     Value field(expr.type().slotCount());
801     size_t offset = this->fieldSlotOffset(expr);
802     for (size_t i = 0; i < field.slots(); ++i) {
803         field[i] = base[offset + i];
804     }
805     return field;
806 }
807 
indexSlotOffset(const IndexExpression & expr)808 size_t SkVMGenerator::indexSlotOffset(const IndexExpression& expr) {
809     Value index = this->writeExpression(*expr.index());
810     int indexValue = -1;
811     SkAssertResult(fBuilder->allImm(index[0], &indexValue));
812 
813     // When indexing by a literal, the front-end guarantees that we don't go out of bounds.
814     // But when indexing by a loop variable, it's possible to generate out-of-bounds access.
815     // The GLSL spec leaves that behavior undefined - we'll just clamp everything here.
816     indexValue = SkTPin(indexValue, 0, expr.base()->type().columns() - 1);
817 
818     size_t stride = expr.type().slotCount();
819     return indexValue * stride;
820 }
821 
writeIndexExpression(const IndexExpression & expr)822 Value SkVMGenerator::writeIndexExpression(const IndexExpression& expr) {
823     Value base = this->writeExpression(*expr.base());
824     Value element(expr.type().slotCount());
825     size_t offset = this->indexSlotOffset(expr);
826     for (size_t i = 0; i < element.slots(); ++i) {
827         element[i] = base[offset + i];
828     }
829     return element;
830 }
831 
writeVariableExpression(const VariableReference & expr)832 Value SkVMGenerator::writeVariableExpression(const VariableReference& expr) {
833     size_t slot = this->getSlot(*expr.variable());
834     Value val(expr.type().slotCount());
835     for (size_t i = 0; i < val.slots(); ++i) {
836         val[i] = fSlots[slot + i];
837     }
838     return val;
839 }
840 
writeMatrixInverse2x2(const Value & m)841 Value SkVMGenerator::writeMatrixInverse2x2(const Value& m) {
842     SkASSERT(m.slots() == 4);
843     skvm::F32 a = f32(m[0]),
844               b = f32(m[1]),
845               c = f32(m[2]),
846               d = f32(m[3]);
847     skvm::F32 idet = 1.0f / (a*d - b*c);
848 
849     Value result(m.slots());
850     result[0] = ( d ** idet);
851     result[1] = (-b ** idet);
852     result[2] = (-c ** idet);
853     result[3] = ( a ** idet);
854     return result;
855 }
856 
writeMatrixInverse3x3(const Value & m)857 Value SkVMGenerator::writeMatrixInverse3x3(const Value& m) {
858     SkASSERT(m.slots() == 9);
859     skvm::F32 a11 = f32(m[0]), a12 = f32(m[3]), a13 = f32(m[6]),
860               a21 = f32(m[1]), a22 = f32(m[4]), a23 = f32(m[7]),
861               a31 = f32(m[2]), a32 = f32(m[5]), a33 = f32(m[8]);
862     skvm::F32 idet = 1.0f / (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 -
863                              a11*a23*a32 - a12*a21*a33 - a13*a22*a31);
864 
865     Value result(m.slots());
866     result[0] = ((a22**a33 - a23**a32) ** idet);
867     result[1] = ((a23**a31 - a21**a33) ** idet);
868     result[2] = ((a21**a32 - a22**a31) ** idet);
869     result[3] = ((a13**a32 - a12**a33) ** idet);
870     result[4] = ((a11**a33 - a13**a31) ** idet);
871     result[5] = ((a12**a31 - a11**a32) ** idet);
872     result[6] = ((a12**a23 - a13**a22) ** idet);
873     result[7] = ((a13**a21 - a11**a23) ** idet);
874     result[8] = ((a11**a22 - a12**a21) ** idet);
875     return result;
876 }
877 
writeMatrixInverse4x4(const Value & m)878 Value SkVMGenerator::writeMatrixInverse4x4(const Value& m) {
879     SkASSERT(m.slots() == 16);
880     skvm::F32 a00 = f32(m[0]), a10 = f32(m[4]), a20 = f32(m[ 8]), a30 = f32(m[12]),
881               a01 = f32(m[1]), a11 = f32(m[5]), a21 = f32(m[ 9]), a31 = f32(m[13]),
882               a02 = f32(m[2]), a12 = f32(m[6]), a22 = f32(m[10]), a32 = f32(m[14]),
883               a03 = f32(m[3]), a13 = f32(m[7]), a23 = f32(m[11]), a33 = f32(m[15]);
884 
885     skvm::F32 b00 = a00**a11 - a01**a10,
886               b01 = a00**a12 - a02**a10,
887               b02 = a00**a13 - a03**a10,
888               b03 = a01**a12 - a02**a11,
889               b04 = a01**a13 - a03**a11,
890               b05 = a02**a13 - a03**a12,
891               b06 = a20**a31 - a21**a30,
892               b07 = a20**a32 - a22**a30,
893               b08 = a20**a33 - a23**a30,
894               b09 = a21**a32 - a22**a31,
895               b10 = a21**a33 - a23**a31,
896               b11 = a22**a33 - a23**a32;
897 
898     skvm::F32 idet = 1.0f / (b00**b11 - b01**b10 + b02**b09 + b03**b08 - b04**b07 + b05**b06);
899 
900     b00 *= idet;
901     b01 *= idet;
902     b02 *= idet;
903     b03 *= idet;
904     b04 *= idet;
905     b05 *= idet;
906     b06 *= idet;
907     b07 *= idet;
908     b08 *= idet;
909     b09 *= idet;
910     b10 *= idet;
911     b11 *= idet;
912 
913     Value result(m.slots());
914     result[ 0] = (a11*b11 - a12*b10 + a13*b09);
915     result[ 1] = (a02*b10 - a01*b11 - a03*b09);
916     result[ 2] = (a31*b05 - a32*b04 + a33*b03);
917     result[ 3] = (a22*b04 - a21*b05 - a23*b03);
918     result[ 4] = (a12*b08 - a10*b11 - a13*b07);
919     result[ 5] = (a00*b11 - a02*b08 + a03*b07);
920     result[ 6] = (a32*b02 - a30*b05 - a33*b01);
921     result[ 7] = (a20*b05 - a22*b02 + a23*b01);
922     result[ 8] = (a10*b10 - a11*b08 + a13*b06);
923     result[ 9] = (a01*b08 - a00*b10 - a03*b06);
924     result[10] = (a30*b04 - a31*b02 + a33*b00);
925     result[11] = (a21*b02 - a20*b04 - a23*b00);
926     result[12] = (a11*b07 - a10*b09 - a12*b06);
927     result[13] = (a00*b09 - a01*b07 + a02*b06);
928     result[14] = (a31*b01 - a30*b03 - a32*b00);
929     result[15] = (a20*b03 - a21*b01 + a22*b00);
930     return result;
931 }
932 
writeIntrinsicCall(const FunctionCall & c)933 Value SkVMGenerator::writeIntrinsicCall(const FunctionCall& c) {
934     IntrinsicKind intrinsicKind = c.function().intrinsicKind();
935     SkASSERT(intrinsicKind != kNotIntrinsic);
936 
937     const size_t nargs = c.arguments().size();
938 
939     if (intrinsicKind == k_sample_IntrinsicKind) {
940         // Sample is very special, the first argument is a child (shader/colorFilter), which can't
941         // be evaluated
942         SkASSERT(nargs == 2);
943         const Expression* child = c.arguments()[0].get();
944         SkASSERT(child->type().isEffectChild());
945         SkASSERT(child->is<VariableReference>());
946 
947         auto fp_it = fVariableMap.find(child->as<VariableReference>().variable());
948         SkASSERT(fp_it != fVariableMap.end());
949 
950         // Shaders require a coordinate argument. Color filters require a color argument.
951         // When we call sampleChild, the other value remains the incoming default.
952         skvm::Color inColor = fInputColor;
953         skvm::Coord coord = fLocalCoord;
954         const Expression* arg = c.arguments()[1].get();
955         Value argVal = this->writeExpression(*arg);
956 
957         if (child->type().typeKind() == Type::TypeKind::kShader) {
958             SkASSERT(arg->type() == *fProgram.fContext->fTypes.fFloat2);
959             coord = {f32(argVal[0]), f32(argVal[1])};
960         } else {
961             SkASSERT(child->type().typeKind() == Type::TypeKind::kColorFilter);
962             SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 ||
963                      arg->type() == *fProgram.fContext->fTypes.fFloat4);
964             inColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])};
965         }
966 
967         skvm::Color color = fSampleChild(fp_it->second, coord, inColor);
968         Value result(4);
969         result[0] = color.r;
970         result[1] = color.g;
971         result[2] = color.b;
972         result[3] = color.a;
973         return result;
974     }
975 
976     const size_t kMaxArgs = 3;  // eg: clamp, mix, smoothstep
977     Value args[kMaxArgs];
978     SkASSERT(nargs >= 1 && nargs <= SK_ARRAY_COUNT(args));
979 
980     // All other intrinsics have at most three args, and those can all be evaluated up front:
981     for (size_t i = 0; i < nargs; ++i) {
982         args[i] = this->writeExpression(*c.arguments()[i]);
983     }
984     Type::NumberKind nk = base_number_kind(c.arguments()[0]->type());
985 
986     auto binary = [&](auto&& fn) {
987         // Binary intrinsics are (vecN, vecN), (vecN, float), or (float, vecN)
988         size_t nslots = std::max(args[0].slots(), args[1].slots());
989         Value result(nslots);
990         SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
991         SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
992 
993         for (size_t i = 0; i < nslots; ++i) {
994             result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
995                            {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]});
996         }
997         return result;
998     };
999 
1000     auto ternary = [&](auto&& fn) {
1001         // Ternary intrinsics are some combination of vecN and float
1002         size_t nslots = std::max({args[0].slots(), args[1].slots(), args[2].slots()});
1003         Value result(nslots);
1004         SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
1005         SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
1006         SkASSERT(args[2].slots() == nslots || args[2].slots() == 1);
1007 
1008         for (size_t i = 0; i < nslots; ++i) {
1009             result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
1010                            {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]},
1011                            {fBuilder, args[2][args[2].slots() == 1 ? 0 : i]});
1012         }
1013         return result;
1014     };
1015 
1016     auto dot = [&](const Value& x, const Value& y) {
1017         SkASSERT(x.slots() == y.slots());
1018         skvm::F32 result = f32(x[0]) * f32(y[0]);
1019         for (size_t i = 1; i < x.slots(); ++i) {
1020             result += f32(x[i]) * f32(y[i]);
1021         }
1022         return result;
1023     };
1024 
1025     switch (intrinsicKind) {
1026         case k_radians_IntrinsicKind:
1027             return unary(args[0], [](skvm::F32 deg) { return deg * (SK_FloatPI / 180); });
1028         case k_degrees_IntrinsicKind:
1029             return unary(args[0], [](skvm::F32 rad) { return rad * (180 / SK_FloatPI); });
1030 
1031         case k_sin_IntrinsicKind: return unary(args[0], skvm::approx_sin);
1032         case k_cos_IntrinsicKind: return unary(args[0], skvm::approx_cos);
1033         case k_tan_IntrinsicKind: return unary(args[0], skvm::approx_tan);
1034 
1035         case k_asin_IntrinsicKind: return unary(args[0], skvm::approx_asin);
1036         case k_acos_IntrinsicKind: return unary(args[0], skvm::approx_acos);
1037 
1038         case k_atan_IntrinsicKind: return nargs == 1 ? unary(args[0], skvm::approx_atan)
1039                                                  : binary(skvm::approx_atan2);
1040 
1041         case k_pow_IntrinsicKind:
1042             return binary([](skvm::F32 x, skvm::F32 y) { return skvm::approx_powf(x, y); });
1043         case k_exp_IntrinsicKind:  return unary(args[0], skvm::approx_exp);
1044         case k_log_IntrinsicKind:  return unary(args[0], skvm::approx_log);
1045         case k_exp2_IntrinsicKind: return unary(args[0], skvm::approx_pow2);
1046         case k_log2_IntrinsicKind: return unary(args[0], skvm::approx_log2);
1047 
1048         case k_sqrt_IntrinsicKind: return unary(args[0], skvm::sqrt);
1049         case k_inversesqrt_IntrinsicKind:
1050             return unary(args[0], [](skvm::F32 x) { return 1.0f / skvm::sqrt(x); });
1051 
1052         case k_abs_IntrinsicKind: return unary(args[0], skvm::abs);
1053         case k_sign_IntrinsicKind:
1054             return unary(args[0], [](skvm::F32 x) { return select(x < 0, -1.0f,
1055                                                            select(x > 0, +1.0f, 0.0f)); });
1056         case k_floor_IntrinsicKind: return unary(args[0], skvm::floor);
1057         case k_ceil_IntrinsicKind:  return unary(args[0], skvm::ceil);
1058         case k_fract_IntrinsicKind: return unary(args[0], skvm::fract);
1059         case k_mod_IntrinsicKind:
1060             return binary([](skvm::F32 x, skvm::F32 y) { return x - y*skvm::floor(x / y); });
1061 
1062         case k_min_IntrinsicKind:
1063             return binary([](skvm::F32 x, skvm::F32 y) { return skvm::min(x, y); });
1064         case k_max_IntrinsicKind:
1065             return binary([](skvm::F32 x, skvm::F32 y) { return skvm::max(x, y); });
1066         case k_clamp_IntrinsicKind:
1067             return ternary(
1068                     [](skvm::F32 x, skvm::F32 lo, skvm::F32 hi) { return skvm::clamp(x, lo, hi); });
1069         case k_saturate_IntrinsicKind:
1070             return unary(args[0], [](skvm::F32 x) { return skvm::clamp01(x); });
1071         case k_mix_IntrinsicKind:
1072             return ternary(
1073                     [](skvm::F32 x, skvm::F32 y, skvm::F32 t) { return skvm::lerp(x, y, t); });
1074         case k_step_IntrinsicKind:
1075             return binary([](skvm::F32 edge, skvm::F32 x) { return select(x < edge, 0.0f, 1.0f); });
1076         case k_smoothstep_IntrinsicKind:
1077             return ternary([](skvm::F32 edge0, skvm::F32 edge1, skvm::F32 x) {
1078                 skvm::F32 t = skvm::clamp01((x - edge0) / (edge1 - edge0));
1079                 return t ** t ** (3 - 2 ** t);
1080             });
1081 
1082         case k_length_IntrinsicKind: return skvm::sqrt(dot(args[0], args[0]));
1083         case k_distance_IntrinsicKind: {
1084             Value vec = binary([](skvm::F32 x, skvm::F32 y) { return x - y; });
1085             return skvm::sqrt(dot(vec, vec));
1086         }
1087         case k_dot_IntrinsicKind: return dot(args[0], args[1]);
1088         case k_cross_IntrinsicKind: {
1089             skvm::F32 ax = f32(args[0][0]), ay = f32(args[0][1]), az = f32(args[0][2]),
1090                       bx = f32(args[1][0]), by = f32(args[1][1]), bz = f32(args[1][2]);
1091             Value result(3);
1092             result[0] = ay**bz - az**by;
1093             result[1] = az**bx - ax**bz;
1094             result[2] = ax**by - ay**bx;
1095             return result;
1096         }
1097         case k_normalize_IntrinsicKind: {
1098             skvm::F32 invLen = 1.0f / skvm::sqrt(dot(args[0], args[0]));
1099             return unary(args[0], [&](skvm::F32 x) { return x ** invLen; });
1100         }
1101         case k_faceforward_IntrinsicKind: {
1102             const Value &N    = args[0],
1103                         &I    = args[1],
1104                         &Nref = args[2];
1105 
1106             skvm::F32 dotNrefI = dot(Nref, I);
1107             return unary(N, [&](skvm::F32 n) { return select(dotNrefI<0, n, -n); });
1108         }
1109         case k_reflect_IntrinsicKind: {
1110             const Value &I = args[0],
1111                         &N = args[1];
1112 
1113             skvm::F32 dotNI = dot(N, I);
1114             return binary([&](skvm::F32 i, skvm::F32 n) {
1115                 return i - 2**dotNI**n;
1116             });
1117         }
1118         case k_refract_IntrinsicKind: {
1119             const Value &I  = args[0],
1120                         &N  = args[1];
1121             skvm::F32   eta = f32(args[2]);
1122 
1123             skvm::F32 dotNI = dot(N, I),
1124                       k     = 1 - eta**eta**(1 - dotNI**dotNI);
1125             return binary([&](skvm::F32 i, skvm::F32 n) {
1126                 return select(k<0, 0.0f, eta**i - (eta**dotNI + sqrt(k))**n);
1127             });
1128         }
1129 
1130         case k_matrixCompMult_IntrinsicKind:
1131             return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; });
1132         case k_inverse_IntrinsicKind: {
1133             switch (args[0].slots()) {
1134                 case  4: return this->writeMatrixInverse2x2(args[0]);
1135                 case  9: return this->writeMatrixInverse3x3(args[0]);
1136                 case 16: return this->writeMatrixInverse4x4(args[0]);
1137                 default:
1138                     SkDEBUGFAIL("Invalid call to inverse");
1139                     return {};
1140             }
1141         }
1142 
1143         case k_lessThan_IntrinsicKind:
1144             return nk == Type::NumberKind::kFloat
1145                            ? binary([](skvm::F32 x, skvm::F32 y) { return x < y; })
1146                            : binary([](skvm::I32 x, skvm::I32 y) { return x < y; });
1147         case k_lessThanEqual_IntrinsicKind:
1148             return nk == Type::NumberKind::kFloat
1149                            ? binary([](skvm::F32 x, skvm::F32 y) { return x <= y; })
1150                            : binary([](skvm::I32 x, skvm::I32 y) { return x <= y; });
1151         case k_greaterThan_IntrinsicKind:
1152             return nk == Type::NumberKind::kFloat
1153                            ? binary([](skvm::F32 x, skvm::F32 y) { return x > y; })
1154                            : binary([](skvm::I32 x, skvm::I32 y) { return x > y; });
1155         case k_greaterThanEqual_IntrinsicKind:
1156             return nk == Type::NumberKind::kFloat
1157                            ? binary([](skvm::F32 x, skvm::F32 y) { return x >= y; })
1158                            : binary([](skvm::I32 x, skvm::I32 y) { return x >= y; });
1159 
1160         case k_equal_IntrinsicKind:
1161             return nk == Type::NumberKind::kFloat
1162                            ? binary([](skvm::F32 x, skvm::F32 y) { return x == y; })
1163                            : binary([](skvm::I32 x, skvm::I32 y) { return x == y; });
1164         case k_notEqual_IntrinsicKind:
1165             return nk == Type::NumberKind::kFloat
1166                            ? binary([](skvm::F32 x, skvm::F32 y) { return x != y; })
1167                            : binary([](skvm::I32 x, skvm::I32 y) { return x != y; });
1168 
1169         case k_any_IntrinsicKind: {
1170             skvm::I32 result = i32(args[0][0]);
1171             for (size_t i = 1; i < args[0].slots(); ++i) {
1172                 result |= i32(args[0][i]);
1173             }
1174             return result;
1175         }
1176         case k_all_IntrinsicKind: {
1177             skvm::I32 result = i32(args[0][0]);
1178             for (size_t i = 1; i < args[0].slots(); ++i) {
1179                 result &= i32(args[0][i]);
1180             }
1181             return result;
1182         }
1183         case k_not_IntrinsicKind: return unary(args[0], [](skvm::I32 x) { return ~x; });
1184 
1185         default:
1186             SkDEBUGFAILF("unsupported intrinsic %s", c.function().description().c_str());
1187             return {};
1188     }
1189     SkUNREACHABLE;
1190 }
1191 
writeFunctionCall(const FunctionCall & f)1192 Value SkVMGenerator::writeFunctionCall(const FunctionCall& f) {
1193     if (f.function().isIntrinsic() && !f.function().definition()) {
1194         return this->writeIntrinsicCall(f);
1195     }
1196 
1197     const FunctionDeclaration& decl = f.function();
1198 
1199     // Evaluate all arguments, gather the results into a contiguous list of IDs
1200     std::vector<skvm::Val> argVals;
1201     for (const auto& arg : f.arguments()) {
1202         Value v = this->writeExpression(*arg);
1203         for (size_t i = 0; i < v.slots(); ++i) {
1204             argVals.push_back(v[i]);
1205         }
1206     }
1207 
1208     // Create storage for the return value
1209     size_t nslots = f.type().slotCount();
1210     Value result(nslots);
1211     for (size_t i = 0; i < nslots; ++i) {
1212         result[i] = fBuilder->splat(0.0f);
1213     }
1214 
1215     {
1216         // This merges currentFunction().fReturned into fConditionMask. Lanes that conditionally
1217         // returned in the current function would otherwise resume execution within the child.
1218         ScopedCondition m(this, ~currentFunction().fReturned);
1219         SkASSERTF(f.function().definition(), "no definition for function '%s'",
1220                   f.function().description().c_str());
1221         this->writeFunction(*f.function().definition(), SkMakeSpan(argVals), result.asSpan());
1222     }
1223 
1224     // Propagate new values of any 'out' params back to the original arguments
1225     const std::unique_ptr<Expression>* argIter = f.arguments().begin();
1226     size_t valIdx = 0;
1227     for (const Variable* p : decl.parameters()) {
1228         size_t nslots = p->type().slotCount();
1229         if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1230             Value v(nslots);
1231             for (size_t i = 0; i < nslots; ++i) {
1232                 v[i] = argVals[valIdx + i];
1233             }
1234             const std::unique_ptr<Expression>& arg = *argIter;
1235             this->writeStore(*arg, v);
1236         }
1237         valIdx += nslots;
1238         argIter++;
1239     }
1240 
1241     return result;
1242 }
1243 
writeExternalFunctionCall(const ExternalFunctionCall & c)1244 Value SkVMGenerator::writeExternalFunctionCall(const ExternalFunctionCall& c) {
1245     // Evaluate all arguments, gather the results into a contiguous list of F32
1246     std::vector<skvm::F32> args;
1247     for (const auto& arg : c.arguments()) {
1248         Value v = this->writeExpression(*arg);
1249         for (size_t i = 0; i < v.slots(); ++i) {
1250             args.push_back(f32(v[i]));
1251         }
1252     }
1253 
1254     // Create storage for the return value
1255     size_t nslots = c.type().slotCount();
1256     std::vector<skvm::F32> result(nslots, fBuilder->splat(0.0f));
1257 
1258     c.function().call(fBuilder, args.data(), result.data(), this->mask());
1259 
1260     // Convert from 'vector of F32' to Value
1261     Value resultVal(nslots);
1262     for (size_t i = 0; i < nslots; ++i) {
1263         resultVal[i] = result[i];
1264     }
1265 
1266     return resultVal;
1267 }
1268 
writePrefixExpression(const PrefixExpression & p)1269 Value SkVMGenerator::writePrefixExpression(const PrefixExpression& p) {
1270     Value val = this->writeExpression(*p.operand());
1271 
1272     switch (p.getOperator().kind()) {
1273         case Token::Kind::TK_PLUSPLUS:
1274         case Token::Kind::TK_MINUSMINUS: {
1275             bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
1276 
1277             switch (base_number_kind(p.type())) {
1278                 case Type::NumberKind::kFloat:
1279                     val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1280                     break;
1281                 case Type::NumberKind::kSigned:
1282                     val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1283                     break;
1284                 default:
1285                     SkASSERT(false);
1286                     return {};
1287             }
1288             return this->writeStore(*p.operand(), val);
1289         }
1290         case Token::Kind::TK_MINUS: {
1291             switch (base_number_kind(p.type())) {
1292                 case Type::NumberKind::kFloat:
1293                     return this->unary(val, [](skvm::F32 x) { return -x; });
1294                 case Type::NumberKind::kSigned:
1295                     return this->unary(val, [](skvm::I32 x) { return -x; });
1296                 default:
1297                     SkASSERT(false);
1298                     return {};
1299             }
1300         }
1301         case Token::Kind::TK_LOGICALNOT:
1302         case Token::Kind::TK_BITWISENOT:
1303             return this->unary(val, [](skvm::I32 x) { return ~x; });
1304         default:
1305             SkASSERT(false);
1306             return {};
1307     }
1308 }
1309 
writePostfixExpression(const PostfixExpression & p)1310 Value SkVMGenerator::writePostfixExpression(const PostfixExpression& p) {
1311     switch (p.getOperator().kind()) {
1312         case Token::Kind::TK_PLUSPLUS:
1313         case Token::Kind::TK_MINUSMINUS: {
1314             Value old = this->writeExpression(*p.operand()),
1315                   val = old;
1316             SkASSERT(val.slots() == 1);
1317             bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
1318 
1319             switch (base_number_kind(p.type())) {
1320                 case Type::NumberKind::kFloat:
1321                     val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1322                     break;
1323                 case Type::NumberKind::kSigned:
1324                     val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1325                     break;
1326                 default:
1327                     SkASSERT(false);
1328                     return {};
1329             }
1330             this->writeStore(*p.operand(), val);
1331             return old;
1332         }
1333         default:
1334             SkASSERT(false);
1335             return {};
1336     }
1337 }
1338 
writeSwizzle(const Swizzle & s)1339 Value SkVMGenerator::writeSwizzle(const Swizzle& s) {
1340     Value base = this->writeExpression(*s.base());
1341     Value swizzled(s.components().size());
1342     for (size_t i = 0; i < s.components().size(); ++i) {
1343         swizzled[i] = base[s.components()[i]];
1344     }
1345     return swizzled;
1346 }
1347 
writeTernaryExpression(const TernaryExpression & t)1348 Value SkVMGenerator::writeTernaryExpression(const TernaryExpression& t) {
1349     skvm::I32 test = i32(this->writeExpression(*t.test()));
1350     Value ifTrue, ifFalse;
1351 
1352     {
1353         ScopedCondition m(this, test);
1354         ifTrue = this->writeExpression(*t.ifTrue());
1355     }
1356     {
1357         ScopedCondition m(this, ~test);
1358         ifFalse = this->writeExpression(*t.ifFalse());
1359     }
1360 
1361     size_t nslots = ifTrue.slots();
1362     SkASSERT(nslots == ifFalse.slots());
1363 
1364     Value result(nslots);
1365     for (size_t i = 0; i < nslots; ++i) {
1366         result[i] = skvm::select(test, i32(ifTrue[i]), i32(ifFalse[i]));
1367     }
1368     return result;
1369 }
1370 
writeExpression(const Expression & e)1371 Value SkVMGenerator::writeExpression(const Expression& e) {
1372     switch (e.kind()) {
1373         case Expression::Kind::kBinary:
1374             return this->writeBinaryExpression(e.as<BinaryExpression>());
1375         case Expression::Kind::kBoolLiteral:
1376             return fBuilder->splat(e.as<BoolLiteral>().value() ? ~0 : 0);
1377         case Expression::Kind::kConstructorArray:
1378         case Expression::Kind::kConstructorCompound:
1379         case Expression::Kind::kConstructorStruct:
1380             return this->writeAggregationConstructor(e.asAnyConstructor());
1381         case Expression::Kind::kConstructorDiagonalMatrix:
1382             return this->writeConstructorDiagonalMatrix(e.as<ConstructorDiagonalMatrix>());
1383         case Expression::Kind::kConstructorMatrixResize:
1384             return this->writeConstructorMatrixResize(e.as<ConstructorMatrixResize>());
1385         case Expression::Kind::kConstructorScalarCast:
1386         case Expression::Kind::kConstructorCompoundCast:
1387             return this->writeConstructorCast(e.asAnyConstructor());
1388         case Expression::Kind::kConstructorSplat:
1389             return this->writeConstructorSplat(e.as<ConstructorSplat>());
1390         case Expression::Kind::kFieldAccess:
1391             return this->writeFieldAccess(e.as<FieldAccess>());
1392         case Expression::Kind::kIndex:
1393             return this->writeIndexExpression(e.as<IndexExpression>());
1394         case Expression::Kind::kVariableReference:
1395             return this->writeVariableExpression(e.as<VariableReference>());
1396         case Expression::Kind::kFloatLiteral:
1397             return fBuilder->splat(e.as<FloatLiteral>().value());
1398         case Expression::Kind::kFunctionCall:
1399             return this->writeFunctionCall(e.as<FunctionCall>());
1400         case Expression::Kind::kExternalFunctionCall:
1401             return this->writeExternalFunctionCall(e.as<ExternalFunctionCall>());
1402         case Expression::Kind::kIntLiteral:
1403             return fBuilder->splat(static_cast<int>(e.as<IntLiteral>().value()));
1404         case Expression::Kind::kPrefix:
1405             return this->writePrefixExpression(e.as<PrefixExpression>());
1406         case Expression::Kind::kPostfix:
1407             return this->writePostfixExpression(e.as<PostfixExpression>());
1408         case Expression::Kind::kSwizzle:
1409             return this->writeSwizzle(e.as<Swizzle>());
1410         case Expression::Kind::kTernary:
1411             return this->writeTernaryExpression(e.as<TernaryExpression>());
1412         case Expression::Kind::kExternalFunctionReference:
1413         default:
1414             SkDEBUGFAIL("Unsupported expression");
1415             return {};
1416     }
1417 }
1418 
writeStore(const Expression & lhs,const Value & rhs)1419 Value SkVMGenerator::writeStore(const Expression& lhs, const Value& rhs) {
1420     SkASSERTF(rhs.slots() == lhs.type().slotCount(),
1421               "lhs=%s (%s)\nrhs=%d slot",
1422               lhs.type().description().c_str(), lhs.description().c_str(), rhs.slots());
1423 
1424     // We need to figure out the collection of slots that we're storing into. The l-value (lhs)
1425     // is always a VariableReference, possibly wrapped by one or more Swizzle, FieldAccess, or
1426     // IndexExpressions. The underlying VariableReference has a range of slots for its storage,
1427     // and each expression wrapped around that selects a sub-set of those slots (Field/Index),
1428     // or rearranges them (Swizzle).
1429     SkSTArray<4, size_t, true> slots;
1430     slots.resize(rhs.slots());
1431 
1432     // Start with the identity slot map - this basically says that the values from rhs belong in
1433     // slots [0, 1, 2 ... N] of the lhs.
1434     for (size_t i = 0; i < slots.size(); ++i) {
1435         slots[i] = i;
1436     }
1437 
1438     // Now, as we peel off each outer expression, adjust 'slots' to be the locations relative to
1439     // the next (inner) expression:
1440     const Expression* expr = &lhs;
1441     while (!expr->is<VariableReference>()) {
1442         switch (expr->kind()) {
1443             case Expression::Kind::kFieldAccess: {
1444                 const FieldAccess& fld = expr->as<FieldAccess>();
1445                 size_t offset = this->fieldSlotOffset(fld);
1446                 for (size_t& s : slots) {
1447                     s += offset;
1448                 }
1449                 expr = fld.base().get();
1450             } break;
1451             case Expression::Kind::kIndex: {
1452                 const IndexExpression& idx = expr->as<IndexExpression>();
1453                 size_t offset = this->indexSlotOffset(idx);
1454                 for (size_t& s : slots) {
1455                     s += offset;
1456                 }
1457                 expr = idx.base().get();
1458             } break;
1459             case Expression::Kind::kSwizzle: {
1460                 const Swizzle& swz = expr->as<Swizzle>();
1461                 for (size_t& s : slots) {
1462                     s = swz.components()[s];
1463                 }
1464                 expr = swz.base().get();
1465             } break;
1466             default:
1467                 // No other kinds of expressions are valid in lvalues. (see Analysis::IsAssignable)
1468                 SkDEBUGFAIL("Invalid expression type");
1469                 return {};
1470         }
1471     }
1472 
1473     // When we get here, 'slots' are all relative to the first slot holding 'var's storage
1474     const Variable& var = *expr->as<VariableReference>().variable();
1475     size_t varSlot = this->getSlot(var);
1476     skvm::I32 mask = this->mask();
1477     for (size_t i = rhs.slots(); i --> 0;) {
1478         SkASSERT(slots[i] < var.type().slotCount());
1479         skvm::F32 curr = f32(fSlots[varSlot + slots[i]]),
1480                   next = f32(rhs[i]);
1481         fSlots[varSlot + slots[i]] = select(mask, next, curr).id;
1482     }
1483     return rhs;
1484 }
1485 
writeBlock(const Block & b)1486 void SkVMGenerator::writeBlock(const Block& b) {
1487     for (const std::unique_ptr<Statement>& stmt : b.children()) {
1488         this->writeStatement(*stmt);
1489     }
1490 }
1491 
writeBreakStatement()1492 void SkVMGenerator::writeBreakStatement() {
1493     // Any active lanes stop executing for the duration of the current loop
1494     fLoopMask &= ~this->mask();
1495 }
1496 
writeContinueStatement()1497 void SkVMGenerator::writeContinueStatement() {
1498     // Any active lanes stop executing for the current iteration.
1499     // Remember them in fContinueMask, to be re-enabled later.
1500     skvm::I32 mask = this->mask();
1501     fLoopMask &= ~mask;
1502     fContinueMask |= mask;
1503 }
1504 
writeForStatement(const ForStatement & f)1505 void SkVMGenerator::writeForStatement(const ForStatement& f) {
1506     // We require that all loops be ES2-compliant (unrollable), and actually unroll them here
1507     Analysis::UnrollableLoopInfo loop;
1508     SkAssertResult(Analysis::ForLoopIsValidForES2(f.fOffset, f.initializer().get(), f.test().get(),
1509                                                   f.next().get(), f.statement().get(), &loop,
1510                                                   /*errors=*/nullptr));
1511     SkASSERT(loop.fIndex->type().slotCount() == 1);
1512 
1513     size_t indexSlot = this->getSlot(*loop.fIndex);
1514     double val = loop.fStart;
1515 
1516     skvm::I32 oldLoopMask     = fLoopMask,
1517               oldContinueMask = fContinueMask;
1518 
1519     for (int i = 0; i < loop.fCount; ++i) {
1520         fSlots[indexSlot] = loop.fIndex->type().isInteger()
1521                                     ? fBuilder->splat(static_cast<int>(val)).id
1522                                     : fBuilder->splat(static_cast<float>(val)).id;
1523 
1524         fContinueMask = fBuilder->splat(0);
1525         this->writeStatement(*f.statement());
1526         fLoopMask |= fContinueMask;
1527 
1528         val += loop.fDelta;
1529     }
1530 
1531     fLoopMask     = oldLoopMask;
1532     fContinueMask = oldContinueMask;
1533 }
1534 
writeIfStatement(const IfStatement & i)1535 void SkVMGenerator::writeIfStatement(const IfStatement& i) {
1536     Value test = this->writeExpression(*i.test());
1537     {
1538         ScopedCondition ifTrue(this, i32(test));
1539         this->writeStatement(*i.ifTrue());
1540     }
1541     if (i.ifFalse()) {
1542         ScopedCondition ifFalse(this, ~i32(test));
1543         this->writeStatement(*i.ifFalse());
1544     }
1545 }
1546 
writeReturnStatement(const ReturnStatement & r)1547 void SkVMGenerator::writeReturnStatement(const ReturnStatement& r) {
1548     skvm::I32 returnsHere = this->mask();
1549 
1550     if (r.expression()) {
1551         Value val = this->writeExpression(*r.expression());
1552 
1553         int i = 0;
1554         for (skvm::Val& slot : currentFunction().fReturnValue) {
1555             slot = select(returnsHere, f32(val[i]), f32(slot)).id;
1556             i++;
1557         }
1558     }
1559 
1560     currentFunction().fReturned |= returnsHere;
1561 }
1562 
writeVarDeclaration(const VarDeclaration & decl)1563 void SkVMGenerator::writeVarDeclaration(const VarDeclaration& decl) {
1564     size_t slot   = this->getSlot(decl.var()),
1565            nslots = decl.var().type().slotCount();
1566 
1567     Value val = decl.value() ? this->writeExpression(*decl.value()) : Value{};
1568     for (size_t i = 0; i < nslots; ++i) {
1569         fSlots[slot + i] = val ? val[i] : fBuilder->splat(0.0f).id;
1570     }
1571 }
1572 
writeStatement(const Statement & s)1573 void SkVMGenerator::writeStatement(const Statement& s) {
1574     switch (s.kind()) {
1575         case Statement::Kind::kBlock:
1576             this->writeBlock(s.as<Block>());
1577             break;
1578         case Statement::Kind::kBreak:
1579             this->writeBreakStatement();
1580             break;
1581         case Statement::Kind::kContinue:
1582             this->writeContinueStatement();
1583             break;
1584         case Statement::Kind::kExpression:
1585             this->writeExpression(*s.as<ExpressionStatement>().expression());
1586             break;
1587         case Statement::Kind::kFor:
1588             this->writeForStatement(s.as<ForStatement>());
1589             break;
1590         case Statement::Kind::kIf:
1591             this->writeIfStatement(s.as<IfStatement>());
1592             break;
1593         case Statement::Kind::kReturn:
1594             this->writeReturnStatement(s.as<ReturnStatement>());
1595             break;
1596         case Statement::Kind::kVarDeclaration:
1597             this->writeVarDeclaration(s.as<VarDeclaration>());
1598             break;
1599         case Statement::Kind::kDiscard:
1600         case Statement::Kind::kDo:
1601         case Statement::Kind::kSwitch:
1602             SkDEBUGFAIL("Unsupported control flow");
1603             break;
1604         case Statement::Kind::kInlineMarker:
1605         case Statement::Kind::kNop:
1606             break;
1607         default:
1608             SkASSERT(false);
1609     }
1610 }
1611 
ProgramToSkVM(const Program & program,const FunctionDefinition & function,skvm::Builder * builder,SkSpan<skvm::Val> uniforms,skvm::Coord device,skvm::Coord local,skvm::Color inputColor,SampleChildFn sampleChild)1612 skvm::Color ProgramToSkVM(const Program& program,
1613                           const FunctionDefinition& function,
1614                           skvm::Builder* builder,
1615                           SkSpan<skvm::Val> uniforms,
1616                           skvm::Coord device,
1617                           skvm::Coord local,
1618                           skvm::Color inputColor,
1619                           SampleChildFn sampleChild) {
1620     skvm::Val zero = builder->splat(0.0f).id;
1621     skvm::Val result[4] = {zero,zero,zero,zero};
1622 
1623     skvm::Val args[6];  // At most 6 arguments (float2 coords, half4 inColor)
1624     size_t argSlots = 0;
1625     for (const SkSL::Variable* param : function.declaration().parameters()) {
1626         switch (param->modifiers().fLayout.fBuiltin) {
1627             case SK_MAIN_COORDS_BUILTIN:
1628                 SkASSERT(param->type().slotCount() == 2);
1629                 args[argSlots++] = local.x.id;
1630                 args[argSlots++] = local.y.id;
1631                 break;
1632             case SK_INPUT_COLOR_BUILTIN:
1633                 SkASSERT(param->type().slotCount() == 4);
1634                 args[argSlots++] = inputColor.r.id;
1635                 args[argSlots++] = inputColor.g.id;
1636                 args[argSlots++] = inputColor.b.id;
1637                 args[argSlots++] = inputColor.a.id;
1638                 break;
1639             default:
1640                 SkDEBUGFAIL("Invalid parameter to main()");
1641                 return {};
1642         }
1643     }
1644     SkASSERT(argSlots <= SK_ARRAY_COUNT(args));
1645 
1646     SkVMGenerator generator(
1647             program, builder, uniforms, device, local, inputColor, std::move(sampleChild));
1648     generator.writeFunction(function, {args, argSlots}, SkMakeSpan(result));
1649 
1650     return skvm::Color{{builder, result[0]},
1651                        {builder, result[1]},
1652                        {builder, result[2]},
1653                        {builder, result[3]}};
1654 }
1655 
ProgramToSkVM(const Program & program,const FunctionDefinition & function,skvm::Builder * b,SkSpan<skvm::Val> uniforms,SkVMSignature * outSignature)1656 bool ProgramToSkVM(const Program& program,
1657                    const FunctionDefinition& function,
1658                    skvm::Builder* b,
1659                    SkSpan<skvm::Val> uniforms,
1660                    SkVMSignature* outSignature) {
1661     SkVMSignature ignored,
1662                   *signature = outSignature ? outSignature : &ignored;
1663 
1664     std::vector<skvm::Ptr> argPtrs;
1665     std::vector<skvm::Val> argVals;
1666 
1667     for (const Variable* p : function.declaration().parameters()) {
1668         size_t slots = p->type().slotCount();
1669         signature->fParameterSlots += slots;
1670         for (size_t i = 0; i < slots; ++i) {
1671             argPtrs.push_back(b->varying<float>());
1672             argVals.push_back(b->loadF(argPtrs.back()).id);
1673         }
1674     }
1675 
1676     std::vector<skvm::Ptr> returnPtrs;
1677     std::vector<skvm::Val> returnVals;
1678 
1679     signature->fReturnSlots = function.declaration().returnType().slotCount();
1680     for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1681         returnPtrs.push_back(b->varying<float>());
1682         returnVals.push_back(b->splat(0.0f).id);
1683     }
1684 
1685     skvm::F32 zero = b->splat(0.0f);
1686     skvm::Coord zeroCoord = {zero, zero};
1687     skvm::Color zeroColor = {zero, zero, zero, zero};
1688     SkVMGenerator generator(program, b, uniforms, /*device=*/zeroCoord, /*local=*/zeroCoord,
1689                             /*inputColor=*/zeroColor, /*sampleChild=*/{});
1690     generator.writeFunction(function, SkMakeSpan(argVals), SkMakeSpan(returnVals));
1691 
1692     // generateCode has updated the contents of 'argVals' for any 'out' or 'inout' parameters.
1693     // Propagate those changes back to our varying buffers:
1694     size_t argIdx = 0;
1695     for (const Variable* p : function.declaration().parameters()) {
1696         size_t nslots = p->type().slotCount();
1697         if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1698             for (size_t i = 0; i < nslots; ++i) {
1699                 b->storeF(argPtrs[argIdx + i], skvm::F32{b, argVals[argIdx + i]});
1700             }
1701         }
1702         argIdx += nslots;
1703     }
1704 
1705     // It's also updated the contents of 'returnVals' with the return value of the entry point.
1706     // Store that as well:
1707     for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1708         b->storeF(returnPtrs[i], skvm::F32{b, returnVals[i]});
1709     }
1710 
1711     return true;
1712 }
1713 
Program_GetFunction(const Program & program,const char * function)1714 const FunctionDefinition* Program_GetFunction(const Program& program, const char* function) {
1715     for (const ProgramElement* e : program.elements()) {
1716         if (e->is<FunctionDefinition>() &&
1717             e->as<FunctionDefinition>().declaration().name() == function) {
1718             return &e->as<FunctionDefinition>();
1719         }
1720     }
1721     return nullptr;
1722 }
1723 
gather_uniforms(UniformInfo * info,const Type & type,const String & name)1724 static void gather_uniforms(UniformInfo* info, const Type& type, const String& name) {
1725     switch (type.typeKind()) {
1726         case Type::TypeKind::kStruct:
1727             for (const auto& f : type.fields()) {
1728                 gather_uniforms(info, *f.fType, name + "." + f.fName);
1729             }
1730             break;
1731         case Type::TypeKind::kArray:
1732             for (int i = 0; i < type.columns(); ++i) {
1733                 gather_uniforms(info, type.componentType(),
1734                                 String::printf("%s[%d]", name.c_str(), i));
1735             }
1736             break;
1737         case Type::TypeKind::kScalar:
1738         case Type::TypeKind::kVector:
1739         case Type::TypeKind::kMatrix:
1740             info->fUniforms.push_back({name, base_number_kind(type), type.rows(), type.columns(),
1741                                        info->fUniformSlotCount});
1742             info->fUniformSlotCount += type.columns() * type.rows();
1743             break;
1744         default:
1745             break;
1746     }
1747 }
1748 
Program_GetUniformInfo(const Program & program)1749 std::unique_ptr<UniformInfo> Program_GetUniformInfo(const Program& program) {
1750     auto info = std::make_unique<UniformInfo>();
1751     for (const ProgramElement* e : program.elements()) {
1752         if (!e->is<GlobalVarDeclaration>()) {
1753             continue;
1754         }
1755         const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
1756         const Variable& var = decl.declaration()->as<VarDeclaration>().var();
1757         if (var.modifiers().fFlags & Modifiers::kUniform_Flag) {
1758             gather_uniforms(info.get(), var.type(), var.name());
1759         }
1760     }
1761     return info;
1762 }
1763 
1764 /*
1765  * Testing utility function that emits program's "main" with a minimal harness. Used to create
1766  * representative skvm op sequences for SkSL tests.
1767  */
testingOnly_ProgramToSkVMShader(const Program & program,skvm::Builder * builder)1768 bool testingOnly_ProgramToSkVMShader(const Program& program, skvm::Builder* builder) {
1769     const SkSL::FunctionDefinition* main = Program_GetFunction(program, "main");
1770     if (!main) {
1771         return false;
1772     }
1773 
1774     size_t uniformSlots = 0;
1775     int childSlots = 0;
1776     for (const SkSL::ProgramElement* e : program.elements()) {
1777         if (e->is<GlobalVarDeclaration>()) {
1778             const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
1779             const Variable& var = decl.declaration()->as<VarDeclaration>().var();
1780             if (var.type().isEffectChild()) {
1781                 childSlots++;
1782             } else if (is_uniform(var)) {
1783                 uniformSlots += var.type().slotCount();
1784             }
1785         }
1786     }
1787 
1788     skvm::Uniforms uniforms(builder->uniform(), 0);
1789 
1790     auto new_uni = [&]() { return builder->uniformF(uniforms.pushF(0.0f)); };
1791 
1792     // Assume identity CTM
1793     skvm::Coord device = {pun_to_F32(builder->index()), new_uni()};
1794     skvm::Coord local  = device;
1795 
1796     struct Child {
1797         skvm::Uniform addr;
1798         skvm::I32     rowBytesAsPixels;
1799     };
1800 
1801     std::vector<Child> children;
1802     for (int i = 0; i < childSlots; ++i) {
1803         children.push_back({uniforms.pushPtr(nullptr), builder->uniform32(uniforms.push(0))});
1804     }
1805 
1806     auto sampleChild = [&](int i, skvm::Coord coord, skvm::Color) {
1807         skvm::PixelFormat pixelFormat = skvm::SkColorType_to_PixelFormat(kRGBA_F32_SkColorType);
1808         skvm::I32 index  = trunc(coord.x);
1809                   index += trunc(coord.y) * children[i].rowBytesAsPixels;
1810         return gather(pixelFormat, children[i].addr, index);
1811     };
1812 
1813     std::vector<skvm::Val> uniformVals;
1814     for (size_t i = 0; i < uniformSlots; ++i) {
1815         uniformVals.push_back(new_uni().id);
1816     }
1817 
1818     skvm::Color inColor = builder->uniformColor(SkColors::kWhite, &uniforms);
1819 
1820     skvm::Color result = SkSL::ProgramToSkVM(
1821             program, *main, builder, SkMakeSpan(uniformVals), device, local, inColor, sampleChild);
1822 
1823     storeF(builder->varying<float>(), result.r);
1824     storeF(builder->varying<float>(), result.g);
1825     storeF(builder->varying<float>(), result.b);
1826     storeF(builder->varying<float>(), result.a);
1827 
1828     return true;
1829 
1830 }
1831 
1832 }  // namespace SkSL
1833