1 /* Copyright (c) 2014, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <openssl/rand.h>
16
17 #include <assert.h>
18 #include <limits.h>
19 #include <string.h>
20
21 #if defined(BORINGSSL_FIPS)
22 #include <unistd.h>
23 #endif
24
25 #include <openssl/chacha.h>
26 #include <openssl/cpu.h>
27 #include <openssl/mem.h>
28 #include <openssl/type_check.h>
29
30 #include "internal.h"
31 #include "fork_detect.h"
32 #include "../../internal.h"
33 #include "../delocate.h"
34
35
36 // It's assumed that the operating system always has an unfailing source of
37 // entropy which is accessed via |CRYPTO_sysrand[_for_seed]|. (If the operating
38 // system entropy source fails, it's up to |CRYPTO_sysrand| to abort the
39 // process—we don't try to handle it.)
40 //
41 // In addition, the hardware may provide a low-latency RNG. Intel's rdrand
42 // instruction is the canonical example of this. When a hardware RNG is
43 // available we don't need to worry about an RNG failure arising from fork()ing
44 // the process or moving a VM, so we can keep thread-local RNG state and use it
45 // as an additional-data input to CTR-DRBG.
46 //
47 // (We assume that the OS entropy is safe from fork()ing and VM duplication.
48 // This might be a bit of a leap of faith, esp on Windows, but there's nothing
49 // that we can do about it.)
50
51 // kReseedInterval is the number of generate calls made to CTR-DRBG before
52 // reseeding.
53 static const unsigned kReseedInterval = 4096;
54
55 // CRNGT_BLOCK_SIZE is the number of bytes in a “block” for the purposes of the
56 // continuous random number generator test in FIPS 140-2, section 4.9.2.
57 #define CRNGT_BLOCK_SIZE 16
58
59 // rand_thread_state contains the per-thread state for the RNG.
60 struct rand_thread_state {
61 CTR_DRBG_STATE drbg;
62 uint64_t fork_generation;
63 // calls is the number of generate calls made on |drbg| since it was last
64 // (re)seeded. This is bound by |kReseedInterval|.
65 unsigned calls;
66 // last_block_valid is non-zero iff |last_block| contains data from
67 // |get_seed_entropy|.
68 int last_block_valid;
69
70 #if defined(BORINGSSL_FIPS)
71 // last_block contains the previous block from |get_seed_entropy|.
72 uint8_t last_block[CRNGT_BLOCK_SIZE];
73 // next and prev form a NULL-terminated, double-linked list of all states in
74 // a process.
75 struct rand_thread_state *next, *prev;
76 #endif
77 };
78
79 #if defined(BORINGSSL_FIPS)
80 // thread_states_list is the head of a linked-list of all |rand_thread_state|
81 // objects in the process, one per thread. This is needed because FIPS requires
82 // that they be zeroed on process exit, but thread-local destructors aren't
83 // called when the whole process is exiting.
84 DEFINE_BSS_GET(struct rand_thread_state *, thread_states_list);
85 DEFINE_STATIC_MUTEX(thread_states_list_lock);
86
87 static void rand_thread_state_clear_all(void) __attribute__((destructor));
rand_thread_state_clear_all(void)88 static void rand_thread_state_clear_all(void) {
89 CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get());
90 for (struct rand_thread_state *cur = *thread_states_list_bss_get();
91 cur != NULL; cur = cur->next) {
92 CTR_DRBG_clear(&cur->drbg);
93 }
94 // |thread_states_list_lock is deliberately left locked so that any threads
95 // that are still running will hang if they try to call |RAND_bytes|.
96 }
97 #endif
98
99 // rand_thread_state_free frees a |rand_thread_state|. This is called when a
100 // thread exits.
rand_thread_state_free(void * state_in)101 static void rand_thread_state_free(void *state_in) {
102 struct rand_thread_state *state = state_in;
103
104 if (state_in == NULL) {
105 return;
106 }
107
108 #if defined(BORINGSSL_FIPS)
109 CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get());
110
111 if (state->prev != NULL) {
112 state->prev->next = state->next;
113 } else {
114 *thread_states_list_bss_get() = state->next;
115 }
116
117 if (state->next != NULL) {
118 state->next->prev = state->prev;
119 }
120
121 CRYPTO_STATIC_MUTEX_unlock_write(thread_states_list_lock_bss_get());
122
123 CTR_DRBG_clear(&state->drbg);
124 #endif
125
126 OPENSSL_free(state);
127 }
128
129 #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
130 !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
131 // rdrand should only be called if either |have_rdrand| or |have_fast_rdrand|
132 // returned true.
rdrand(uint8_t * buf,const size_t len)133 static int rdrand(uint8_t *buf, const size_t len) {
134 const size_t len_multiple8 = len & ~7;
135 if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) {
136 return 0;
137 }
138 const size_t remainder = len - len_multiple8;
139
140 if (remainder != 0) {
141 assert(remainder < 8);
142
143 uint8_t rand_buf[8];
144 if (!CRYPTO_rdrand(rand_buf)) {
145 return 0;
146 }
147 OPENSSL_memcpy(buf + len_multiple8, rand_buf, remainder);
148 }
149
150 return 1;
151 }
152
153 #else
154
rdrand(uint8_t * buf,size_t len)155 static int rdrand(uint8_t *buf, size_t len) {
156 return 0;
157 }
158
159 #endif
160
161 #if defined(BORINGSSL_FIPS)
162
CRYPTO_get_seed_entropy(uint8_t * out_entropy,size_t out_entropy_len,int * out_used_cpu)163 void CRYPTO_get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
164 int *out_used_cpu) {
165 *out_used_cpu = 0;
166 if (have_rdrand() && rdrand(out_entropy, out_entropy_len)) {
167 *out_used_cpu = 1;
168 } else {
169 CRYPTO_sysrand_for_seed(out_entropy, out_entropy_len);
170 }
171
172 #if defined(BORINGSSL_FIPS_BREAK_CRNG)
173 // This breaks the "continuous random number generator test" defined in FIPS
174 // 140-2, section 4.9.2, and implemented in |rand_get_seed|.
175 OPENSSL_memset(out_entropy, 0, out_entropy_len);
176 #endif
177 }
178
179 #if defined(BORINGSSL_FIPS_PASSIVE_ENTROPY)
180
181 // In passive entropy mode, entropy is supplied from outside of the module via
182 // |RAND_load_entropy| and is stored in global instance of the following
183 // structure.
184
185 struct entropy_buffer {
186 // bytes contains entropy suitable for seeding a DRBG.
187 uint8_t bytes[CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
188 // bytes_valid indicates the number of bytes of |bytes| that contain valid
189 // data.
190 size_t bytes_valid;
191 // from_cpu is true if any of the contents of |bytes| were obtained directly
192 // from the CPU.
193 int from_cpu;
194 };
195
196 DEFINE_BSS_GET(struct entropy_buffer, entropy_buffer);
197 DEFINE_STATIC_MUTEX(entropy_buffer_lock);
198
RAND_load_entropy(const uint8_t * entropy,size_t entropy_len,int from_cpu)199 void RAND_load_entropy(const uint8_t *entropy, size_t entropy_len,
200 int from_cpu) {
201 struct entropy_buffer *const buffer = entropy_buffer_bss_get();
202
203 CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get());
204 const size_t space = sizeof(buffer->bytes) - buffer->bytes_valid;
205 if (entropy_len > space) {
206 entropy_len = space;
207 }
208
209 OPENSSL_memcpy(&buffer->bytes[buffer->bytes_valid], entropy, entropy_len);
210 buffer->bytes_valid += entropy_len;
211 buffer->from_cpu |= from_cpu && (entropy_len != 0);
212 CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
213 }
214
215 // get_seed_entropy fills |out_entropy_len| bytes of |out_entropy| from the
216 // global |entropy_buffer|.
get_seed_entropy(uint8_t * out_entropy,size_t out_entropy_len,int * out_used_cpu)217 static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
218 int *out_used_cpu) {
219 struct entropy_buffer *const buffer = entropy_buffer_bss_get();
220 if (out_entropy_len > sizeof(buffer->bytes)) {
221 abort();
222 }
223
224 CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get());
225 while (buffer->bytes_valid < out_entropy_len) {
226 CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
227 RAND_need_entropy(out_entropy_len - buffer->bytes_valid);
228 CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get());
229 }
230
231 *out_used_cpu = buffer->from_cpu;
232 OPENSSL_memcpy(out_entropy, buffer->bytes, out_entropy_len);
233 OPENSSL_memmove(buffer->bytes, &buffer->bytes[out_entropy_len],
234 buffer->bytes_valid - out_entropy_len);
235 buffer->bytes_valid -= out_entropy_len;
236 if (buffer->bytes_valid == 0) {
237 buffer->from_cpu = 0;
238 }
239
240 CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
241 }
242
243 #else
244
245 // In the active case, |get_seed_entropy| simply calls |CRYPTO_get_seed_entropy|
246 // in order to obtain entropy from the CPU or OS.
get_seed_entropy(uint8_t * out_entropy,size_t out_entropy_len,int * out_used_cpu)247 static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
248 int *out_used_cpu) {
249 CRYPTO_get_seed_entropy(out_entropy, out_entropy_len, out_used_cpu);
250 }
251
252 #endif // !BORINGSSL_FIPS_PASSIVE_ENTROPY
253
254 // rand_get_seed fills |seed| with entropy and sets |*out_used_cpu| to one if
255 // that entropy came directly from the CPU and zero otherwise.
rand_get_seed(struct rand_thread_state * state,uint8_t seed[CTR_DRBG_ENTROPY_LEN],int * out_used_cpu)256 static void rand_get_seed(struct rand_thread_state *state,
257 uint8_t seed[CTR_DRBG_ENTROPY_LEN],
258 int *out_used_cpu) {
259 if (!state->last_block_valid) {
260 int unused;
261 get_seed_entropy(state->last_block, sizeof(state->last_block), &unused);
262 state->last_block_valid = 1;
263 }
264
265 uint8_t entropy[CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
266 get_seed_entropy(entropy, sizeof(entropy), out_used_cpu);
267
268 // See FIPS 140-2, section 4.9.2. This is the “continuous random number
269 // generator test” which causes the program to randomly abort. Hopefully the
270 // rate of failure is small enough not to be a problem in practice.
271 if (CRYPTO_memcmp(state->last_block, entropy, CRNGT_BLOCK_SIZE) == 0) {
272 fprintf(stderr, "CRNGT failed.\n");
273 BORINGSSL_FIPS_abort();
274 }
275
276 OPENSSL_STATIC_ASSERT(sizeof(entropy) % CRNGT_BLOCK_SIZE == 0, "");
277 for (size_t i = CRNGT_BLOCK_SIZE; i < sizeof(entropy);
278 i += CRNGT_BLOCK_SIZE) {
279 if (CRYPTO_memcmp(entropy + i - CRNGT_BLOCK_SIZE, entropy + i,
280 CRNGT_BLOCK_SIZE) == 0) {
281 fprintf(stderr, "CRNGT failed.\n");
282 BORINGSSL_FIPS_abort();
283 }
284 }
285 OPENSSL_memcpy(state->last_block,
286 entropy + sizeof(entropy) - CRNGT_BLOCK_SIZE,
287 CRNGT_BLOCK_SIZE);
288
289 OPENSSL_memcpy(seed, entropy, CTR_DRBG_ENTROPY_LEN);
290
291 for (size_t i = 1; i < BORINGSSL_FIPS_OVERREAD; i++) {
292 for (size_t j = 0; j < CTR_DRBG_ENTROPY_LEN; j++) {
293 seed[j] ^= entropy[CTR_DRBG_ENTROPY_LEN * i + j];
294 }
295 }
296 }
297
298 #else
299
300 // rand_get_seed fills |seed| with entropy and sets |*out_used_cpu| to one if
301 // that entropy came directly from the CPU and zero otherwise.
rand_get_seed(struct rand_thread_state * state,uint8_t seed[CTR_DRBG_ENTROPY_LEN],int * out_used_cpu)302 static void rand_get_seed(struct rand_thread_state *state,
303 uint8_t seed[CTR_DRBG_ENTROPY_LEN],
304 int *out_used_cpu) {
305 // If not in FIPS mode, we don't overread from the system entropy source and
306 // we don't depend only on the hardware RDRAND.
307 CRYPTO_sysrand(seed, CTR_DRBG_ENTROPY_LEN);
308 *out_used_cpu = 0;
309 }
310
311 #endif
312
RAND_bytes_with_additional_data(uint8_t * out,size_t out_len,const uint8_t user_additional_data[32])313 void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len,
314 const uint8_t user_additional_data[32]) {
315 if (out_len == 0) {
316 return;
317 }
318
319 const uint64_t fork_generation = CRYPTO_get_fork_generation();
320
321 // Additional data is mixed into every CTR-DRBG call to protect, as best we
322 // can, against forks & VM clones. We do not over-read this information and
323 // don't reseed with it so, from the point of view of FIPS, this doesn't
324 // provide “prediction resistance”. But, in practice, it does.
325 uint8_t additional_data[32];
326 // Intel chips have fast RDRAND instructions while, in other cases, RDRAND can
327 // be _slower_ than a system call.
328 if (!have_fast_rdrand() ||
329 !rdrand(additional_data, sizeof(additional_data))) {
330 // Without a hardware RNG to save us from address-space duplication, the OS
331 // entropy is used. This can be expensive (one read per |RAND_bytes| call)
332 // and so is disabled when we have fork detection, or if the application has
333 // promised not to fork.
334 if (fork_generation != 0 || rand_fork_unsafe_buffering_enabled()) {
335 OPENSSL_memset(additional_data, 0, sizeof(additional_data));
336 } else if (!have_rdrand()) {
337 // No alternative so block for OS entropy.
338 CRYPTO_sysrand(additional_data, sizeof(additional_data));
339 } else if (!CRYPTO_sysrand_if_available(additional_data,
340 sizeof(additional_data)) &&
341 !rdrand(additional_data, sizeof(additional_data))) {
342 // RDRAND failed: block for OS entropy.
343 CRYPTO_sysrand(additional_data, sizeof(additional_data));
344 }
345 }
346
347 for (size_t i = 0; i < sizeof(additional_data); i++) {
348 additional_data[i] ^= user_additional_data[i];
349 }
350
351 struct rand_thread_state stack_state;
352 struct rand_thread_state *state =
353 CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND);
354
355 if (state == NULL) {
356 state = OPENSSL_malloc(sizeof(struct rand_thread_state));
357 if (state == NULL ||
358 !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state,
359 rand_thread_state_free)) {
360 // If the system is out of memory, use an ephemeral state on the
361 // stack.
362 state = &stack_state;
363 }
364
365 state->last_block_valid = 0;
366 uint8_t seed[CTR_DRBG_ENTROPY_LEN];
367 int used_cpu;
368 rand_get_seed(state, seed, &used_cpu);
369
370 uint8_t personalization[CTR_DRBG_ENTROPY_LEN];
371 size_t personalization_len = 0;
372 #if defined(OPENSSL_URANDOM)
373 // If we used RDRAND, also opportunistically read from the system. This
374 // avoids solely relying on the hardware once the entropy pool has been
375 // initialized.
376 if (used_cpu &&
377 CRYPTO_sysrand_if_available(personalization, sizeof(personalization))) {
378 personalization_len = sizeof(personalization);
379 }
380 #endif
381
382 if (!CTR_DRBG_init(&state->drbg, seed, personalization,
383 personalization_len)) {
384 abort();
385 }
386 state->calls = 0;
387 state->fork_generation = fork_generation;
388
389 #if defined(BORINGSSL_FIPS)
390 if (state != &stack_state) {
391 CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get());
392 struct rand_thread_state **states_list = thread_states_list_bss_get();
393 state->next = *states_list;
394 if (state->next != NULL) {
395 state->next->prev = state;
396 }
397 state->prev = NULL;
398 *states_list = state;
399 CRYPTO_STATIC_MUTEX_unlock_write(thread_states_list_lock_bss_get());
400 }
401 #endif
402 }
403
404 if (state->calls >= kReseedInterval ||
405 state->fork_generation != fork_generation) {
406 uint8_t seed[CTR_DRBG_ENTROPY_LEN];
407 int used_cpu;
408 rand_get_seed(state, seed, &used_cpu);
409 #if defined(BORINGSSL_FIPS)
410 // Take a read lock around accesses to |state->drbg|. This is needed to
411 // avoid returning bad entropy if we race with
412 // |rand_thread_state_clear_all|.
413 //
414 // This lock must be taken after any calls to |CRYPTO_sysrand| to avoid a
415 // bug on ppc64le. glibc may implement pthread locks by wrapping user code
416 // in a hardware transaction, but, on some older versions of glibc and the
417 // kernel, syscalls made with |syscall| did not abort the transaction.
418 CRYPTO_STATIC_MUTEX_lock_read(thread_states_list_lock_bss_get());
419 #endif
420 if (!CTR_DRBG_reseed(&state->drbg, seed, NULL, 0)) {
421 abort();
422 }
423 state->calls = 0;
424 state->fork_generation = fork_generation;
425 } else {
426 #if defined(BORINGSSL_FIPS)
427 CRYPTO_STATIC_MUTEX_lock_read(thread_states_list_lock_bss_get());
428 #endif
429 }
430
431 int first_call = 1;
432 while (out_len > 0) {
433 size_t todo = out_len;
434 if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) {
435 todo = CTR_DRBG_MAX_GENERATE_LENGTH;
436 }
437
438 if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data,
439 first_call ? sizeof(additional_data) : 0)) {
440 abort();
441 }
442
443 out += todo;
444 out_len -= todo;
445 // Though we only check before entering the loop, this cannot add enough to
446 // overflow a |size_t|.
447 state->calls++;
448 first_call = 0;
449 }
450
451 if (state == &stack_state) {
452 CTR_DRBG_clear(&state->drbg);
453 }
454
455 #if defined(BORINGSSL_FIPS)
456 CRYPTO_STATIC_MUTEX_unlock_read(thread_states_list_lock_bss_get());
457 #endif
458 }
459
RAND_bytes(uint8_t * out,size_t out_len)460 int RAND_bytes(uint8_t *out, size_t out_len) {
461 static const uint8_t kZeroAdditionalData[32] = {0};
462 RAND_bytes_with_additional_data(out, out_len, kZeroAdditionalData);
463 return 1;
464 }
465
RAND_pseudo_bytes(uint8_t * buf,size_t len)466 int RAND_pseudo_bytes(uint8_t *buf, size_t len) {
467 return RAND_bytes(buf, len);
468 }
469