1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for OpenMP runtime code generation.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGOpenMPRuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/OpenMPClause.h"
21 #include "clang/AST/StmtOpenMP.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/BitmaskEnum.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/OpenMPKinds.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/CodeGen/ConstantInitBuilder.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Bitcode/BitcodeReader.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Format.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <numeric>
41
42 using namespace clang;
43 using namespace CodeGen;
44 using namespace llvm::omp;
45
46 namespace {
47 /// Base class for handling code generation inside OpenMP regions.
48 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
49 public:
50 /// Kinds of OpenMP regions used in codegen.
51 enum CGOpenMPRegionKind {
52 /// Region with outlined function for standalone 'parallel'
53 /// directive.
54 ParallelOutlinedRegion,
55 /// Region with outlined function for standalone 'task' directive.
56 TaskOutlinedRegion,
57 /// Region for constructs that do not require function outlining,
58 /// like 'for', 'sections', 'atomic' etc. directives.
59 InlinedRegion,
60 /// Region with outlined function for standalone 'target' directive.
61 TargetRegion,
62 };
63
CGOpenMPRegionInfo(const CapturedStmt & CS,const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)64 CGOpenMPRegionInfo(const CapturedStmt &CS,
65 const CGOpenMPRegionKind RegionKind,
66 const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
67 bool HasCancel)
68 : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
69 CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
70
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)71 CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
72 const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
73 bool HasCancel)
74 : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
75 Kind(Kind), HasCancel(HasCancel) {}
76
77 /// Get a variable or parameter for storing global thread id
78 /// inside OpenMP construct.
79 virtual const VarDecl *getThreadIDVariable() const = 0;
80
81 /// Emit the captured statement body.
82 void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
83
84 /// Get an LValue for the current ThreadID variable.
85 /// \return LValue for thread id variable. This LValue always has type int32*.
86 virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
87
emitUntiedSwitch(CodeGenFunction &)88 virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
89
getRegionKind() const90 CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
91
getDirectiveKind() const92 OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
93
hasCancel() const94 bool hasCancel() const { return HasCancel; }
95
classof(const CGCapturedStmtInfo * Info)96 static bool classof(const CGCapturedStmtInfo *Info) {
97 return Info->getKind() == CR_OpenMP;
98 }
99
100 ~CGOpenMPRegionInfo() override = default;
101
102 protected:
103 CGOpenMPRegionKind RegionKind;
104 RegionCodeGenTy CodeGen;
105 OpenMPDirectiveKind Kind;
106 bool HasCancel;
107 };
108
109 /// API for captured statement code generation in OpenMP constructs.
110 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
111 public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,StringRef HelperName)112 CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
113 const RegionCodeGenTy &CodeGen,
114 OpenMPDirectiveKind Kind, bool HasCancel,
115 StringRef HelperName)
116 : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
117 HasCancel),
118 ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
119 assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
120 }
121
122 /// Get a variable or parameter for storing global thread id
123 /// inside OpenMP construct.
getThreadIDVariable() const124 const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
125
126 /// Get the name of the capture helper.
getHelperName() const127 StringRef getHelperName() const override { return HelperName; }
128
classof(const CGCapturedStmtInfo * Info)129 static bool classof(const CGCapturedStmtInfo *Info) {
130 return CGOpenMPRegionInfo::classof(Info) &&
131 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
132 ParallelOutlinedRegion;
133 }
134
135 private:
136 /// A variable or parameter storing global thread id for OpenMP
137 /// constructs.
138 const VarDecl *ThreadIDVar;
139 StringRef HelperName;
140 };
141
142 /// API for captured statement code generation in OpenMP constructs.
143 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
144 public:
145 class UntiedTaskActionTy final : public PrePostActionTy {
146 bool Untied;
147 const VarDecl *PartIDVar;
148 const RegionCodeGenTy UntiedCodeGen;
149 llvm::SwitchInst *UntiedSwitch = nullptr;
150
151 public:
UntiedTaskActionTy(bool Tied,const VarDecl * PartIDVar,const RegionCodeGenTy & UntiedCodeGen)152 UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
153 const RegionCodeGenTy &UntiedCodeGen)
154 : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
Enter(CodeGenFunction & CGF)155 void Enter(CodeGenFunction &CGF) override {
156 if (Untied) {
157 // Emit task switching point.
158 LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
159 CGF.GetAddrOfLocalVar(PartIDVar),
160 PartIDVar->getType()->castAs<PointerType>());
161 llvm::Value *Res =
162 CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
163 llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
164 UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
165 CGF.EmitBlock(DoneBB);
166 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
167 CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
168 UntiedSwitch->addCase(CGF.Builder.getInt32(0),
169 CGF.Builder.GetInsertBlock());
170 emitUntiedSwitch(CGF);
171 }
172 }
emitUntiedSwitch(CodeGenFunction & CGF) const173 void emitUntiedSwitch(CodeGenFunction &CGF) const {
174 if (Untied) {
175 LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
176 CGF.GetAddrOfLocalVar(PartIDVar),
177 PartIDVar->getType()->castAs<PointerType>());
178 CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
179 PartIdLVal);
180 UntiedCodeGen(CGF);
181 CodeGenFunction::JumpDest CurPoint =
182 CGF.getJumpDestInCurrentScope(".untied.next.");
183 CGF.EmitBranch(CGF.ReturnBlock.getBlock());
184 CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
185 UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
186 CGF.Builder.GetInsertBlock());
187 CGF.EmitBranchThroughCleanup(CurPoint);
188 CGF.EmitBlock(CurPoint.getBlock());
189 }
190 }
getNumberOfParts() const191 unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
192 };
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,const UntiedTaskActionTy & Action)193 CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
194 const VarDecl *ThreadIDVar,
195 const RegionCodeGenTy &CodeGen,
196 OpenMPDirectiveKind Kind, bool HasCancel,
197 const UntiedTaskActionTy &Action)
198 : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
199 ThreadIDVar(ThreadIDVar), Action(Action) {
200 assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
201 }
202
203 /// Get a variable or parameter for storing global thread id
204 /// inside OpenMP construct.
getThreadIDVariable() const205 const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
206
207 /// Get an LValue for the current ThreadID variable.
208 LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
209
210 /// Get the name of the capture helper.
getHelperName() const211 StringRef getHelperName() const override { return ".omp_outlined."; }
212
emitUntiedSwitch(CodeGenFunction & CGF)213 void emitUntiedSwitch(CodeGenFunction &CGF) override {
214 Action.emitUntiedSwitch(CGF);
215 }
216
classof(const CGCapturedStmtInfo * Info)217 static bool classof(const CGCapturedStmtInfo *Info) {
218 return CGOpenMPRegionInfo::classof(Info) &&
219 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
220 TaskOutlinedRegion;
221 }
222
223 private:
224 /// A variable or parameter storing global thread id for OpenMP
225 /// constructs.
226 const VarDecl *ThreadIDVar;
227 /// Action for emitting code for untied tasks.
228 const UntiedTaskActionTy &Action;
229 };
230
231 /// API for inlined captured statement code generation in OpenMP
232 /// constructs.
233 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
234 public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo * OldCSI,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)235 CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
236 const RegionCodeGenTy &CodeGen,
237 OpenMPDirectiveKind Kind, bool HasCancel)
238 : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
239 OldCSI(OldCSI),
240 OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
241
242 // Retrieve the value of the context parameter.
getContextValue() const243 llvm::Value *getContextValue() const override {
244 if (OuterRegionInfo)
245 return OuterRegionInfo->getContextValue();
246 llvm_unreachable("No context value for inlined OpenMP region");
247 }
248
setContextValue(llvm::Value * V)249 void setContextValue(llvm::Value *V) override {
250 if (OuterRegionInfo) {
251 OuterRegionInfo->setContextValue(V);
252 return;
253 }
254 llvm_unreachable("No context value for inlined OpenMP region");
255 }
256
257 /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const258 const FieldDecl *lookup(const VarDecl *VD) const override {
259 if (OuterRegionInfo)
260 return OuterRegionInfo->lookup(VD);
261 // If there is no outer outlined region,no need to lookup in a list of
262 // captured variables, we can use the original one.
263 return nullptr;
264 }
265
getThisFieldDecl() const266 FieldDecl *getThisFieldDecl() const override {
267 if (OuterRegionInfo)
268 return OuterRegionInfo->getThisFieldDecl();
269 return nullptr;
270 }
271
272 /// Get a variable or parameter for storing global thread id
273 /// inside OpenMP construct.
getThreadIDVariable() const274 const VarDecl *getThreadIDVariable() const override {
275 if (OuterRegionInfo)
276 return OuterRegionInfo->getThreadIDVariable();
277 return nullptr;
278 }
279
280 /// Get an LValue for the current ThreadID variable.
getThreadIDVariableLValue(CodeGenFunction & CGF)281 LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
282 if (OuterRegionInfo)
283 return OuterRegionInfo->getThreadIDVariableLValue(CGF);
284 llvm_unreachable("No LValue for inlined OpenMP construct");
285 }
286
287 /// Get the name of the capture helper.
getHelperName() const288 StringRef getHelperName() const override {
289 if (auto *OuterRegionInfo = getOldCSI())
290 return OuterRegionInfo->getHelperName();
291 llvm_unreachable("No helper name for inlined OpenMP construct");
292 }
293
emitUntiedSwitch(CodeGenFunction & CGF)294 void emitUntiedSwitch(CodeGenFunction &CGF) override {
295 if (OuterRegionInfo)
296 OuterRegionInfo->emitUntiedSwitch(CGF);
297 }
298
getOldCSI() const299 CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
300
classof(const CGCapturedStmtInfo * Info)301 static bool classof(const CGCapturedStmtInfo *Info) {
302 return CGOpenMPRegionInfo::classof(Info) &&
303 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
304 }
305
306 ~CGOpenMPInlinedRegionInfo() override = default;
307
308 private:
309 /// CodeGen info about outer OpenMP region.
310 CodeGenFunction::CGCapturedStmtInfo *OldCSI;
311 CGOpenMPRegionInfo *OuterRegionInfo;
312 };
313
314 /// API for captured statement code generation in OpenMP target
315 /// constructs. For this captures, implicit parameters are used instead of the
316 /// captured fields. The name of the target region has to be unique in a given
317 /// application so it is provided by the client, because only the client has
318 /// the information to generate that.
319 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
320 public:
CGOpenMPTargetRegionInfo(const CapturedStmt & CS,const RegionCodeGenTy & CodeGen,StringRef HelperName)321 CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
322 const RegionCodeGenTy &CodeGen, StringRef HelperName)
323 : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
324 /*HasCancel=*/false),
325 HelperName(HelperName) {}
326
327 /// This is unused for target regions because each starts executing
328 /// with a single thread.
getThreadIDVariable() const329 const VarDecl *getThreadIDVariable() const override { return nullptr; }
330
331 /// Get the name of the capture helper.
getHelperName() const332 StringRef getHelperName() const override { return HelperName; }
333
classof(const CGCapturedStmtInfo * Info)334 static bool classof(const CGCapturedStmtInfo *Info) {
335 return CGOpenMPRegionInfo::classof(Info) &&
336 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
337 }
338
339 private:
340 StringRef HelperName;
341 };
342
EmptyCodeGen(CodeGenFunction &,PrePostActionTy &)343 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
344 llvm_unreachable("No codegen for expressions");
345 }
346 /// API for generation of expressions captured in a innermost OpenMP
347 /// region.
348 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
349 public:
CGOpenMPInnerExprInfo(CodeGenFunction & CGF,const CapturedStmt & CS)350 CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
351 : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
352 OMPD_unknown,
353 /*HasCancel=*/false),
354 PrivScope(CGF) {
355 // Make sure the globals captured in the provided statement are local by
356 // using the privatization logic. We assume the same variable is not
357 // captured more than once.
358 for (const auto &C : CS.captures()) {
359 if (!C.capturesVariable() && !C.capturesVariableByCopy())
360 continue;
361
362 const VarDecl *VD = C.getCapturedVar();
363 if (VD->isLocalVarDeclOrParm())
364 continue;
365
366 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
367 /*RefersToEnclosingVariableOrCapture=*/false,
368 VD->getType().getNonReferenceType(), VK_LValue,
369 C.getLocation());
370 PrivScope.addPrivate(
371 VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); });
372 }
373 (void)PrivScope.Privatize();
374 }
375
376 /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const377 const FieldDecl *lookup(const VarDecl *VD) const override {
378 if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
379 return FD;
380 return nullptr;
381 }
382
383 /// Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)384 void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
385 llvm_unreachable("No body for expressions");
386 }
387
388 /// Get a variable or parameter for storing global thread id
389 /// inside OpenMP construct.
getThreadIDVariable() const390 const VarDecl *getThreadIDVariable() const override {
391 llvm_unreachable("No thread id for expressions");
392 }
393
394 /// Get the name of the capture helper.
getHelperName() const395 StringRef getHelperName() const override {
396 llvm_unreachable("No helper name for expressions");
397 }
398
classof(const CGCapturedStmtInfo * Info)399 static bool classof(const CGCapturedStmtInfo *Info) { return false; }
400
401 private:
402 /// Private scope to capture global variables.
403 CodeGenFunction::OMPPrivateScope PrivScope;
404 };
405
406 /// RAII for emitting code of OpenMP constructs.
407 class InlinedOpenMPRegionRAII {
408 CodeGenFunction &CGF;
409 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
410 FieldDecl *LambdaThisCaptureField = nullptr;
411 const CodeGen::CGBlockInfo *BlockInfo = nullptr;
412
413 public:
414 /// Constructs region for combined constructs.
415 /// \param CodeGen Code generation sequence for combined directives. Includes
416 /// a list of functions used for code generation of implicitly inlined
417 /// regions.
InlinedOpenMPRegionRAII(CodeGenFunction & CGF,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)418 InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
419 OpenMPDirectiveKind Kind, bool HasCancel)
420 : CGF(CGF) {
421 // Start emission for the construct.
422 CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
423 CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
424 std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
425 LambdaThisCaptureField = CGF.LambdaThisCaptureField;
426 CGF.LambdaThisCaptureField = nullptr;
427 BlockInfo = CGF.BlockInfo;
428 CGF.BlockInfo = nullptr;
429 }
430
~InlinedOpenMPRegionRAII()431 ~InlinedOpenMPRegionRAII() {
432 // Restore original CapturedStmtInfo only if we're done with code emission.
433 auto *OldCSI =
434 cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
435 delete CGF.CapturedStmtInfo;
436 CGF.CapturedStmtInfo = OldCSI;
437 std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
438 CGF.LambdaThisCaptureField = LambdaThisCaptureField;
439 CGF.BlockInfo = BlockInfo;
440 }
441 };
442
443 /// Values for bit flags used in the ident_t to describe the fields.
444 /// All enumeric elements are named and described in accordance with the code
445 /// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
446 enum OpenMPLocationFlags : unsigned {
447 /// Use trampoline for internal microtask.
448 OMP_IDENT_IMD = 0x01,
449 /// Use c-style ident structure.
450 OMP_IDENT_KMPC = 0x02,
451 /// Atomic reduction option for kmpc_reduce.
452 OMP_ATOMIC_REDUCE = 0x10,
453 /// Explicit 'barrier' directive.
454 OMP_IDENT_BARRIER_EXPL = 0x20,
455 /// Implicit barrier in code.
456 OMP_IDENT_BARRIER_IMPL = 0x40,
457 /// Implicit barrier in 'for' directive.
458 OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
459 /// Implicit barrier in 'sections' directive.
460 OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
461 /// Implicit barrier in 'single' directive.
462 OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
463 /// Call of __kmp_for_static_init for static loop.
464 OMP_IDENT_WORK_LOOP = 0x200,
465 /// Call of __kmp_for_static_init for sections.
466 OMP_IDENT_WORK_SECTIONS = 0x400,
467 /// Call of __kmp_for_static_init for distribute.
468 OMP_IDENT_WORK_DISTRIBUTE = 0x800,
469 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
470 };
471
472 namespace {
473 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
474 /// Values for bit flags for marking which requires clauses have been used.
475 enum OpenMPOffloadingRequiresDirFlags : int64_t {
476 /// flag undefined.
477 OMP_REQ_UNDEFINED = 0x000,
478 /// no requires clause present.
479 OMP_REQ_NONE = 0x001,
480 /// reverse_offload clause.
481 OMP_REQ_REVERSE_OFFLOAD = 0x002,
482 /// unified_address clause.
483 OMP_REQ_UNIFIED_ADDRESS = 0x004,
484 /// unified_shared_memory clause.
485 OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008,
486 /// dynamic_allocators clause.
487 OMP_REQ_DYNAMIC_ALLOCATORS = 0x010,
488 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
489 };
490
491 enum OpenMPOffloadingReservedDeviceIDs {
492 /// Device ID if the device was not defined, runtime should get it
493 /// from environment variables in the spec.
494 OMP_DEVICEID_UNDEF = -1,
495 };
496 } // anonymous namespace
497
498 /// Describes ident structure that describes a source location.
499 /// All descriptions are taken from
500 /// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
501 /// Original structure:
502 /// typedef struct ident {
503 /// kmp_int32 reserved_1; /**< might be used in Fortran;
504 /// see above */
505 /// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
506 /// KMP_IDENT_KMPC identifies this union
507 /// member */
508 /// kmp_int32 reserved_2; /**< not really used in Fortran any more;
509 /// see above */
510 ///#if USE_ITT_BUILD
511 /// /* but currently used for storing
512 /// region-specific ITT */
513 /// /* contextual information. */
514 ///#endif /* USE_ITT_BUILD */
515 /// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
516 /// C++ */
517 /// char const *psource; /**< String describing the source location.
518 /// The string is composed of semi-colon separated
519 // fields which describe the source file,
520 /// the function and a pair of line numbers that
521 /// delimit the construct.
522 /// */
523 /// } ident_t;
524 enum IdentFieldIndex {
525 /// might be used in Fortran
526 IdentField_Reserved_1,
527 /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
528 IdentField_Flags,
529 /// Not really used in Fortran any more
530 IdentField_Reserved_2,
531 /// Source[4] in Fortran, do not use for C++
532 IdentField_Reserved_3,
533 /// String describing the source location. The string is composed of
534 /// semi-colon separated fields which describe the source file, the function
535 /// and a pair of line numbers that delimit the construct.
536 IdentField_PSource
537 };
538
539 /// Schedule types for 'omp for' loops (these enumerators are taken from
540 /// the enum sched_type in kmp.h).
541 enum OpenMPSchedType {
542 /// Lower bound for default (unordered) versions.
543 OMP_sch_lower = 32,
544 OMP_sch_static_chunked = 33,
545 OMP_sch_static = 34,
546 OMP_sch_dynamic_chunked = 35,
547 OMP_sch_guided_chunked = 36,
548 OMP_sch_runtime = 37,
549 OMP_sch_auto = 38,
550 /// static with chunk adjustment (e.g., simd)
551 OMP_sch_static_balanced_chunked = 45,
552 /// Lower bound for 'ordered' versions.
553 OMP_ord_lower = 64,
554 OMP_ord_static_chunked = 65,
555 OMP_ord_static = 66,
556 OMP_ord_dynamic_chunked = 67,
557 OMP_ord_guided_chunked = 68,
558 OMP_ord_runtime = 69,
559 OMP_ord_auto = 70,
560 OMP_sch_default = OMP_sch_static,
561 /// dist_schedule types
562 OMP_dist_sch_static_chunked = 91,
563 OMP_dist_sch_static = 92,
564 /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
565 /// Set if the monotonic schedule modifier was present.
566 OMP_sch_modifier_monotonic = (1 << 29),
567 /// Set if the nonmonotonic schedule modifier was present.
568 OMP_sch_modifier_nonmonotonic = (1 << 30),
569 };
570
571 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
572 /// region.
573 class CleanupTy final : public EHScopeStack::Cleanup {
574 PrePostActionTy *Action;
575
576 public:
CleanupTy(PrePostActionTy * Action)577 explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
Emit(CodeGenFunction & CGF,Flags)578 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
579 if (!CGF.HaveInsertPoint())
580 return;
581 Action->Exit(CGF);
582 }
583 };
584
585 } // anonymous namespace
586
operator ()(CodeGenFunction & CGF) const587 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
588 CodeGenFunction::RunCleanupsScope Scope(CGF);
589 if (PrePostAction) {
590 CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
591 Callback(CodeGen, CGF, *PrePostAction);
592 } else {
593 PrePostActionTy Action;
594 Callback(CodeGen, CGF, Action);
595 }
596 }
597
598 /// Check if the combiner is a call to UDR combiner and if it is so return the
599 /// UDR decl used for reduction.
600 static const OMPDeclareReductionDecl *
getReductionInit(const Expr * ReductionOp)601 getReductionInit(const Expr *ReductionOp) {
602 if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
603 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
604 if (const auto *DRE =
605 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
606 if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
607 return DRD;
608 return nullptr;
609 }
610
emitInitWithReductionInitializer(CodeGenFunction & CGF,const OMPDeclareReductionDecl * DRD,const Expr * InitOp,Address Private,Address Original,QualType Ty)611 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
612 const OMPDeclareReductionDecl *DRD,
613 const Expr *InitOp,
614 Address Private, Address Original,
615 QualType Ty) {
616 if (DRD->getInitializer()) {
617 std::pair<llvm::Function *, llvm::Function *> Reduction =
618 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
619 const auto *CE = cast<CallExpr>(InitOp);
620 const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
621 const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
622 const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
623 const auto *LHSDRE =
624 cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
625 const auto *RHSDRE =
626 cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
627 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
628 PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
629 [=]() { return Private; });
630 PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
631 [=]() { return Original; });
632 (void)PrivateScope.Privatize();
633 RValue Func = RValue::get(Reduction.second);
634 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
635 CGF.EmitIgnoredExpr(InitOp);
636 } else {
637 llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
638 std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
639 auto *GV = new llvm::GlobalVariable(
640 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
641 llvm::GlobalValue::PrivateLinkage, Init, Name);
642 LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
643 RValue InitRVal;
644 switch (CGF.getEvaluationKind(Ty)) {
645 case TEK_Scalar:
646 InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
647 break;
648 case TEK_Complex:
649 InitRVal =
650 RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
651 break;
652 case TEK_Aggregate:
653 InitRVal = RValue::getAggregate(LV.getAddress(CGF));
654 break;
655 }
656 OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
657 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
658 CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
659 /*IsInitializer=*/false);
660 }
661 }
662
663 /// Emit initialization of arrays of complex types.
664 /// \param DestAddr Address of the array.
665 /// \param Type Type of array.
666 /// \param Init Initial expression of array.
667 /// \param SrcAddr Address of the original array.
EmitOMPAggregateInit(CodeGenFunction & CGF,Address DestAddr,QualType Type,bool EmitDeclareReductionInit,const Expr * Init,const OMPDeclareReductionDecl * DRD,Address SrcAddr=Address::invalid ())668 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
669 QualType Type, bool EmitDeclareReductionInit,
670 const Expr *Init,
671 const OMPDeclareReductionDecl *DRD,
672 Address SrcAddr = Address::invalid()) {
673 // Perform element-by-element initialization.
674 QualType ElementTy;
675
676 // Drill down to the base element type on both arrays.
677 const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
678 llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
679 DestAddr =
680 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
681 if (DRD)
682 SrcAddr =
683 CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
684
685 llvm::Value *SrcBegin = nullptr;
686 if (DRD)
687 SrcBegin = SrcAddr.getPointer();
688 llvm::Value *DestBegin = DestAddr.getPointer();
689 // Cast from pointer to array type to pointer to single element.
690 llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
691 // The basic structure here is a while-do loop.
692 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
693 llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
694 llvm::Value *IsEmpty =
695 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
696 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
697
698 // Enter the loop body, making that address the current address.
699 llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
700 CGF.EmitBlock(BodyBB);
701
702 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
703
704 llvm::PHINode *SrcElementPHI = nullptr;
705 Address SrcElementCurrent = Address::invalid();
706 if (DRD) {
707 SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
708 "omp.arraycpy.srcElementPast");
709 SrcElementPHI->addIncoming(SrcBegin, EntryBB);
710 SrcElementCurrent =
711 Address(SrcElementPHI,
712 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
713 }
714 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
715 DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
716 DestElementPHI->addIncoming(DestBegin, EntryBB);
717 Address DestElementCurrent =
718 Address(DestElementPHI,
719 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
720
721 // Emit copy.
722 {
723 CodeGenFunction::RunCleanupsScope InitScope(CGF);
724 if (EmitDeclareReductionInit) {
725 emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
726 SrcElementCurrent, ElementTy);
727 } else
728 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
729 /*IsInitializer=*/false);
730 }
731
732 if (DRD) {
733 // Shift the address forward by one element.
734 llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
735 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
736 SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
737 }
738
739 // Shift the address forward by one element.
740 llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
741 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
742 // Check whether we've reached the end.
743 llvm::Value *Done =
744 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
745 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
746 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
747
748 // Done.
749 CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
750 }
751
emitSharedLValue(CodeGenFunction & CGF,const Expr * E)752 LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
753 return CGF.EmitOMPSharedLValue(E);
754 }
755
emitSharedLValueUB(CodeGenFunction & CGF,const Expr * E)756 LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
757 const Expr *E) {
758 if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
759 return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
760 return LValue();
761 }
762
emitAggregateInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,const OMPDeclareReductionDecl * DRD)763 void ReductionCodeGen::emitAggregateInitialization(
764 CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
765 const OMPDeclareReductionDecl *DRD) {
766 // Emit VarDecl with copy init for arrays.
767 // Get the address of the original variable captured in current
768 // captured region.
769 const auto *PrivateVD =
770 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
771 bool EmitDeclareReductionInit =
772 DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
773 EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
774 EmitDeclareReductionInit,
775 EmitDeclareReductionInit ? ClausesData[N].ReductionOp
776 : PrivateVD->getInit(),
777 DRD, SharedLVal.getAddress(CGF));
778 }
779
ReductionCodeGen(ArrayRef<const Expr * > Shareds,ArrayRef<const Expr * > Origs,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > ReductionOps)780 ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
781 ArrayRef<const Expr *> Origs,
782 ArrayRef<const Expr *> Privates,
783 ArrayRef<const Expr *> ReductionOps) {
784 ClausesData.reserve(Shareds.size());
785 SharedAddresses.reserve(Shareds.size());
786 Sizes.reserve(Shareds.size());
787 BaseDecls.reserve(Shareds.size());
788 const auto *IOrig = Origs.begin();
789 const auto *IPriv = Privates.begin();
790 const auto *IRed = ReductionOps.begin();
791 for (const Expr *Ref : Shareds) {
792 ClausesData.emplace_back(Ref, *IOrig, *IPriv, *IRed);
793 std::advance(IOrig, 1);
794 std::advance(IPriv, 1);
795 std::advance(IRed, 1);
796 }
797 }
798
emitSharedOrigLValue(CodeGenFunction & CGF,unsigned N)799 void ReductionCodeGen::emitSharedOrigLValue(CodeGenFunction &CGF, unsigned N) {
800 assert(SharedAddresses.size() == N && OrigAddresses.size() == N &&
801 "Number of generated lvalues must be exactly N.");
802 LValue First = emitSharedLValue(CGF, ClausesData[N].Shared);
803 LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Shared);
804 SharedAddresses.emplace_back(First, Second);
805 if (ClausesData[N].Shared == ClausesData[N].Ref) {
806 OrigAddresses.emplace_back(First, Second);
807 } else {
808 LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
809 LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
810 OrigAddresses.emplace_back(First, Second);
811 }
812 }
813
emitAggregateType(CodeGenFunction & CGF,unsigned N)814 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
815 const auto *PrivateVD =
816 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
817 QualType PrivateType = PrivateVD->getType();
818 bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
819 if (!PrivateType->isVariablyModifiedType()) {
820 Sizes.emplace_back(
821 CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()),
822 nullptr);
823 return;
824 }
825 llvm::Value *Size;
826 llvm::Value *SizeInChars;
827 auto *ElemType =
828 cast<llvm::PointerType>(OrigAddresses[N].first.getPointer(CGF)->getType())
829 ->getElementType();
830 auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
831 if (AsArraySection) {
832 Size = CGF.Builder.CreatePtrDiff(OrigAddresses[N].second.getPointer(CGF),
833 OrigAddresses[N].first.getPointer(CGF));
834 Size = CGF.Builder.CreateNUWAdd(
835 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
836 SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
837 } else {
838 SizeInChars =
839 CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType());
840 Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
841 }
842 Sizes.emplace_back(SizeInChars, Size);
843 CodeGenFunction::OpaqueValueMapping OpaqueMap(
844 CGF,
845 cast<OpaqueValueExpr>(
846 CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
847 RValue::get(Size));
848 CGF.EmitVariablyModifiedType(PrivateType);
849 }
850
emitAggregateType(CodeGenFunction & CGF,unsigned N,llvm::Value * Size)851 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
852 llvm::Value *Size) {
853 const auto *PrivateVD =
854 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
855 QualType PrivateType = PrivateVD->getType();
856 if (!PrivateType->isVariablyModifiedType()) {
857 assert(!Size && !Sizes[N].second &&
858 "Size should be nullptr for non-variably modified reduction "
859 "items.");
860 return;
861 }
862 CodeGenFunction::OpaqueValueMapping OpaqueMap(
863 CGF,
864 cast<OpaqueValueExpr>(
865 CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
866 RValue::get(Size));
867 CGF.EmitVariablyModifiedType(PrivateType);
868 }
869
emitInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,llvm::function_ref<bool (CodeGenFunction &)> DefaultInit)870 void ReductionCodeGen::emitInitialization(
871 CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
872 llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
873 assert(SharedAddresses.size() > N && "No variable was generated");
874 const auto *PrivateVD =
875 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
876 const OMPDeclareReductionDecl *DRD =
877 getReductionInit(ClausesData[N].ReductionOp);
878 QualType PrivateType = PrivateVD->getType();
879 PrivateAddr = CGF.Builder.CreateElementBitCast(
880 PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
881 QualType SharedType = SharedAddresses[N].first.getType();
882 SharedLVal = CGF.MakeAddrLValue(
883 CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF),
884 CGF.ConvertTypeForMem(SharedType)),
885 SharedType, SharedAddresses[N].first.getBaseInfo(),
886 CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
887 if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
888 if (DRD && DRD->getInitializer())
889 (void)DefaultInit(CGF);
890 emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
891 } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
892 (void)DefaultInit(CGF);
893 emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
894 PrivateAddr, SharedLVal.getAddress(CGF),
895 SharedLVal.getType());
896 } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
897 !CGF.isTrivialInitializer(PrivateVD->getInit())) {
898 CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
899 PrivateVD->getType().getQualifiers(),
900 /*IsInitializer=*/false);
901 }
902 }
903
needCleanups(unsigned N)904 bool ReductionCodeGen::needCleanups(unsigned N) {
905 const auto *PrivateVD =
906 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
907 QualType PrivateType = PrivateVD->getType();
908 QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
909 return DTorKind != QualType::DK_none;
910 }
911
emitCleanups(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)912 void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
913 Address PrivateAddr) {
914 const auto *PrivateVD =
915 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
916 QualType PrivateType = PrivateVD->getType();
917 QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
918 if (needCleanups(N)) {
919 PrivateAddr = CGF.Builder.CreateElementBitCast(
920 PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
921 CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
922 }
923 }
924
loadToBegin(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,LValue BaseLV)925 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
926 LValue BaseLV) {
927 BaseTy = BaseTy.getNonReferenceType();
928 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
929 !CGF.getContext().hasSameType(BaseTy, ElTy)) {
930 if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
931 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy);
932 } else {
933 LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy);
934 BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
935 }
936 BaseTy = BaseTy->getPointeeType();
937 }
938 return CGF.MakeAddrLValue(
939 CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF),
940 CGF.ConvertTypeForMem(ElTy)),
941 BaseLV.getType(), BaseLV.getBaseInfo(),
942 CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
943 }
944
castToBase(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,llvm::Type * BaseLVType,CharUnits BaseLVAlignment,llvm::Value * Addr)945 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
946 llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
947 llvm::Value *Addr) {
948 Address Tmp = Address::invalid();
949 Address TopTmp = Address::invalid();
950 Address MostTopTmp = Address::invalid();
951 BaseTy = BaseTy.getNonReferenceType();
952 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
953 !CGF.getContext().hasSameType(BaseTy, ElTy)) {
954 Tmp = CGF.CreateMemTemp(BaseTy);
955 if (TopTmp.isValid())
956 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
957 else
958 MostTopTmp = Tmp;
959 TopTmp = Tmp;
960 BaseTy = BaseTy->getPointeeType();
961 }
962 llvm::Type *Ty = BaseLVType;
963 if (Tmp.isValid())
964 Ty = Tmp.getElementType();
965 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
966 if (Tmp.isValid()) {
967 CGF.Builder.CreateStore(Addr, Tmp);
968 return MostTopTmp;
969 }
970 return Address(Addr, BaseLVAlignment);
971 }
972
getBaseDecl(const Expr * Ref,const DeclRefExpr * & DE)973 static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
974 const VarDecl *OrigVD = nullptr;
975 if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
976 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
977 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
978 Base = TempOASE->getBase()->IgnoreParenImpCasts();
979 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
980 Base = TempASE->getBase()->IgnoreParenImpCasts();
981 DE = cast<DeclRefExpr>(Base);
982 OrigVD = cast<VarDecl>(DE->getDecl());
983 } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
984 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
985 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
986 Base = TempASE->getBase()->IgnoreParenImpCasts();
987 DE = cast<DeclRefExpr>(Base);
988 OrigVD = cast<VarDecl>(DE->getDecl());
989 }
990 return OrigVD;
991 }
992
adjustPrivateAddress(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)993 Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
994 Address PrivateAddr) {
995 const DeclRefExpr *DE;
996 if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
997 BaseDecls.emplace_back(OrigVD);
998 LValue OriginalBaseLValue = CGF.EmitLValue(DE);
999 LValue BaseLValue =
1000 loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
1001 OriginalBaseLValue);
1002 llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1003 BaseLValue.getPointer(CGF), SharedAddresses[N].first.getPointer(CGF));
1004 llvm::Value *PrivatePointer =
1005 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1006 PrivateAddr.getPointer(),
1007 SharedAddresses[N].first.getAddress(CGF).getType());
1008 llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
1009 return castToBase(CGF, OrigVD->getType(),
1010 SharedAddresses[N].first.getType(),
1011 OriginalBaseLValue.getAddress(CGF).getType(),
1012 OriginalBaseLValue.getAlignment(), Ptr);
1013 }
1014 BaseDecls.emplace_back(
1015 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1016 return PrivateAddr;
1017 }
1018
usesReductionInitializer(unsigned N) const1019 bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1020 const OMPDeclareReductionDecl *DRD =
1021 getReductionInit(ClausesData[N].ReductionOp);
1022 return DRD && DRD->getInitializer();
1023 }
1024
getThreadIDVariableLValue(CodeGenFunction & CGF)1025 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1026 return CGF.EmitLoadOfPointerLValue(
1027 CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1028 getThreadIDVariable()->getType()->castAs<PointerType>());
1029 }
1030
EmitBody(CodeGenFunction & CGF,const Stmt *)1031 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
1032 if (!CGF.HaveInsertPoint())
1033 return;
1034 // 1.2.2 OpenMP Language Terminology
1035 // Structured block - An executable statement with a single entry at the
1036 // top and a single exit at the bottom.
1037 // The point of exit cannot be a branch out of the structured block.
1038 // longjmp() and throw() must not violate the entry/exit criteria.
1039 CGF.EHStack.pushTerminate();
1040 CodeGen(CGF);
1041 CGF.EHStack.popTerminate();
1042 }
1043
getThreadIDVariableLValue(CodeGenFunction & CGF)1044 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1045 CodeGenFunction &CGF) {
1046 return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1047 getThreadIDVariable()->getType(),
1048 AlignmentSource::Decl);
1049 }
1050
addFieldToRecordDecl(ASTContext & C,DeclContext * DC,QualType FieldTy)1051 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1052 QualType FieldTy) {
1053 auto *Field = FieldDecl::Create(
1054 C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1055 C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1056 /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1057 Field->setAccess(AS_public);
1058 DC->addDecl(Field);
1059 return Field;
1060 }
1061
CGOpenMPRuntime(CodeGenModule & CGM,StringRef FirstSeparator,StringRef Separator)1062 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
1063 StringRef Separator)
1064 : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
1065 OMPBuilder(CGM.getModule()), OffloadEntriesInfoManager(CGM) {
1066 KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1067
1068 // Initialize Types used in OpenMPIRBuilder from OMPKinds.def
1069 OMPBuilder.initialize();
1070 loadOffloadInfoMetadata();
1071 }
1072
clear()1073 void CGOpenMPRuntime::clear() {
1074 InternalVars.clear();
1075 // Clean non-target variable declarations possibly used only in debug info.
1076 for (const auto &Data : EmittedNonTargetVariables) {
1077 if (!Data.getValue().pointsToAliveValue())
1078 continue;
1079 auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1080 if (!GV)
1081 continue;
1082 if (!GV->isDeclaration() || GV->getNumUses() > 0)
1083 continue;
1084 GV->eraseFromParent();
1085 }
1086 }
1087
getName(ArrayRef<StringRef> Parts) const1088 std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1089 SmallString<128> Buffer;
1090 llvm::raw_svector_ostream OS(Buffer);
1091 StringRef Sep = FirstSeparator;
1092 for (StringRef Part : Parts) {
1093 OS << Sep << Part;
1094 Sep = Separator;
1095 }
1096 return std::string(OS.str());
1097 }
1098
1099 static llvm::Function *
emitCombinerOrInitializer(CodeGenModule & CGM,QualType Ty,const Expr * CombinerInitializer,const VarDecl * In,const VarDecl * Out,bool IsCombiner)1100 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1101 const Expr *CombinerInitializer, const VarDecl *In,
1102 const VarDecl *Out, bool IsCombiner) {
1103 // void .omp_combiner.(Ty *in, Ty *out);
1104 ASTContext &C = CGM.getContext();
1105 QualType PtrTy = C.getPointerType(Ty).withRestrict();
1106 FunctionArgList Args;
1107 ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1108 /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1109 ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1110 /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1111 Args.push_back(&OmpOutParm);
1112 Args.push_back(&OmpInParm);
1113 const CGFunctionInfo &FnInfo =
1114 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1115 llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1116 std::string Name = CGM.getOpenMPRuntime().getName(
1117 {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1118 auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1119 Name, &CGM.getModule());
1120 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1121 if (CGM.getLangOpts().Optimize) {
1122 Fn->removeFnAttr(llvm::Attribute::NoInline);
1123 Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1124 Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1125 }
1126 CodeGenFunction CGF(CGM);
1127 // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1128 // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1129 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1130 Out->getLocation());
1131 CodeGenFunction::OMPPrivateScope Scope(CGF);
1132 Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1133 Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
1134 return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1135 .getAddress(CGF);
1136 });
1137 Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1138 Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
1139 return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1140 .getAddress(CGF);
1141 });
1142 (void)Scope.Privatize();
1143 if (!IsCombiner && Out->hasInit() &&
1144 !CGF.isTrivialInitializer(Out->getInit())) {
1145 CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1146 Out->getType().getQualifiers(),
1147 /*IsInitializer=*/true);
1148 }
1149 if (CombinerInitializer)
1150 CGF.EmitIgnoredExpr(CombinerInitializer);
1151 Scope.ForceCleanup();
1152 CGF.FinishFunction();
1153 return Fn;
1154 }
1155
emitUserDefinedReduction(CodeGenFunction * CGF,const OMPDeclareReductionDecl * D)1156 void CGOpenMPRuntime::emitUserDefinedReduction(
1157 CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1158 if (UDRMap.count(D) > 0)
1159 return;
1160 llvm::Function *Combiner = emitCombinerOrInitializer(
1161 CGM, D->getType(), D->getCombiner(),
1162 cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1163 cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1164 /*IsCombiner=*/true);
1165 llvm::Function *Initializer = nullptr;
1166 if (const Expr *Init = D->getInitializer()) {
1167 Initializer = emitCombinerOrInitializer(
1168 CGM, D->getType(),
1169 D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1170 : nullptr,
1171 cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1172 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1173 /*IsCombiner=*/false);
1174 }
1175 UDRMap.try_emplace(D, Combiner, Initializer);
1176 if (CGF) {
1177 auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1178 Decls.second.push_back(D);
1179 }
1180 }
1181
1182 std::pair<llvm::Function *, llvm::Function *>
getUserDefinedReduction(const OMPDeclareReductionDecl * D)1183 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1184 auto I = UDRMap.find(D);
1185 if (I != UDRMap.end())
1186 return I->second;
1187 emitUserDefinedReduction(/*CGF=*/nullptr, D);
1188 return UDRMap.lookup(D);
1189 }
1190
1191 namespace {
1192 // Temporary RAII solution to perform a push/pop stack event on the OpenMP IR
1193 // Builder if one is present.
1194 struct PushAndPopStackRAII {
PushAndPopStackRAII__anon8f021c720811::PushAndPopStackRAII1195 PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF,
1196 bool HasCancel)
1197 : OMPBuilder(OMPBuilder) {
1198 if (!OMPBuilder)
1199 return;
1200
1201 // The following callback is the crucial part of clangs cleanup process.
1202 //
1203 // NOTE:
1204 // Once the OpenMPIRBuilder is used to create parallel regions (and
1205 // similar), the cancellation destination (Dest below) is determined via
1206 // IP. That means if we have variables to finalize we split the block at IP,
1207 // use the new block (=BB) as destination to build a JumpDest (via
1208 // getJumpDestInCurrentScope(BB)) which then is fed to
1209 // EmitBranchThroughCleanup. Furthermore, there will not be the need
1210 // to push & pop an FinalizationInfo object.
1211 // The FiniCB will still be needed but at the point where the
1212 // OpenMPIRBuilder is asked to construct a parallel (or similar) construct.
1213 auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) {
1214 assert(IP.getBlock()->end() == IP.getPoint() &&
1215 "Clang CG should cause non-terminated block!");
1216 CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1217 CGF.Builder.restoreIP(IP);
1218 CodeGenFunction::JumpDest Dest =
1219 CGF.getOMPCancelDestination(OMPD_parallel);
1220 CGF.EmitBranchThroughCleanup(Dest);
1221 };
1222
1223 // TODO: Remove this once we emit parallel regions through the
1224 // OpenMPIRBuilder as it can do this setup internally.
1225 llvm::OpenMPIRBuilder::FinalizationInfo FI(
1226 {FiniCB, OMPD_parallel, HasCancel});
1227 OMPBuilder->pushFinalizationCB(std::move(FI));
1228 }
~PushAndPopStackRAII__anon8f021c720811::PushAndPopStackRAII1229 ~PushAndPopStackRAII() {
1230 if (OMPBuilder)
1231 OMPBuilder->popFinalizationCB();
1232 }
1233 llvm::OpenMPIRBuilder *OMPBuilder;
1234 };
1235 } // namespace
1236
emitParallelOrTeamsOutlinedFunction(CodeGenModule & CGM,const OMPExecutableDirective & D,const CapturedStmt * CS,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const StringRef OutlinedHelperName,const RegionCodeGenTy & CodeGen)1237 static llvm::Function *emitParallelOrTeamsOutlinedFunction(
1238 CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1239 const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1240 const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1241 assert(ThreadIDVar->getType()->isPointerType() &&
1242 "thread id variable must be of type kmp_int32 *");
1243 CodeGenFunction CGF(CGM, true);
1244 bool HasCancel = false;
1245 if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1246 HasCancel = OPD->hasCancel();
1247 else if (const auto *OPD = dyn_cast<OMPTargetParallelDirective>(&D))
1248 HasCancel = OPD->hasCancel();
1249 else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1250 HasCancel = OPSD->hasCancel();
1251 else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1252 HasCancel = OPFD->hasCancel();
1253 else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1254 HasCancel = OPFD->hasCancel();
1255 else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1256 HasCancel = OPFD->hasCancel();
1257 else if (const auto *OPFD =
1258 dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1259 HasCancel = OPFD->hasCancel();
1260 else if (const auto *OPFD =
1261 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1262 HasCancel = OPFD->hasCancel();
1263
1264 // TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new
1265 // parallel region to make cancellation barriers work properly.
1266 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1267 PushAndPopStackRAII PSR(&OMPBuilder, CGF, HasCancel);
1268 CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1269 HasCancel, OutlinedHelperName);
1270 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1271 return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc());
1272 }
1273
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1274 llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
1275 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1276 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1277 const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1278 return emitParallelOrTeamsOutlinedFunction(
1279 CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1280 }
1281
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1282 llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1283 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1284 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1285 const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1286 return emitParallelOrTeamsOutlinedFunction(
1287 CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1288 }
1289
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)1290 llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
1291 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1292 const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1293 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1294 bool Tied, unsigned &NumberOfParts) {
1295 auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1296 PrePostActionTy &) {
1297 llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1298 llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1299 llvm::Value *TaskArgs[] = {
1300 UpLoc, ThreadID,
1301 CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1302 TaskTVar->getType()->castAs<PointerType>())
1303 .getPointer(CGF)};
1304 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1305 CGM.getModule(), OMPRTL___kmpc_omp_task),
1306 TaskArgs);
1307 };
1308 CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1309 UntiedCodeGen);
1310 CodeGen.setAction(Action);
1311 assert(!ThreadIDVar->getType()->isPointerType() &&
1312 "thread id variable must be of type kmp_int32 for tasks");
1313 const OpenMPDirectiveKind Region =
1314 isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1315 : OMPD_task;
1316 const CapturedStmt *CS = D.getCapturedStmt(Region);
1317 bool HasCancel = false;
1318 if (const auto *TD = dyn_cast<OMPTaskDirective>(&D))
1319 HasCancel = TD->hasCancel();
1320 else if (const auto *TD = dyn_cast<OMPTaskLoopDirective>(&D))
1321 HasCancel = TD->hasCancel();
1322 else if (const auto *TD = dyn_cast<OMPMasterTaskLoopDirective>(&D))
1323 HasCancel = TD->hasCancel();
1324 else if (const auto *TD = dyn_cast<OMPParallelMasterTaskLoopDirective>(&D))
1325 HasCancel = TD->hasCancel();
1326
1327 CodeGenFunction CGF(CGM, true);
1328 CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1329 InnermostKind, HasCancel, Action);
1330 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1331 llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
1332 if (!Tied)
1333 NumberOfParts = Action.getNumberOfParts();
1334 return Res;
1335 }
1336
buildStructValue(ConstantStructBuilder & Fields,CodeGenModule & CGM,const RecordDecl * RD,const CGRecordLayout & RL,ArrayRef<llvm::Constant * > Data)1337 static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
1338 const RecordDecl *RD, const CGRecordLayout &RL,
1339 ArrayRef<llvm::Constant *> Data) {
1340 llvm::StructType *StructTy = RL.getLLVMType();
1341 unsigned PrevIdx = 0;
1342 ConstantInitBuilder CIBuilder(CGM);
1343 auto DI = Data.begin();
1344 for (const FieldDecl *FD : RD->fields()) {
1345 unsigned Idx = RL.getLLVMFieldNo(FD);
1346 // Fill the alignment.
1347 for (unsigned I = PrevIdx; I < Idx; ++I)
1348 Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
1349 PrevIdx = Idx + 1;
1350 Fields.add(*DI);
1351 ++DI;
1352 }
1353 }
1354
1355 template <class... As>
1356 static llvm::GlobalVariable *
createGlobalStruct(CodeGenModule & CGM,QualType Ty,bool IsConstant,ArrayRef<llvm::Constant * > Data,const Twine & Name,As &&...Args)1357 createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
1358 ArrayRef<llvm::Constant *> Data, const Twine &Name,
1359 As &&... Args) {
1360 const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1361 const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1362 ConstantInitBuilder CIBuilder(CGM);
1363 ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
1364 buildStructValue(Fields, CGM, RD, RL, Data);
1365 return Fields.finishAndCreateGlobal(
1366 Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
1367 std::forward<As>(Args)...);
1368 }
1369
1370 template <typename T>
1371 static void
createConstantGlobalStructAndAddToParent(CodeGenModule & CGM,QualType Ty,ArrayRef<llvm::Constant * > Data,T & Parent)1372 createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
1373 ArrayRef<llvm::Constant *> Data,
1374 T &Parent) {
1375 const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1376 const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1377 ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
1378 buildStructValue(Fields, CGM, RD, RL, Data);
1379 Fields.finishAndAddTo(Parent);
1380 }
1381
setLocThreadIdInsertPt(CodeGenFunction & CGF,bool AtCurrentPoint)1382 void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1383 bool AtCurrentPoint) {
1384 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1385 assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
1386
1387 llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1388 if (AtCurrentPoint) {
1389 Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1390 Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1391 } else {
1392 Elem.second.ServiceInsertPt =
1393 new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1394 Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1395 }
1396 }
1397
clearLocThreadIdInsertPt(CodeGenFunction & CGF)1398 void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1399 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1400 if (Elem.second.ServiceInsertPt) {
1401 llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1402 Elem.second.ServiceInsertPt = nullptr;
1403 Ptr->eraseFromParent();
1404 }
1405 }
1406
getIdentStringFromSourceLocation(CodeGenFunction & CGF,SourceLocation Loc,SmallString<128> & Buffer)1407 static StringRef getIdentStringFromSourceLocation(CodeGenFunction &CGF,
1408 SourceLocation Loc,
1409 SmallString<128> &Buffer) {
1410 llvm::raw_svector_ostream OS(Buffer);
1411 // Build debug location
1412 PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1413 OS << ";" << PLoc.getFilename() << ";";
1414 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1415 OS << FD->getQualifiedNameAsString();
1416 OS << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
1417 return OS.str();
1418 }
1419
emitUpdateLocation(CodeGenFunction & CGF,SourceLocation Loc,unsigned Flags)1420 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1421 SourceLocation Loc,
1422 unsigned Flags) {
1423 llvm::Constant *SrcLocStr;
1424 if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
1425 Loc.isInvalid()) {
1426 SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr();
1427 } else {
1428 std::string FunctionName = "";
1429 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1430 FunctionName = FD->getQualifiedNameAsString();
1431 PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1432 const char *FileName = PLoc.getFilename();
1433 unsigned Line = PLoc.getLine();
1434 unsigned Column = PLoc.getColumn();
1435 SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FunctionName.c_str(), FileName,
1436 Line, Column);
1437 }
1438 unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1439 return OMPBuilder.getOrCreateIdent(SrcLocStr, llvm::omp::IdentFlag(Flags),
1440 Reserved2Flags);
1441 }
1442
getThreadID(CodeGenFunction & CGF,SourceLocation Loc)1443 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1444 SourceLocation Loc) {
1445 assert(CGF.CurFn && "No function in current CodeGenFunction.");
1446 // If the OpenMPIRBuilder is used we need to use it for all thread id calls as
1447 // the clang invariants used below might be broken.
1448 if (CGM.getLangOpts().OpenMPIRBuilder) {
1449 SmallString<128> Buffer;
1450 OMPBuilder.updateToLocation(CGF.Builder.saveIP());
1451 auto *SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(
1452 getIdentStringFromSourceLocation(CGF, Loc, Buffer));
1453 return OMPBuilder.getOrCreateThreadID(
1454 OMPBuilder.getOrCreateIdent(SrcLocStr));
1455 }
1456
1457 llvm::Value *ThreadID = nullptr;
1458 // Check whether we've already cached a load of the thread id in this
1459 // function.
1460 auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1461 if (I != OpenMPLocThreadIDMap.end()) {
1462 ThreadID = I->second.ThreadID;
1463 if (ThreadID != nullptr)
1464 return ThreadID;
1465 }
1466 // If exceptions are enabled, do not use parameter to avoid possible crash.
1467 if (auto *OMPRegionInfo =
1468 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1469 if (OMPRegionInfo->getThreadIDVariable()) {
1470 // Check if this an outlined function with thread id passed as argument.
1471 LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1472 llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
1473 if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1474 !CGF.getLangOpts().CXXExceptions ||
1475 CGF.Builder.GetInsertBlock() == TopBlock ||
1476 !isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
1477 cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1478 TopBlock ||
1479 cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1480 CGF.Builder.GetInsertBlock()) {
1481 ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1482 // If value loaded in entry block, cache it and use it everywhere in
1483 // function.
1484 if (CGF.Builder.GetInsertBlock() == TopBlock) {
1485 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1486 Elem.second.ThreadID = ThreadID;
1487 }
1488 return ThreadID;
1489 }
1490 }
1491 }
1492
1493 // This is not an outlined function region - need to call __kmpc_int32
1494 // kmpc_global_thread_num(ident_t *loc).
1495 // Generate thread id value and cache this value for use across the
1496 // function.
1497 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1498 if (!Elem.second.ServiceInsertPt)
1499 setLocThreadIdInsertPt(CGF);
1500 CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1501 CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1502 llvm::CallInst *Call = CGF.Builder.CreateCall(
1503 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
1504 OMPRTL___kmpc_global_thread_num),
1505 emitUpdateLocation(CGF, Loc));
1506 Call->setCallingConv(CGF.getRuntimeCC());
1507 Elem.second.ThreadID = Call;
1508 return Call;
1509 }
1510
functionFinished(CodeGenFunction & CGF)1511 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1512 assert(CGF.CurFn && "No function in current CodeGenFunction.");
1513 if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1514 clearLocThreadIdInsertPt(CGF);
1515 OpenMPLocThreadIDMap.erase(CGF.CurFn);
1516 }
1517 if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1518 for(const auto *D : FunctionUDRMap[CGF.CurFn])
1519 UDRMap.erase(D);
1520 FunctionUDRMap.erase(CGF.CurFn);
1521 }
1522 auto I = FunctionUDMMap.find(CGF.CurFn);
1523 if (I != FunctionUDMMap.end()) {
1524 for(const auto *D : I->second)
1525 UDMMap.erase(D);
1526 FunctionUDMMap.erase(I);
1527 }
1528 LastprivateConditionalToTypes.erase(CGF.CurFn);
1529 FunctionToUntiedTaskStackMap.erase(CGF.CurFn);
1530 }
1531
getIdentTyPointerTy()1532 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1533 return OMPBuilder.IdentPtr;
1534 }
1535
getKmpc_MicroPointerTy()1536 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1537 if (!Kmpc_MicroTy) {
1538 // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1539 llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1540 llvm::PointerType::getUnqual(CGM.Int32Ty)};
1541 Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1542 }
1543 return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1544 }
1545
1546 llvm::FunctionCallee
createForStaticInitFunction(unsigned IVSize,bool IVSigned)1547 CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
1548 assert((IVSize == 32 || IVSize == 64) &&
1549 "IV size is not compatible with the omp runtime");
1550 StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
1551 : "__kmpc_for_static_init_4u")
1552 : (IVSigned ? "__kmpc_for_static_init_8"
1553 : "__kmpc_for_static_init_8u");
1554 llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1555 auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1556 llvm::Type *TypeParams[] = {
1557 getIdentTyPointerTy(), // loc
1558 CGM.Int32Ty, // tid
1559 CGM.Int32Ty, // schedtype
1560 llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1561 PtrTy, // p_lower
1562 PtrTy, // p_upper
1563 PtrTy, // p_stride
1564 ITy, // incr
1565 ITy // chunk
1566 };
1567 auto *FnTy =
1568 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1569 return CGM.CreateRuntimeFunction(FnTy, Name);
1570 }
1571
1572 llvm::FunctionCallee
createDispatchInitFunction(unsigned IVSize,bool IVSigned)1573 CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
1574 assert((IVSize == 32 || IVSize == 64) &&
1575 "IV size is not compatible with the omp runtime");
1576 StringRef Name =
1577 IVSize == 32
1578 ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
1579 : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
1580 llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1581 llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
1582 CGM.Int32Ty, // tid
1583 CGM.Int32Ty, // schedtype
1584 ITy, // lower
1585 ITy, // upper
1586 ITy, // stride
1587 ITy // chunk
1588 };
1589 auto *FnTy =
1590 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1591 return CGM.CreateRuntimeFunction(FnTy, Name);
1592 }
1593
1594 llvm::FunctionCallee
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)1595 CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
1596 assert((IVSize == 32 || IVSize == 64) &&
1597 "IV size is not compatible with the omp runtime");
1598 StringRef Name =
1599 IVSize == 32
1600 ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
1601 : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
1602 llvm::Type *TypeParams[] = {
1603 getIdentTyPointerTy(), // loc
1604 CGM.Int32Ty, // tid
1605 };
1606 auto *FnTy =
1607 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1608 return CGM.CreateRuntimeFunction(FnTy, Name);
1609 }
1610
1611 llvm::FunctionCallee
createDispatchNextFunction(unsigned IVSize,bool IVSigned)1612 CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
1613 assert((IVSize == 32 || IVSize == 64) &&
1614 "IV size is not compatible with the omp runtime");
1615 StringRef Name =
1616 IVSize == 32
1617 ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
1618 : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
1619 llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1620 auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1621 llvm::Type *TypeParams[] = {
1622 getIdentTyPointerTy(), // loc
1623 CGM.Int32Ty, // tid
1624 llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1625 PtrTy, // p_lower
1626 PtrTy, // p_upper
1627 PtrTy // p_stride
1628 };
1629 auto *FnTy =
1630 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1631 return CGM.CreateRuntimeFunction(FnTy, Name);
1632 }
1633
1634 /// Obtain information that uniquely identifies a target entry. This
1635 /// consists of the file and device IDs as well as line number associated with
1636 /// the relevant entry source location.
getTargetEntryUniqueInfo(ASTContext & C,SourceLocation Loc,unsigned & DeviceID,unsigned & FileID,unsigned & LineNum)1637 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
1638 unsigned &DeviceID, unsigned &FileID,
1639 unsigned &LineNum) {
1640 SourceManager &SM = C.getSourceManager();
1641
1642 // The loc should be always valid and have a file ID (the user cannot use
1643 // #pragma directives in macros)
1644
1645 assert(Loc.isValid() && "Source location is expected to be always valid.");
1646
1647 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1648 assert(PLoc.isValid() && "Source location is expected to be always valid.");
1649
1650 llvm::sys::fs::UniqueID ID;
1651 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
1652 SM.getDiagnostics().Report(diag::err_cannot_open_file)
1653 << PLoc.getFilename() << EC.message();
1654
1655 DeviceID = ID.getDevice();
1656 FileID = ID.getFile();
1657 LineNum = PLoc.getLine();
1658 }
1659
getAddrOfDeclareTargetVar(const VarDecl * VD)1660 Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
1661 if (CGM.getLangOpts().OpenMPSimd)
1662 return Address::invalid();
1663 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1664 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1665 if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
1666 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1667 HasRequiresUnifiedSharedMemory))) {
1668 SmallString<64> PtrName;
1669 {
1670 llvm::raw_svector_ostream OS(PtrName);
1671 OS << CGM.getMangledName(GlobalDecl(VD));
1672 if (!VD->isExternallyVisible()) {
1673 unsigned DeviceID, FileID, Line;
1674 getTargetEntryUniqueInfo(CGM.getContext(),
1675 VD->getCanonicalDecl()->getBeginLoc(),
1676 DeviceID, FileID, Line);
1677 OS << llvm::format("_%x", FileID);
1678 }
1679 OS << "_decl_tgt_ref_ptr";
1680 }
1681 llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
1682 if (!Ptr) {
1683 QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
1684 Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
1685 PtrName);
1686
1687 auto *GV = cast<llvm::GlobalVariable>(Ptr);
1688 GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
1689
1690 if (!CGM.getLangOpts().OpenMPIsDevice)
1691 GV->setInitializer(CGM.GetAddrOfGlobal(VD));
1692 registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
1693 }
1694 return Address(Ptr, CGM.getContext().getDeclAlign(VD));
1695 }
1696 return Address::invalid();
1697 }
1698
1699 llvm::Constant *
getOrCreateThreadPrivateCache(const VarDecl * VD)1700 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
1701 assert(!CGM.getLangOpts().OpenMPUseTLS ||
1702 !CGM.getContext().getTargetInfo().isTLSSupported());
1703 // Lookup the entry, lazily creating it if necessary.
1704 std::string Suffix = getName({"cache", ""});
1705 return getOrCreateInternalVariable(
1706 CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
1707 }
1708
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)1709 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
1710 const VarDecl *VD,
1711 Address VDAddr,
1712 SourceLocation Loc) {
1713 if (CGM.getLangOpts().OpenMPUseTLS &&
1714 CGM.getContext().getTargetInfo().isTLSSupported())
1715 return VDAddr;
1716
1717 llvm::Type *VarTy = VDAddr.getElementType();
1718 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
1719 CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
1720 CGM.Int8PtrTy),
1721 CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
1722 getOrCreateThreadPrivateCache(VD)};
1723 return Address(CGF.EmitRuntimeCall(
1724 OMPBuilder.getOrCreateRuntimeFunction(
1725 CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
1726 Args),
1727 VDAddr.getAlignment());
1728 }
1729
emitThreadPrivateVarInit(CodeGenFunction & CGF,Address VDAddr,llvm::Value * Ctor,llvm::Value * CopyCtor,llvm::Value * Dtor,SourceLocation Loc)1730 void CGOpenMPRuntime::emitThreadPrivateVarInit(
1731 CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
1732 llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
1733 // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
1734 // library.
1735 llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
1736 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1737 CGM.getModule(), OMPRTL___kmpc_global_thread_num),
1738 OMPLoc);
1739 // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
1740 // to register constructor/destructor for variable.
1741 llvm::Value *Args[] = {
1742 OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
1743 Ctor, CopyCtor, Dtor};
1744 CGF.EmitRuntimeCall(
1745 OMPBuilder.getOrCreateRuntimeFunction(
1746 CGM.getModule(), OMPRTL___kmpc_threadprivate_register),
1747 Args);
1748 }
1749
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)1750 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
1751 const VarDecl *VD, Address VDAddr, SourceLocation Loc,
1752 bool PerformInit, CodeGenFunction *CGF) {
1753 if (CGM.getLangOpts().OpenMPUseTLS &&
1754 CGM.getContext().getTargetInfo().isTLSSupported())
1755 return nullptr;
1756
1757 VD = VD->getDefinition(CGM.getContext());
1758 if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
1759 QualType ASTTy = VD->getType();
1760
1761 llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
1762 const Expr *Init = VD->getAnyInitializer();
1763 if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1764 // Generate function that re-emits the declaration's initializer into the
1765 // threadprivate copy of the variable VD
1766 CodeGenFunction CtorCGF(CGM);
1767 FunctionArgList Args;
1768 ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1769 /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1770 ImplicitParamDecl::Other);
1771 Args.push_back(&Dst);
1772
1773 const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1774 CGM.getContext().VoidPtrTy, Args);
1775 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1776 std::string Name = getName({"__kmpc_global_ctor_", ""});
1777 llvm::Function *Fn =
1778 CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1779 CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
1780 Args, Loc, Loc);
1781 llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
1782 CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1783 CGM.getContext().VoidPtrTy, Dst.getLocation());
1784 Address Arg = Address(ArgVal, VDAddr.getAlignment());
1785 Arg = CtorCGF.Builder.CreateElementBitCast(
1786 Arg, CtorCGF.ConvertTypeForMem(ASTTy));
1787 CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
1788 /*IsInitializer=*/true);
1789 ArgVal = CtorCGF.EmitLoadOfScalar(
1790 CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1791 CGM.getContext().VoidPtrTy, Dst.getLocation());
1792 CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
1793 CtorCGF.FinishFunction();
1794 Ctor = Fn;
1795 }
1796 if (VD->getType().isDestructedType() != QualType::DK_none) {
1797 // Generate function that emits destructor call for the threadprivate copy
1798 // of the variable VD
1799 CodeGenFunction DtorCGF(CGM);
1800 FunctionArgList Args;
1801 ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1802 /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1803 ImplicitParamDecl::Other);
1804 Args.push_back(&Dst);
1805
1806 const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1807 CGM.getContext().VoidTy, Args);
1808 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1809 std::string Name = getName({"__kmpc_global_dtor_", ""});
1810 llvm::Function *Fn =
1811 CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1812 auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1813 DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
1814 Loc, Loc);
1815 // Create a scope with an artificial location for the body of this function.
1816 auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1817 llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
1818 DtorCGF.GetAddrOfLocalVar(&Dst),
1819 /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
1820 DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
1821 DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1822 DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1823 DtorCGF.FinishFunction();
1824 Dtor = Fn;
1825 }
1826 // Do not emit init function if it is not required.
1827 if (!Ctor && !Dtor)
1828 return nullptr;
1829
1830 llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1831 auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
1832 /*isVarArg=*/false)
1833 ->getPointerTo();
1834 // Copying constructor for the threadprivate variable.
1835 // Must be NULL - reserved by runtime, but currently it requires that this
1836 // parameter is always NULL. Otherwise it fires assertion.
1837 CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
1838 if (Ctor == nullptr) {
1839 auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1840 /*isVarArg=*/false)
1841 ->getPointerTo();
1842 Ctor = llvm::Constant::getNullValue(CtorTy);
1843 }
1844 if (Dtor == nullptr) {
1845 auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
1846 /*isVarArg=*/false)
1847 ->getPointerTo();
1848 Dtor = llvm::Constant::getNullValue(DtorTy);
1849 }
1850 if (!CGF) {
1851 auto *InitFunctionTy =
1852 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
1853 std::string Name = getName({"__omp_threadprivate_init_", ""});
1854 llvm::Function *InitFunction = CGM.CreateGlobalInitOrCleanUpFunction(
1855 InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
1856 CodeGenFunction InitCGF(CGM);
1857 FunctionArgList ArgList;
1858 InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
1859 CGM.getTypes().arrangeNullaryFunction(), ArgList,
1860 Loc, Loc);
1861 emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1862 InitCGF.FinishFunction();
1863 return InitFunction;
1864 }
1865 emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1866 }
1867 return nullptr;
1868 }
1869
emitDeclareTargetVarDefinition(const VarDecl * VD,llvm::GlobalVariable * Addr,bool PerformInit)1870 bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
1871 llvm::GlobalVariable *Addr,
1872 bool PerformInit) {
1873 if (CGM.getLangOpts().OMPTargetTriples.empty() &&
1874 !CGM.getLangOpts().OpenMPIsDevice)
1875 return false;
1876 Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1877 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1878 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
1879 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1880 HasRequiresUnifiedSharedMemory))
1881 return CGM.getLangOpts().OpenMPIsDevice;
1882 VD = VD->getDefinition(CGM.getContext());
1883 assert(VD && "Unknown VarDecl");
1884
1885 if (!DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
1886 return CGM.getLangOpts().OpenMPIsDevice;
1887
1888 QualType ASTTy = VD->getType();
1889 SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
1890
1891 // Produce the unique prefix to identify the new target regions. We use
1892 // the source location of the variable declaration which we know to not
1893 // conflict with any target region.
1894 unsigned DeviceID;
1895 unsigned FileID;
1896 unsigned Line;
1897 getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
1898 SmallString<128> Buffer, Out;
1899 {
1900 llvm::raw_svector_ostream OS(Buffer);
1901 OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
1902 << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
1903 }
1904
1905 const Expr *Init = VD->getAnyInitializer();
1906 if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1907 llvm::Constant *Ctor;
1908 llvm::Constant *ID;
1909 if (CGM.getLangOpts().OpenMPIsDevice) {
1910 // Generate function that re-emits the declaration's initializer into
1911 // the threadprivate copy of the variable VD
1912 CodeGenFunction CtorCGF(CGM);
1913
1914 const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1915 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1916 llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1917 FTy, Twine(Buffer, "_ctor"), FI, Loc);
1918 auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
1919 CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1920 FunctionArgList(), Loc, Loc);
1921 auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
1922 CtorCGF.EmitAnyExprToMem(Init,
1923 Address(Addr, CGM.getContext().getDeclAlign(VD)),
1924 Init->getType().getQualifiers(),
1925 /*IsInitializer=*/true);
1926 CtorCGF.FinishFunction();
1927 Ctor = Fn;
1928 ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1929 CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
1930 } else {
1931 Ctor = new llvm::GlobalVariable(
1932 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1933 llvm::GlobalValue::PrivateLinkage,
1934 llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
1935 ID = Ctor;
1936 }
1937
1938 // Register the information for the entry associated with the constructor.
1939 Out.clear();
1940 OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1941 DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
1942 ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
1943 }
1944 if (VD->getType().isDestructedType() != QualType::DK_none) {
1945 llvm::Constant *Dtor;
1946 llvm::Constant *ID;
1947 if (CGM.getLangOpts().OpenMPIsDevice) {
1948 // Generate function that emits destructor call for the threadprivate
1949 // copy of the variable VD
1950 CodeGenFunction DtorCGF(CGM);
1951
1952 const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1953 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1954 llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1955 FTy, Twine(Buffer, "_dtor"), FI, Loc);
1956 auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1957 DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1958 FunctionArgList(), Loc, Loc);
1959 // Create a scope with an artificial location for the body of this
1960 // function.
1961 auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1962 DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
1963 ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1964 DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1965 DtorCGF.FinishFunction();
1966 Dtor = Fn;
1967 ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1968 CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
1969 } else {
1970 Dtor = new llvm::GlobalVariable(
1971 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1972 llvm::GlobalValue::PrivateLinkage,
1973 llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
1974 ID = Dtor;
1975 }
1976 // Register the information for the entry associated with the destructor.
1977 Out.clear();
1978 OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1979 DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
1980 ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
1981 }
1982 return CGM.getLangOpts().OpenMPIsDevice;
1983 }
1984
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)1985 Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
1986 QualType VarType,
1987 StringRef Name) {
1988 std::string Suffix = getName({"artificial", ""});
1989 llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
1990 llvm::Value *GAddr =
1991 getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
1992 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS &&
1993 CGM.getTarget().isTLSSupported()) {
1994 cast<llvm::GlobalVariable>(GAddr)->setThreadLocal(/*Val=*/true);
1995 return Address(GAddr, CGM.getContext().getTypeAlignInChars(VarType));
1996 }
1997 std::string CacheSuffix = getName({"cache", ""});
1998 llvm::Value *Args[] = {
1999 emitUpdateLocation(CGF, SourceLocation()),
2000 getThreadID(CGF, SourceLocation()),
2001 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
2002 CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
2003 /*isSigned=*/false),
2004 getOrCreateInternalVariable(
2005 CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
2006 return Address(
2007 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2008 CGF.EmitRuntimeCall(
2009 OMPBuilder.getOrCreateRuntimeFunction(
2010 CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
2011 Args),
2012 VarLVType->getPointerTo(/*AddrSpace=*/0)),
2013 CGM.getContext().getTypeAlignInChars(VarType));
2014 }
2015
emitIfClause(CodeGenFunction & CGF,const Expr * Cond,const RegionCodeGenTy & ThenGen,const RegionCodeGenTy & ElseGen)2016 void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
2017 const RegionCodeGenTy &ThenGen,
2018 const RegionCodeGenTy &ElseGen) {
2019 CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
2020
2021 // If the condition constant folds and can be elided, try to avoid emitting
2022 // the condition and the dead arm of the if/else.
2023 bool CondConstant;
2024 if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
2025 if (CondConstant)
2026 ThenGen(CGF);
2027 else
2028 ElseGen(CGF);
2029 return;
2030 }
2031
2032 // Otherwise, the condition did not fold, or we couldn't elide it. Just
2033 // emit the conditional branch.
2034 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
2035 llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
2036 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
2037 CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
2038
2039 // Emit the 'then' code.
2040 CGF.EmitBlock(ThenBlock);
2041 ThenGen(CGF);
2042 CGF.EmitBranch(ContBlock);
2043 // Emit the 'else' code if present.
2044 // There is no need to emit line number for unconditional branch.
2045 (void)ApplyDebugLocation::CreateEmpty(CGF);
2046 CGF.EmitBlock(ElseBlock);
2047 ElseGen(CGF);
2048 // There is no need to emit line number for unconditional branch.
2049 (void)ApplyDebugLocation::CreateEmpty(CGF);
2050 CGF.EmitBranch(ContBlock);
2051 // Emit the continuation block for code after the if.
2052 CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
2053 }
2054
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2055 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
2056 llvm::Function *OutlinedFn,
2057 ArrayRef<llvm::Value *> CapturedVars,
2058 const Expr *IfCond) {
2059 if (!CGF.HaveInsertPoint())
2060 return;
2061 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2062 auto &M = CGM.getModule();
2063 auto &&ThenGen = [&M, OutlinedFn, CapturedVars, RTLoc,
2064 this](CodeGenFunction &CGF, PrePostActionTy &) {
2065 // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
2066 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2067 llvm::Value *Args[] = {
2068 RTLoc,
2069 CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
2070 CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
2071 llvm::SmallVector<llvm::Value *, 16> RealArgs;
2072 RealArgs.append(std::begin(Args), std::end(Args));
2073 RealArgs.append(CapturedVars.begin(), CapturedVars.end());
2074
2075 llvm::FunctionCallee RTLFn =
2076 OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_fork_call);
2077 CGF.EmitRuntimeCall(RTLFn, RealArgs);
2078 };
2079 auto &&ElseGen = [&M, OutlinedFn, CapturedVars, RTLoc, Loc,
2080 this](CodeGenFunction &CGF, PrePostActionTy &) {
2081 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2082 llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
2083 // Build calls:
2084 // __kmpc_serialized_parallel(&Loc, GTid);
2085 llvm::Value *Args[] = {RTLoc, ThreadID};
2086 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2087 M, OMPRTL___kmpc_serialized_parallel),
2088 Args);
2089
2090 // OutlinedFn(>id, &zero_bound, CapturedStruct);
2091 Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
2092 Address ZeroAddrBound =
2093 CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2094 /*Name=*/".bound.zero.addr");
2095 CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0));
2096 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2097 // ThreadId for serialized parallels is 0.
2098 OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2099 OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
2100 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2101 RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2102
2103 // __kmpc_end_serialized_parallel(&Loc, GTid);
2104 llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
2105 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2106 M, OMPRTL___kmpc_end_serialized_parallel),
2107 EndArgs);
2108 };
2109 if (IfCond) {
2110 emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2111 } else {
2112 RegionCodeGenTy ThenRCG(ThenGen);
2113 ThenRCG(CGF);
2114 }
2115 }
2116
2117 // If we're inside an (outlined) parallel region, use the region info's
2118 // thread-ID variable (it is passed in a first argument of the outlined function
2119 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
2120 // regular serial code region, get thread ID by calling kmp_int32
2121 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
2122 // return the address of that temp.
emitThreadIDAddress(CodeGenFunction & CGF,SourceLocation Loc)2123 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
2124 SourceLocation Loc) {
2125 if (auto *OMPRegionInfo =
2126 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2127 if (OMPRegionInfo->getThreadIDVariable())
2128 return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF);
2129
2130 llvm::Value *ThreadID = getThreadID(CGF, Loc);
2131 QualType Int32Ty =
2132 CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
2133 Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
2134 CGF.EmitStoreOfScalar(ThreadID,
2135 CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
2136
2137 return ThreadIDTemp;
2138 }
2139
getOrCreateInternalVariable(llvm::Type * Ty,const llvm::Twine & Name,unsigned AddressSpace)2140 llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
2141 llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
2142 SmallString<256> Buffer;
2143 llvm::raw_svector_ostream Out(Buffer);
2144 Out << Name;
2145 StringRef RuntimeName = Out.str();
2146 auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
2147 if (Elem.second) {
2148 assert(Elem.second->getType()->getPointerElementType() == Ty &&
2149 "OMP internal variable has different type than requested");
2150 return &*Elem.second;
2151 }
2152
2153 return Elem.second = new llvm::GlobalVariable(
2154 CGM.getModule(), Ty, /*IsConstant*/ false,
2155 llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
2156 Elem.first(), /*InsertBefore=*/nullptr,
2157 llvm::GlobalValue::NotThreadLocal, AddressSpace);
2158 }
2159
getCriticalRegionLock(StringRef CriticalName)2160 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
2161 std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
2162 std::string Name = getName({Prefix, "var"});
2163 return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
2164 }
2165
2166 namespace {
2167 /// Common pre(post)-action for different OpenMP constructs.
2168 class CommonActionTy final : public PrePostActionTy {
2169 llvm::FunctionCallee EnterCallee;
2170 ArrayRef<llvm::Value *> EnterArgs;
2171 llvm::FunctionCallee ExitCallee;
2172 ArrayRef<llvm::Value *> ExitArgs;
2173 bool Conditional;
2174 llvm::BasicBlock *ContBlock = nullptr;
2175
2176 public:
CommonActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)2177 CommonActionTy(llvm::FunctionCallee EnterCallee,
2178 ArrayRef<llvm::Value *> EnterArgs,
2179 llvm::FunctionCallee ExitCallee,
2180 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
2181 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
2182 ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)2183 void Enter(CodeGenFunction &CGF) override {
2184 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
2185 if (Conditional) {
2186 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
2187 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
2188 ContBlock = CGF.createBasicBlock("omp_if.end");
2189 // Generate the branch (If-stmt)
2190 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
2191 CGF.EmitBlock(ThenBlock);
2192 }
2193 }
Done(CodeGenFunction & CGF)2194 void Done(CodeGenFunction &CGF) {
2195 // Emit the rest of blocks/branches
2196 CGF.EmitBranch(ContBlock);
2197 CGF.EmitBlock(ContBlock, true);
2198 }
Exit(CodeGenFunction & CGF)2199 void Exit(CodeGenFunction &CGF) override {
2200 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
2201 }
2202 };
2203 } // anonymous namespace
2204
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)2205 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
2206 StringRef CriticalName,
2207 const RegionCodeGenTy &CriticalOpGen,
2208 SourceLocation Loc, const Expr *Hint) {
2209 // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
2210 // CriticalOpGen();
2211 // __kmpc_end_critical(ident_t *, gtid, Lock);
2212 // Prepare arguments and build a call to __kmpc_critical
2213 if (!CGF.HaveInsertPoint())
2214 return;
2215 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2216 getCriticalRegionLock(CriticalName)};
2217 llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
2218 std::end(Args));
2219 if (Hint) {
2220 EnterArgs.push_back(CGF.Builder.CreateIntCast(
2221 CGF.EmitScalarExpr(Hint), CGM.Int32Ty, /*isSigned=*/false));
2222 }
2223 CommonActionTy Action(
2224 OMPBuilder.getOrCreateRuntimeFunction(
2225 CGM.getModule(),
2226 Hint ? OMPRTL___kmpc_critical_with_hint : OMPRTL___kmpc_critical),
2227 EnterArgs,
2228 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2229 OMPRTL___kmpc_end_critical),
2230 Args);
2231 CriticalOpGen.setAction(Action);
2232 emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
2233 }
2234
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)2235 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
2236 const RegionCodeGenTy &MasterOpGen,
2237 SourceLocation Loc) {
2238 if (!CGF.HaveInsertPoint())
2239 return;
2240 // if(__kmpc_master(ident_t *, gtid)) {
2241 // MasterOpGen();
2242 // __kmpc_end_master(ident_t *, gtid);
2243 // }
2244 // Prepare arguments and build a call to __kmpc_master
2245 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2246 CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2247 CGM.getModule(), OMPRTL___kmpc_master),
2248 Args,
2249 OMPBuilder.getOrCreateRuntimeFunction(
2250 CGM.getModule(), OMPRTL___kmpc_end_master),
2251 Args,
2252 /*Conditional=*/true);
2253 MasterOpGen.setAction(Action);
2254 emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
2255 Action.Done(CGF);
2256 }
2257
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)2258 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
2259 SourceLocation Loc) {
2260 if (!CGF.HaveInsertPoint())
2261 return;
2262 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2263 OMPBuilder.createTaskyield(CGF.Builder);
2264 } else {
2265 // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
2266 llvm::Value *Args[] = {
2267 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2268 llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
2269 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2270 CGM.getModule(), OMPRTL___kmpc_omp_taskyield),
2271 Args);
2272 }
2273
2274 if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2275 Region->emitUntiedSwitch(CGF);
2276 }
2277
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)2278 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
2279 const RegionCodeGenTy &TaskgroupOpGen,
2280 SourceLocation Loc) {
2281 if (!CGF.HaveInsertPoint())
2282 return;
2283 // __kmpc_taskgroup(ident_t *, gtid);
2284 // TaskgroupOpGen();
2285 // __kmpc_end_taskgroup(ident_t *, gtid);
2286 // Prepare arguments and build a call to __kmpc_taskgroup
2287 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2288 CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2289 CGM.getModule(), OMPRTL___kmpc_taskgroup),
2290 Args,
2291 OMPBuilder.getOrCreateRuntimeFunction(
2292 CGM.getModule(), OMPRTL___kmpc_end_taskgroup),
2293 Args);
2294 TaskgroupOpGen.setAction(Action);
2295 emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
2296 }
2297
2298 /// Given an array of pointers to variables, project the address of a
2299 /// given variable.
emitAddrOfVarFromArray(CodeGenFunction & CGF,Address Array,unsigned Index,const VarDecl * Var)2300 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
2301 unsigned Index, const VarDecl *Var) {
2302 // Pull out the pointer to the variable.
2303 Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
2304 llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
2305
2306 Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
2307 Addr = CGF.Builder.CreateElementBitCast(
2308 Addr, CGF.ConvertTypeForMem(Var->getType()));
2309 return Addr;
2310 }
2311
emitCopyprivateCopyFunction(CodeGenModule & CGM,llvm::Type * ArgsType,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps,SourceLocation Loc)2312 static llvm::Value *emitCopyprivateCopyFunction(
2313 CodeGenModule &CGM, llvm::Type *ArgsType,
2314 ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
2315 ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
2316 SourceLocation Loc) {
2317 ASTContext &C = CGM.getContext();
2318 // void copy_func(void *LHSArg, void *RHSArg);
2319 FunctionArgList Args;
2320 ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2321 ImplicitParamDecl::Other);
2322 ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2323 ImplicitParamDecl::Other);
2324 Args.push_back(&LHSArg);
2325 Args.push_back(&RHSArg);
2326 const auto &CGFI =
2327 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2328 std::string Name =
2329 CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
2330 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2331 llvm::GlobalValue::InternalLinkage, Name,
2332 &CGM.getModule());
2333 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2334 Fn->setDoesNotRecurse();
2335 CodeGenFunction CGF(CGM);
2336 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2337 // Dest = (void*[n])(LHSArg);
2338 // Src = (void*[n])(RHSArg);
2339 Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2340 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
2341 ArgsType), CGF.getPointerAlign());
2342 Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2343 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
2344 ArgsType), CGF.getPointerAlign());
2345 // *(Type0*)Dst[0] = *(Type0*)Src[0];
2346 // *(Type1*)Dst[1] = *(Type1*)Src[1];
2347 // ...
2348 // *(Typen*)Dst[n] = *(Typen*)Src[n];
2349 for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
2350 const auto *DestVar =
2351 cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
2352 Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
2353
2354 const auto *SrcVar =
2355 cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
2356 Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
2357
2358 const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
2359 QualType Type = VD->getType();
2360 CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
2361 }
2362 CGF.FinishFunction();
2363 return Fn;
2364 }
2365
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > DstExprs,ArrayRef<const Expr * > AssignmentOps)2366 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
2367 const RegionCodeGenTy &SingleOpGen,
2368 SourceLocation Loc,
2369 ArrayRef<const Expr *> CopyprivateVars,
2370 ArrayRef<const Expr *> SrcExprs,
2371 ArrayRef<const Expr *> DstExprs,
2372 ArrayRef<const Expr *> AssignmentOps) {
2373 if (!CGF.HaveInsertPoint())
2374 return;
2375 assert(CopyprivateVars.size() == SrcExprs.size() &&
2376 CopyprivateVars.size() == DstExprs.size() &&
2377 CopyprivateVars.size() == AssignmentOps.size());
2378 ASTContext &C = CGM.getContext();
2379 // int32 did_it = 0;
2380 // if(__kmpc_single(ident_t *, gtid)) {
2381 // SingleOpGen();
2382 // __kmpc_end_single(ident_t *, gtid);
2383 // did_it = 1;
2384 // }
2385 // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2386 // <copy_func>, did_it);
2387
2388 Address DidIt = Address::invalid();
2389 if (!CopyprivateVars.empty()) {
2390 // int32 did_it = 0;
2391 QualType KmpInt32Ty =
2392 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2393 DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
2394 CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
2395 }
2396 // Prepare arguments and build a call to __kmpc_single
2397 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2398 CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2399 CGM.getModule(), OMPRTL___kmpc_single),
2400 Args,
2401 OMPBuilder.getOrCreateRuntimeFunction(
2402 CGM.getModule(), OMPRTL___kmpc_end_single),
2403 Args,
2404 /*Conditional=*/true);
2405 SingleOpGen.setAction(Action);
2406 emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
2407 if (DidIt.isValid()) {
2408 // did_it = 1;
2409 CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
2410 }
2411 Action.Done(CGF);
2412 // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2413 // <copy_func>, did_it);
2414 if (DidIt.isValid()) {
2415 llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
2416 QualType CopyprivateArrayTy = C.getConstantArrayType(
2417 C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
2418 /*IndexTypeQuals=*/0);
2419 // Create a list of all private variables for copyprivate.
2420 Address CopyprivateList =
2421 CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
2422 for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
2423 Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
2424 CGF.Builder.CreateStore(
2425 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2426 CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
2427 CGF.VoidPtrTy),
2428 Elem);
2429 }
2430 // Build function that copies private values from single region to all other
2431 // threads in the corresponding parallel region.
2432 llvm::Value *CpyFn = emitCopyprivateCopyFunction(
2433 CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
2434 CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
2435 llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
2436 Address CL =
2437 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
2438 CGF.VoidPtrTy);
2439 llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
2440 llvm::Value *Args[] = {
2441 emitUpdateLocation(CGF, Loc), // ident_t *<loc>
2442 getThreadID(CGF, Loc), // i32 <gtid>
2443 BufSize, // size_t <buf_size>
2444 CL.getPointer(), // void *<copyprivate list>
2445 CpyFn, // void (*) (void *, void *) <copy_func>
2446 DidItVal // i32 did_it
2447 };
2448 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2449 CGM.getModule(), OMPRTL___kmpc_copyprivate),
2450 Args);
2451 }
2452 }
2453
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)2454 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
2455 const RegionCodeGenTy &OrderedOpGen,
2456 SourceLocation Loc, bool IsThreads) {
2457 if (!CGF.HaveInsertPoint())
2458 return;
2459 // __kmpc_ordered(ident_t *, gtid);
2460 // OrderedOpGen();
2461 // __kmpc_end_ordered(ident_t *, gtid);
2462 // Prepare arguments and build a call to __kmpc_ordered
2463 if (IsThreads) {
2464 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2465 CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2466 CGM.getModule(), OMPRTL___kmpc_ordered),
2467 Args,
2468 OMPBuilder.getOrCreateRuntimeFunction(
2469 CGM.getModule(), OMPRTL___kmpc_end_ordered),
2470 Args);
2471 OrderedOpGen.setAction(Action);
2472 emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2473 return;
2474 }
2475 emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2476 }
2477
getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind)2478 unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
2479 unsigned Flags;
2480 if (Kind == OMPD_for)
2481 Flags = OMP_IDENT_BARRIER_IMPL_FOR;
2482 else if (Kind == OMPD_sections)
2483 Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
2484 else if (Kind == OMPD_single)
2485 Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
2486 else if (Kind == OMPD_barrier)
2487 Flags = OMP_IDENT_BARRIER_EXPL;
2488 else
2489 Flags = OMP_IDENT_BARRIER_IMPL;
2490 return Flags;
2491 }
2492
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const2493 void CGOpenMPRuntime::getDefaultScheduleAndChunk(
2494 CodeGenFunction &CGF, const OMPLoopDirective &S,
2495 OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
2496 // Check if the loop directive is actually a doacross loop directive. In this
2497 // case choose static, 1 schedule.
2498 if (llvm::any_of(
2499 S.getClausesOfKind<OMPOrderedClause>(),
2500 [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
2501 ScheduleKind = OMPC_SCHEDULE_static;
2502 // Chunk size is 1 in this case.
2503 llvm::APInt ChunkSize(32, 1);
2504 ChunkExpr = IntegerLiteral::Create(
2505 CGF.getContext(), ChunkSize,
2506 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
2507 SourceLocation());
2508 }
2509 }
2510
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)2511 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
2512 OpenMPDirectiveKind Kind, bool EmitChecks,
2513 bool ForceSimpleCall) {
2514 // Check if we should use the OMPBuilder
2515 auto *OMPRegionInfo =
2516 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
2517 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2518 CGF.Builder.restoreIP(OMPBuilder.createBarrier(
2519 CGF.Builder, Kind, ForceSimpleCall, EmitChecks));
2520 return;
2521 }
2522
2523 if (!CGF.HaveInsertPoint())
2524 return;
2525 // Build call __kmpc_cancel_barrier(loc, thread_id);
2526 // Build call __kmpc_barrier(loc, thread_id);
2527 unsigned Flags = getDefaultFlagsForBarriers(Kind);
2528 // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
2529 // thread_id);
2530 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2531 getThreadID(CGF, Loc)};
2532 if (OMPRegionInfo) {
2533 if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
2534 llvm::Value *Result = CGF.EmitRuntimeCall(
2535 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2536 OMPRTL___kmpc_cancel_barrier),
2537 Args);
2538 if (EmitChecks) {
2539 // if (__kmpc_cancel_barrier()) {
2540 // exit from construct;
2541 // }
2542 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
2543 llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
2544 llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
2545 CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
2546 CGF.EmitBlock(ExitBB);
2547 // exit from construct;
2548 CodeGenFunction::JumpDest CancelDestination =
2549 CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
2550 CGF.EmitBranchThroughCleanup(CancelDestination);
2551 CGF.EmitBlock(ContBB, /*IsFinished=*/true);
2552 }
2553 return;
2554 }
2555 }
2556 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2557 CGM.getModule(), OMPRTL___kmpc_barrier),
2558 Args);
2559 }
2560
2561 /// Map the OpenMP loop schedule to the runtime enumeration.
getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,bool Chunked,bool Ordered)2562 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
2563 bool Chunked, bool Ordered) {
2564 switch (ScheduleKind) {
2565 case OMPC_SCHEDULE_static:
2566 return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
2567 : (Ordered ? OMP_ord_static : OMP_sch_static);
2568 case OMPC_SCHEDULE_dynamic:
2569 return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
2570 case OMPC_SCHEDULE_guided:
2571 return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
2572 case OMPC_SCHEDULE_runtime:
2573 return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
2574 case OMPC_SCHEDULE_auto:
2575 return Ordered ? OMP_ord_auto : OMP_sch_auto;
2576 case OMPC_SCHEDULE_unknown:
2577 assert(!Chunked && "chunk was specified but schedule kind not known");
2578 return Ordered ? OMP_ord_static : OMP_sch_static;
2579 }
2580 llvm_unreachable("Unexpected runtime schedule");
2581 }
2582
2583 /// Map the OpenMP distribute schedule to the runtime enumeration.
2584 static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked)2585 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
2586 // only static is allowed for dist_schedule
2587 return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
2588 }
2589
isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2590 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
2591 bool Chunked) const {
2592 OpenMPSchedType Schedule =
2593 getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2594 return Schedule == OMP_sch_static;
2595 }
2596
isStaticNonchunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2597 bool CGOpenMPRuntime::isStaticNonchunked(
2598 OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2599 OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2600 return Schedule == OMP_dist_sch_static;
2601 }
2602
isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2603 bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
2604 bool Chunked) const {
2605 OpenMPSchedType Schedule =
2606 getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2607 return Schedule == OMP_sch_static_chunked;
2608 }
2609
isStaticChunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2610 bool CGOpenMPRuntime::isStaticChunked(
2611 OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2612 OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2613 return Schedule == OMP_dist_sch_static_chunked;
2614 }
2615
isDynamic(OpenMPScheduleClauseKind ScheduleKind) const2616 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
2617 OpenMPSchedType Schedule =
2618 getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
2619 assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
2620 return Schedule != OMP_sch_static;
2621 }
2622
addMonoNonMonoModifier(CodeGenModule & CGM,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2)2623 static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
2624 OpenMPScheduleClauseModifier M1,
2625 OpenMPScheduleClauseModifier M2) {
2626 int Modifier = 0;
2627 switch (M1) {
2628 case OMPC_SCHEDULE_MODIFIER_monotonic:
2629 Modifier = OMP_sch_modifier_monotonic;
2630 break;
2631 case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2632 Modifier = OMP_sch_modifier_nonmonotonic;
2633 break;
2634 case OMPC_SCHEDULE_MODIFIER_simd:
2635 if (Schedule == OMP_sch_static_chunked)
2636 Schedule = OMP_sch_static_balanced_chunked;
2637 break;
2638 case OMPC_SCHEDULE_MODIFIER_last:
2639 case OMPC_SCHEDULE_MODIFIER_unknown:
2640 break;
2641 }
2642 switch (M2) {
2643 case OMPC_SCHEDULE_MODIFIER_monotonic:
2644 Modifier = OMP_sch_modifier_monotonic;
2645 break;
2646 case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2647 Modifier = OMP_sch_modifier_nonmonotonic;
2648 break;
2649 case OMPC_SCHEDULE_MODIFIER_simd:
2650 if (Schedule == OMP_sch_static_chunked)
2651 Schedule = OMP_sch_static_balanced_chunked;
2652 break;
2653 case OMPC_SCHEDULE_MODIFIER_last:
2654 case OMPC_SCHEDULE_MODIFIER_unknown:
2655 break;
2656 }
2657 // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
2658 // If the static schedule kind is specified or if the ordered clause is
2659 // specified, and if the nonmonotonic modifier is not specified, the effect is
2660 // as if the monotonic modifier is specified. Otherwise, unless the monotonic
2661 // modifier is specified, the effect is as if the nonmonotonic modifier is
2662 // specified.
2663 if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
2664 if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
2665 Schedule == OMP_sch_static_balanced_chunked ||
2666 Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
2667 Schedule == OMP_dist_sch_static_chunked ||
2668 Schedule == OMP_dist_sch_static))
2669 Modifier = OMP_sch_modifier_nonmonotonic;
2670 }
2671 return Schedule | Modifier;
2672 }
2673
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)2674 void CGOpenMPRuntime::emitForDispatchInit(
2675 CodeGenFunction &CGF, SourceLocation Loc,
2676 const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
2677 bool Ordered, const DispatchRTInput &DispatchValues) {
2678 if (!CGF.HaveInsertPoint())
2679 return;
2680 OpenMPSchedType Schedule = getRuntimeSchedule(
2681 ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
2682 assert(Ordered ||
2683 (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
2684 Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
2685 Schedule != OMP_sch_static_balanced_chunked));
2686 // Call __kmpc_dispatch_init(
2687 // ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
2688 // kmp_int[32|64] lower, kmp_int[32|64] upper,
2689 // kmp_int[32|64] stride, kmp_int[32|64] chunk);
2690
2691 // If the Chunk was not specified in the clause - use default value 1.
2692 llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
2693 : CGF.Builder.getIntN(IVSize, 1);
2694 llvm::Value *Args[] = {
2695 emitUpdateLocation(CGF, Loc),
2696 getThreadID(CGF, Loc),
2697 CGF.Builder.getInt32(addMonoNonMonoModifier(
2698 CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
2699 DispatchValues.LB, // Lower
2700 DispatchValues.UB, // Upper
2701 CGF.Builder.getIntN(IVSize, 1), // Stride
2702 Chunk // Chunk
2703 };
2704 CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
2705 }
2706
emitForStaticInitCall(CodeGenFunction & CGF,llvm::Value * UpdateLocation,llvm::Value * ThreadId,llvm::FunctionCallee ForStaticInitFunction,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,const CGOpenMPRuntime::StaticRTInput & Values)2707 static void emitForStaticInitCall(
2708 CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
2709 llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
2710 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
2711 const CGOpenMPRuntime::StaticRTInput &Values) {
2712 if (!CGF.HaveInsertPoint())
2713 return;
2714
2715 assert(!Values.Ordered);
2716 assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
2717 Schedule == OMP_sch_static_balanced_chunked ||
2718 Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
2719 Schedule == OMP_dist_sch_static ||
2720 Schedule == OMP_dist_sch_static_chunked);
2721
2722 // Call __kmpc_for_static_init(
2723 // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
2724 // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
2725 // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
2726 // kmp_int[32|64] incr, kmp_int[32|64] chunk);
2727 llvm::Value *Chunk = Values.Chunk;
2728 if (Chunk == nullptr) {
2729 assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
2730 Schedule == OMP_dist_sch_static) &&
2731 "expected static non-chunked schedule");
2732 // If the Chunk was not specified in the clause - use default value 1.
2733 Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
2734 } else {
2735 assert((Schedule == OMP_sch_static_chunked ||
2736 Schedule == OMP_sch_static_balanced_chunked ||
2737 Schedule == OMP_ord_static_chunked ||
2738 Schedule == OMP_dist_sch_static_chunked) &&
2739 "expected static chunked schedule");
2740 }
2741 llvm::Value *Args[] = {
2742 UpdateLocation,
2743 ThreadId,
2744 CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
2745 M2)), // Schedule type
2746 Values.IL.getPointer(), // &isLastIter
2747 Values.LB.getPointer(), // &LB
2748 Values.UB.getPointer(), // &UB
2749 Values.ST.getPointer(), // &Stride
2750 CGF.Builder.getIntN(Values.IVSize, 1), // Incr
2751 Chunk // Chunk
2752 };
2753 CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
2754 }
2755
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)2756 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
2757 SourceLocation Loc,
2758 OpenMPDirectiveKind DKind,
2759 const OpenMPScheduleTy &ScheduleKind,
2760 const StaticRTInput &Values) {
2761 OpenMPSchedType ScheduleNum = getRuntimeSchedule(
2762 ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
2763 assert(isOpenMPWorksharingDirective(DKind) &&
2764 "Expected loop-based or sections-based directive.");
2765 llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
2766 isOpenMPLoopDirective(DKind)
2767 ? OMP_IDENT_WORK_LOOP
2768 : OMP_IDENT_WORK_SECTIONS);
2769 llvm::Value *ThreadId = getThreadID(CGF, Loc);
2770 llvm::FunctionCallee StaticInitFunction =
2771 createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2772 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2773 emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2774 ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
2775 }
2776
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const CGOpenMPRuntime::StaticRTInput & Values)2777 void CGOpenMPRuntime::emitDistributeStaticInit(
2778 CodeGenFunction &CGF, SourceLocation Loc,
2779 OpenMPDistScheduleClauseKind SchedKind,
2780 const CGOpenMPRuntime::StaticRTInput &Values) {
2781 OpenMPSchedType ScheduleNum =
2782 getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
2783 llvm::Value *UpdatedLocation =
2784 emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
2785 llvm::Value *ThreadId = getThreadID(CGF, Loc);
2786 llvm::FunctionCallee StaticInitFunction =
2787 createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2788 emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2789 ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
2790 OMPC_SCHEDULE_MODIFIER_unknown, Values);
2791 }
2792
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)2793 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
2794 SourceLocation Loc,
2795 OpenMPDirectiveKind DKind) {
2796 if (!CGF.HaveInsertPoint())
2797 return;
2798 // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
2799 llvm::Value *Args[] = {
2800 emitUpdateLocation(CGF, Loc,
2801 isOpenMPDistributeDirective(DKind)
2802 ? OMP_IDENT_WORK_DISTRIBUTE
2803 : isOpenMPLoopDirective(DKind)
2804 ? OMP_IDENT_WORK_LOOP
2805 : OMP_IDENT_WORK_SECTIONS),
2806 getThreadID(CGF, Loc)};
2807 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2808 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2809 CGM.getModule(), OMPRTL___kmpc_for_static_fini),
2810 Args);
2811 }
2812
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)2813 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
2814 SourceLocation Loc,
2815 unsigned IVSize,
2816 bool IVSigned) {
2817 if (!CGF.HaveInsertPoint())
2818 return;
2819 // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
2820 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2821 CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
2822 }
2823
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)2824 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
2825 SourceLocation Loc, unsigned IVSize,
2826 bool IVSigned, Address IL,
2827 Address LB, Address UB,
2828 Address ST) {
2829 // Call __kmpc_dispatch_next(
2830 // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
2831 // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
2832 // kmp_int[32|64] *p_stride);
2833 llvm::Value *Args[] = {
2834 emitUpdateLocation(CGF, Loc),
2835 getThreadID(CGF, Loc),
2836 IL.getPointer(), // &isLastIter
2837 LB.getPointer(), // &Lower
2838 UB.getPointer(), // &Upper
2839 ST.getPointer() // &Stride
2840 };
2841 llvm::Value *Call =
2842 CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
2843 return CGF.EmitScalarConversion(
2844 Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
2845 CGF.getContext().BoolTy, Loc);
2846 }
2847
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)2848 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
2849 llvm::Value *NumThreads,
2850 SourceLocation Loc) {
2851 if (!CGF.HaveInsertPoint())
2852 return;
2853 // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
2854 llvm::Value *Args[] = {
2855 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2856 CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
2857 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2858 CGM.getModule(), OMPRTL___kmpc_push_num_threads),
2859 Args);
2860 }
2861
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)2862 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
2863 ProcBindKind ProcBind,
2864 SourceLocation Loc) {
2865 if (!CGF.HaveInsertPoint())
2866 return;
2867 assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.");
2868 // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
2869 llvm::Value *Args[] = {
2870 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2871 llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)};
2872 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2873 CGM.getModule(), OMPRTL___kmpc_push_proc_bind),
2874 Args);
2875 }
2876
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * >,SourceLocation Loc,llvm::AtomicOrdering AO)2877 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
2878 SourceLocation Loc, llvm::AtomicOrdering AO) {
2879 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2880 OMPBuilder.createFlush(CGF.Builder);
2881 } else {
2882 if (!CGF.HaveInsertPoint())
2883 return;
2884 // Build call void __kmpc_flush(ident_t *loc)
2885 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2886 CGM.getModule(), OMPRTL___kmpc_flush),
2887 emitUpdateLocation(CGF, Loc));
2888 }
2889 }
2890
2891 namespace {
2892 /// Indexes of fields for type kmp_task_t.
2893 enum KmpTaskTFields {
2894 /// List of shared variables.
2895 KmpTaskTShareds,
2896 /// Task routine.
2897 KmpTaskTRoutine,
2898 /// Partition id for the untied tasks.
2899 KmpTaskTPartId,
2900 /// Function with call of destructors for private variables.
2901 Data1,
2902 /// Task priority.
2903 Data2,
2904 /// (Taskloops only) Lower bound.
2905 KmpTaskTLowerBound,
2906 /// (Taskloops only) Upper bound.
2907 KmpTaskTUpperBound,
2908 /// (Taskloops only) Stride.
2909 KmpTaskTStride,
2910 /// (Taskloops only) Is last iteration flag.
2911 KmpTaskTLastIter,
2912 /// (Taskloops only) Reduction data.
2913 KmpTaskTReductions,
2914 };
2915 } // anonymous namespace
2916
empty() const2917 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
2918 return OffloadEntriesTargetRegion.empty() &&
2919 OffloadEntriesDeviceGlobalVar.empty();
2920 }
2921
2922 /// Initialize target region entry.
2923 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,unsigned Order)2924 initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2925 StringRef ParentName, unsigned LineNum,
2926 unsigned Order) {
2927 assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
2928 "only required for the device "
2929 "code generation.");
2930 OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
2931 OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
2932 OMPTargetRegionEntryTargetRegion);
2933 ++OffloadingEntriesNum;
2934 }
2935
2936 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,llvm::Constant * Addr,llvm::Constant * ID,OMPTargetRegionEntryKind Flags)2937 registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2938 StringRef ParentName, unsigned LineNum,
2939 llvm::Constant *Addr, llvm::Constant *ID,
2940 OMPTargetRegionEntryKind Flags) {
2941 // If we are emitting code for a target, the entry is already initialized,
2942 // only has to be registered.
2943 if (CGM.getLangOpts().OpenMPIsDevice) {
2944 if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
2945 unsigned DiagID = CGM.getDiags().getCustomDiagID(
2946 DiagnosticsEngine::Error,
2947 "Unable to find target region on line '%0' in the device code.");
2948 CGM.getDiags().Report(DiagID) << LineNum;
2949 return;
2950 }
2951 auto &Entry =
2952 OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
2953 assert(Entry.isValid() && "Entry not initialized!");
2954 Entry.setAddress(Addr);
2955 Entry.setID(ID);
2956 Entry.setFlags(Flags);
2957 } else {
2958 if (Flags ==
2959 OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion &&
2960 hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum,
2961 /*IgnoreAddressId*/ true))
2962 return;
2963 assert(!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) &&
2964 "Target region entry already registered!");
2965 OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
2966 OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
2967 ++OffloadingEntriesNum;
2968 }
2969 }
2970
hasTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,bool IgnoreAddressId) const2971 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
2972 unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum,
2973 bool IgnoreAddressId) const {
2974 auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
2975 if (PerDevice == OffloadEntriesTargetRegion.end())
2976 return false;
2977 auto PerFile = PerDevice->second.find(FileID);
2978 if (PerFile == PerDevice->second.end())
2979 return false;
2980 auto PerParentName = PerFile->second.find(ParentName);
2981 if (PerParentName == PerFile->second.end())
2982 return false;
2983 auto PerLine = PerParentName->second.find(LineNum);
2984 if (PerLine == PerParentName->second.end())
2985 return false;
2986 // Fail if this entry is already registered.
2987 if (!IgnoreAddressId &&
2988 (PerLine->second.getAddress() || PerLine->second.getID()))
2989 return false;
2990 return true;
2991 }
2992
actOnTargetRegionEntriesInfo(const OffloadTargetRegionEntryInfoActTy & Action)2993 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
2994 const OffloadTargetRegionEntryInfoActTy &Action) {
2995 // Scan all target region entries and perform the provided action.
2996 for (const auto &D : OffloadEntriesTargetRegion)
2997 for (const auto &F : D.second)
2998 for (const auto &P : F.second)
2999 for (const auto &L : P.second)
3000 Action(D.first, F.first, P.first(), L.first, L.second);
3001 }
3002
3003 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeDeviceGlobalVarEntryInfo(StringRef Name,OMPTargetGlobalVarEntryKind Flags,unsigned Order)3004 initializeDeviceGlobalVarEntryInfo(StringRef Name,
3005 OMPTargetGlobalVarEntryKind Flags,
3006 unsigned Order) {
3007 assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3008 "only required for the device "
3009 "code generation.");
3010 OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
3011 ++OffloadingEntriesNum;
3012 }
3013
3014 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerDeviceGlobalVarEntryInfo(StringRef VarName,llvm::Constant * Addr,CharUnits VarSize,OMPTargetGlobalVarEntryKind Flags,llvm::GlobalValue::LinkageTypes Linkage)3015 registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
3016 CharUnits VarSize,
3017 OMPTargetGlobalVarEntryKind Flags,
3018 llvm::GlobalValue::LinkageTypes Linkage) {
3019 if (CGM.getLangOpts().OpenMPIsDevice) {
3020 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3021 assert(Entry.isValid() && Entry.getFlags() == Flags &&
3022 "Entry not initialized!");
3023 assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3024 "Resetting with the new address.");
3025 if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
3026 if (Entry.getVarSize().isZero()) {
3027 Entry.setVarSize(VarSize);
3028 Entry.setLinkage(Linkage);
3029 }
3030 return;
3031 }
3032 Entry.setVarSize(VarSize);
3033 Entry.setLinkage(Linkage);
3034 Entry.setAddress(Addr);
3035 } else {
3036 if (hasDeviceGlobalVarEntryInfo(VarName)) {
3037 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3038 assert(Entry.isValid() && Entry.getFlags() == Flags &&
3039 "Entry not initialized!");
3040 assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3041 "Resetting with the new address.");
3042 if (Entry.getVarSize().isZero()) {
3043 Entry.setVarSize(VarSize);
3044 Entry.setLinkage(Linkage);
3045 }
3046 return;
3047 }
3048 OffloadEntriesDeviceGlobalVar.try_emplace(
3049 VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
3050 ++OffloadingEntriesNum;
3051 }
3052 }
3053
3054 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
actOnDeviceGlobalVarEntriesInfo(const OffloadDeviceGlobalVarEntryInfoActTy & Action)3055 actOnDeviceGlobalVarEntriesInfo(
3056 const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
3057 // Scan all target region entries and perform the provided action.
3058 for (const auto &E : OffloadEntriesDeviceGlobalVar)
3059 Action(E.getKey(), E.getValue());
3060 }
3061
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t Flags,llvm::GlobalValue::LinkageTypes Linkage)3062 void CGOpenMPRuntime::createOffloadEntry(
3063 llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
3064 llvm::GlobalValue::LinkageTypes Linkage) {
3065 StringRef Name = Addr->getName();
3066 llvm::Module &M = CGM.getModule();
3067 llvm::LLVMContext &C = M.getContext();
3068
3069 // Create constant string with the name.
3070 llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
3071
3072 std::string StringName = getName({"omp_offloading", "entry_name"});
3073 auto *Str = new llvm::GlobalVariable(
3074 M, StrPtrInit->getType(), /*isConstant=*/true,
3075 llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
3076 Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3077
3078 llvm::Constant *Data[] = {
3079 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(ID, CGM.VoidPtrTy),
3080 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, CGM.Int8PtrTy),
3081 llvm::ConstantInt::get(CGM.SizeTy, Size),
3082 llvm::ConstantInt::get(CGM.Int32Ty, Flags),
3083 llvm::ConstantInt::get(CGM.Int32Ty, 0)};
3084 std::string EntryName = getName({"omp_offloading", "entry", ""});
3085 llvm::GlobalVariable *Entry = createGlobalStruct(
3086 CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
3087 Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
3088
3089 // The entry has to be created in the section the linker expects it to be.
3090 Entry->setSection("omp_offloading_entries");
3091 }
3092
createOffloadEntriesAndInfoMetadata()3093 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
3094 // Emit the offloading entries and metadata so that the device codegen side
3095 // can easily figure out what to emit. The produced metadata looks like
3096 // this:
3097 //
3098 // !omp_offload.info = !{!1, ...}
3099 //
3100 // Right now we only generate metadata for function that contain target
3101 // regions.
3102
3103 // If we are in simd mode or there are no entries, we don't need to do
3104 // anything.
3105 if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty())
3106 return;
3107
3108 llvm::Module &M = CGM.getModule();
3109 llvm::LLVMContext &C = M.getContext();
3110 SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *,
3111 SourceLocation, StringRef>,
3112 16>
3113 OrderedEntries(OffloadEntriesInfoManager.size());
3114 llvm::SmallVector<StringRef, 16> ParentFunctions(
3115 OffloadEntriesInfoManager.size());
3116
3117 // Auxiliary methods to create metadata values and strings.
3118 auto &&GetMDInt = [this](unsigned V) {
3119 return llvm::ConstantAsMetadata::get(
3120 llvm::ConstantInt::get(CGM.Int32Ty, V));
3121 };
3122
3123 auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
3124
3125 // Create the offloading info metadata node.
3126 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
3127
3128 // Create function that emits metadata for each target region entry;
3129 auto &&TargetRegionMetadataEmitter =
3130 [this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt,
3131 &GetMDString](
3132 unsigned DeviceID, unsigned FileID, StringRef ParentName,
3133 unsigned Line,
3134 const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
3135 // Generate metadata for target regions. Each entry of this metadata
3136 // contains:
3137 // - Entry 0 -> Kind of this type of metadata (0).
3138 // - Entry 1 -> Device ID of the file where the entry was identified.
3139 // - Entry 2 -> File ID of the file where the entry was identified.
3140 // - Entry 3 -> Mangled name of the function where the entry was
3141 // identified.
3142 // - Entry 4 -> Line in the file where the entry was identified.
3143 // - Entry 5 -> Order the entry was created.
3144 // The first element of the metadata node is the kind.
3145 llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
3146 GetMDInt(FileID), GetMDString(ParentName),
3147 GetMDInt(Line), GetMDInt(E.getOrder())};
3148
3149 SourceLocation Loc;
3150 for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
3151 E = CGM.getContext().getSourceManager().fileinfo_end();
3152 I != E; ++I) {
3153 if (I->getFirst()->getUniqueID().getDevice() == DeviceID &&
3154 I->getFirst()->getUniqueID().getFile() == FileID) {
3155 Loc = CGM.getContext().getSourceManager().translateFileLineCol(
3156 I->getFirst(), Line, 1);
3157 break;
3158 }
3159 }
3160 // Save this entry in the right position of the ordered entries array.
3161 OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName);
3162 ParentFunctions[E.getOrder()] = ParentName;
3163
3164 // Add metadata to the named metadata node.
3165 MD->addOperand(llvm::MDNode::get(C, Ops));
3166 };
3167
3168 OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
3169 TargetRegionMetadataEmitter);
3170
3171 // Create function that emits metadata for each device global variable entry;
3172 auto &&DeviceGlobalVarMetadataEmitter =
3173 [&C, &OrderedEntries, &GetMDInt, &GetMDString,
3174 MD](StringRef MangledName,
3175 const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
3176 &E) {
3177 // Generate metadata for global variables. Each entry of this metadata
3178 // contains:
3179 // - Entry 0 -> Kind of this type of metadata (1).
3180 // - Entry 1 -> Mangled name of the variable.
3181 // - Entry 2 -> Declare target kind.
3182 // - Entry 3 -> Order the entry was created.
3183 // The first element of the metadata node is the kind.
3184 llvm::Metadata *Ops[] = {
3185 GetMDInt(E.getKind()), GetMDString(MangledName),
3186 GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
3187
3188 // Save this entry in the right position of the ordered entries array.
3189 OrderedEntries[E.getOrder()] =
3190 std::make_tuple(&E, SourceLocation(), MangledName);
3191
3192 // Add metadata to the named metadata node.
3193 MD->addOperand(llvm::MDNode::get(C, Ops));
3194 };
3195
3196 OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
3197 DeviceGlobalVarMetadataEmitter);
3198
3199 for (const auto &E : OrderedEntries) {
3200 assert(std::get<0>(E) && "All ordered entries must exist!");
3201 if (const auto *CE =
3202 dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
3203 std::get<0>(E))) {
3204 if (!CE->getID() || !CE->getAddress()) {
3205 // Do not blame the entry if the parent funtion is not emitted.
3206 StringRef FnName = ParentFunctions[CE->getOrder()];
3207 if (!CGM.GetGlobalValue(FnName))
3208 continue;
3209 unsigned DiagID = CGM.getDiags().getCustomDiagID(
3210 DiagnosticsEngine::Error,
3211 "Offloading entry for target region in %0 is incorrect: either the "
3212 "address or the ID is invalid.");
3213 CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName;
3214 continue;
3215 }
3216 createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
3217 CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
3218 } else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy::
3219 OffloadEntryInfoDeviceGlobalVar>(
3220 std::get<0>(E))) {
3221 OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
3222 static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3223 CE->getFlags());
3224 switch (Flags) {
3225 case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
3226 if (CGM.getLangOpts().OpenMPIsDevice &&
3227 CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
3228 continue;
3229 if (!CE->getAddress()) {
3230 unsigned DiagID = CGM.getDiags().getCustomDiagID(
3231 DiagnosticsEngine::Error, "Offloading entry for declare target "
3232 "variable %0 is incorrect: the "
3233 "address is invalid.");
3234 CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E);
3235 continue;
3236 }
3237 // The vaiable has no definition - no need to add the entry.
3238 if (CE->getVarSize().isZero())
3239 continue;
3240 break;
3241 }
3242 case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
3243 assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
3244 (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
3245 "Declaret target link address is set.");
3246 if (CGM.getLangOpts().OpenMPIsDevice)
3247 continue;
3248 if (!CE->getAddress()) {
3249 unsigned DiagID = CGM.getDiags().getCustomDiagID(
3250 DiagnosticsEngine::Error,
3251 "Offloading entry for declare target variable is incorrect: the "
3252 "address is invalid.");
3253 CGM.getDiags().Report(DiagID);
3254 continue;
3255 }
3256 break;
3257 }
3258 createOffloadEntry(CE->getAddress(), CE->getAddress(),
3259 CE->getVarSize().getQuantity(), Flags,
3260 CE->getLinkage());
3261 } else {
3262 llvm_unreachable("Unsupported entry kind.");
3263 }
3264 }
3265 }
3266
3267 /// Loads all the offload entries information from the host IR
3268 /// metadata.
loadOffloadInfoMetadata()3269 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
3270 // If we are in target mode, load the metadata from the host IR. This code has
3271 // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
3272
3273 if (!CGM.getLangOpts().OpenMPIsDevice)
3274 return;
3275
3276 if (CGM.getLangOpts().OMPHostIRFile.empty())
3277 return;
3278
3279 auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
3280 if (auto EC = Buf.getError()) {
3281 CGM.getDiags().Report(diag::err_cannot_open_file)
3282 << CGM.getLangOpts().OMPHostIRFile << EC.message();
3283 return;
3284 }
3285
3286 llvm::LLVMContext C;
3287 auto ME = expectedToErrorOrAndEmitErrors(
3288 C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
3289
3290 if (auto EC = ME.getError()) {
3291 unsigned DiagID = CGM.getDiags().getCustomDiagID(
3292 DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
3293 CGM.getDiags().Report(DiagID)
3294 << CGM.getLangOpts().OMPHostIRFile << EC.message();
3295 return;
3296 }
3297
3298 llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
3299 if (!MD)
3300 return;
3301
3302 for (llvm::MDNode *MN : MD->operands()) {
3303 auto &&GetMDInt = [MN](unsigned Idx) {
3304 auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
3305 return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
3306 };
3307
3308 auto &&GetMDString = [MN](unsigned Idx) {
3309 auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
3310 return V->getString();
3311 };
3312
3313 switch (GetMDInt(0)) {
3314 default:
3315 llvm_unreachable("Unexpected metadata!");
3316 break;
3317 case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3318 OffloadingEntryInfoTargetRegion:
3319 OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
3320 /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
3321 /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
3322 /*Order=*/GetMDInt(5));
3323 break;
3324 case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3325 OffloadingEntryInfoDeviceGlobalVar:
3326 OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
3327 /*MangledName=*/GetMDString(1),
3328 static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3329 /*Flags=*/GetMDInt(2)),
3330 /*Order=*/GetMDInt(3));
3331 break;
3332 }
3333 }
3334 }
3335
emitKmpRoutineEntryT(QualType KmpInt32Ty)3336 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
3337 if (!KmpRoutineEntryPtrTy) {
3338 // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
3339 ASTContext &C = CGM.getContext();
3340 QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
3341 FunctionProtoType::ExtProtoInfo EPI;
3342 KmpRoutineEntryPtrQTy = C.getPointerType(
3343 C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
3344 KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
3345 }
3346 }
3347
getTgtOffloadEntryQTy()3348 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
3349 // Make sure the type of the entry is already created. This is the type we
3350 // have to create:
3351 // struct __tgt_offload_entry{
3352 // void *addr; // Pointer to the offload entry info.
3353 // // (function or global)
3354 // char *name; // Name of the function or global.
3355 // size_t size; // Size of the entry info (0 if it a function).
3356 // int32_t flags; // Flags associated with the entry, e.g. 'link'.
3357 // int32_t reserved; // Reserved, to use by the runtime library.
3358 // };
3359 if (TgtOffloadEntryQTy.isNull()) {
3360 ASTContext &C = CGM.getContext();
3361 RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
3362 RD->startDefinition();
3363 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3364 addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
3365 addFieldToRecordDecl(C, RD, C.getSizeType());
3366 addFieldToRecordDecl(
3367 C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3368 addFieldToRecordDecl(
3369 C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3370 RD->completeDefinition();
3371 RD->addAttr(PackedAttr::CreateImplicit(C));
3372 TgtOffloadEntryQTy = C.getRecordType(RD);
3373 }
3374 return TgtOffloadEntryQTy;
3375 }
3376
3377 namespace {
3378 struct PrivateHelpersTy {
PrivateHelpersTy__anon8f021c721611::PrivateHelpersTy3379 PrivateHelpersTy(const Expr *OriginalRef, const VarDecl *Original,
3380 const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit)
3381 : OriginalRef(OriginalRef), Original(Original), PrivateCopy(PrivateCopy),
3382 PrivateElemInit(PrivateElemInit) {}
PrivateHelpersTy__anon8f021c721611::PrivateHelpersTy3383 PrivateHelpersTy(const VarDecl *Original) : Original(Original) {}
3384 const Expr *OriginalRef = nullptr;
3385 const VarDecl *Original = nullptr;
3386 const VarDecl *PrivateCopy = nullptr;
3387 const VarDecl *PrivateElemInit = nullptr;
isLocalPrivate__anon8f021c721611::PrivateHelpersTy3388 bool isLocalPrivate() const {
3389 return !OriginalRef && !PrivateCopy && !PrivateElemInit;
3390 }
3391 };
3392 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
3393 } // anonymous namespace
3394
isAllocatableDecl(const VarDecl * VD)3395 static bool isAllocatableDecl(const VarDecl *VD) {
3396 const VarDecl *CVD = VD->getCanonicalDecl();
3397 if (!CVD->hasAttr<OMPAllocateDeclAttr>())
3398 return false;
3399 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
3400 // Use the default allocation.
3401 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
3402 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
3403 !AA->getAllocator());
3404 }
3405
3406 static RecordDecl *
createPrivatesRecordDecl(CodeGenModule & CGM,ArrayRef<PrivateDataTy> Privates)3407 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
3408 if (!Privates.empty()) {
3409 ASTContext &C = CGM.getContext();
3410 // Build struct .kmp_privates_t. {
3411 // /* private vars */
3412 // };
3413 RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
3414 RD->startDefinition();
3415 for (const auto &Pair : Privates) {
3416 const VarDecl *VD = Pair.second.Original;
3417 QualType Type = VD->getType().getNonReferenceType();
3418 // If the private variable is a local variable with lvalue ref type,
3419 // allocate the pointer instead of the pointee type.
3420 if (Pair.second.isLocalPrivate()) {
3421 if (VD->getType()->isLValueReferenceType())
3422 Type = C.getPointerType(Type);
3423 if (isAllocatableDecl(VD))
3424 Type = C.getPointerType(Type);
3425 }
3426 FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
3427 if (VD->hasAttrs()) {
3428 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
3429 E(VD->getAttrs().end());
3430 I != E; ++I)
3431 FD->addAttr(*I);
3432 }
3433 }
3434 RD->completeDefinition();
3435 return RD;
3436 }
3437 return nullptr;
3438 }
3439
3440 static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule & CGM,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpRoutineEntryPointerQTy)3441 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
3442 QualType KmpInt32Ty,
3443 QualType KmpRoutineEntryPointerQTy) {
3444 ASTContext &C = CGM.getContext();
3445 // Build struct kmp_task_t {
3446 // void * shareds;
3447 // kmp_routine_entry_t routine;
3448 // kmp_int32 part_id;
3449 // kmp_cmplrdata_t data1;
3450 // kmp_cmplrdata_t data2;
3451 // For taskloops additional fields:
3452 // kmp_uint64 lb;
3453 // kmp_uint64 ub;
3454 // kmp_int64 st;
3455 // kmp_int32 liter;
3456 // void * reductions;
3457 // };
3458 RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
3459 UD->startDefinition();
3460 addFieldToRecordDecl(C, UD, KmpInt32Ty);
3461 addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
3462 UD->completeDefinition();
3463 QualType KmpCmplrdataTy = C.getRecordType(UD);
3464 RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
3465 RD->startDefinition();
3466 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3467 addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
3468 addFieldToRecordDecl(C, RD, KmpInt32Ty);
3469 addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3470 addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3471 if (isOpenMPTaskLoopDirective(Kind)) {
3472 QualType KmpUInt64Ty =
3473 CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
3474 QualType KmpInt64Ty =
3475 CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
3476 addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3477 addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3478 addFieldToRecordDecl(C, RD, KmpInt64Ty);
3479 addFieldToRecordDecl(C, RD, KmpInt32Ty);
3480 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3481 }
3482 RD->completeDefinition();
3483 return RD;
3484 }
3485
3486 static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule & CGM,QualType KmpTaskTQTy,ArrayRef<PrivateDataTy> Privates)3487 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
3488 ArrayRef<PrivateDataTy> Privates) {
3489 ASTContext &C = CGM.getContext();
3490 // Build struct kmp_task_t_with_privates {
3491 // kmp_task_t task_data;
3492 // .kmp_privates_t. privates;
3493 // };
3494 RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
3495 RD->startDefinition();
3496 addFieldToRecordDecl(C, RD, KmpTaskTQTy);
3497 if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
3498 addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
3499 RD->completeDefinition();
3500 return RD;
3501 }
3502
3503 /// Emit a proxy function which accepts kmp_task_t as the second
3504 /// argument.
3505 /// \code
3506 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
3507 /// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
3508 /// For taskloops:
3509 /// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3510 /// tt->reductions, tt->shareds);
3511 /// return 0;
3512 /// }
3513 /// \endcode
3514 static llvm::Function *
emitProxyTaskFunction(CodeGenModule & CGM,SourceLocation Loc,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy,QualType KmpTaskTQTy,QualType SharedsPtrTy,llvm::Function * TaskFunction,llvm::Value * TaskPrivatesMap)3515 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
3516 OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
3517 QualType KmpTaskTWithPrivatesPtrQTy,
3518 QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
3519 QualType SharedsPtrTy, llvm::Function *TaskFunction,
3520 llvm::Value *TaskPrivatesMap) {
3521 ASTContext &C = CGM.getContext();
3522 FunctionArgList Args;
3523 ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3524 ImplicitParamDecl::Other);
3525 ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3526 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3527 ImplicitParamDecl::Other);
3528 Args.push_back(&GtidArg);
3529 Args.push_back(&TaskTypeArg);
3530 const auto &TaskEntryFnInfo =
3531 CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3532 llvm::FunctionType *TaskEntryTy =
3533 CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
3534 std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
3535 auto *TaskEntry = llvm::Function::Create(
3536 TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3537 CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
3538 TaskEntry->setDoesNotRecurse();
3539 CodeGenFunction CGF(CGM);
3540 CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
3541 Loc, Loc);
3542
3543 // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
3544 // tt,
3545 // For taskloops:
3546 // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3547 // tt->task_data.shareds);
3548 llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
3549 CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
3550 LValue TDBase = CGF.EmitLoadOfPointerLValue(
3551 CGF.GetAddrOfLocalVar(&TaskTypeArg),
3552 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3553 const auto *KmpTaskTWithPrivatesQTyRD =
3554 cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3555 LValue Base =
3556 CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3557 const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
3558 auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
3559 LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
3560 llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
3561
3562 auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
3563 LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
3564 llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3565 CGF.EmitLoadOfScalar(SharedsLVal, Loc),
3566 CGF.ConvertTypeForMem(SharedsPtrTy));
3567
3568 auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
3569 llvm::Value *PrivatesParam;
3570 if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
3571 LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
3572 PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3573 PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
3574 } else {
3575 PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
3576 }
3577
3578 llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
3579 TaskPrivatesMap,
3580 CGF.Builder
3581 .CreatePointerBitCastOrAddrSpaceCast(
3582 TDBase.getAddress(CGF), CGF.VoidPtrTy)
3583 .getPointer()};
3584 SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
3585 std::end(CommonArgs));
3586 if (isOpenMPTaskLoopDirective(Kind)) {
3587 auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
3588 LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
3589 llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
3590 auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
3591 LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
3592 llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
3593 auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
3594 LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
3595 llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
3596 auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3597 LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3598 llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
3599 auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
3600 LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
3601 llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
3602 CallArgs.push_back(LBParam);
3603 CallArgs.push_back(UBParam);
3604 CallArgs.push_back(StParam);
3605 CallArgs.push_back(LIParam);
3606 CallArgs.push_back(RParam);
3607 }
3608 CallArgs.push_back(SharedsParam);
3609
3610 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
3611 CallArgs);
3612 CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
3613 CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
3614 CGF.FinishFunction();
3615 return TaskEntry;
3616 }
3617
emitDestructorsFunction(CodeGenModule & CGM,SourceLocation Loc,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy)3618 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
3619 SourceLocation Loc,
3620 QualType KmpInt32Ty,
3621 QualType KmpTaskTWithPrivatesPtrQTy,
3622 QualType KmpTaskTWithPrivatesQTy) {
3623 ASTContext &C = CGM.getContext();
3624 FunctionArgList Args;
3625 ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3626 ImplicitParamDecl::Other);
3627 ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3628 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3629 ImplicitParamDecl::Other);
3630 Args.push_back(&GtidArg);
3631 Args.push_back(&TaskTypeArg);
3632 const auto &DestructorFnInfo =
3633 CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3634 llvm::FunctionType *DestructorFnTy =
3635 CGM.getTypes().GetFunctionType(DestructorFnInfo);
3636 std::string Name =
3637 CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
3638 auto *DestructorFn =
3639 llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
3640 Name, &CGM.getModule());
3641 CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
3642 DestructorFnInfo);
3643 DestructorFn->setDoesNotRecurse();
3644 CodeGenFunction CGF(CGM);
3645 CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
3646 Args, Loc, Loc);
3647
3648 LValue Base = CGF.EmitLoadOfPointerLValue(
3649 CGF.GetAddrOfLocalVar(&TaskTypeArg),
3650 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3651 const auto *KmpTaskTWithPrivatesQTyRD =
3652 cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3653 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3654 Base = CGF.EmitLValueForField(Base, *FI);
3655 for (const auto *Field :
3656 cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
3657 if (QualType::DestructionKind DtorKind =
3658 Field->getType().isDestructedType()) {
3659 LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
3660 CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType());
3661 }
3662 }
3663 CGF.FinishFunction();
3664 return DestructorFn;
3665 }
3666
3667 /// Emit a privates mapping function for correct handling of private and
3668 /// firstprivate variables.
3669 /// \code
3670 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
3671 /// **noalias priv1,..., <tyn> **noalias privn) {
3672 /// *priv1 = &.privates.priv1;
3673 /// ...;
3674 /// *privn = &.privates.privn;
3675 /// }
3676 /// \endcode
3677 static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPTaskDataTy & Data,QualType PrivatesQTy,ArrayRef<PrivateDataTy> Privates)3678 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
3679 const OMPTaskDataTy &Data, QualType PrivatesQTy,
3680 ArrayRef<PrivateDataTy> Privates) {
3681 ASTContext &C = CGM.getContext();
3682 FunctionArgList Args;
3683 ImplicitParamDecl TaskPrivatesArg(
3684 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3685 C.getPointerType(PrivatesQTy).withConst().withRestrict(),
3686 ImplicitParamDecl::Other);
3687 Args.push_back(&TaskPrivatesArg);
3688 llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, unsigned> PrivateVarsPos;
3689 unsigned Counter = 1;
3690 for (const Expr *E : Data.PrivateVars) {
3691 Args.push_back(ImplicitParamDecl::Create(
3692 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3693 C.getPointerType(C.getPointerType(E->getType()))
3694 .withConst()
3695 .withRestrict(),
3696 ImplicitParamDecl::Other));
3697 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3698 PrivateVarsPos[VD] = Counter;
3699 ++Counter;
3700 }
3701 for (const Expr *E : Data.FirstprivateVars) {
3702 Args.push_back(ImplicitParamDecl::Create(
3703 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3704 C.getPointerType(C.getPointerType(E->getType()))
3705 .withConst()
3706 .withRestrict(),
3707 ImplicitParamDecl::Other));
3708 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3709 PrivateVarsPos[VD] = Counter;
3710 ++Counter;
3711 }
3712 for (const Expr *E : Data.LastprivateVars) {
3713 Args.push_back(ImplicitParamDecl::Create(
3714 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3715 C.getPointerType(C.getPointerType(E->getType()))
3716 .withConst()
3717 .withRestrict(),
3718 ImplicitParamDecl::Other));
3719 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3720 PrivateVarsPos[VD] = Counter;
3721 ++Counter;
3722 }
3723 for (const VarDecl *VD : Data.PrivateLocals) {
3724 QualType Ty = VD->getType().getNonReferenceType();
3725 if (VD->getType()->isLValueReferenceType())
3726 Ty = C.getPointerType(Ty);
3727 if (isAllocatableDecl(VD))
3728 Ty = C.getPointerType(Ty);
3729 Args.push_back(ImplicitParamDecl::Create(
3730 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3731 C.getPointerType(C.getPointerType(Ty)).withConst().withRestrict(),
3732 ImplicitParamDecl::Other));
3733 PrivateVarsPos[VD] = Counter;
3734 ++Counter;
3735 }
3736 const auto &TaskPrivatesMapFnInfo =
3737 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3738 llvm::FunctionType *TaskPrivatesMapTy =
3739 CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
3740 std::string Name =
3741 CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
3742 auto *TaskPrivatesMap = llvm::Function::Create(
3743 TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
3744 &CGM.getModule());
3745 CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
3746 TaskPrivatesMapFnInfo);
3747 if (CGM.getLangOpts().Optimize) {
3748 TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
3749 TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
3750 TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
3751 }
3752 CodeGenFunction CGF(CGM);
3753 CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
3754 TaskPrivatesMapFnInfo, Args, Loc, Loc);
3755
3756 // *privi = &.privates.privi;
3757 LValue Base = CGF.EmitLoadOfPointerLValue(
3758 CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
3759 TaskPrivatesArg.getType()->castAs<PointerType>());
3760 const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
3761 Counter = 0;
3762 for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
3763 LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
3764 const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
3765 LValue RefLVal =
3766 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
3767 LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
3768 RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>());
3769 CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
3770 ++Counter;
3771 }
3772 CGF.FinishFunction();
3773 return TaskPrivatesMap;
3774 }
3775
3776 /// Emit initialization for private variables in task-based directives.
emitPrivatesInit(CodeGenFunction & CGF,const OMPExecutableDirective & D,Address KmpTaskSharedsPtr,LValue TDBase,const RecordDecl * KmpTaskTWithPrivatesQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool ForDup)3777 static void emitPrivatesInit(CodeGenFunction &CGF,
3778 const OMPExecutableDirective &D,
3779 Address KmpTaskSharedsPtr, LValue TDBase,
3780 const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3781 QualType SharedsTy, QualType SharedsPtrTy,
3782 const OMPTaskDataTy &Data,
3783 ArrayRef<PrivateDataTy> Privates, bool ForDup) {
3784 ASTContext &C = CGF.getContext();
3785 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3786 LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
3787 OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
3788 ? OMPD_taskloop
3789 : OMPD_task;
3790 const CapturedStmt &CS = *D.getCapturedStmt(Kind);
3791 CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
3792 LValue SrcBase;
3793 bool IsTargetTask =
3794 isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
3795 isOpenMPTargetExecutionDirective(D.getDirectiveKind());
3796 // For target-based directives skip 4 firstprivate arrays BasePointersArray,
3797 // PointersArray, SizesArray, and MappersArray. The original variables for
3798 // these arrays are not captured and we get their addresses explicitly.
3799 if ((!IsTargetTask && !Data.FirstprivateVars.empty() && ForDup) ||
3800 (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
3801 SrcBase = CGF.MakeAddrLValue(
3802 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3803 KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
3804 SharedsTy);
3805 }
3806 FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
3807 for (const PrivateDataTy &Pair : Privates) {
3808 // Do not initialize private locals.
3809 if (Pair.second.isLocalPrivate()) {
3810 ++FI;
3811 continue;
3812 }
3813 const VarDecl *VD = Pair.second.PrivateCopy;
3814 const Expr *Init = VD->getAnyInitializer();
3815 if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
3816 !CGF.isTrivialInitializer(Init)))) {
3817 LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
3818 if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
3819 const VarDecl *OriginalVD = Pair.second.Original;
3820 // Check if the variable is the target-based BasePointersArray,
3821 // PointersArray, SizesArray, or MappersArray.
3822 LValue SharedRefLValue;
3823 QualType Type = PrivateLValue.getType();
3824 const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
3825 if (IsTargetTask && !SharedField) {
3826 assert(isa<ImplicitParamDecl>(OriginalVD) &&
3827 isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
3828 cast<CapturedDecl>(OriginalVD->getDeclContext())
3829 ->getNumParams() == 0 &&
3830 isa<TranslationUnitDecl>(
3831 cast<CapturedDecl>(OriginalVD->getDeclContext())
3832 ->getDeclContext()) &&
3833 "Expected artificial target data variable.");
3834 SharedRefLValue =
3835 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
3836 } else if (ForDup) {
3837 SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
3838 SharedRefLValue = CGF.MakeAddrLValue(
3839 Address(SharedRefLValue.getPointer(CGF),
3840 C.getDeclAlign(OriginalVD)),
3841 SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
3842 SharedRefLValue.getTBAAInfo());
3843 } else if (CGF.LambdaCaptureFields.count(
3844 Pair.second.Original->getCanonicalDecl()) > 0 ||
3845 dyn_cast_or_null<BlockDecl>(CGF.CurCodeDecl)) {
3846 SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3847 } else {
3848 // Processing for implicitly captured variables.
3849 InlinedOpenMPRegionRAII Region(
3850 CGF, [](CodeGenFunction &, PrePostActionTy &) {}, OMPD_unknown,
3851 /*HasCancel=*/false);
3852 SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3853 }
3854 if (Type->isArrayType()) {
3855 // Initialize firstprivate array.
3856 if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
3857 // Perform simple memcpy.
3858 CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
3859 } else {
3860 // Initialize firstprivate array using element-by-element
3861 // initialization.
3862 CGF.EmitOMPAggregateAssign(
3863 PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF),
3864 Type,
3865 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
3866 Address SrcElement) {
3867 // Clean up any temporaries needed by the initialization.
3868 CodeGenFunction::OMPPrivateScope InitScope(CGF);
3869 InitScope.addPrivate(
3870 Elem, [SrcElement]() -> Address { return SrcElement; });
3871 (void)InitScope.Privatize();
3872 // Emit initialization for single element.
3873 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
3874 CGF, &CapturesInfo);
3875 CGF.EmitAnyExprToMem(Init, DestElement,
3876 Init->getType().getQualifiers(),
3877 /*IsInitializer=*/false);
3878 });
3879 }
3880 } else {
3881 CodeGenFunction::OMPPrivateScope InitScope(CGF);
3882 InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address {
3883 return SharedRefLValue.getAddress(CGF);
3884 });
3885 (void)InitScope.Privatize();
3886 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
3887 CGF.EmitExprAsInit(Init, VD, PrivateLValue,
3888 /*capturedByInit=*/false);
3889 }
3890 } else {
3891 CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
3892 }
3893 }
3894 ++FI;
3895 }
3896 }
3897
3898 /// Check if duplication function is required for taskloops.
checkInitIsRequired(CodeGenFunction & CGF,ArrayRef<PrivateDataTy> Privates)3899 static bool checkInitIsRequired(CodeGenFunction &CGF,
3900 ArrayRef<PrivateDataTy> Privates) {
3901 bool InitRequired = false;
3902 for (const PrivateDataTy &Pair : Privates) {
3903 if (Pair.second.isLocalPrivate())
3904 continue;
3905 const VarDecl *VD = Pair.second.PrivateCopy;
3906 const Expr *Init = VD->getAnyInitializer();
3907 InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
3908 !CGF.isTrivialInitializer(Init));
3909 if (InitRequired)
3910 break;
3911 }
3912 return InitRequired;
3913 }
3914
3915
3916 /// Emit task_dup function (for initialization of
3917 /// private/firstprivate/lastprivate vars and last_iter flag)
3918 /// \code
3919 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
3920 /// lastpriv) {
3921 /// // setup lastprivate flag
3922 /// task_dst->last = lastpriv;
3923 /// // could be constructor calls here...
3924 /// }
3925 /// \endcode
3926 static llvm::Value *
emitTaskDupFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPExecutableDirective & D,QualType KmpTaskTWithPrivatesPtrQTy,const RecordDecl * KmpTaskTWithPrivatesQTyRD,const RecordDecl * KmpTaskTQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool WithLastIter)3927 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
3928 const OMPExecutableDirective &D,
3929 QualType KmpTaskTWithPrivatesPtrQTy,
3930 const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3931 const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
3932 QualType SharedsPtrTy, const OMPTaskDataTy &Data,
3933 ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
3934 ASTContext &C = CGM.getContext();
3935 FunctionArgList Args;
3936 ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3937 KmpTaskTWithPrivatesPtrQTy,
3938 ImplicitParamDecl::Other);
3939 ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3940 KmpTaskTWithPrivatesPtrQTy,
3941 ImplicitParamDecl::Other);
3942 ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3943 ImplicitParamDecl::Other);
3944 Args.push_back(&DstArg);
3945 Args.push_back(&SrcArg);
3946 Args.push_back(&LastprivArg);
3947 const auto &TaskDupFnInfo =
3948 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3949 llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
3950 std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
3951 auto *TaskDup = llvm::Function::Create(
3952 TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3953 CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
3954 TaskDup->setDoesNotRecurse();
3955 CodeGenFunction CGF(CGM);
3956 CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
3957 Loc);
3958
3959 LValue TDBase = CGF.EmitLoadOfPointerLValue(
3960 CGF.GetAddrOfLocalVar(&DstArg),
3961 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3962 // task_dst->liter = lastpriv;
3963 if (WithLastIter) {
3964 auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3965 LValue Base = CGF.EmitLValueForField(
3966 TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3967 LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3968 llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
3969 CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
3970 CGF.EmitStoreOfScalar(Lastpriv, LILVal);
3971 }
3972
3973 // Emit initial values for private copies (if any).
3974 assert(!Privates.empty());
3975 Address KmpTaskSharedsPtr = Address::invalid();
3976 if (!Data.FirstprivateVars.empty()) {
3977 LValue TDBase = CGF.EmitLoadOfPointerLValue(
3978 CGF.GetAddrOfLocalVar(&SrcArg),
3979 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3980 LValue Base = CGF.EmitLValueForField(
3981 TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3982 KmpTaskSharedsPtr = Address(
3983 CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
3984 Base, *std::next(KmpTaskTQTyRD->field_begin(),
3985 KmpTaskTShareds)),
3986 Loc),
3987 CGM.getNaturalTypeAlignment(SharedsTy));
3988 }
3989 emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
3990 SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
3991 CGF.FinishFunction();
3992 return TaskDup;
3993 }
3994
3995 /// Checks if destructor function is required to be generated.
3996 /// \return true if cleanups are required, false otherwise.
3997 static bool
checkDestructorsRequired(const RecordDecl * KmpTaskTWithPrivatesQTyRD,ArrayRef<PrivateDataTy> Privates)3998 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3999 ArrayRef<PrivateDataTy> Privates) {
4000 for (const PrivateDataTy &P : Privates) {
4001 if (P.second.isLocalPrivate())
4002 continue;
4003 QualType Ty = P.second.Original->getType().getNonReferenceType();
4004 if (Ty.isDestructedType())
4005 return true;
4006 }
4007 return false;
4008 }
4009
4010 namespace {
4011 /// Loop generator for OpenMP iterator expression.
4012 class OMPIteratorGeneratorScope final
4013 : public CodeGenFunction::OMPPrivateScope {
4014 CodeGenFunction &CGF;
4015 const OMPIteratorExpr *E = nullptr;
4016 SmallVector<CodeGenFunction::JumpDest, 4> ContDests;
4017 SmallVector<CodeGenFunction::JumpDest, 4> ExitDests;
4018 OMPIteratorGeneratorScope() = delete;
4019 OMPIteratorGeneratorScope(OMPIteratorGeneratorScope &) = delete;
4020
4021 public:
OMPIteratorGeneratorScope(CodeGenFunction & CGF,const OMPIteratorExpr * E)4022 OMPIteratorGeneratorScope(CodeGenFunction &CGF, const OMPIteratorExpr *E)
4023 : CodeGenFunction::OMPPrivateScope(CGF), CGF(CGF), E(E) {
4024 if (!E)
4025 return;
4026 SmallVector<llvm::Value *, 4> Uppers;
4027 for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
4028 Uppers.push_back(CGF.EmitScalarExpr(E->getHelper(I).Upper));
4029 const auto *VD = cast<VarDecl>(E->getIteratorDecl(I));
4030 addPrivate(VD, [&CGF, VD]() {
4031 return CGF.CreateMemTemp(VD->getType(), VD->getName());
4032 });
4033 const OMPIteratorHelperData &HelperData = E->getHelper(I);
4034 addPrivate(HelperData.CounterVD, [&CGF, &HelperData]() {
4035 return CGF.CreateMemTemp(HelperData.CounterVD->getType(),
4036 "counter.addr");
4037 });
4038 }
4039 Privatize();
4040
4041 for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
4042 const OMPIteratorHelperData &HelperData = E->getHelper(I);
4043 LValue CLVal =
4044 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(HelperData.CounterVD),
4045 HelperData.CounterVD->getType());
4046 // Counter = 0;
4047 CGF.EmitStoreOfScalar(
4048 llvm::ConstantInt::get(CLVal.getAddress(CGF).getElementType(), 0),
4049 CLVal);
4050 CodeGenFunction::JumpDest &ContDest =
4051 ContDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.cont"));
4052 CodeGenFunction::JumpDest &ExitDest =
4053 ExitDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.exit"));
4054 // N = <number-of_iterations>;
4055 llvm::Value *N = Uppers[I];
4056 // cont:
4057 // if (Counter < N) goto body; else goto exit;
4058 CGF.EmitBlock(ContDest.getBlock());
4059 auto *CVal =
4060 CGF.EmitLoadOfScalar(CLVal, HelperData.CounterVD->getLocation());
4061 llvm::Value *Cmp =
4062 HelperData.CounterVD->getType()->isSignedIntegerOrEnumerationType()
4063 ? CGF.Builder.CreateICmpSLT(CVal, N)
4064 : CGF.Builder.CreateICmpULT(CVal, N);
4065 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("iter.body");
4066 CGF.Builder.CreateCondBr(Cmp, BodyBB, ExitDest.getBlock());
4067 // body:
4068 CGF.EmitBlock(BodyBB);
4069 // Iteri = Begini + Counter * Stepi;
4070 CGF.EmitIgnoredExpr(HelperData.Update);
4071 }
4072 }
~OMPIteratorGeneratorScope()4073 ~OMPIteratorGeneratorScope() {
4074 if (!E)
4075 return;
4076 for (unsigned I = E->numOfIterators(); I > 0; --I) {
4077 // Counter = Counter + 1;
4078 const OMPIteratorHelperData &HelperData = E->getHelper(I - 1);
4079 CGF.EmitIgnoredExpr(HelperData.CounterUpdate);
4080 // goto cont;
4081 CGF.EmitBranchThroughCleanup(ContDests[I - 1]);
4082 // exit:
4083 CGF.EmitBlock(ExitDests[I - 1].getBlock(), /*IsFinished=*/I == 1);
4084 }
4085 }
4086 };
4087 } // namespace
4088
4089 static std::pair<llvm::Value *, llvm::Value *>
getPointerAndSize(CodeGenFunction & CGF,const Expr * E)4090 getPointerAndSize(CodeGenFunction &CGF, const Expr *E) {
4091 const auto *OASE = dyn_cast<OMPArrayShapingExpr>(E);
4092 llvm::Value *Addr;
4093 if (OASE) {
4094 const Expr *Base = OASE->getBase();
4095 Addr = CGF.EmitScalarExpr(Base);
4096 } else {
4097 Addr = CGF.EmitLValue(E).getPointer(CGF);
4098 }
4099 llvm::Value *SizeVal;
4100 QualType Ty = E->getType();
4101 if (OASE) {
4102 SizeVal = CGF.getTypeSize(OASE->getBase()->getType()->getPointeeType());
4103 for (const Expr *SE : OASE->getDimensions()) {
4104 llvm::Value *Sz = CGF.EmitScalarExpr(SE);
4105 Sz = CGF.EmitScalarConversion(
4106 Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc());
4107 SizeVal = CGF.Builder.CreateNUWMul(SizeVal, Sz);
4108 }
4109 } else if (const auto *ASE =
4110 dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
4111 LValue UpAddrLVal =
4112 CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
4113 llvm::Value *UpAddr =
4114 CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(CGF), /*Idx0=*/1);
4115 llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr, CGF.SizeTy);
4116 llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGF.SizeTy);
4117 SizeVal = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
4118 } else {
4119 SizeVal = CGF.getTypeSize(Ty);
4120 }
4121 return std::make_pair(Addr, SizeVal);
4122 }
4123
4124 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getKmpAffinityType(ASTContext & C,QualType & KmpTaskAffinityInfoTy)4125 static void getKmpAffinityType(ASTContext &C, QualType &KmpTaskAffinityInfoTy) {
4126 QualType FlagsTy = C.getIntTypeForBitwidth(32, /*Signed=*/false);
4127 if (KmpTaskAffinityInfoTy.isNull()) {
4128 RecordDecl *KmpAffinityInfoRD =
4129 C.buildImplicitRecord("kmp_task_affinity_info_t");
4130 KmpAffinityInfoRD->startDefinition();
4131 addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getIntPtrType());
4132 addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getSizeType());
4133 addFieldToRecordDecl(C, KmpAffinityInfoRD, FlagsTy);
4134 KmpAffinityInfoRD->completeDefinition();
4135 KmpTaskAffinityInfoTy = C.getRecordType(KmpAffinityInfoRD);
4136 }
4137 }
4138
4139 CGOpenMPRuntime::TaskResultTy
emitTaskInit(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const OMPTaskDataTy & Data)4140 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
4141 const OMPExecutableDirective &D,
4142 llvm::Function *TaskFunction, QualType SharedsTy,
4143 Address Shareds, const OMPTaskDataTy &Data) {
4144 ASTContext &C = CGM.getContext();
4145 llvm::SmallVector<PrivateDataTy, 4> Privates;
4146 // Aggregate privates and sort them by the alignment.
4147 const auto *I = Data.PrivateCopies.begin();
4148 for (const Expr *E : Data.PrivateVars) {
4149 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4150 Privates.emplace_back(
4151 C.getDeclAlign(VD),
4152 PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4153 /*PrivateElemInit=*/nullptr));
4154 ++I;
4155 }
4156 I = Data.FirstprivateCopies.begin();
4157 const auto *IElemInitRef = Data.FirstprivateInits.begin();
4158 for (const Expr *E : Data.FirstprivateVars) {
4159 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4160 Privates.emplace_back(
4161 C.getDeclAlign(VD),
4162 PrivateHelpersTy(
4163 E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4164 cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
4165 ++I;
4166 ++IElemInitRef;
4167 }
4168 I = Data.LastprivateCopies.begin();
4169 for (const Expr *E : Data.LastprivateVars) {
4170 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4171 Privates.emplace_back(
4172 C.getDeclAlign(VD),
4173 PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4174 /*PrivateElemInit=*/nullptr));
4175 ++I;
4176 }
4177 for (const VarDecl *VD : Data.PrivateLocals) {
4178 if (isAllocatableDecl(VD))
4179 Privates.emplace_back(CGM.getPointerAlign(), PrivateHelpersTy(VD));
4180 else
4181 Privates.emplace_back(C.getDeclAlign(VD), PrivateHelpersTy(VD));
4182 }
4183 llvm::stable_sort(Privates,
4184 [](const PrivateDataTy &L, const PrivateDataTy &R) {
4185 return L.first > R.first;
4186 });
4187 QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
4188 // Build type kmp_routine_entry_t (if not built yet).
4189 emitKmpRoutineEntryT(KmpInt32Ty);
4190 // Build type kmp_task_t (if not built yet).
4191 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
4192 if (SavedKmpTaskloopTQTy.isNull()) {
4193 SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4194 CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4195 }
4196 KmpTaskTQTy = SavedKmpTaskloopTQTy;
4197 } else {
4198 assert((D.getDirectiveKind() == OMPD_task ||
4199 isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
4200 isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
4201 "Expected taskloop, task or target directive");
4202 if (SavedKmpTaskTQTy.isNull()) {
4203 SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4204 CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4205 }
4206 KmpTaskTQTy = SavedKmpTaskTQTy;
4207 }
4208 const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4209 // Build particular struct kmp_task_t for the given task.
4210 const RecordDecl *KmpTaskTWithPrivatesQTyRD =
4211 createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
4212 QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
4213 QualType KmpTaskTWithPrivatesPtrQTy =
4214 C.getPointerType(KmpTaskTWithPrivatesQTy);
4215 llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
4216 llvm::Type *KmpTaskTWithPrivatesPtrTy =
4217 KmpTaskTWithPrivatesTy->getPointerTo();
4218 llvm::Value *KmpTaskTWithPrivatesTySize =
4219 CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
4220 QualType SharedsPtrTy = C.getPointerType(SharedsTy);
4221
4222 // Emit initial values for private copies (if any).
4223 llvm::Value *TaskPrivatesMap = nullptr;
4224 llvm::Type *TaskPrivatesMapTy =
4225 std::next(TaskFunction->arg_begin(), 3)->getType();
4226 if (!Privates.empty()) {
4227 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4228 TaskPrivatesMap =
4229 emitTaskPrivateMappingFunction(CGM, Loc, Data, FI->getType(), Privates);
4230 TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4231 TaskPrivatesMap, TaskPrivatesMapTy);
4232 } else {
4233 TaskPrivatesMap = llvm::ConstantPointerNull::get(
4234 cast<llvm::PointerType>(TaskPrivatesMapTy));
4235 }
4236 // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
4237 // kmp_task_t *tt);
4238 llvm::Function *TaskEntry = emitProxyTaskFunction(
4239 CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4240 KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
4241 TaskPrivatesMap);
4242
4243 // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
4244 // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
4245 // kmp_routine_entry_t *task_entry);
4246 // Task flags. Format is taken from
4247 // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
4248 // description of kmp_tasking_flags struct.
4249 enum {
4250 TiedFlag = 0x1,
4251 FinalFlag = 0x2,
4252 DestructorsFlag = 0x8,
4253 PriorityFlag = 0x20,
4254 DetachableFlag = 0x40,
4255 };
4256 unsigned Flags = Data.Tied ? TiedFlag : 0;
4257 bool NeedsCleanup = false;
4258 if (!Privates.empty()) {
4259 NeedsCleanup =
4260 checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD, Privates);
4261 if (NeedsCleanup)
4262 Flags = Flags | DestructorsFlag;
4263 }
4264 if (Data.Priority.getInt())
4265 Flags = Flags | PriorityFlag;
4266 if (D.hasClausesOfKind<OMPDetachClause>())
4267 Flags = Flags | DetachableFlag;
4268 llvm::Value *TaskFlags =
4269 Data.Final.getPointer()
4270 ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
4271 CGF.Builder.getInt32(FinalFlag),
4272 CGF.Builder.getInt32(/*C=*/0))
4273 : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
4274 TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
4275 llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
4276 SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
4277 getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
4278 SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4279 TaskEntry, KmpRoutineEntryPtrTy)};
4280 llvm::Value *NewTask;
4281 if (D.hasClausesOfKind<OMPNowaitClause>()) {
4282 // Check if we have any device clause associated with the directive.
4283 const Expr *Device = nullptr;
4284 if (auto *C = D.getSingleClause<OMPDeviceClause>())
4285 Device = C->getDevice();
4286 // Emit device ID if any otherwise use default value.
4287 llvm::Value *DeviceID;
4288 if (Device)
4289 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
4290 CGF.Int64Ty, /*isSigned=*/true);
4291 else
4292 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
4293 AllocArgs.push_back(DeviceID);
4294 NewTask = CGF.EmitRuntimeCall(
4295 OMPBuilder.getOrCreateRuntimeFunction(
4296 CGM.getModule(), OMPRTL___kmpc_omp_target_task_alloc),
4297 AllocArgs);
4298 } else {
4299 NewTask =
4300 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4301 CGM.getModule(), OMPRTL___kmpc_omp_task_alloc),
4302 AllocArgs);
4303 }
4304 // Emit detach clause initialization.
4305 // evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid,
4306 // task_descriptor);
4307 if (const auto *DC = D.getSingleClause<OMPDetachClause>()) {
4308 const Expr *Evt = DC->getEventHandler()->IgnoreParenImpCasts();
4309 LValue EvtLVal = CGF.EmitLValue(Evt);
4310
4311 // Build kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4312 // int gtid, kmp_task_t *task);
4313 llvm::Value *Loc = emitUpdateLocation(CGF, DC->getBeginLoc());
4314 llvm::Value *Tid = getThreadID(CGF, DC->getBeginLoc());
4315 Tid = CGF.Builder.CreateIntCast(Tid, CGF.IntTy, /*isSigned=*/false);
4316 llvm::Value *EvtVal = CGF.EmitRuntimeCall(
4317 OMPBuilder.getOrCreateRuntimeFunction(
4318 CGM.getModule(), OMPRTL___kmpc_task_allow_completion_event),
4319 {Loc, Tid, NewTask});
4320 EvtVal = CGF.EmitScalarConversion(EvtVal, C.VoidPtrTy, Evt->getType(),
4321 Evt->getExprLoc());
4322 CGF.EmitStoreOfScalar(EvtVal, EvtLVal);
4323 }
4324 // Process affinity clauses.
4325 if (D.hasClausesOfKind<OMPAffinityClause>()) {
4326 // Process list of affinity data.
4327 ASTContext &C = CGM.getContext();
4328 Address AffinitiesArray = Address::invalid();
4329 // Calculate number of elements to form the array of affinity data.
4330 llvm::Value *NumOfElements = nullptr;
4331 unsigned NumAffinities = 0;
4332 for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4333 if (const Expr *Modifier = C->getModifier()) {
4334 const auto *IE = cast<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts());
4335 for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4336 llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4337 Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4338 NumOfElements =
4339 NumOfElements ? CGF.Builder.CreateNUWMul(NumOfElements, Sz) : Sz;
4340 }
4341 } else {
4342 NumAffinities += C->varlist_size();
4343 }
4344 }
4345 getKmpAffinityType(CGM.getContext(), KmpTaskAffinityInfoTy);
4346 // Fields ids in kmp_task_affinity_info record.
4347 enum RTLAffinityInfoFieldsTy { BaseAddr, Len, Flags };
4348
4349 QualType KmpTaskAffinityInfoArrayTy;
4350 if (NumOfElements) {
4351 NumOfElements = CGF.Builder.CreateNUWAdd(
4352 llvm::ConstantInt::get(CGF.SizeTy, NumAffinities), NumOfElements);
4353 OpaqueValueExpr OVE(
4354 Loc,
4355 C.getIntTypeForBitwidth(C.getTypeSize(C.getSizeType()), /*Signed=*/0),
4356 VK_RValue);
4357 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4358 RValue::get(NumOfElements));
4359 KmpTaskAffinityInfoArrayTy =
4360 C.getVariableArrayType(KmpTaskAffinityInfoTy, &OVE, ArrayType::Normal,
4361 /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4362 // Properly emit variable-sized array.
4363 auto *PD = ImplicitParamDecl::Create(C, KmpTaskAffinityInfoArrayTy,
4364 ImplicitParamDecl::Other);
4365 CGF.EmitVarDecl(*PD);
4366 AffinitiesArray = CGF.GetAddrOfLocalVar(PD);
4367 NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4368 /*isSigned=*/false);
4369 } else {
4370 KmpTaskAffinityInfoArrayTy = C.getConstantArrayType(
4371 KmpTaskAffinityInfoTy,
4372 llvm::APInt(C.getTypeSize(C.getSizeType()), NumAffinities), nullptr,
4373 ArrayType::Normal, /*IndexTypeQuals=*/0);
4374 AffinitiesArray =
4375 CGF.CreateMemTemp(KmpTaskAffinityInfoArrayTy, ".affs.arr.addr");
4376 AffinitiesArray = CGF.Builder.CreateConstArrayGEP(AffinitiesArray, 0);
4377 NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumAffinities,
4378 /*isSigned=*/false);
4379 }
4380
4381 const auto *KmpAffinityInfoRD = KmpTaskAffinityInfoTy->getAsRecordDecl();
4382 // Fill array by elements without iterators.
4383 unsigned Pos = 0;
4384 bool HasIterator = false;
4385 for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4386 if (C->getModifier()) {
4387 HasIterator = true;
4388 continue;
4389 }
4390 for (const Expr *E : C->varlists()) {
4391 llvm::Value *Addr;
4392 llvm::Value *Size;
4393 std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4394 LValue Base =
4395 CGF.MakeAddrLValue(CGF.Builder.CreateConstGEP(AffinitiesArray, Pos),
4396 KmpTaskAffinityInfoTy);
4397 // affs[i].base_addr = &<Affinities[i].second>;
4398 LValue BaseAddrLVal = CGF.EmitLValueForField(
4399 Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4400 CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4401 BaseAddrLVal);
4402 // affs[i].len = sizeof(<Affinities[i].second>);
4403 LValue LenLVal = CGF.EmitLValueForField(
4404 Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4405 CGF.EmitStoreOfScalar(Size, LenLVal);
4406 ++Pos;
4407 }
4408 }
4409 LValue PosLVal;
4410 if (HasIterator) {
4411 PosLVal = CGF.MakeAddrLValue(
4412 CGF.CreateMemTemp(C.getSizeType(), "affs.counter.addr"),
4413 C.getSizeType());
4414 CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4415 }
4416 // Process elements with iterators.
4417 for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4418 const Expr *Modifier = C->getModifier();
4419 if (!Modifier)
4420 continue;
4421 OMPIteratorGeneratorScope IteratorScope(
4422 CGF, cast_or_null<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts()));
4423 for (const Expr *E : C->varlists()) {
4424 llvm::Value *Addr;
4425 llvm::Value *Size;
4426 std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4427 llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4428 LValue Base = CGF.MakeAddrLValue(
4429 Address(CGF.Builder.CreateGEP(AffinitiesArray.getPointer(), Idx),
4430 AffinitiesArray.getAlignment()),
4431 KmpTaskAffinityInfoTy);
4432 // affs[i].base_addr = &<Affinities[i].second>;
4433 LValue BaseAddrLVal = CGF.EmitLValueForField(
4434 Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4435 CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4436 BaseAddrLVal);
4437 // affs[i].len = sizeof(<Affinities[i].second>);
4438 LValue LenLVal = CGF.EmitLValueForField(
4439 Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4440 CGF.EmitStoreOfScalar(Size, LenLVal);
4441 Idx = CGF.Builder.CreateNUWAdd(
4442 Idx, llvm::ConstantInt::get(Idx->getType(), 1));
4443 CGF.EmitStoreOfScalar(Idx, PosLVal);
4444 }
4445 }
4446 // Call to kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref,
4447 // kmp_int32 gtid, kmp_task_t *new_task, kmp_int32
4448 // naffins, kmp_task_affinity_info_t *affin_list);
4449 llvm::Value *LocRef = emitUpdateLocation(CGF, Loc);
4450 llvm::Value *GTid = getThreadID(CGF, Loc);
4451 llvm::Value *AffinListPtr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4452 AffinitiesArray.getPointer(), CGM.VoidPtrTy);
4453 // FIXME: Emit the function and ignore its result for now unless the
4454 // runtime function is properly implemented.
4455 (void)CGF.EmitRuntimeCall(
4456 OMPBuilder.getOrCreateRuntimeFunction(
4457 CGM.getModule(), OMPRTL___kmpc_omp_reg_task_with_affinity),
4458 {LocRef, GTid, NewTask, NumOfElements, AffinListPtr});
4459 }
4460 llvm::Value *NewTaskNewTaskTTy =
4461 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4462 NewTask, KmpTaskTWithPrivatesPtrTy);
4463 LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
4464 KmpTaskTWithPrivatesQTy);
4465 LValue TDBase =
4466 CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
4467 // Fill the data in the resulting kmp_task_t record.
4468 // Copy shareds if there are any.
4469 Address KmpTaskSharedsPtr = Address::invalid();
4470 if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
4471 KmpTaskSharedsPtr =
4472 Address(CGF.EmitLoadOfScalar(
4473 CGF.EmitLValueForField(
4474 TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
4475 KmpTaskTShareds)),
4476 Loc),
4477 CGM.getNaturalTypeAlignment(SharedsTy));
4478 LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
4479 LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
4480 CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
4481 }
4482 // Emit initial values for private copies (if any).
4483 TaskResultTy Result;
4484 if (!Privates.empty()) {
4485 emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
4486 SharedsTy, SharedsPtrTy, Data, Privates,
4487 /*ForDup=*/false);
4488 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
4489 (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
4490 Result.TaskDupFn = emitTaskDupFunction(
4491 CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
4492 KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
4493 /*WithLastIter=*/!Data.LastprivateVars.empty());
4494 }
4495 }
4496 // Fields of union "kmp_cmplrdata_t" for destructors and priority.
4497 enum { Priority = 0, Destructors = 1 };
4498 // Provide pointer to function with destructors for privates.
4499 auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
4500 const RecordDecl *KmpCmplrdataUD =
4501 (*FI)->getType()->getAsUnionType()->getDecl();
4502 if (NeedsCleanup) {
4503 llvm::Value *DestructorFn = emitDestructorsFunction(
4504 CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4505 KmpTaskTWithPrivatesQTy);
4506 LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
4507 LValue DestructorsLV = CGF.EmitLValueForField(
4508 Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
4509 CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4510 DestructorFn, KmpRoutineEntryPtrTy),
4511 DestructorsLV);
4512 }
4513 // Set priority.
4514 if (Data.Priority.getInt()) {
4515 LValue Data2LV = CGF.EmitLValueForField(
4516 TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
4517 LValue PriorityLV = CGF.EmitLValueForField(
4518 Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
4519 CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
4520 }
4521 Result.NewTask = NewTask;
4522 Result.TaskEntry = TaskEntry;
4523 Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
4524 Result.TDBase = TDBase;
4525 Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
4526 return Result;
4527 }
4528
4529 namespace {
4530 /// Dependence kind for RTL.
4531 enum RTLDependenceKindTy {
4532 DepIn = 0x01,
4533 DepInOut = 0x3,
4534 DepMutexInOutSet = 0x4
4535 };
4536 /// Fields ids in kmp_depend_info record.
4537 enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
4538 } // namespace
4539
4540 /// Translates internal dependency kind into the runtime kind.
translateDependencyKind(OpenMPDependClauseKind K)4541 static RTLDependenceKindTy translateDependencyKind(OpenMPDependClauseKind K) {
4542 RTLDependenceKindTy DepKind;
4543 switch (K) {
4544 case OMPC_DEPEND_in:
4545 DepKind = DepIn;
4546 break;
4547 // Out and InOut dependencies must use the same code.
4548 case OMPC_DEPEND_out:
4549 case OMPC_DEPEND_inout:
4550 DepKind = DepInOut;
4551 break;
4552 case OMPC_DEPEND_mutexinoutset:
4553 DepKind = DepMutexInOutSet;
4554 break;
4555 case OMPC_DEPEND_source:
4556 case OMPC_DEPEND_sink:
4557 case OMPC_DEPEND_depobj:
4558 case OMPC_DEPEND_unknown:
4559 llvm_unreachable("Unknown task dependence type");
4560 }
4561 return DepKind;
4562 }
4563
4564 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getDependTypes(ASTContext & C,QualType & KmpDependInfoTy,QualType & FlagsTy)4565 static void getDependTypes(ASTContext &C, QualType &KmpDependInfoTy,
4566 QualType &FlagsTy) {
4567 FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
4568 if (KmpDependInfoTy.isNull()) {
4569 RecordDecl *KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
4570 KmpDependInfoRD->startDefinition();
4571 addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
4572 addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
4573 addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
4574 KmpDependInfoRD->completeDefinition();
4575 KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
4576 }
4577 }
4578
4579 std::pair<llvm::Value *, LValue>
getDepobjElements(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4580 CGOpenMPRuntime::getDepobjElements(CodeGenFunction &CGF, LValue DepobjLVal,
4581 SourceLocation Loc) {
4582 ASTContext &C = CGM.getContext();
4583 QualType FlagsTy;
4584 getDependTypes(C, KmpDependInfoTy, FlagsTy);
4585 RecordDecl *KmpDependInfoRD =
4586 cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4587 LValue Base = CGF.EmitLoadOfPointerLValue(
4588 DepobjLVal.getAddress(CGF),
4589 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4590 QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4591 Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4592 Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
4593 Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4594 Base.getTBAAInfo());
4595 llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4596 Addr.getPointer(),
4597 llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4598 LValue NumDepsBase = CGF.MakeAddrLValue(
4599 Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4600 Base.getBaseInfo(), Base.getTBAAInfo());
4601 // NumDeps = deps[i].base_addr;
4602 LValue BaseAddrLVal = CGF.EmitLValueForField(
4603 NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4604 llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, Loc);
4605 return std::make_pair(NumDeps, Base);
4606 }
4607
emitDependData(CodeGenFunction & CGF,QualType & KmpDependInfoTy,llvm::PointerUnion<unsigned *,LValue * > Pos,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4608 static void emitDependData(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4609 llvm::PointerUnion<unsigned *, LValue *> Pos,
4610 const OMPTaskDataTy::DependData &Data,
4611 Address DependenciesArray) {
4612 CodeGenModule &CGM = CGF.CGM;
4613 ASTContext &C = CGM.getContext();
4614 QualType FlagsTy;
4615 getDependTypes(C, KmpDependInfoTy, FlagsTy);
4616 RecordDecl *KmpDependInfoRD =
4617 cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4618 llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
4619
4620 OMPIteratorGeneratorScope IteratorScope(
4621 CGF, cast_or_null<OMPIteratorExpr>(
4622 Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4623 : nullptr));
4624 for (const Expr *E : Data.DepExprs) {
4625 llvm::Value *Addr;
4626 llvm::Value *Size;
4627 std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4628 LValue Base;
4629 if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4630 Base = CGF.MakeAddrLValue(
4631 CGF.Builder.CreateConstGEP(DependenciesArray, *P), KmpDependInfoTy);
4632 } else {
4633 LValue &PosLVal = *Pos.get<LValue *>();
4634 llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4635 Base = CGF.MakeAddrLValue(
4636 Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Idx),
4637 DependenciesArray.getAlignment()),
4638 KmpDependInfoTy);
4639 }
4640 // deps[i].base_addr = &<Dependencies[i].second>;
4641 LValue BaseAddrLVal = CGF.EmitLValueForField(
4642 Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4643 CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4644 BaseAddrLVal);
4645 // deps[i].len = sizeof(<Dependencies[i].second>);
4646 LValue LenLVal = CGF.EmitLValueForField(
4647 Base, *std::next(KmpDependInfoRD->field_begin(), Len));
4648 CGF.EmitStoreOfScalar(Size, LenLVal);
4649 // deps[i].flags = <Dependencies[i].first>;
4650 RTLDependenceKindTy DepKind = translateDependencyKind(Data.DepKind);
4651 LValue FlagsLVal = CGF.EmitLValueForField(
4652 Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
4653 CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
4654 FlagsLVal);
4655 if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4656 ++(*P);
4657 } else {
4658 LValue &PosLVal = *Pos.get<LValue *>();
4659 llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4660 Idx = CGF.Builder.CreateNUWAdd(Idx,
4661 llvm::ConstantInt::get(Idx->getType(), 1));
4662 CGF.EmitStoreOfScalar(Idx, PosLVal);
4663 }
4664 }
4665 }
4666
4667 static SmallVector<llvm::Value *, 4>
emitDepobjElementsSizes(CodeGenFunction & CGF,QualType & KmpDependInfoTy,const OMPTaskDataTy::DependData & Data)4668 emitDepobjElementsSizes(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4669 const OMPTaskDataTy::DependData &Data) {
4670 assert(Data.DepKind == OMPC_DEPEND_depobj &&
4671 "Expected depobj dependecy kind.");
4672 SmallVector<llvm::Value *, 4> Sizes;
4673 SmallVector<LValue, 4> SizeLVals;
4674 ASTContext &C = CGF.getContext();
4675 QualType FlagsTy;
4676 getDependTypes(C, KmpDependInfoTy, FlagsTy);
4677 RecordDecl *KmpDependInfoRD =
4678 cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4679 QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4680 llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4681 {
4682 OMPIteratorGeneratorScope IteratorScope(
4683 CGF, cast_or_null<OMPIteratorExpr>(
4684 Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4685 : nullptr));
4686 for (const Expr *E : Data.DepExprs) {
4687 LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4688 LValue Base = CGF.EmitLoadOfPointerLValue(
4689 DepobjLVal.getAddress(CGF),
4690 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4691 Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4692 Base.getAddress(CGF), KmpDependInfoPtrT);
4693 Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4694 Base.getTBAAInfo());
4695 llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4696 Addr.getPointer(),
4697 llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4698 LValue NumDepsBase = CGF.MakeAddrLValue(
4699 Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4700 Base.getBaseInfo(), Base.getTBAAInfo());
4701 // NumDeps = deps[i].base_addr;
4702 LValue BaseAddrLVal = CGF.EmitLValueForField(
4703 NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4704 llvm::Value *NumDeps =
4705 CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4706 LValue NumLVal = CGF.MakeAddrLValue(
4707 CGF.CreateMemTemp(C.getUIntPtrType(), "depobj.size.addr"),
4708 C.getUIntPtrType());
4709 CGF.InitTempAlloca(NumLVal.getAddress(CGF),
4710 llvm::ConstantInt::get(CGF.IntPtrTy, 0));
4711 llvm::Value *PrevVal = CGF.EmitLoadOfScalar(NumLVal, E->getExprLoc());
4712 llvm::Value *Add = CGF.Builder.CreateNUWAdd(PrevVal, NumDeps);
4713 CGF.EmitStoreOfScalar(Add, NumLVal);
4714 SizeLVals.push_back(NumLVal);
4715 }
4716 }
4717 for (unsigned I = 0, E = SizeLVals.size(); I < E; ++I) {
4718 llvm::Value *Size =
4719 CGF.EmitLoadOfScalar(SizeLVals[I], Data.DepExprs[I]->getExprLoc());
4720 Sizes.push_back(Size);
4721 }
4722 return Sizes;
4723 }
4724
emitDepobjElements(CodeGenFunction & CGF,QualType & KmpDependInfoTy,LValue PosLVal,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4725 static void emitDepobjElements(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4726 LValue PosLVal,
4727 const OMPTaskDataTy::DependData &Data,
4728 Address DependenciesArray) {
4729 assert(Data.DepKind == OMPC_DEPEND_depobj &&
4730 "Expected depobj dependecy kind.");
4731 ASTContext &C = CGF.getContext();
4732 QualType FlagsTy;
4733 getDependTypes(C, KmpDependInfoTy, FlagsTy);
4734 RecordDecl *KmpDependInfoRD =
4735 cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4736 QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4737 llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4738 llvm::Value *ElSize = CGF.getTypeSize(KmpDependInfoTy);
4739 {
4740 OMPIteratorGeneratorScope IteratorScope(
4741 CGF, cast_or_null<OMPIteratorExpr>(
4742 Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4743 : nullptr));
4744 for (unsigned I = 0, End = Data.DepExprs.size(); I < End; ++I) {
4745 const Expr *E = Data.DepExprs[I];
4746 LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4747 LValue Base = CGF.EmitLoadOfPointerLValue(
4748 DepobjLVal.getAddress(CGF),
4749 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4750 Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4751 Base.getAddress(CGF), KmpDependInfoPtrT);
4752 Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4753 Base.getTBAAInfo());
4754
4755 // Get number of elements in a single depobj.
4756 llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4757 Addr.getPointer(),
4758 llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4759 LValue NumDepsBase = CGF.MakeAddrLValue(
4760 Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4761 Base.getBaseInfo(), Base.getTBAAInfo());
4762 // NumDeps = deps[i].base_addr;
4763 LValue BaseAddrLVal = CGF.EmitLValueForField(
4764 NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4765 llvm::Value *NumDeps =
4766 CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4767
4768 // memcopy dependency data.
4769 llvm::Value *Size = CGF.Builder.CreateNUWMul(
4770 ElSize,
4771 CGF.Builder.CreateIntCast(NumDeps, CGF.SizeTy, /*isSigned=*/false));
4772 llvm::Value *Pos = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4773 Address DepAddr =
4774 Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Pos),
4775 DependenciesArray.getAlignment());
4776 CGF.Builder.CreateMemCpy(DepAddr, Base.getAddress(CGF), Size);
4777
4778 // Increase pos.
4779 // pos += size;
4780 llvm::Value *Add = CGF.Builder.CreateNUWAdd(Pos, NumDeps);
4781 CGF.EmitStoreOfScalar(Add, PosLVal);
4782 }
4783 }
4784 }
4785
emitDependClause(CodeGenFunction & CGF,ArrayRef<OMPTaskDataTy::DependData> Dependencies,SourceLocation Loc)4786 std::pair<llvm::Value *, Address> CGOpenMPRuntime::emitDependClause(
4787 CodeGenFunction &CGF, ArrayRef<OMPTaskDataTy::DependData> Dependencies,
4788 SourceLocation Loc) {
4789 if (llvm::all_of(Dependencies, [](const OMPTaskDataTy::DependData &D) {
4790 return D.DepExprs.empty();
4791 }))
4792 return std::make_pair(nullptr, Address::invalid());
4793 // Process list of dependencies.
4794 ASTContext &C = CGM.getContext();
4795 Address DependenciesArray = Address::invalid();
4796 llvm::Value *NumOfElements = nullptr;
4797 unsigned NumDependencies = std::accumulate(
4798 Dependencies.begin(), Dependencies.end(), 0,
4799 [](unsigned V, const OMPTaskDataTy::DependData &D) {
4800 return D.DepKind == OMPC_DEPEND_depobj
4801 ? V
4802 : (V + (D.IteratorExpr ? 0 : D.DepExprs.size()));
4803 });
4804 QualType FlagsTy;
4805 getDependTypes(C, KmpDependInfoTy, FlagsTy);
4806 bool HasDepobjDeps = false;
4807 bool HasRegularWithIterators = false;
4808 llvm::Value *NumOfDepobjElements = llvm::ConstantInt::get(CGF.IntPtrTy, 0);
4809 llvm::Value *NumOfRegularWithIterators =
4810 llvm::ConstantInt::get(CGF.IntPtrTy, 1);
4811 // Calculate number of depobj dependecies and regular deps with the iterators.
4812 for (const OMPTaskDataTy::DependData &D : Dependencies) {
4813 if (D.DepKind == OMPC_DEPEND_depobj) {
4814 SmallVector<llvm::Value *, 4> Sizes =
4815 emitDepobjElementsSizes(CGF, KmpDependInfoTy, D);
4816 for (llvm::Value *Size : Sizes) {
4817 NumOfDepobjElements =
4818 CGF.Builder.CreateNUWAdd(NumOfDepobjElements, Size);
4819 }
4820 HasDepobjDeps = true;
4821 continue;
4822 }
4823 // Include number of iterations, if any.
4824 if (const auto *IE = cast_or_null<OMPIteratorExpr>(D.IteratorExpr)) {
4825 for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4826 llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4827 Sz = CGF.Builder.CreateIntCast(Sz, CGF.IntPtrTy, /*isSigned=*/false);
4828 NumOfRegularWithIterators =
4829 CGF.Builder.CreateNUWMul(NumOfRegularWithIterators, Sz);
4830 }
4831 HasRegularWithIterators = true;
4832 continue;
4833 }
4834 }
4835
4836 QualType KmpDependInfoArrayTy;
4837 if (HasDepobjDeps || HasRegularWithIterators) {
4838 NumOfElements = llvm::ConstantInt::get(CGM.IntPtrTy, NumDependencies,
4839 /*isSigned=*/false);
4840 if (HasDepobjDeps) {
4841 NumOfElements =
4842 CGF.Builder.CreateNUWAdd(NumOfDepobjElements, NumOfElements);
4843 }
4844 if (HasRegularWithIterators) {
4845 NumOfElements =
4846 CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumOfElements);
4847 }
4848 OpaqueValueExpr OVE(Loc,
4849 C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0),
4850 VK_RValue);
4851 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4852 RValue::get(NumOfElements));
4853 KmpDependInfoArrayTy =
4854 C.getVariableArrayType(KmpDependInfoTy, &OVE, ArrayType::Normal,
4855 /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4856 // CGF.EmitVariablyModifiedType(KmpDependInfoArrayTy);
4857 // Properly emit variable-sized array.
4858 auto *PD = ImplicitParamDecl::Create(C, KmpDependInfoArrayTy,
4859 ImplicitParamDecl::Other);
4860 CGF.EmitVarDecl(*PD);
4861 DependenciesArray = CGF.GetAddrOfLocalVar(PD);
4862 NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4863 /*isSigned=*/false);
4864 } else {
4865 KmpDependInfoArrayTy = C.getConstantArrayType(
4866 KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), nullptr,
4867 ArrayType::Normal, /*IndexTypeQuals=*/0);
4868 DependenciesArray =
4869 CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
4870 DependenciesArray = CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0);
4871 NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumDependencies,
4872 /*isSigned=*/false);
4873 }
4874 unsigned Pos = 0;
4875 for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4876 if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4877 Dependencies[I].IteratorExpr)
4878 continue;
4879 emitDependData(CGF, KmpDependInfoTy, &Pos, Dependencies[I],
4880 DependenciesArray);
4881 }
4882 // Copy regular dependecies with iterators.
4883 LValue PosLVal = CGF.MakeAddrLValue(
4884 CGF.CreateMemTemp(C.getSizeType(), "dep.counter.addr"), C.getSizeType());
4885 CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4886 for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4887 if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4888 !Dependencies[I].IteratorExpr)
4889 continue;
4890 emitDependData(CGF, KmpDependInfoTy, &PosLVal, Dependencies[I],
4891 DependenciesArray);
4892 }
4893 // Copy final depobj arrays without iterators.
4894 if (HasDepobjDeps) {
4895 for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4896 if (Dependencies[I].DepKind != OMPC_DEPEND_depobj)
4897 continue;
4898 emitDepobjElements(CGF, KmpDependInfoTy, PosLVal, Dependencies[I],
4899 DependenciesArray);
4900 }
4901 }
4902 DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4903 DependenciesArray, CGF.VoidPtrTy);
4904 return std::make_pair(NumOfElements, DependenciesArray);
4905 }
4906
emitDepobjDependClause(CodeGenFunction & CGF,const OMPTaskDataTy::DependData & Dependencies,SourceLocation Loc)4907 Address CGOpenMPRuntime::emitDepobjDependClause(
4908 CodeGenFunction &CGF, const OMPTaskDataTy::DependData &Dependencies,
4909 SourceLocation Loc) {
4910 if (Dependencies.DepExprs.empty())
4911 return Address::invalid();
4912 // Process list of dependencies.
4913 ASTContext &C = CGM.getContext();
4914 Address DependenciesArray = Address::invalid();
4915 unsigned NumDependencies = Dependencies.DepExprs.size();
4916 QualType FlagsTy;
4917 getDependTypes(C, KmpDependInfoTy, FlagsTy);
4918 RecordDecl *KmpDependInfoRD =
4919 cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4920
4921 llvm::Value *Size;
4922 // Define type kmp_depend_info[<Dependencies.size()>];
4923 // For depobj reserve one extra element to store the number of elements.
4924 // It is required to handle depobj(x) update(in) construct.
4925 // kmp_depend_info[<Dependencies.size()>] deps;
4926 llvm::Value *NumDepsVal;
4927 CharUnits Align = C.getTypeAlignInChars(KmpDependInfoTy);
4928 if (const auto *IE =
4929 cast_or_null<OMPIteratorExpr>(Dependencies.IteratorExpr)) {
4930 NumDepsVal = llvm::ConstantInt::get(CGF.SizeTy, 1);
4931 for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4932 llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4933 Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4934 NumDepsVal = CGF.Builder.CreateNUWMul(NumDepsVal, Sz);
4935 }
4936 Size = CGF.Builder.CreateNUWAdd(llvm::ConstantInt::get(CGF.SizeTy, 1),
4937 NumDepsVal);
4938 CharUnits SizeInBytes =
4939 C.getTypeSizeInChars(KmpDependInfoTy).alignTo(Align);
4940 llvm::Value *RecSize = CGM.getSize(SizeInBytes);
4941 Size = CGF.Builder.CreateNUWMul(Size, RecSize);
4942 NumDepsVal =
4943 CGF.Builder.CreateIntCast(NumDepsVal, CGF.IntPtrTy, /*isSigned=*/false);
4944 } else {
4945 QualType KmpDependInfoArrayTy = C.getConstantArrayType(
4946 KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies + 1),
4947 nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4948 CharUnits Sz = C.getTypeSizeInChars(KmpDependInfoArrayTy);
4949 Size = CGM.getSize(Sz.alignTo(Align));
4950 NumDepsVal = llvm::ConstantInt::get(CGF.IntPtrTy, NumDependencies);
4951 }
4952 // Need to allocate on the dynamic memory.
4953 llvm::Value *ThreadID = getThreadID(CGF, Loc);
4954 // Use default allocator.
4955 llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4956 llvm::Value *Args[] = {ThreadID, Size, Allocator};
4957
4958 llvm::Value *Addr =
4959 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4960 CGM.getModule(), OMPRTL___kmpc_alloc),
4961 Args, ".dep.arr.addr");
4962 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4963 Addr, CGF.ConvertTypeForMem(KmpDependInfoTy)->getPointerTo());
4964 DependenciesArray = Address(Addr, Align);
4965 // Write number of elements in the first element of array for depobj.
4966 LValue Base = CGF.MakeAddrLValue(DependenciesArray, KmpDependInfoTy);
4967 // deps[i].base_addr = NumDependencies;
4968 LValue BaseAddrLVal = CGF.EmitLValueForField(
4969 Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4970 CGF.EmitStoreOfScalar(NumDepsVal, BaseAddrLVal);
4971 llvm::PointerUnion<unsigned *, LValue *> Pos;
4972 unsigned Idx = 1;
4973 LValue PosLVal;
4974 if (Dependencies.IteratorExpr) {
4975 PosLVal = CGF.MakeAddrLValue(
4976 CGF.CreateMemTemp(C.getSizeType(), "iterator.counter.addr"),
4977 C.getSizeType());
4978 CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Idx), PosLVal,
4979 /*IsInit=*/true);
4980 Pos = &PosLVal;
4981 } else {
4982 Pos = &Idx;
4983 }
4984 emitDependData(CGF, KmpDependInfoTy, Pos, Dependencies, DependenciesArray);
4985 DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4986 CGF.Builder.CreateConstGEP(DependenciesArray, 1), CGF.VoidPtrTy);
4987 return DependenciesArray;
4988 }
4989
emitDestroyClause(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4990 void CGOpenMPRuntime::emitDestroyClause(CodeGenFunction &CGF, LValue DepobjLVal,
4991 SourceLocation Loc) {
4992 ASTContext &C = CGM.getContext();
4993 QualType FlagsTy;
4994 getDependTypes(C, KmpDependInfoTy, FlagsTy);
4995 LValue Base = CGF.EmitLoadOfPointerLValue(
4996 DepobjLVal.getAddress(CGF),
4997 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4998 QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4999 Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5000 Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
5001 llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
5002 Addr.getPointer(),
5003 llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
5004 DepObjAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(DepObjAddr,
5005 CGF.VoidPtrTy);
5006 llvm::Value *ThreadID = getThreadID(CGF, Loc);
5007 // Use default allocator.
5008 llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5009 llvm::Value *Args[] = {ThreadID, DepObjAddr, Allocator};
5010
5011 // _kmpc_free(gtid, addr, nullptr);
5012 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5013 CGM.getModule(), OMPRTL___kmpc_free),
5014 Args);
5015 }
5016
emitUpdateClause(CodeGenFunction & CGF,LValue DepobjLVal,OpenMPDependClauseKind NewDepKind,SourceLocation Loc)5017 void CGOpenMPRuntime::emitUpdateClause(CodeGenFunction &CGF, LValue DepobjLVal,
5018 OpenMPDependClauseKind NewDepKind,
5019 SourceLocation Loc) {
5020 ASTContext &C = CGM.getContext();
5021 QualType FlagsTy;
5022 getDependTypes(C, KmpDependInfoTy, FlagsTy);
5023 RecordDecl *KmpDependInfoRD =
5024 cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
5025 llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
5026 llvm::Value *NumDeps;
5027 LValue Base;
5028 std::tie(NumDeps, Base) = getDepobjElements(CGF, DepobjLVal, Loc);
5029
5030 Address Begin = Base.getAddress(CGF);
5031 // Cast from pointer to array type to pointer to single element.
5032 llvm::Value *End = CGF.Builder.CreateGEP(Begin.getPointer(), NumDeps);
5033 // The basic structure here is a while-do loop.
5034 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.body");
5035 llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.done");
5036 llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5037 CGF.EmitBlock(BodyBB);
5038 llvm::PHINode *ElementPHI =
5039 CGF.Builder.CreatePHI(Begin.getType(), 2, "omp.elementPast");
5040 ElementPHI->addIncoming(Begin.getPointer(), EntryBB);
5041 Begin = Address(ElementPHI, Begin.getAlignment());
5042 Base = CGF.MakeAddrLValue(Begin, KmpDependInfoTy, Base.getBaseInfo(),
5043 Base.getTBAAInfo());
5044 // deps[i].flags = NewDepKind;
5045 RTLDependenceKindTy DepKind = translateDependencyKind(NewDepKind);
5046 LValue FlagsLVal = CGF.EmitLValueForField(
5047 Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
5048 CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
5049 FlagsLVal);
5050
5051 // Shift the address forward by one element.
5052 Address ElementNext =
5053 CGF.Builder.CreateConstGEP(Begin, /*Index=*/1, "omp.elementNext");
5054 ElementPHI->addIncoming(ElementNext.getPointer(),
5055 CGF.Builder.GetInsertBlock());
5056 llvm::Value *IsEmpty =
5057 CGF.Builder.CreateICmpEQ(ElementNext.getPointer(), End, "omp.isempty");
5058 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5059 // Done.
5060 CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5061 }
5062
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5063 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
5064 const OMPExecutableDirective &D,
5065 llvm::Function *TaskFunction,
5066 QualType SharedsTy, Address Shareds,
5067 const Expr *IfCond,
5068 const OMPTaskDataTy &Data) {
5069 if (!CGF.HaveInsertPoint())
5070 return;
5071
5072 TaskResultTy Result =
5073 emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5074 llvm::Value *NewTask = Result.NewTask;
5075 llvm::Function *TaskEntry = Result.TaskEntry;
5076 llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
5077 LValue TDBase = Result.TDBase;
5078 const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
5079 // Process list of dependences.
5080 Address DependenciesArray = Address::invalid();
5081 llvm::Value *NumOfElements;
5082 std::tie(NumOfElements, DependenciesArray) =
5083 emitDependClause(CGF, Data.Dependences, Loc);
5084
5085 // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5086 // libcall.
5087 // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
5088 // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
5089 // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
5090 // list is not empty
5091 llvm::Value *ThreadID = getThreadID(CGF, Loc);
5092 llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5093 llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
5094 llvm::Value *DepTaskArgs[7];
5095 if (!Data.Dependences.empty()) {
5096 DepTaskArgs[0] = UpLoc;
5097 DepTaskArgs[1] = ThreadID;
5098 DepTaskArgs[2] = NewTask;
5099 DepTaskArgs[3] = NumOfElements;
5100 DepTaskArgs[4] = DependenciesArray.getPointer();
5101 DepTaskArgs[5] = CGF.Builder.getInt32(0);
5102 DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5103 }
5104 auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, &TaskArgs,
5105 &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
5106 if (!Data.Tied) {
5107 auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
5108 LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
5109 CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
5110 }
5111 if (!Data.Dependences.empty()) {
5112 CGF.EmitRuntimeCall(
5113 OMPBuilder.getOrCreateRuntimeFunction(
5114 CGM.getModule(), OMPRTL___kmpc_omp_task_with_deps),
5115 DepTaskArgs);
5116 } else {
5117 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5118 CGM.getModule(), OMPRTL___kmpc_omp_task),
5119 TaskArgs);
5120 }
5121 // Check if parent region is untied and build return for untied task;
5122 if (auto *Region =
5123 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5124 Region->emitUntiedSwitch(CGF);
5125 };
5126
5127 llvm::Value *DepWaitTaskArgs[6];
5128 if (!Data.Dependences.empty()) {
5129 DepWaitTaskArgs[0] = UpLoc;
5130 DepWaitTaskArgs[1] = ThreadID;
5131 DepWaitTaskArgs[2] = NumOfElements;
5132 DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5133 DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5134 DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5135 }
5136 auto &M = CGM.getModule();
5137 auto &&ElseCodeGen = [this, &M, &TaskArgs, ThreadID, NewTaskNewTaskTTy,
5138 TaskEntry, &Data, &DepWaitTaskArgs,
5139 Loc](CodeGenFunction &CGF, PrePostActionTy &) {
5140 CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5141 // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
5142 // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5143 // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
5144 // is specified.
5145 if (!Data.Dependences.empty())
5146 CGF.EmitRuntimeCall(
5147 OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_omp_wait_deps),
5148 DepWaitTaskArgs);
5149 // Call proxy_task_entry(gtid, new_task);
5150 auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
5151 Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
5152 Action.Enter(CGF);
5153 llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
5154 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
5155 OutlinedFnArgs);
5156 };
5157
5158 // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
5159 // kmp_task_t *new_task);
5160 // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
5161 // kmp_task_t *new_task);
5162 RegionCodeGenTy RCG(CodeGen);
5163 CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
5164 M, OMPRTL___kmpc_omp_task_begin_if0),
5165 TaskArgs,
5166 OMPBuilder.getOrCreateRuntimeFunction(
5167 M, OMPRTL___kmpc_omp_task_complete_if0),
5168 TaskArgs);
5169 RCG.setAction(Action);
5170 RCG(CGF);
5171 };
5172
5173 if (IfCond) {
5174 emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
5175 } else {
5176 RegionCodeGenTy ThenRCG(ThenCodeGen);
5177 ThenRCG(CGF);
5178 }
5179 }
5180
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5181 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
5182 const OMPLoopDirective &D,
5183 llvm::Function *TaskFunction,
5184 QualType SharedsTy, Address Shareds,
5185 const Expr *IfCond,
5186 const OMPTaskDataTy &Data) {
5187 if (!CGF.HaveInsertPoint())
5188 return;
5189 TaskResultTy Result =
5190 emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5191 // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5192 // libcall.
5193 // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
5194 // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
5195 // sched, kmp_uint64 grainsize, void *task_dup);
5196 llvm::Value *ThreadID = getThreadID(CGF, Loc);
5197 llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5198 llvm::Value *IfVal;
5199 if (IfCond) {
5200 IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
5201 /*isSigned=*/true);
5202 } else {
5203 IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
5204 }
5205
5206 LValue LBLVal = CGF.EmitLValueForField(
5207 Result.TDBase,
5208 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
5209 const auto *LBVar =
5210 cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
5211 CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF),
5212 LBLVal.getQuals(),
5213 /*IsInitializer=*/true);
5214 LValue UBLVal = CGF.EmitLValueForField(
5215 Result.TDBase,
5216 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
5217 const auto *UBVar =
5218 cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
5219 CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF),
5220 UBLVal.getQuals(),
5221 /*IsInitializer=*/true);
5222 LValue StLVal = CGF.EmitLValueForField(
5223 Result.TDBase,
5224 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
5225 const auto *StVar =
5226 cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
5227 CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF),
5228 StLVal.getQuals(),
5229 /*IsInitializer=*/true);
5230 // Store reductions address.
5231 LValue RedLVal = CGF.EmitLValueForField(
5232 Result.TDBase,
5233 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
5234 if (Data.Reductions) {
5235 CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
5236 } else {
5237 CGF.EmitNullInitialization(RedLVal.getAddress(CGF),
5238 CGF.getContext().VoidPtrTy);
5239 }
5240 enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
5241 llvm::Value *TaskArgs[] = {
5242 UpLoc,
5243 ThreadID,
5244 Result.NewTask,
5245 IfVal,
5246 LBLVal.getPointer(CGF),
5247 UBLVal.getPointer(CGF),
5248 CGF.EmitLoadOfScalar(StLVal, Loc),
5249 llvm::ConstantInt::getSigned(
5250 CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
5251 llvm::ConstantInt::getSigned(
5252 CGF.IntTy, Data.Schedule.getPointer()
5253 ? Data.Schedule.getInt() ? NumTasks : Grainsize
5254 : NoSchedule),
5255 Data.Schedule.getPointer()
5256 ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
5257 /*isSigned=*/false)
5258 : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
5259 Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5260 Result.TaskDupFn, CGF.VoidPtrTy)
5261 : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
5262 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5263 CGM.getModule(), OMPRTL___kmpc_taskloop),
5264 TaskArgs);
5265 }
5266
5267 /// Emit reduction operation for each element of array (required for
5268 /// array sections) LHS op = RHS.
5269 /// \param Type Type of array.
5270 /// \param LHSVar Variable on the left side of the reduction operation
5271 /// (references element of array in original variable).
5272 /// \param RHSVar Variable on the right side of the reduction operation
5273 /// (references element of array in original variable).
5274 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
5275 /// RHSVar.
EmitOMPAggregateReduction(CodeGenFunction & CGF,QualType Type,const VarDecl * LHSVar,const VarDecl * RHSVar,const llvm::function_ref<void (CodeGenFunction & CGF,const Expr *,const Expr *,const Expr *)> & RedOpGen,const Expr * XExpr=nullptr,const Expr * EExpr=nullptr,const Expr * UpExpr=nullptr)5276 static void EmitOMPAggregateReduction(
5277 CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
5278 const VarDecl *RHSVar,
5279 const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
5280 const Expr *, const Expr *)> &RedOpGen,
5281 const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
5282 const Expr *UpExpr = nullptr) {
5283 // Perform element-by-element initialization.
5284 QualType ElementTy;
5285 Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
5286 Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
5287
5288 // Drill down to the base element type on both arrays.
5289 const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
5290 llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
5291
5292 llvm::Value *RHSBegin = RHSAddr.getPointer();
5293 llvm::Value *LHSBegin = LHSAddr.getPointer();
5294 // Cast from pointer to array type to pointer to single element.
5295 llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
5296 // The basic structure here is a while-do loop.
5297 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
5298 llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
5299 llvm::Value *IsEmpty =
5300 CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
5301 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5302
5303 // Enter the loop body, making that address the current address.
5304 llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5305 CGF.EmitBlock(BodyBB);
5306
5307 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
5308
5309 llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
5310 RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
5311 RHSElementPHI->addIncoming(RHSBegin, EntryBB);
5312 Address RHSElementCurrent =
5313 Address(RHSElementPHI,
5314 RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5315
5316 llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
5317 LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
5318 LHSElementPHI->addIncoming(LHSBegin, EntryBB);
5319 Address LHSElementCurrent =
5320 Address(LHSElementPHI,
5321 LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5322
5323 // Emit copy.
5324 CodeGenFunction::OMPPrivateScope Scope(CGF);
5325 Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
5326 Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
5327 Scope.Privatize();
5328 RedOpGen(CGF, XExpr, EExpr, UpExpr);
5329 Scope.ForceCleanup();
5330
5331 // Shift the address forward by one element.
5332 llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
5333 LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
5334 llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
5335 RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
5336 // Check whether we've reached the end.
5337 llvm::Value *Done =
5338 CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
5339 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
5340 LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
5341 RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
5342
5343 // Done.
5344 CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5345 }
5346
5347 /// Emit reduction combiner. If the combiner is a simple expression emit it as
5348 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
5349 /// UDR combiner function.
emitReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp)5350 static void emitReductionCombiner(CodeGenFunction &CGF,
5351 const Expr *ReductionOp) {
5352 if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
5353 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
5354 if (const auto *DRE =
5355 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
5356 if (const auto *DRD =
5357 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
5358 std::pair<llvm::Function *, llvm::Function *> Reduction =
5359 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
5360 RValue Func = RValue::get(Reduction.first);
5361 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5362 CGF.EmitIgnoredExpr(ReductionOp);
5363 return;
5364 }
5365 CGF.EmitIgnoredExpr(ReductionOp);
5366 }
5367
emitReductionFunction(SourceLocation Loc,llvm::Type * ArgsType,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps)5368 llvm::Function *CGOpenMPRuntime::emitReductionFunction(
5369 SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
5370 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
5371 ArrayRef<const Expr *> ReductionOps) {
5372 ASTContext &C = CGM.getContext();
5373
5374 // void reduction_func(void *LHSArg, void *RHSArg);
5375 FunctionArgList Args;
5376 ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5377 ImplicitParamDecl::Other);
5378 ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5379 ImplicitParamDecl::Other);
5380 Args.push_back(&LHSArg);
5381 Args.push_back(&RHSArg);
5382 const auto &CGFI =
5383 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5384 std::string Name = getName({"omp", "reduction", "reduction_func"});
5385 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5386 llvm::GlobalValue::InternalLinkage, Name,
5387 &CGM.getModule());
5388 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5389 Fn->setDoesNotRecurse();
5390 CodeGenFunction CGF(CGM);
5391 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5392
5393 // Dst = (void*[n])(LHSArg);
5394 // Src = (void*[n])(RHSArg);
5395 Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5396 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5397 ArgsType), CGF.getPointerAlign());
5398 Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5399 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5400 ArgsType), CGF.getPointerAlign());
5401
5402 // ...
5403 // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5404 // ...
5405 CodeGenFunction::OMPPrivateScope Scope(CGF);
5406 auto IPriv = Privates.begin();
5407 unsigned Idx = 0;
5408 for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5409 const auto *RHSVar =
5410 cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5411 Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
5412 return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
5413 });
5414 const auto *LHSVar =
5415 cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5416 Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
5417 return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
5418 });
5419 QualType PrivTy = (*IPriv)->getType();
5420 if (PrivTy->isVariablyModifiedType()) {
5421 // Get array size and emit VLA type.
5422 ++Idx;
5423 Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
5424 llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5425 const VariableArrayType *VLA =
5426 CGF.getContext().getAsVariableArrayType(PrivTy);
5427 const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5428 CodeGenFunction::OpaqueValueMapping OpaqueMap(
5429 CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5430 CGF.EmitVariablyModifiedType(PrivTy);
5431 }
5432 }
5433 Scope.Privatize();
5434 IPriv = Privates.begin();
5435 auto ILHS = LHSExprs.begin();
5436 auto IRHS = RHSExprs.begin();
5437 for (const Expr *E : ReductionOps) {
5438 if ((*IPriv)->getType()->isArrayType()) {
5439 // Emit reduction for array section.
5440 const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5441 const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5442 EmitOMPAggregateReduction(
5443 CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5444 [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5445 emitReductionCombiner(CGF, E);
5446 });
5447 } else {
5448 // Emit reduction for array subscript or single variable.
5449 emitReductionCombiner(CGF, E);
5450 }
5451 ++IPriv;
5452 ++ILHS;
5453 ++IRHS;
5454 }
5455 Scope.ForceCleanup();
5456 CGF.FinishFunction();
5457 return Fn;
5458 }
5459
emitSingleReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp,const Expr * PrivateRef,const DeclRefExpr * LHS,const DeclRefExpr * RHS)5460 void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5461 const Expr *ReductionOp,
5462 const Expr *PrivateRef,
5463 const DeclRefExpr *LHS,
5464 const DeclRefExpr *RHS) {
5465 if (PrivateRef->getType()->isArrayType()) {
5466 // Emit reduction for array section.
5467 const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5468 const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5469 EmitOMPAggregateReduction(
5470 CGF, PrivateRef->getType(), LHSVar, RHSVar,
5471 [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5472 emitReductionCombiner(CGF, ReductionOp);
5473 });
5474 } else {
5475 // Emit reduction for array subscript or single variable.
5476 emitReductionCombiner(CGF, ReductionOp);
5477 }
5478 }
5479
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)5480 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5481 ArrayRef<const Expr *> Privates,
5482 ArrayRef<const Expr *> LHSExprs,
5483 ArrayRef<const Expr *> RHSExprs,
5484 ArrayRef<const Expr *> ReductionOps,
5485 ReductionOptionsTy Options) {
5486 if (!CGF.HaveInsertPoint())
5487 return;
5488
5489 bool WithNowait = Options.WithNowait;
5490 bool SimpleReduction = Options.SimpleReduction;
5491
5492 // Next code should be emitted for reduction:
5493 //
5494 // static kmp_critical_name lock = { 0 };
5495 //
5496 // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5497 // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5498 // ...
5499 // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5500 // *(Type<n>-1*)rhs[<n>-1]);
5501 // }
5502 //
5503 // ...
5504 // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5505 // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5506 // RedList, reduce_func, &<lock>)) {
5507 // case 1:
5508 // ...
5509 // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5510 // ...
5511 // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5512 // break;
5513 // case 2:
5514 // ...
5515 // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5516 // ...
5517 // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5518 // break;
5519 // default:;
5520 // }
5521 //
5522 // if SimpleReduction is true, only the next code is generated:
5523 // ...
5524 // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5525 // ...
5526
5527 ASTContext &C = CGM.getContext();
5528
5529 if (SimpleReduction) {
5530 CodeGenFunction::RunCleanupsScope Scope(CGF);
5531 auto IPriv = Privates.begin();
5532 auto ILHS = LHSExprs.begin();
5533 auto IRHS = RHSExprs.begin();
5534 for (const Expr *E : ReductionOps) {
5535 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5536 cast<DeclRefExpr>(*IRHS));
5537 ++IPriv;
5538 ++ILHS;
5539 ++IRHS;
5540 }
5541 return;
5542 }
5543
5544 // 1. Build a list of reduction variables.
5545 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5546 auto Size = RHSExprs.size();
5547 for (const Expr *E : Privates) {
5548 if (E->getType()->isVariablyModifiedType())
5549 // Reserve place for array size.
5550 ++Size;
5551 }
5552 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5553 QualType ReductionArrayTy =
5554 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
5555 /*IndexTypeQuals=*/0);
5556 Address ReductionList =
5557 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5558 auto IPriv = Privates.begin();
5559 unsigned Idx = 0;
5560 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5561 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5562 CGF.Builder.CreateStore(
5563 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5564 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
5565 Elem);
5566 if ((*IPriv)->getType()->isVariablyModifiedType()) {
5567 // Store array size.
5568 ++Idx;
5569 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5570 llvm::Value *Size = CGF.Builder.CreateIntCast(
5571 CGF.getVLASize(
5572 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5573 .NumElts,
5574 CGF.SizeTy, /*isSigned=*/false);
5575 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5576 Elem);
5577 }
5578 }
5579
5580 // 2. Emit reduce_func().
5581 llvm::Function *ReductionFn = emitReductionFunction(
5582 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
5583 LHSExprs, RHSExprs, ReductionOps);
5584
5585 // 3. Create static kmp_critical_name lock = { 0 };
5586 std::string Name = getName({"reduction"});
5587 llvm::Value *Lock = getCriticalRegionLock(Name);
5588
5589 // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5590 // RedList, reduce_func, &<lock>);
5591 llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5592 llvm::Value *ThreadId = getThreadID(CGF, Loc);
5593 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5594 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5595 ReductionList.getPointer(), CGF.VoidPtrTy);
5596 llvm::Value *Args[] = {
5597 IdentTLoc, // ident_t *<loc>
5598 ThreadId, // i32 <gtid>
5599 CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5600 ReductionArrayTySize, // size_type sizeof(RedList)
5601 RL, // void *RedList
5602 ReductionFn, // void (*) (void *, void *) <reduce_func>
5603 Lock // kmp_critical_name *&<lock>
5604 };
5605 llvm::Value *Res = CGF.EmitRuntimeCall(
5606 OMPBuilder.getOrCreateRuntimeFunction(
5607 CGM.getModule(),
5608 WithNowait ? OMPRTL___kmpc_reduce_nowait : OMPRTL___kmpc_reduce),
5609 Args);
5610
5611 // 5. Build switch(res)
5612 llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5613 llvm::SwitchInst *SwInst =
5614 CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5615
5616 // 6. Build case 1:
5617 // ...
5618 // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5619 // ...
5620 // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5621 // break;
5622 llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5623 SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5624 CGF.EmitBlock(Case1BB);
5625
5626 // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5627 llvm::Value *EndArgs[] = {
5628 IdentTLoc, // ident_t *<loc>
5629 ThreadId, // i32 <gtid>
5630 Lock // kmp_critical_name *&<lock>
5631 };
5632 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5633 CodeGenFunction &CGF, PrePostActionTy &Action) {
5634 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5635 auto IPriv = Privates.begin();
5636 auto ILHS = LHSExprs.begin();
5637 auto IRHS = RHSExprs.begin();
5638 for (const Expr *E : ReductionOps) {
5639 RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5640 cast<DeclRefExpr>(*IRHS));
5641 ++IPriv;
5642 ++ILHS;
5643 ++IRHS;
5644 }
5645 };
5646 RegionCodeGenTy RCG(CodeGen);
5647 CommonActionTy Action(
5648 nullptr, llvm::None,
5649 OMPBuilder.getOrCreateRuntimeFunction(
5650 CGM.getModule(), WithNowait ? OMPRTL___kmpc_end_reduce_nowait
5651 : OMPRTL___kmpc_end_reduce),
5652 EndArgs);
5653 RCG.setAction(Action);
5654 RCG(CGF);
5655
5656 CGF.EmitBranch(DefaultBB);
5657
5658 // 7. Build case 2:
5659 // ...
5660 // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5661 // ...
5662 // break;
5663 llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5664 SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5665 CGF.EmitBlock(Case2BB);
5666
5667 auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5668 CodeGenFunction &CGF, PrePostActionTy &Action) {
5669 auto ILHS = LHSExprs.begin();
5670 auto IRHS = RHSExprs.begin();
5671 auto IPriv = Privates.begin();
5672 for (const Expr *E : ReductionOps) {
5673 const Expr *XExpr = nullptr;
5674 const Expr *EExpr = nullptr;
5675 const Expr *UpExpr = nullptr;
5676 BinaryOperatorKind BO = BO_Comma;
5677 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5678 if (BO->getOpcode() == BO_Assign) {
5679 XExpr = BO->getLHS();
5680 UpExpr = BO->getRHS();
5681 }
5682 }
5683 // Try to emit update expression as a simple atomic.
5684 const Expr *RHSExpr = UpExpr;
5685 if (RHSExpr) {
5686 // Analyze RHS part of the whole expression.
5687 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5688 RHSExpr->IgnoreParenImpCasts())) {
5689 // If this is a conditional operator, analyze its condition for
5690 // min/max reduction operator.
5691 RHSExpr = ACO->getCond();
5692 }
5693 if (const auto *BORHS =
5694 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5695 EExpr = BORHS->getRHS();
5696 BO = BORHS->getOpcode();
5697 }
5698 }
5699 if (XExpr) {
5700 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5701 auto &&AtomicRedGen = [BO, VD,
5702 Loc](CodeGenFunction &CGF, const Expr *XExpr,
5703 const Expr *EExpr, const Expr *UpExpr) {
5704 LValue X = CGF.EmitLValue(XExpr);
5705 RValue E;
5706 if (EExpr)
5707 E = CGF.EmitAnyExpr(EExpr);
5708 CGF.EmitOMPAtomicSimpleUpdateExpr(
5709 X, E, BO, /*IsXLHSInRHSPart=*/true,
5710 llvm::AtomicOrdering::Monotonic, Loc,
5711 [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5712 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5713 PrivateScope.addPrivate(
5714 VD, [&CGF, VD, XRValue, Loc]() {
5715 Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5716 CGF.emitOMPSimpleStore(
5717 CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5718 VD->getType().getNonReferenceType(), Loc);
5719 return LHSTemp;
5720 });
5721 (void)PrivateScope.Privatize();
5722 return CGF.EmitAnyExpr(UpExpr);
5723 });
5724 };
5725 if ((*IPriv)->getType()->isArrayType()) {
5726 // Emit atomic reduction for array section.
5727 const auto *RHSVar =
5728 cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5729 EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5730 AtomicRedGen, XExpr, EExpr, UpExpr);
5731 } else {
5732 // Emit atomic reduction for array subscript or single variable.
5733 AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5734 }
5735 } else {
5736 // Emit as a critical region.
5737 auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5738 const Expr *, const Expr *) {
5739 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5740 std::string Name = RT.getName({"atomic_reduction"});
5741 RT.emitCriticalRegion(
5742 CGF, Name,
5743 [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5744 Action.Enter(CGF);
5745 emitReductionCombiner(CGF, E);
5746 },
5747 Loc);
5748 };
5749 if ((*IPriv)->getType()->isArrayType()) {
5750 const auto *LHSVar =
5751 cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5752 const auto *RHSVar =
5753 cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5754 EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5755 CritRedGen);
5756 } else {
5757 CritRedGen(CGF, nullptr, nullptr, nullptr);
5758 }
5759 }
5760 ++ILHS;
5761 ++IRHS;
5762 ++IPriv;
5763 }
5764 };
5765 RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5766 if (!WithNowait) {
5767 // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5768 llvm::Value *EndArgs[] = {
5769 IdentTLoc, // ident_t *<loc>
5770 ThreadId, // i32 <gtid>
5771 Lock // kmp_critical_name *&<lock>
5772 };
5773 CommonActionTy Action(nullptr, llvm::None,
5774 OMPBuilder.getOrCreateRuntimeFunction(
5775 CGM.getModule(), OMPRTL___kmpc_end_reduce),
5776 EndArgs);
5777 AtomicRCG.setAction(Action);
5778 AtomicRCG(CGF);
5779 } else {
5780 AtomicRCG(CGF);
5781 }
5782
5783 CGF.EmitBranch(DefaultBB);
5784 CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5785 }
5786
5787 /// Generates unique name for artificial threadprivate variables.
5788 /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
generateUniqueName(CodeGenModule & CGM,StringRef Prefix,const Expr * Ref)5789 static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5790 const Expr *Ref) {
5791 SmallString<256> Buffer;
5792 llvm::raw_svector_ostream Out(Buffer);
5793 const clang::DeclRefExpr *DE;
5794 const VarDecl *D = ::getBaseDecl(Ref, DE);
5795 if (!D)
5796 D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
5797 D = D->getCanonicalDecl();
5798 std::string Name = CGM.getOpenMPRuntime().getName(
5799 {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
5800 Out << Prefix << Name << "_"
5801 << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
5802 return std::string(Out.str());
5803 }
5804
5805 /// Emits reduction initializer function:
5806 /// \code
5807 /// void @.red_init(void* %arg, void* %orig) {
5808 /// %0 = bitcast void* %arg to <type>*
5809 /// store <type> <init>, <type>* %0
5810 /// ret void
5811 /// }
5812 /// \endcode
emitReduceInitFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5813 static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
5814 SourceLocation Loc,
5815 ReductionCodeGen &RCG, unsigned N) {
5816 ASTContext &C = CGM.getContext();
5817 QualType VoidPtrTy = C.VoidPtrTy;
5818 VoidPtrTy.addRestrict();
5819 FunctionArgList Args;
5820 ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5821 ImplicitParamDecl::Other);
5822 ImplicitParamDecl ParamOrig(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5823 ImplicitParamDecl::Other);
5824 Args.emplace_back(&Param);
5825 Args.emplace_back(&ParamOrig);
5826 const auto &FnInfo =
5827 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5828 llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5829 std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
5830 auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5831 Name, &CGM.getModule());
5832 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5833 Fn->setDoesNotRecurse();
5834 CodeGenFunction CGF(CGM);
5835 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5836 Address PrivateAddr = CGF.EmitLoadOfPointer(
5837 CGF.GetAddrOfLocalVar(&Param),
5838 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5839 llvm::Value *Size = nullptr;
5840 // If the size of the reduction item is non-constant, load it from global
5841 // threadprivate variable.
5842 if (RCG.getSizes(N).second) {
5843 Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5844 CGF, CGM.getContext().getSizeType(),
5845 generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5846 Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5847 CGM.getContext().getSizeType(), Loc);
5848 }
5849 RCG.emitAggregateType(CGF, N, Size);
5850 LValue OrigLVal;
5851 // If initializer uses initializer from declare reduction construct, emit a
5852 // pointer to the address of the original reduction item (reuired by reduction
5853 // initializer)
5854 if (RCG.usesReductionInitializer(N)) {
5855 Address SharedAddr = CGF.GetAddrOfLocalVar(&ParamOrig);
5856 SharedAddr = CGF.EmitLoadOfPointer(
5857 SharedAddr,
5858 CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
5859 OrigLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
5860 } else {
5861 OrigLVal = CGF.MakeNaturalAlignAddrLValue(
5862 llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
5863 CGM.getContext().VoidPtrTy);
5864 }
5865 // Emit the initializer:
5866 // %0 = bitcast void* %arg to <type>*
5867 // store <type> <init>, <type>* %0
5868 RCG.emitInitialization(CGF, N, PrivateAddr, OrigLVal,
5869 [](CodeGenFunction &) { return false; });
5870 CGF.FinishFunction();
5871 return Fn;
5872 }
5873
5874 /// Emits reduction combiner function:
5875 /// \code
5876 /// void @.red_comb(void* %arg0, void* %arg1) {
5877 /// %lhs = bitcast void* %arg0 to <type>*
5878 /// %rhs = bitcast void* %arg1 to <type>*
5879 /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
5880 /// store <type> %2, <type>* %lhs
5881 /// ret void
5882 /// }
5883 /// \endcode
emitReduceCombFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N,const Expr * ReductionOp,const Expr * LHS,const Expr * RHS,const Expr * PrivateRef)5884 static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
5885 SourceLocation Loc,
5886 ReductionCodeGen &RCG, unsigned N,
5887 const Expr *ReductionOp,
5888 const Expr *LHS, const Expr *RHS,
5889 const Expr *PrivateRef) {
5890 ASTContext &C = CGM.getContext();
5891 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
5892 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
5893 FunctionArgList Args;
5894 ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
5895 C.VoidPtrTy, ImplicitParamDecl::Other);
5896 ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5897 ImplicitParamDecl::Other);
5898 Args.emplace_back(&ParamInOut);
5899 Args.emplace_back(&ParamIn);
5900 const auto &FnInfo =
5901 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5902 llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5903 std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
5904 auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5905 Name, &CGM.getModule());
5906 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5907 Fn->setDoesNotRecurse();
5908 CodeGenFunction CGF(CGM);
5909 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5910 llvm::Value *Size = nullptr;
5911 // If the size of the reduction item is non-constant, load it from global
5912 // threadprivate variable.
5913 if (RCG.getSizes(N).second) {
5914 Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5915 CGF, CGM.getContext().getSizeType(),
5916 generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5917 Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5918 CGM.getContext().getSizeType(), Loc);
5919 }
5920 RCG.emitAggregateType(CGF, N, Size);
5921 // Remap lhs and rhs variables to the addresses of the function arguments.
5922 // %lhs = bitcast void* %arg0 to <type>*
5923 // %rhs = bitcast void* %arg1 to <type>*
5924 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5925 PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
5926 // Pull out the pointer to the variable.
5927 Address PtrAddr = CGF.EmitLoadOfPointer(
5928 CGF.GetAddrOfLocalVar(&ParamInOut),
5929 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5930 return CGF.Builder.CreateElementBitCast(
5931 PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
5932 });
5933 PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
5934 // Pull out the pointer to the variable.
5935 Address PtrAddr = CGF.EmitLoadOfPointer(
5936 CGF.GetAddrOfLocalVar(&ParamIn),
5937 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5938 return CGF.Builder.CreateElementBitCast(
5939 PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
5940 });
5941 PrivateScope.Privatize();
5942 // Emit the combiner body:
5943 // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
5944 // store <type> %2, <type>* %lhs
5945 CGM.getOpenMPRuntime().emitSingleReductionCombiner(
5946 CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
5947 cast<DeclRefExpr>(RHS));
5948 CGF.FinishFunction();
5949 return Fn;
5950 }
5951
5952 /// Emits reduction finalizer function:
5953 /// \code
5954 /// void @.red_fini(void* %arg) {
5955 /// %0 = bitcast void* %arg to <type>*
5956 /// <destroy>(<type>* %0)
5957 /// ret void
5958 /// }
5959 /// \endcode
emitReduceFiniFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5960 static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
5961 SourceLocation Loc,
5962 ReductionCodeGen &RCG, unsigned N) {
5963 if (!RCG.needCleanups(N))
5964 return nullptr;
5965 ASTContext &C = CGM.getContext();
5966 FunctionArgList Args;
5967 ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5968 ImplicitParamDecl::Other);
5969 Args.emplace_back(&Param);
5970 const auto &FnInfo =
5971 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5972 llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5973 std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
5974 auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5975 Name, &CGM.getModule());
5976 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5977 Fn->setDoesNotRecurse();
5978 CodeGenFunction CGF(CGM);
5979 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5980 Address PrivateAddr = CGF.EmitLoadOfPointer(
5981 CGF.GetAddrOfLocalVar(&Param),
5982 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5983 llvm::Value *Size = nullptr;
5984 // If the size of the reduction item is non-constant, load it from global
5985 // threadprivate variable.
5986 if (RCG.getSizes(N).second) {
5987 Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5988 CGF, CGM.getContext().getSizeType(),
5989 generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5990 Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5991 CGM.getContext().getSizeType(), Loc);
5992 }
5993 RCG.emitAggregateType(CGF, N, Size);
5994 // Emit the finalizer body:
5995 // <destroy>(<type>* %0)
5996 RCG.emitCleanups(CGF, N, PrivateAddr);
5997 CGF.FinishFunction(Loc);
5998 return Fn;
5999 }
6000
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)6001 llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
6002 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
6003 ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
6004 if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
6005 return nullptr;
6006
6007 // Build typedef struct:
6008 // kmp_taskred_input {
6009 // void *reduce_shar; // shared reduction item
6010 // void *reduce_orig; // original reduction item used for initialization
6011 // size_t reduce_size; // size of data item
6012 // void *reduce_init; // data initialization routine
6013 // void *reduce_fini; // data finalization routine
6014 // void *reduce_comb; // data combiner routine
6015 // kmp_task_red_flags_t flags; // flags for additional info from compiler
6016 // } kmp_taskred_input_t;
6017 ASTContext &C = CGM.getContext();
6018 RecordDecl *RD = C.buildImplicitRecord("kmp_taskred_input_t");
6019 RD->startDefinition();
6020 const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6021 const FieldDecl *OrigFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6022 const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
6023 const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6024 const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6025 const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6026 const FieldDecl *FlagsFD = addFieldToRecordDecl(
6027 C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
6028 RD->completeDefinition();
6029 QualType RDType = C.getRecordType(RD);
6030 unsigned Size = Data.ReductionVars.size();
6031 llvm::APInt ArraySize(/*numBits=*/64, Size);
6032 QualType ArrayRDType = C.getConstantArrayType(
6033 RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
6034 // kmp_task_red_input_t .rd_input.[Size];
6035 Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
6036 ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionOrigs,
6037 Data.ReductionCopies, Data.ReductionOps);
6038 for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
6039 // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
6040 llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
6041 llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
6042 llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
6043 TaskRedInput.getPointer(), Idxs,
6044 /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
6045 ".rd_input.gep.");
6046 LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
6047 // ElemLVal.reduce_shar = &Shareds[Cnt];
6048 LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
6049 RCG.emitSharedOrigLValue(CGF, Cnt);
6050 llvm::Value *CastedShared =
6051 CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF));
6052 CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
6053 // ElemLVal.reduce_orig = &Origs[Cnt];
6054 LValue OrigLVal = CGF.EmitLValueForField(ElemLVal, OrigFD);
6055 llvm::Value *CastedOrig =
6056 CGF.EmitCastToVoidPtr(RCG.getOrigLValue(Cnt).getPointer(CGF));
6057 CGF.EmitStoreOfScalar(CastedOrig, OrigLVal);
6058 RCG.emitAggregateType(CGF, Cnt);
6059 llvm::Value *SizeValInChars;
6060 llvm::Value *SizeVal;
6061 std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
6062 // We use delayed creation/initialization for VLAs and array sections. It is
6063 // required because runtime does not provide the way to pass the sizes of
6064 // VLAs/array sections to initializer/combiner/finalizer functions. Instead
6065 // threadprivate global variables are used to store these values and use
6066 // them in the functions.
6067 bool DelayedCreation = !!SizeVal;
6068 SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
6069 /*isSigned=*/false);
6070 LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
6071 CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
6072 // ElemLVal.reduce_init = init;
6073 LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
6074 llvm::Value *InitAddr =
6075 CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
6076 CGF.EmitStoreOfScalar(InitAddr, InitLVal);
6077 // ElemLVal.reduce_fini = fini;
6078 LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
6079 llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
6080 llvm::Value *FiniAddr = Fini
6081 ? CGF.EmitCastToVoidPtr(Fini)
6082 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
6083 CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
6084 // ElemLVal.reduce_comb = comb;
6085 LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
6086 llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
6087 CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
6088 RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
6089 CGF.EmitStoreOfScalar(CombAddr, CombLVal);
6090 // ElemLVal.flags = 0;
6091 LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
6092 if (DelayedCreation) {
6093 CGF.EmitStoreOfScalar(
6094 llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
6095 FlagsLVal);
6096 } else
6097 CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF),
6098 FlagsLVal.getType());
6099 }
6100 if (Data.IsReductionWithTaskMod) {
6101 // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6102 // is_ws, int num, void *data);
6103 llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6104 llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6105 CGM.IntTy, /*isSigned=*/true);
6106 llvm::Value *Args[] = {
6107 IdentTLoc, GTid,
6108 llvm::ConstantInt::get(CGM.IntTy, Data.IsWorksharingReduction ? 1 : 0,
6109 /*isSigned=*/true),
6110 llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6111 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6112 TaskRedInput.getPointer(), CGM.VoidPtrTy)};
6113 return CGF.EmitRuntimeCall(
6114 OMPBuilder.getOrCreateRuntimeFunction(
6115 CGM.getModule(), OMPRTL___kmpc_taskred_modifier_init),
6116 Args);
6117 }
6118 // Build call void *__kmpc_taskred_init(int gtid, int num_data, void *data);
6119 llvm::Value *Args[] = {
6120 CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6121 /*isSigned=*/true),
6122 llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6123 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
6124 CGM.VoidPtrTy)};
6125 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6126 CGM.getModule(), OMPRTL___kmpc_taskred_init),
6127 Args);
6128 }
6129
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)6130 void CGOpenMPRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
6131 SourceLocation Loc,
6132 bool IsWorksharingReduction) {
6133 // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6134 // is_ws, int num, void *data);
6135 llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6136 llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6137 CGM.IntTy, /*isSigned=*/true);
6138 llvm::Value *Args[] = {IdentTLoc, GTid,
6139 llvm::ConstantInt::get(CGM.IntTy,
6140 IsWorksharingReduction ? 1 : 0,
6141 /*isSigned=*/true)};
6142 (void)CGF.EmitRuntimeCall(
6143 OMPBuilder.getOrCreateRuntimeFunction(
6144 CGM.getModule(), OMPRTL___kmpc_task_reduction_modifier_fini),
6145 Args);
6146 }
6147
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6148 void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
6149 SourceLocation Loc,
6150 ReductionCodeGen &RCG,
6151 unsigned N) {
6152 auto Sizes = RCG.getSizes(N);
6153 // Emit threadprivate global variable if the type is non-constant
6154 // (Sizes.second = nullptr).
6155 if (Sizes.second) {
6156 llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
6157 /*isSigned=*/false);
6158 Address SizeAddr = getAddrOfArtificialThreadPrivate(
6159 CGF, CGM.getContext().getSizeType(),
6160 generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6161 CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
6162 }
6163 }
6164
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)6165 Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
6166 SourceLocation Loc,
6167 llvm::Value *ReductionsPtr,
6168 LValue SharedLVal) {
6169 // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
6170 // *d);
6171 llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6172 CGM.IntTy,
6173 /*isSigned=*/true),
6174 ReductionsPtr,
6175 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6176 SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
6177 return Address(
6178 CGF.EmitRuntimeCall(
6179 OMPBuilder.getOrCreateRuntimeFunction(
6180 CGM.getModule(), OMPRTL___kmpc_task_reduction_get_th_data),
6181 Args),
6182 SharedLVal.getAlignment());
6183 }
6184
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)6185 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
6186 SourceLocation Loc) {
6187 if (!CGF.HaveInsertPoint())
6188 return;
6189
6190 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
6191 OMPBuilder.createTaskwait(CGF.Builder);
6192 } else {
6193 // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
6194 // global_tid);
6195 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
6196 // Ignore return result until untied tasks are supported.
6197 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6198 CGM.getModule(), OMPRTL___kmpc_omp_taskwait),
6199 Args);
6200 }
6201
6202 if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
6203 Region->emitUntiedSwitch(CGF);
6204 }
6205
emitInlinedDirective(CodeGenFunction & CGF,OpenMPDirectiveKind InnerKind,const RegionCodeGenTy & CodeGen,bool HasCancel)6206 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
6207 OpenMPDirectiveKind InnerKind,
6208 const RegionCodeGenTy &CodeGen,
6209 bool HasCancel) {
6210 if (!CGF.HaveInsertPoint())
6211 return;
6212 InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
6213 CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
6214 }
6215
6216 namespace {
6217 enum RTCancelKind {
6218 CancelNoreq = 0,
6219 CancelParallel = 1,
6220 CancelLoop = 2,
6221 CancelSections = 3,
6222 CancelTaskgroup = 4
6223 };
6224 } // anonymous namespace
6225
getCancellationKind(OpenMPDirectiveKind CancelRegion)6226 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
6227 RTCancelKind CancelKind = CancelNoreq;
6228 if (CancelRegion == OMPD_parallel)
6229 CancelKind = CancelParallel;
6230 else if (CancelRegion == OMPD_for)
6231 CancelKind = CancelLoop;
6232 else if (CancelRegion == OMPD_sections)
6233 CancelKind = CancelSections;
6234 else {
6235 assert(CancelRegion == OMPD_taskgroup);
6236 CancelKind = CancelTaskgroup;
6237 }
6238 return CancelKind;
6239 }
6240
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)6241 void CGOpenMPRuntime::emitCancellationPointCall(
6242 CodeGenFunction &CGF, SourceLocation Loc,
6243 OpenMPDirectiveKind CancelRegion) {
6244 if (!CGF.HaveInsertPoint())
6245 return;
6246 // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
6247 // global_tid, kmp_int32 cncl_kind);
6248 if (auto *OMPRegionInfo =
6249 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6250 // For 'cancellation point taskgroup', the task region info may not have a
6251 // cancel. This may instead happen in another adjacent task.
6252 if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
6253 llvm::Value *Args[] = {
6254 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
6255 CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6256 // Ignore return result until untied tasks are supported.
6257 llvm::Value *Result = CGF.EmitRuntimeCall(
6258 OMPBuilder.getOrCreateRuntimeFunction(
6259 CGM.getModule(), OMPRTL___kmpc_cancellationpoint),
6260 Args);
6261 // if (__kmpc_cancellationpoint()) {
6262 // exit from construct;
6263 // }
6264 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6265 llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6266 llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6267 CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6268 CGF.EmitBlock(ExitBB);
6269 // exit from construct;
6270 CodeGenFunction::JumpDest CancelDest =
6271 CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6272 CGF.EmitBranchThroughCleanup(CancelDest);
6273 CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6274 }
6275 }
6276 }
6277
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)6278 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
6279 const Expr *IfCond,
6280 OpenMPDirectiveKind CancelRegion) {
6281 if (!CGF.HaveInsertPoint())
6282 return;
6283 // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
6284 // kmp_int32 cncl_kind);
6285 auto &M = CGM.getModule();
6286 if (auto *OMPRegionInfo =
6287 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6288 auto &&ThenGen = [this, &M, Loc, CancelRegion,
6289 OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) {
6290 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
6291 llvm::Value *Args[] = {
6292 RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
6293 CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6294 // Ignore return result until untied tasks are supported.
6295 llvm::Value *Result = CGF.EmitRuntimeCall(
6296 OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_cancel), Args);
6297 // if (__kmpc_cancel()) {
6298 // exit from construct;
6299 // }
6300 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6301 llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6302 llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6303 CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6304 CGF.EmitBlock(ExitBB);
6305 // exit from construct;
6306 CodeGenFunction::JumpDest CancelDest =
6307 CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6308 CGF.EmitBranchThroughCleanup(CancelDest);
6309 CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6310 };
6311 if (IfCond) {
6312 emitIfClause(CGF, IfCond, ThenGen,
6313 [](CodeGenFunction &, PrePostActionTy &) {});
6314 } else {
6315 RegionCodeGenTy ThenRCG(ThenGen);
6316 ThenRCG(CGF);
6317 }
6318 }
6319 }
6320
6321 namespace {
6322 /// Cleanup action for uses_allocators support.
6323 class OMPUsesAllocatorsActionTy final : public PrePostActionTy {
6324 ArrayRef<std::pair<const Expr *, const Expr *>> Allocators;
6325
6326 public:
OMPUsesAllocatorsActionTy(ArrayRef<std::pair<const Expr *,const Expr * >> Allocators)6327 OMPUsesAllocatorsActionTy(
6328 ArrayRef<std::pair<const Expr *, const Expr *>> Allocators)
6329 : Allocators(Allocators) {}
Enter(CodeGenFunction & CGF)6330 void Enter(CodeGenFunction &CGF) override {
6331 if (!CGF.HaveInsertPoint())
6332 return;
6333 for (const auto &AllocatorData : Allocators) {
6334 CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsInit(
6335 CGF, AllocatorData.first, AllocatorData.second);
6336 }
6337 }
Exit(CodeGenFunction & CGF)6338 void Exit(CodeGenFunction &CGF) override {
6339 if (!CGF.HaveInsertPoint())
6340 return;
6341 for (const auto &AllocatorData : Allocators) {
6342 CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsFini(CGF,
6343 AllocatorData.first);
6344 }
6345 }
6346 };
6347 } // namespace
6348
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6349 void CGOpenMPRuntime::emitTargetOutlinedFunction(
6350 const OMPExecutableDirective &D, StringRef ParentName,
6351 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6352 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6353 assert(!ParentName.empty() && "Invalid target region parent name!");
6354 HasEmittedTargetRegion = true;
6355 SmallVector<std::pair<const Expr *, const Expr *>, 4> Allocators;
6356 for (const auto *C : D.getClausesOfKind<OMPUsesAllocatorsClause>()) {
6357 for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
6358 const OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
6359 if (!D.AllocatorTraits)
6360 continue;
6361 Allocators.emplace_back(D.Allocator, D.AllocatorTraits);
6362 }
6363 }
6364 OMPUsesAllocatorsActionTy UsesAllocatorAction(Allocators);
6365 CodeGen.setAction(UsesAllocatorAction);
6366 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6367 IsOffloadEntry, CodeGen);
6368 }
6369
emitUsesAllocatorsInit(CodeGenFunction & CGF,const Expr * Allocator,const Expr * AllocatorTraits)6370 void CGOpenMPRuntime::emitUsesAllocatorsInit(CodeGenFunction &CGF,
6371 const Expr *Allocator,
6372 const Expr *AllocatorTraits) {
6373 llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6374 ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6375 // Use default memspace handle.
6376 llvm::Value *MemSpaceHandle = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
6377 llvm::Value *NumTraits = llvm::ConstantInt::get(
6378 CGF.IntTy, cast<ConstantArrayType>(
6379 AllocatorTraits->getType()->getAsArrayTypeUnsafe())
6380 ->getSize()
6381 .getLimitedValue());
6382 LValue AllocatorTraitsLVal = CGF.EmitLValue(AllocatorTraits);
6383 Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6384 AllocatorTraitsLVal.getAddress(CGF), CGF.VoidPtrPtrTy);
6385 AllocatorTraitsLVal = CGF.MakeAddrLValue(Addr, CGF.getContext().VoidPtrTy,
6386 AllocatorTraitsLVal.getBaseInfo(),
6387 AllocatorTraitsLVal.getTBAAInfo());
6388 llvm::Value *Traits =
6389 CGF.EmitLoadOfScalar(AllocatorTraitsLVal, AllocatorTraits->getExprLoc());
6390
6391 llvm::Value *AllocatorVal =
6392 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6393 CGM.getModule(), OMPRTL___kmpc_init_allocator),
6394 {ThreadId, MemSpaceHandle, NumTraits, Traits});
6395 // Store to allocator.
6396 CGF.EmitVarDecl(*cast<VarDecl>(
6397 cast<DeclRefExpr>(Allocator->IgnoreParenImpCasts())->getDecl()));
6398 LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6399 AllocatorVal =
6400 CGF.EmitScalarConversion(AllocatorVal, CGF.getContext().VoidPtrTy,
6401 Allocator->getType(), Allocator->getExprLoc());
6402 CGF.EmitStoreOfScalar(AllocatorVal, AllocatorLVal);
6403 }
6404
emitUsesAllocatorsFini(CodeGenFunction & CGF,const Expr * Allocator)6405 void CGOpenMPRuntime::emitUsesAllocatorsFini(CodeGenFunction &CGF,
6406 const Expr *Allocator) {
6407 llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6408 ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6409 LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6410 llvm::Value *AllocatorVal =
6411 CGF.EmitLoadOfScalar(AllocatorLVal, Allocator->getExprLoc());
6412 AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, Allocator->getType(),
6413 CGF.getContext().VoidPtrTy,
6414 Allocator->getExprLoc());
6415 (void)CGF.EmitRuntimeCall(
6416 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
6417 OMPRTL___kmpc_destroy_allocator),
6418 {ThreadId, AllocatorVal});
6419 }
6420
emitTargetOutlinedFunctionHelper(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6421 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6422 const OMPExecutableDirective &D, StringRef ParentName,
6423 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6424 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6425 // Create a unique name for the entry function using the source location
6426 // information of the current target region. The name will be something like:
6427 //
6428 // __omp_offloading_DD_FFFF_PP_lBB
6429 //
6430 // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
6431 // mangled name of the function that encloses the target region and BB is the
6432 // line number of the target region.
6433
6434 unsigned DeviceID;
6435 unsigned FileID;
6436 unsigned Line;
6437 getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
6438 Line);
6439 SmallString<64> EntryFnName;
6440 {
6441 llvm::raw_svector_ostream OS(EntryFnName);
6442 OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6443 << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6444 }
6445
6446 const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6447
6448 CodeGenFunction CGF(CGM, true);
6449 CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6450 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6451
6452 OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc());
6453
6454 // If this target outline function is not an offload entry, we don't need to
6455 // register it.
6456 if (!IsOffloadEntry)
6457 return;
6458
6459 // The target region ID is used by the runtime library to identify the current
6460 // target region, so it only has to be unique and not necessarily point to
6461 // anything. It could be the pointer to the outlined function that implements
6462 // the target region, but we aren't using that so that the compiler doesn't
6463 // need to keep that, and could therefore inline the host function if proven
6464 // worthwhile during optimization. In the other hand, if emitting code for the
6465 // device, the ID has to be the function address so that it can retrieved from
6466 // the offloading entry and launched by the runtime library. We also mark the
6467 // outlined function to have external linkage in case we are emitting code for
6468 // the device, because these functions will be entry points to the device.
6469
6470 if (CGM.getLangOpts().OpenMPIsDevice) {
6471 OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
6472 OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6473 OutlinedFn->setDSOLocal(false);
6474 } else {
6475 std::string Name = getName({EntryFnName, "region_id"});
6476 OutlinedFnID = new llvm::GlobalVariable(
6477 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
6478 llvm::GlobalValue::WeakAnyLinkage,
6479 llvm::Constant::getNullValue(CGM.Int8Ty), Name);
6480 }
6481
6482 // Register the information for the entry associated with this target region.
6483 OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
6484 DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
6485 OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
6486 }
6487
6488 /// Checks if the expression is constant or does not have non-trivial function
6489 /// calls.
isTrivial(ASTContext & Ctx,const Expr * E)6490 static bool isTrivial(ASTContext &Ctx, const Expr * E) {
6491 // We can skip constant expressions.
6492 // We can skip expressions with trivial calls or simple expressions.
6493 return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
6494 !E->hasNonTrivialCall(Ctx)) &&
6495 !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
6496 }
6497
getSingleCompoundChild(ASTContext & Ctx,const Stmt * Body)6498 const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
6499 const Stmt *Body) {
6500 const Stmt *Child = Body->IgnoreContainers();
6501 while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
6502 Child = nullptr;
6503 for (const Stmt *S : C->body()) {
6504 if (const auto *E = dyn_cast<Expr>(S)) {
6505 if (isTrivial(Ctx, E))
6506 continue;
6507 }
6508 // Some of the statements can be ignored.
6509 if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
6510 isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
6511 continue;
6512 // Analyze declarations.
6513 if (const auto *DS = dyn_cast<DeclStmt>(S)) {
6514 if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
6515 if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
6516 isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
6517 isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
6518 isa<UsingDirectiveDecl>(D) ||
6519 isa<OMPDeclareReductionDecl>(D) ||
6520 isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
6521 return true;
6522 const auto *VD = dyn_cast<VarDecl>(D);
6523 if (!VD)
6524 return false;
6525 return VD->isConstexpr() ||
6526 ((VD->getType().isTrivialType(Ctx) ||
6527 VD->getType()->isReferenceType()) &&
6528 (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
6529 }))
6530 continue;
6531 }
6532 // Found multiple children - cannot get the one child only.
6533 if (Child)
6534 return nullptr;
6535 Child = S;
6536 }
6537 if (Child)
6538 Child = Child->IgnoreContainers();
6539 }
6540 return Child;
6541 }
6542
6543 /// Emit the number of teams for a target directive. Inspect the num_teams
6544 /// clause associated with a teams construct combined or closely nested
6545 /// with the target directive.
6546 ///
6547 /// Emit a team of size one for directives such as 'target parallel' that
6548 /// have no associated teams construct.
6549 ///
6550 /// Otherwise, return nullptr.
6551 static llvm::Value *
emitNumTeamsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6552 emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
6553 const OMPExecutableDirective &D) {
6554 assert(!CGF.getLangOpts().OpenMPIsDevice &&
6555 "Clauses associated with the teams directive expected to be emitted "
6556 "only for the host!");
6557 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6558 assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6559 "Expected target-based executable directive.");
6560 CGBuilderTy &Bld = CGF.Builder;
6561 switch (DirectiveKind) {
6562 case OMPD_target: {
6563 const auto *CS = D.getInnermostCapturedStmt();
6564 const auto *Body =
6565 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
6566 const Stmt *ChildStmt =
6567 CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
6568 if (const auto *NestedDir =
6569 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
6570 if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
6571 if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
6572 CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6573 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6574 const Expr *NumTeams =
6575 NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6576 llvm::Value *NumTeamsVal =
6577 CGF.EmitScalarExpr(NumTeams,
6578 /*IgnoreResultAssign*/ true);
6579 return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6580 /*isSigned=*/true);
6581 }
6582 return Bld.getInt32(0);
6583 }
6584 if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
6585 isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
6586 return Bld.getInt32(1);
6587 return Bld.getInt32(0);
6588 }
6589 return nullptr;
6590 }
6591 case OMPD_target_teams:
6592 case OMPD_target_teams_distribute:
6593 case OMPD_target_teams_distribute_simd:
6594 case OMPD_target_teams_distribute_parallel_for:
6595 case OMPD_target_teams_distribute_parallel_for_simd: {
6596 if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
6597 CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6598 const Expr *NumTeams =
6599 D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6600 llvm::Value *NumTeamsVal =
6601 CGF.EmitScalarExpr(NumTeams,
6602 /*IgnoreResultAssign*/ true);
6603 return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6604 /*isSigned=*/true);
6605 }
6606 return Bld.getInt32(0);
6607 }
6608 case OMPD_target_parallel:
6609 case OMPD_target_parallel_for:
6610 case OMPD_target_parallel_for_simd:
6611 case OMPD_target_simd:
6612 return Bld.getInt32(1);
6613 case OMPD_parallel:
6614 case OMPD_for:
6615 case OMPD_parallel_for:
6616 case OMPD_parallel_master:
6617 case OMPD_parallel_sections:
6618 case OMPD_for_simd:
6619 case OMPD_parallel_for_simd:
6620 case OMPD_cancel:
6621 case OMPD_cancellation_point:
6622 case OMPD_ordered:
6623 case OMPD_threadprivate:
6624 case OMPD_allocate:
6625 case OMPD_task:
6626 case OMPD_simd:
6627 case OMPD_sections:
6628 case OMPD_section:
6629 case OMPD_single:
6630 case OMPD_master:
6631 case OMPD_critical:
6632 case OMPD_taskyield:
6633 case OMPD_barrier:
6634 case OMPD_taskwait:
6635 case OMPD_taskgroup:
6636 case OMPD_atomic:
6637 case OMPD_flush:
6638 case OMPD_depobj:
6639 case OMPD_scan:
6640 case OMPD_teams:
6641 case OMPD_target_data:
6642 case OMPD_target_exit_data:
6643 case OMPD_target_enter_data:
6644 case OMPD_distribute:
6645 case OMPD_distribute_simd:
6646 case OMPD_distribute_parallel_for:
6647 case OMPD_distribute_parallel_for_simd:
6648 case OMPD_teams_distribute:
6649 case OMPD_teams_distribute_simd:
6650 case OMPD_teams_distribute_parallel_for:
6651 case OMPD_teams_distribute_parallel_for_simd:
6652 case OMPD_target_update:
6653 case OMPD_declare_simd:
6654 case OMPD_declare_variant:
6655 case OMPD_begin_declare_variant:
6656 case OMPD_end_declare_variant:
6657 case OMPD_declare_target:
6658 case OMPD_end_declare_target:
6659 case OMPD_declare_reduction:
6660 case OMPD_declare_mapper:
6661 case OMPD_taskloop:
6662 case OMPD_taskloop_simd:
6663 case OMPD_master_taskloop:
6664 case OMPD_master_taskloop_simd:
6665 case OMPD_parallel_master_taskloop:
6666 case OMPD_parallel_master_taskloop_simd:
6667 case OMPD_requires:
6668 case OMPD_unknown:
6669 break;
6670 default:
6671 break;
6672 }
6673 llvm_unreachable("Unexpected directive kind.");
6674 }
6675
getNumThreads(CodeGenFunction & CGF,const CapturedStmt * CS,llvm::Value * DefaultThreadLimitVal)6676 static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
6677 llvm::Value *DefaultThreadLimitVal) {
6678 const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6679 CGF.getContext(), CS->getCapturedStmt());
6680 if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6681 if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
6682 llvm::Value *NumThreads = nullptr;
6683 llvm::Value *CondVal = nullptr;
6684 // Handle if clause. If if clause present, the number of threads is
6685 // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6686 if (Dir->hasClausesOfKind<OMPIfClause>()) {
6687 CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6688 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6689 const OMPIfClause *IfClause = nullptr;
6690 for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
6691 if (C->getNameModifier() == OMPD_unknown ||
6692 C->getNameModifier() == OMPD_parallel) {
6693 IfClause = C;
6694 break;
6695 }
6696 }
6697 if (IfClause) {
6698 const Expr *Cond = IfClause->getCondition();
6699 bool Result;
6700 if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6701 if (!Result)
6702 return CGF.Builder.getInt32(1);
6703 } else {
6704 CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
6705 if (const auto *PreInit =
6706 cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
6707 for (const auto *I : PreInit->decls()) {
6708 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6709 CGF.EmitVarDecl(cast<VarDecl>(*I));
6710 } else {
6711 CodeGenFunction::AutoVarEmission Emission =
6712 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6713 CGF.EmitAutoVarCleanups(Emission);
6714 }
6715 }
6716 }
6717 CondVal = CGF.EvaluateExprAsBool(Cond);
6718 }
6719 }
6720 }
6721 // Check the value of num_threads clause iff if clause was not specified
6722 // or is not evaluated to false.
6723 if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
6724 CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6725 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6726 const auto *NumThreadsClause =
6727 Dir->getSingleClause<OMPNumThreadsClause>();
6728 CodeGenFunction::LexicalScope Scope(
6729 CGF, NumThreadsClause->getNumThreads()->getSourceRange());
6730 if (const auto *PreInit =
6731 cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
6732 for (const auto *I : PreInit->decls()) {
6733 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6734 CGF.EmitVarDecl(cast<VarDecl>(*I));
6735 } else {
6736 CodeGenFunction::AutoVarEmission Emission =
6737 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6738 CGF.EmitAutoVarCleanups(Emission);
6739 }
6740 }
6741 }
6742 NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
6743 NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
6744 /*isSigned=*/false);
6745 if (DefaultThreadLimitVal)
6746 NumThreads = CGF.Builder.CreateSelect(
6747 CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
6748 DefaultThreadLimitVal, NumThreads);
6749 } else {
6750 NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
6751 : CGF.Builder.getInt32(0);
6752 }
6753 // Process condition of the if clause.
6754 if (CondVal) {
6755 NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
6756 CGF.Builder.getInt32(1));
6757 }
6758 return NumThreads;
6759 }
6760 if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
6761 return CGF.Builder.getInt32(1);
6762 return DefaultThreadLimitVal;
6763 }
6764 return DefaultThreadLimitVal ? DefaultThreadLimitVal
6765 : CGF.Builder.getInt32(0);
6766 }
6767
6768 /// Emit the number of threads for a target directive. Inspect the
6769 /// thread_limit clause associated with a teams construct combined or closely
6770 /// nested with the target directive.
6771 ///
6772 /// Emit the num_threads clause for directives such as 'target parallel' that
6773 /// have no associated teams construct.
6774 ///
6775 /// Otherwise, return nullptr.
6776 static llvm::Value *
emitNumThreadsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6777 emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
6778 const OMPExecutableDirective &D) {
6779 assert(!CGF.getLangOpts().OpenMPIsDevice &&
6780 "Clauses associated with the teams directive expected to be emitted "
6781 "only for the host!");
6782 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6783 assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6784 "Expected target-based executable directive.");
6785 CGBuilderTy &Bld = CGF.Builder;
6786 llvm::Value *ThreadLimitVal = nullptr;
6787 llvm::Value *NumThreadsVal = nullptr;
6788 switch (DirectiveKind) {
6789 case OMPD_target: {
6790 const CapturedStmt *CS = D.getInnermostCapturedStmt();
6791 if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6792 return NumThreads;
6793 const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6794 CGF.getContext(), CS->getCapturedStmt());
6795 if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6796 if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
6797 CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6798 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6799 const auto *ThreadLimitClause =
6800 Dir->getSingleClause<OMPThreadLimitClause>();
6801 CodeGenFunction::LexicalScope Scope(
6802 CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
6803 if (const auto *PreInit =
6804 cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
6805 for (const auto *I : PreInit->decls()) {
6806 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6807 CGF.EmitVarDecl(cast<VarDecl>(*I));
6808 } else {
6809 CodeGenFunction::AutoVarEmission Emission =
6810 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6811 CGF.EmitAutoVarCleanups(Emission);
6812 }
6813 }
6814 }
6815 llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6816 ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6817 ThreadLimitVal =
6818 Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6819 }
6820 if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
6821 !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
6822 CS = Dir->getInnermostCapturedStmt();
6823 const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6824 CGF.getContext(), CS->getCapturedStmt());
6825 Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
6826 }
6827 if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
6828 !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
6829 CS = Dir->getInnermostCapturedStmt();
6830 if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6831 return NumThreads;
6832 }
6833 if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
6834 return Bld.getInt32(1);
6835 }
6836 return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6837 }
6838 case OMPD_target_teams: {
6839 if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6840 CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6841 const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6842 llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6843 ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6844 ThreadLimitVal =
6845 Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6846 }
6847 const CapturedStmt *CS = D.getInnermostCapturedStmt();
6848 if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6849 return NumThreads;
6850 const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6851 CGF.getContext(), CS->getCapturedStmt());
6852 if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6853 if (Dir->getDirectiveKind() == OMPD_distribute) {
6854 CS = Dir->getInnermostCapturedStmt();
6855 if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6856 return NumThreads;
6857 }
6858 }
6859 return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6860 }
6861 case OMPD_target_teams_distribute:
6862 if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6863 CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6864 const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6865 llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6866 ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6867 ThreadLimitVal =
6868 Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6869 }
6870 return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
6871 case OMPD_target_parallel:
6872 case OMPD_target_parallel_for:
6873 case OMPD_target_parallel_for_simd:
6874 case OMPD_target_teams_distribute_parallel_for:
6875 case OMPD_target_teams_distribute_parallel_for_simd: {
6876 llvm::Value *CondVal = nullptr;
6877 // Handle if clause. If if clause present, the number of threads is
6878 // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6879 if (D.hasClausesOfKind<OMPIfClause>()) {
6880 const OMPIfClause *IfClause = nullptr;
6881 for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
6882 if (C->getNameModifier() == OMPD_unknown ||
6883 C->getNameModifier() == OMPD_parallel) {
6884 IfClause = C;
6885 break;
6886 }
6887 }
6888 if (IfClause) {
6889 const Expr *Cond = IfClause->getCondition();
6890 bool Result;
6891 if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6892 if (!Result)
6893 return Bld.getInt32(1);
6894 } else {
6895 CodeGenFunction::RunCleanupsScope Scope(CGF);
6896 CondVal = CGF.EvaluateExprAsBool(Cond);
6897 }
6898 }
6899 }
6900 if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6901 CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6902 const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6903 llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6904 ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6905 ThreadLimitVal =
6906 Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6907 }
6908 if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6909 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6910 const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6911 llvm::Value *NumThreads = CGF.EmitScalarExpr(
6912 NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
6913 NumThreadsVal =
6914 Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
6915 ThreadLimitVal = ThreadLimitVal
6916 ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
6917 ThreadLimitVal),
6918 NumThreadsVal, ThreadLimitVal)
6919 : NumThreadsVal;
6920 }
6921 if (!ThreadLimitVal)
6922 ThreadLimitVal = Bld.getInt32(0);
6923 if (CondVal)
6924 return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
6925 return ThreadLimitVal;
6926 }
6927 case OMPD_target_teams_distribute_simd:
6928 case OMPD_target_simd:
6929 return Bld.getInt32(1);
6930 case OMPD_parallel:
6931 case OMPD_for:
6932 case OMPD_parallel_for:
6933 case OMPD_parallel_master:
6934 case OMPD_parallel_sections:
6935 case OMPD_for_simd:
6936 case OMPD_parallel_for_simd:
6937 case OMPD_cancel:
6938 case OMPD_cancellation_point:
6939 case OMPD_ordered:
6940 case OMPD_threadprivate:
6941 case OMPD_allocate:
6942 case OMPD_task:
6943 case OMPD_simd:
6944 case OMPD_sections:
6945 case OMPD_section:
6946 case OMPD_single:
6947 case OMPD_master:
6948 case OMPD_critical:
6949 case OMPD_taskyield:
6950 case OMPD_barrier:
6951 case OMPD_taskwait:
6952 case OMPD_taskgroup:
6953 case OMPD_atomic:
6954 case OMPD_flush:
6955 case OMPD_depobj:
6956 case OMPD_scan:
6957 case OMPD_teams:
6958 case OMPD_target_data:
6959 case OMPD_target_exit_data:
6960 case OMPD_target_enter_data:
6961 case OMPD_distribute:
6962 case OMPD_distribute_simd:
6963 case OMPD_distribute_parallel_for:
6964 case OMPD_distribute_parallel_for_simd:
6965 case OMPD_teams_distribute:
6966 case OMPD_teams_distribute_simd:
6967 case OMPD_teams_distribute_parallel_for:
6968 case OMPD_teams_distribute_parallel_for_simd:
6969 case OMPD_target_update:
6970 case OMPD_declare_simd:
6971 case OMPD_declare_variant:
6972 case OMPD_begin_declare_variant:
6973 case OMPD_end_declare_variant:
6974 case OMPD_declare_target:
6975 case OMPD_end_declare_target:
6976 case OMPD_declare_reduction:
6977 case OMPD_declare_mapper:
6978 case OMPD_taskloop:
6979 case OMPD_taskloop_simd:
6980 case OMPD_master_taskloop:
6981 case OMPD_master_taskloop_simd:
6982 case OMPD_parallel_master_taskloop:
6983 case OMPD_parallel_master_taskloop_simd:
6984 case OMPD_requires:
6985 case OMPD_unknown:
6986 break;
6987 default:
6988 break;
6989 }
6990 llvm_unreachable("Unsupported directive kind.");
6991 }
6992
6993 namespace {
6994 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
6995
6996 // Utility to handle information from clauses associated with a given
6997 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
6998 // It provides a convenient interface to obtain the information and generate
6999 // code for that information.
7000 class MappableExprsHandler {
7001 public:
7002 /// Values for bit flags used to specify the mapping type for
7003 /// offloading.
7004 enum OpenMPOffloadMappingFlags : uint64_t {
7005 /// No flags
7006 OMP_MAP_NONE = 0x0,
7007 /// Allocate memory on the device and move data from host to device.
7008 OMP_MAP_TO = 0x01,
7009 /// Allocate memory on the device and move data from device to host.
7010 OMP_MAP_FROM = 0x02,
7011 /// Always perform the requested mapping action on the element, even
7012 /// if it was already mapped before.
7013 OMP_MAP_ALWAYS = 0x04,
7014 /// Delete the element from the device environment, ignoring the
7015 /// current reference count associated with the element.
7016 OMP_MAP_DELETE = 0x08,
7017 /// The element being mapped is a pointer-pointee pair; both the
7018 /// pointer and the pointee should be mapped.
7019 OMP_MAP_PTR_AND_OBJ = 0x10,
7020 /// This flags signals that the base address of an entry should be
7021 /// passed to the target kernel as an argument.
7022 OMP_MAP_TARGET_PARAM = 0x20,
7023 /// Signal that the runtime library has to return the device pointer
7024 /// in the current position for the data being mapped. Used when we have the
7025 /// use_device_ptr or use_device_addr clause.
7026 OMP_MAP_RETURN_PARAM = 0x40,
7027 /// This flag signals that the reference being passed is a pointer to
7028 /// private data.
7029 OMP_MAP_PRIVATE = 0x80,
7030 /// Pass the element to the device by value.
7031 OMP_MAP_LITERAL = 0x100,
7032 /// Implicit map
7033 OMP_MAP_IMPLICIT = 0x200,
7034 /// Close is a hint to the runtime to allocate memory close to
7035 /// the target device.
7036 OMP_MAP_CLOSE = 0x400,
7037 /// 0x800 is reserved for compatibility with XLC.
7038 /// Produce a runtime error if the data is not already allocated.
7039 OMP_MAP_PRESENT = 0x1000,
7040 /// Signal that the runtime library should use args as an array of
7041 /// descriptor_dim pointers and use args_size as dims. Used when we have
7042 /// non-contiguous list items in target update directive
7043 OMP_MAP_NON_CONTIG = 0x100000000000,
7044 /// The 16 MSBs of the flags indicate whether the entry is member of some
7045 /// struct/class.
7046 OMP_MAP_MEMBER_OF = 0xffff000000000000,
7047 LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
7048 };
7049
7050 /// Get the offset of the OMP_MAP_MEMBER_OF field.
getFlagMemberOffset()7051 static unsigned getFlagMemberOffset() {
7052 unsigned Offset = 0;
7053 for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1);
7054 Remain = Remain >> 1)
7055 Offset++;
7056 return Offset;
7057 }
7058
7059 /// Class that holds debugging information for a data mapping to be passed to
7060 /// the runtime library.
7061 class MappingExprInfo {
7062 /// The variable declaration used for the data mapping.
7063 const ValueDecl *MapDecl = nullptr;
7064 /// The original expression used in the map clause, or null if there is
7065 /// none.
7066 const Expr *MapExpr = nullptr;
7067
7068 public:
MappingExprInfo(const ValueDecl * MapDecl,const Expr * MapExpr=nullptr)7069 MappingExprInfo(const ValueDecl *MapDecl, const Expr *MapExpr = nullptr)
7070 : MapDecl(MapDecl), MapExpr(MapExpr) {}
7071
getMapDecl() const7072 const ValueDecl *getMapDecl() const { return MapDecl; }
getMapExpr() const7073 const Expr *getMapExpr() const { return MapExpr; }
7074 };
7075
7076 /// Class that associates information with a base pointer to be passed to the
7077 /// runtime library.
7078 class BasePointerInfo {
7079 /// The base pointer.
7080 llvm::Value *Ptr = nullptr;
7081 /// The base declaration that refers to this device pointer, or null if
7082 /// there is none.
7083 const ValueDecl *DevPtrDecl = nullptr;
7084
7085 public:
BasePointerInfo(llvm::Value * Ptr,const ValueDecl * DevPtrDecl=nullptr)7086 BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
7087 : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
operator *() const7088 llvm::Value *operator*() const { return Ptr; }
getDevicePtrDecl() const7089 const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
setDevicePtrDecl(const ValueDecl * D)7090 void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
7091 };
7092
7093 using MapExprsArrayTy = SmallVector<MappingExprInfo, 4>;
7094 using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
7095 using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
7096 using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
7097 using MapMappersArrayTy = SmallVector<const ValueDecl *, 4>;
7098 using MapDimArrayTy = SmallVector<uint64_t, 4>;
7099 using MapNonContiguousArrayTy = SmallVector<MapValuesArrayTy, 4>;
7100
7101 /// This structure contains combined information generated for mappable
7102 /// clauses, including base pointers, pointers, sizes, map types, user-defined
7103 /// mappers, and non-contiguous information.
7104 struct MapCombinedInfoTy {
7105 struct StructNonContiguousInfo {
7106 bool IsNonContiguous = false;
7107 MapDimArrayTy Dims;
7108 MapNonContiguousArrayTy Offsets;
7109 MapNonContiguousArrayTy Counts;
7110 MapNonContiguousArrayTy Strides;
7111 };
7112 MapExprsArrayTy Exprs;
7113 MapBaseValuesArrayTy BasePointers;
7114 MapValuesArrayTy Pointers;
7115 MapValuesArrayTy Sizes;
7116 MapFlagsArrayTy Types;
7117 MapMappersArrayTy Mappers;
7118 StructNonContiguousInfo NonContigInfo;
7119
7120 /// Append arrays in \a CurInfo.
append__anon8f021c723d11::MappableExprsHandler::MapCombinedInfoTy7121 void append(MapCombinedInfoTy &CurInfo) {
7122 Exprs.append(CurInfo.Exprs.begin(), CurInfo.Exprs.end());
7123 BasePointers.append(CurInfo.BasePointers.begin(),
7124 CurInfo.BasePointers.end());
7125 Pointers.append(CurInfo.Pointers.begin(), CurInfo.Pointers.end());
7126 Sizes.append(CurInfo.Sizes.begin(), CurInfo.Sizes.end());
7127 Types.append(CurInfo.Types.begin(), CurInfo.Types.end());
7128 Mappers.append(CurInfo.Mappers.begin(), CurInfo.Mappers.end());
7129 NonContigInfo.Dims.append(CurInfo.NonContigInfo.Dims.begin(),
7130 CurInfo.NonContigInfo.Dims.end());
7131 NonContigInfo.Offsets.append(CurInfo.NonContigInfo.Offsets.begin(),
7132 CurInfo.NonContigInfo.Offsets.end());
7133 NonContigInfo.Counts.append(CurInfo.NonContigInfo.Counts.begin(),
7134 CurInfo.NonContigInfo.Counts.end());
7135 NonContigInfo.Strides.append(CurInfo.NonContigInfo.Strides.begin(),
7136 CurInfo.NonContigInfo.Strides.end());
7137 }
7138 };
7139
7140 /// Map between a struct and the its lowest & highest elements which have been
7141 /// mapped.
7142 /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
7143 /// HE(FieldIndex, Pointer)}
7144 struct StructRangeInfoTy {
7145 std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
7146 0, Address::invalid()};
7147 std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
7148 0, Address::invalid()};
7149 Address Base = Address::invalid();
7150 bool IsArraySection = false;
7151 };
7152
7153 private:
7154 /// Kind that defines how a device pointer has to be returned.
7155 struct MapInfo {
7156 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7157 OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
7158 ArrayRef<OpenMPMapModifierKind> MapModifiers;
7159 ArrayRef<OpenMPMotionModifierKind> MotionModifiers;
7160 bool ReturnDevicePointer = false;
7161 bool IsImplicit = false;
7162 const ValueDecl *Mapper = nullptr;
7163 const Expr *VarRef = nullptr;
7164 bool ForDeviceAddr = false;
7165
7166 MapInfo() = default;
MapInfo__anon8f021c723d11::MappableExprsHandler::MapInfo7167 MapInfo(
7168 OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7169 OpenMPMapClauseKind MapType,
7170 ArrayRef<OpenMPMapModifierKind> MapModifiers,
7171 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
7172 bool ReturnDevicePointer, bool IsImplicit,
7173 const ValueDecl *Mapper = nullptr, const Expr *VarRef = nullptr,
7174 bool ForDeviceAddr = false)
7175 : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
7176 MotionModifiers(MotionModifiers),
7177 ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit),
7178 Mapper(Mapper), VarRef(VarRef), ForDeviceAddr(ForDeviceAddr) {}
7179 };
7180
7181 /// If use_device_ptr or use_device_addr is used on a decl which is a struct
7182 /// member and there is no map information about it, then emission of that
7183 /// entry is deferred until the whole struct has been processed.
7184 struct DeferredDevicePtrEntryTy {
7185 const Expr *IE = nullptr;
7186 const ValueDecl *VD = nullptr;
7187 bool ForDeviceAddr = false;
7188
DeferredDevicePtrEntryTy__anon8f021c723d11::MappableExprsHandler::DeferredDevicePtrEntryTy7189 DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD,
7190 bool ForDeviceAddr)
7191 : IE(IE), VD(VD), ForDeviceAddr(ForDeviceAddr) {}
7192 };
7193
7194 /// The target directive from where the mappable clauses were extracted. It
7195 /// is either a executable directive or a user-defined mapper directive.
7196 llvm::PointerUnion<const OMPExecutableDirective *,
7197 const OMPDeclareMapperDecl *>
7198 CurDir;
7199
7200 /// Function the directive is being generated for.
7201 CodeGenFunction &CGF;
7202
7203 /// Set of all first private variables in the current directive.
7204 /// bool data is set to true if the variable is implicitly marked as
7205 /// firstprivate, false otherwise.
7206 llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
7207
7208 /// Map between device pointer declarations and their expression components.
7209 /// The key value for declarations in 'this' is null.
7210 llvm::DenseMap<
7211 const ValueDecl *,
7212 SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
7213 DevPointersMap;
7214
getExprTypeSize(const Expr * E) const7215 llvm::Value *getExprTypeSize(const Expr *E) const {
7216 QualType ExprTy = E->getType().getCanonicalType();
7217
7218 // Calculate the size for array shaping expression.
7219 if (const auto *OAE = dyn_cast<OMPArrayShapingExpr>(E)) {
7220 llvm::Value *Size =
7221 CGF.getTypeSize(OAE->getBase()->getType()->getPointeeType());
7222 for (const Expr *SE : OAE->getDimensions()) {
7223 llvm::Value *Sz = CGF.EmitScalarExpr(SE);
7224 Sz = CGF.EmitScalarConversion(Sz, SE->getType(),
7225 CGF.getContext().getSizeType(),
7226 SE->getExprLoc());
7227 Size = CGF.Builder.CreateNUWMul(Size, Sz);
7228 }
7229 return Size;
7230 }
7231
7232 // Reference types are ignored for mapping purposes.
7233 if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
7234 ExprTy = RefTy->getPointeeType().getCanonicalType();
7235
7236 // Given that an array section is considered a built-in type, we need to
7237 // do the calculation based on the length of the section instead of relying
7238 // on CGF.getTypeSize(E->getType()).
7239 if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
7240 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
7241 OAE->getBase()->IgnoreParenImpCasts())
7242 .getCanonicalType();
7243
7244 // If there is no length associated with the expression and lower bound is
7245 // not specified too, that means we are using the whole length of the
7246 // base.
7247 if (!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7248 !OAE->getLowerBound())
7249 return CGF.getTypeSize(BaseTy);
7250
7251 llvm::Value *ElemSize;
7252 if (const auto *PTy = BaseTy->getAs<PointerType>()) {
7253 ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
7254 } else {
7255 const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
7256 assert(ATy && "Expecting array type if not a pointer type.");
7257 ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
7258 }
7259
7260 // If we don't have a length at this point, that is because we have an
7261 // array section with a single element.
7262 if (!OAE->getLength() && OAE->getColonLocFirst().isInvalid())
7263 return ElemSize;
7264
7265 if (const Expr *LenExpr = OAE->getLength()) {
7266 llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
7267 LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
7268 CGF.getContext().getSizeType(),
7269 LenExpr->getExprLoc());
7270 return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
7271 }
7272 assert(!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7273 OAE->getLowerBound() && "expected array_section[lb:].");
7274 // Size = sizetype - lb * elemtype;
7275 llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
7276 llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
7277 LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
7278 CGF.getContext().getSizeType(),
7279 OAE->getLowerBound()->getExprLoc());
7280 LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
7281 llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
7282 llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
7283 LengthVal = CGF.Builder.CreateSelect(
7284 Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
7285 return LengthVal;
7286 }
7287 return CGF.getTypeSize(ExprTy);
7288 }
7289
7290 /// Return the corresponding bits for a given map clause modifier. Add
7291 /// a flag marking the map as a pointer if requested. Add a flag marking the
7292 /// map as the first one of a series of maps that relate to the same map
7293 /// expression.
getMapTypeBits(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,bool IsImplicit,bool AddPtrFlag,bool AddIsTargetParamFlag,bool IsNonContiguous) const7294 OpenMPOffloadMappingFlags getMapTypeBits(
7295 OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7296 ArrayRef<OpenMPMotionModifierKind> MotionModifiers, bool IsImplicit,
7297 bool AddPtrFlag, bool AddIsTargetParamFlag, bool IsNonContiguous) const {
7298 OpenMPOffloadMappingFlags Bits =
7299 IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
7300 switch (MapType) {
7301 case OMPC_MAP_alloc:
7302 case OMPC_MAP_release:
7303 // alloc and release is the default behavior in the runtime library, i.e.
7304 // if we don't pass any bits alloc/release that is what the runtime is
7305 // going to do. Therefore, we don't need to signal anything for these two
7306 // type modifiers.
7307 break;
7308 case OMPC_MAP_to:
7309 Bits |= OMP_MAP_TO;
7310 break;
7311 case OMPC_MAP_from:
7312 Bits |= OMP_MAP_FROM;
7313 break;
7314 case OMPC_MAP_tofrom:
7315 Bits |= OMP_MAP_TO | OMP_MAP_FROM;
7316 break;
7317 case OMPC_MAP_delete:
7318 Bits |= OMP_MAP_DELETE;
7319 break;
7320 case OMPC_MAP_unknown:
7321 llvm_unreachable("Unexpected map type!");
7322 }
7323 if (AddPtrFlag)
7324 Bits |= OMP_MAP_PTR_AND_OBJ;
7325 if (AddIsTargetParamFlag)
7326 Bits |= OMP_MAP_TARGET_PARAM;
7327 if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
7328 != MapModifiers.end())
7329 Bits |= OMP_MAP_ALWAYS;
7330 if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close)
7331 != MapModifiers.end())
7332 Bits |= OMP_MAP_CLOSE;
7333 if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_present)
7334 != MapModifiers.end())
7335 Bits |= OMP_MAP_PRESENT;
7336 if (llvm::find(MotionModifiers, OMPC_MOTION_MODIFIER_present)
7337 != MotionModifiers.end())
7338 Bits |= OMP_MAP_PRESENT;
7339 if (IsNonContiguous)
7340 Bits |= OMP_MAP_NON_CONTIG;
7341 return Bits;
7342 }
7343
7344 /// Return true if the provided expression is a final array section. A
7345 /// final array section, is one whose length can't be proved to be one.
isFinalArraySectionExpression(const Expr * E) const7346 bool isFinalArraySectionExpression(const Expr *E) const {
7347 const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
7348
7349 // It is not an array section and therefore not a unity-size one.
7350 if (!OASE)
7351 return false;
7352
7353 // An array section with no colon always refer to a single element.
7354 if (OASE->getColonLocFirst().isInvalid())
7355 return false;
7356
7357 const Expr *Length = OASE->getLength();
7358
7359 // If we don't have a length we have to check if the array has size 1
7360 // for this dimension. Also, we should always expect a length if the
7361 // base type is pointer.
7362 if (!Length) {
7363 QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
7364 OASE->getBase()->IgnoreParenImpCasts())
7365 .getCanonicalType();
7366 if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
7367 return ATy->getSize().getSExtValue() != 1;
7368 // If we don't have a constant dimension length, we have to consider
7369 // the current section as having any size, so it is not necessarily
7370 // unitary. If it happen to be unity size, that's user fault.
7371 return true;
7372 }
7373
7374 // Check if the length evaluates to 1.
7375 Expr::EvalResult Result;
7376 if (!Length->EvaluateAsInt(Result, CGF.getContext()))
7377 return true; // Can have more that size 1.
7378
7379 llvm::APSInt ConstLength = Result.Val.getInt();
7380 return ConstLength.getSExtValue() != 1;
7381 }
7382
7383 /// Generate the base pointers, section pointers, sizes, map type bits, and
7384 /// user-defined mappers (all included in \a CombinedInfo) for the provided
7385 /// map type, map or motion modifiers, and expression components.
7386 /// \a IsFirstComponent should be set to true if the provided set of
7387 /// components is the first associated with a capture.
generateInfoForComponentList(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,OMPClauseMappableExprCommon::MappableExprComponentListRef Components,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct,bool IsFirstComponentList,bool IsImplicit,const ValueDecl * Mapper=nullptr,bool ForDeviceAddr=false,const ValueDecl * BaseDecl=nullptr,const Expr * MapExpr=nullptr,ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> OverlappedElements=llvm::None) const7388 void generateInfoForComponentList(
7389 OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7390 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
7391 OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7392 MapCombinedInfoTy &CombinedInfo, StructRangeInfoTy &PartialStruct,
7393 bool IsFirstComponentList, bool IsImplicit,
7394 const ValueDecl *Mapper = nullptr, bool ForDeviceAddr = false,
7395 const ValueDecl *BaseDecl = nullptr, const Expr *MapExpr = nullptr,
7396 ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7397 OverlappedElements = llvm::None) const {
7398 // The following summarizes what has to be generated for each map and the
7399 // types below. The generated information is expressed in this order:
7400 // base pointer, section pointer, size, flags
7401 // (to add to the ones that come from the map type and modifier).
7402 //
7403 // double d;
7404 // int i[100];
7405 // float *p;
7406 //
7407 // struct S1 {
7408 // int i;
7409 // float f[50];
7410 // }
7411 // struct S2 {
7412 // int i;
7413 // float f[50];
7414 // S1 s;
7415 // double *p;
7416 // struct S2 *ps;
7417 // }
7418 // S2 s;
7419 // S2 *ps;
7420 //
7421 // map(d)
7422 // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
7423 //
7424 // map(i)
7425 // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
7426 //
7427 // map(i[1:23])
7428 // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
7429 //
7430 // map(p)
7431 // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
7432 //
7433 // map(p[1:24])
7434 // &p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | PTR_AND_OBJ
7435 // in unified shared memory mode or for local pointers
7436 // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
7437 //
7438 // map(s)
7439 // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
7440 //
7441 // map(s.i)
7442 // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
7443 //
7444 // map(s.s.f)
7445 // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7446 //
7447 // map(s.p)
7448 // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
7449 //
7450 // map(to: s.p[:22])
7451 // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
7452 // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
7453 // &(s.p), &(s.p[0]), 22*sizeof(double),
7454 // MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7455 // (*) alloc space for struct members, only this is a target parameter
7456 // (**) map the pointer (nothing to be mapped in this example) (the compiler
7457 // optimizes this entry out, same in the examples below)
7458 // (***) map the pointee (map: to)
7459 //
7460 // map(s.ps)
7461 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7462 //
7463 // map(from: s.ps->s.i)
7464 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7465 // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7466 // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7467 //
7468 // map(to: s.ps->ps)
7469 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7470 // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7471 // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO
7472 //
7473 // map(s.ps->ps->ps)
7474 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7475 // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7476 // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7477 // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7478 //
7479 // map(to: s.ps->ps->s.f[:22])
7480 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7481 // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7482 // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7483 // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7484 //
7485 // map(ps)
7486 // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
7487 //
7488 // map(ps->i)
7489 // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
7490 //
7491 // map(ps->s.f)
7492 // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7493 //
7494 // map(from: ps->p)
7495 // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
7496 //
7497 // map(to: ps->p[:22])
7498 // ps, &(ps->p), sizeof(double*), TARGET_PARAM
7499 // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
7500 // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
7501 //
7502 // map(ps->ps)
7503 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7504 //
7505 // map(from: ps->ps->s.i)
7506 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7507 // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7508 // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7509 //
7510 // map(from: ps->ps->ps)
7511 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7512 // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7513 // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7514 //
7515 // map(ps->ps->ps->ps)
7516 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7517 // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7518 // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7519 // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7520 //
7521 // map(to: ps->ps->ps->s.f[:22])
7522 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7523 // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7524 // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7525 // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7526 //
7527 // map(to: s.f[:22]) map(from: s.p[:33])
7528 // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
7529 // sizeof(double*) (**), TARGET_PARAM
7530 // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
7531 // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
7532 // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7533 // (*) allocate contiguous space needed to fit all mapped members even if
7534 // we allocate space for members not mapped (in this example,
7535 // s.f[22..49] and s.s are not mapped, yet we must allocate space for
7536 // them as well because they fall between &s.f[0] and &s.p)
7537 //
7538 // map(from: s.f[:22]) map(to: ps->p[:33])
7539 // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
7540 // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7541 // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
7542 // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
7543 // (*) the struct this entry pertains to is the 2nd element in the list of
7544 // arguments, hence MEMBER_OF(2)
7545 //
7546 // map(from: s.f[:22], s.s) map(to: ps->p[:33])
7547 // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
7548 // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
7549 // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
7550 // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7551 // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
7552 // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
7553 // (*) the struct this entry pertains to is the 4th element in the list
7554 // of arguments, hence MEMBER_OF(4)
7555
7556 // Track if the map information being generated is the first for a capture.
7557 bool IsCaptureFirstInfo = IsFirstComponentList;
7558 // When the variable is on a declare target link or in a to clause with
7559 // unified memory, a reference is needed to hold the host/device address
7560 // of the variable.
7561 bool RequiresReference = false;
7562
7563 // Scan the components from the base to the complete expression.
7564 auto CI = Components.rbegin();
7565 auto CE = Components.rend();
7566 auto I = CI;
7567
7568 // Track if the map information being generated is the first for a list of
7569 // components.
7570 bool IsExpressionFirstInfo = true;
7571 bool FirstPointerInComplexData = false;
7572 Address BP = Address::invalid();
7573 const Expr *AssocExpr = I->getAssociatedExpression();
7574 const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7575 const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7576 const auto *OAShE = dyn_cast<OMPArrayShapingExpr>(AssocExpr);
7577
7578 if (isa<MemberExpr>(AssocExpr)) {
7579 // The base is the 'this' pointer. The content of the pointer is going
7580 // to be the base of the field being mapped.
7581 BP = CGF.LoadCXXThisAddress();
7582 } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7583 (OASE &&
7584 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7585 BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7586 } else if (OAShE &&
7587 isa<CXXThisExpr>(OAShE->getBase()->IgnoreParenCasts())) {
7588 BP = Address(
7589 CGF.EmitScalarExpr(OAShE->getBase()),
7590 CGF.getContext().getTypeAlignInChars(OAShE->getBase()->getType()));
7591 } else {
7592 // The base is the reference to the variable.
7593 // BP = &Var.
7594 BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7595 if (const auto *VD =
7596 dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7597 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7598 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
7599 if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
7600 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
7601 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
7602 RequiresReference = true;
7603 BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
7604 }
7605 }
7606 }
7607
7608 // If the variable is a pointer and is being dereferenced (i.e. is not
7609 // the last component), the base has to be the pointer itself, not its
7610 // reference. References are ignored for mapping purposes.
7611 QualType Ty =
7612 I->getAssociatedDeclaration()->getType().getNonReferenceType();
7613 if (Ty->isAnyPointerType() && std::next(I) != CE) {
7614 // No need to generate individual map information for the pointer, it
7615 // can be associated with the combined storage if shared memory mode is
7616 // active or the base declaration is not global variable.
7617 const auto *VD = dyn_cast<VarDecl>(I->getAssociatedDeclaration());
7618 if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
7619 !VD || VD->hasLocalStorage())
7620 BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7621 else
7622 FirstPointerInComplexData = true;
7623 ++I;
7624 }
7625 }
7626
7627 // Track whether a component of the list should be marked as MEMBER_OF some
7628 // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7629 // in a component list should be marked as MEMBER_OF, all subsequent entries
7630 // do not belong to the base struct. E.g.
7631 // struct S2 s;
7632 // s.ps->ps->ps->f[:]
7633 // (1) (2) (3) (4)
7634 // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7635 // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7636 // is the pointee of ps(2) which is not member of struct s, so it should not
7637 // be marked as such (it is still PTR_AND_OBJ).
7638 // The variable is initialized to false so that PTR_AND_OBJ entries which
7639 // are not struct members are not considered (e.g. array of pointers to
7640 // data).
7641 bool ShouldBeMemberOf = false;
7642
7643 // Variable keeping track of whether or not we have encountered a component
7644 // in the component list which is a member expression. Useful when we have a
7645 // pointer or a final array section, in which case it is the previous
7646 // component in the list which tells us whether we have a member expression.
7647 // E.g. X.f[:]
7648 // While processing the final array section "[:]" it is "f" which tells us
7649 // whether we are dealing with a member of a declared struct.
7650 const MemberExpr *EncounteredME = nullptr;
7651
7652 // Track for the total number of dimension. Start from one for the dummy
7653 // dimension.
7654 uint64_t DimSize = 1;
7655
7656 bool IsNonContiguous = CombinedInfo.NonContigInfo.IsNonContiguous;
7657
7658 for (; I != CE; ++I) {
7659 // If the current component is member of a struct (parent struct) mark it.
7660 if (!EncounteredME) {
7661 EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7662 // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7663 // as MEMBER_OF the parent struct.
7664 if (EncounteredME) {
7665 ShouldBeMemberOf = true;
7666 // Do not emit as complex pointer if this is actually not array-like
7667 // expression.
7668 if (FirstPointerInComplexData) {
7669 QualType Ty = std::prev(I)
7670 ->getAssociatedDeclaration()
7671 ->getType()
7672 .getNonReferenceType();
7673 BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7674 FirstPointerInComplexData = false;
7675 }
7676 }
7677 }
7678
7679 auto Next = std::next(I);
7680
7681 // We need to generate the addresses and sizes if this is the last
7682 // component, if the component is a pointer or if it is an array section
7683 // whose length can't be proved to be one. If this is a pointer, it
7684 // becomes the base address for the following components.
7685
7686 // A final array section, is one whose length can't be proved to be one.
7687 // If the map item is non-contiguous then we don't treat any array section
7688 // as final array section.
7689 bool IsFinalArraySection =
7690 !IsNonContiguous &&
7691 isFinalArraySectionExpression(I->getAssociatedExpression());
7692
7693 // If we have a declaration for the mapping use that, otherwise use
7694 // the base declaration of the map clause.
7695 const ValueDecl *MapDecl = (I->getAssociatedDeclaration())
7696 ? I->getAssociatedDeclaration()
7697 : BaseDecl;
7698
7699 // Get information on whether the element is a pointer. Have to do a
7700 // special treatment for array sections given that they are built-in
7701 // types.
7702 const auto *OASE =
7703 dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7704 const auto *OAShE =
7705 dyn_cast<OMPArrayShapingExpr>(I->getAssociatedExpression());
7706 const auto *UO = dyn_cast<UnaryOperator>(I->getAssociatedExpression());
7707 const auto *BO = dyn_cast<BinaryOperator>(I->getAssociatedExpression());
7708 bool IsPointer =
7709 OAShE ||
7710 (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7711 .getCanonicalType()
7712 ->isAnyPointerType()) ||
7713 I->getAssociatedExpression()->getType()->isAnyPointerType();
7714 bool IsNonDerefPointer = IsPointer && !UO && !BO && !IsNonContiguous;
7715
7716 if (OASE)
7717 ++DimSize;
7718
7719 if (Next == CE || IsNonDerefPointer || IsFinalArraySection) {
7720 // If this is not the last component, we expect the pointer to be
7721 // associated with an array expression or member expression.
7722 assert((Next == CE ||
7723 isa<MemberExpr>(Next->getAssociatedExpression()) ||
7724 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
7725 isa<OMPArraySectionExpr>(Next->getAssociatedExpression()) ||
7726 isa<OMPArrayShapingExpr>(Next->getAssociatedExpression()) ||
7727 isa<UnaryOperator>(Next->getAssociatedExpression()) ||
7728 isa<BinaryOperator>(Next->getAssociatedExpression())) &&
7729 "Unexpected expression");
7730
7731 Address LB = Address::invalid();
7732 if (OAShE) {
7733 LB = Address(CGF.EmitScalarExpr(OAShE->getBase()),
7734 CGF.getContext().getTypeAlignInChars(
7735 OAShE->getBase()->getType()));
7736 } else {
7737 LB = CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
7738 .getAddress(CGF);
7739 }
7740
7741 // If this component is a pointer inside the base struct then we don't
7742 // need to create any entry for it - it will be combined with the object
7743 // it is pointing to into a single PTR_AND_OBJ entry.
7744 bool IsMemberPointerOrAddr =
7745 (IsPointer || ForDeviceAddr) && EncounteredME &&
7746 (dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
7747 EncounteredME);
7748 if (!OverlappedElements.empty()) {
7749 // Handle base element with the info for overlapped elements.
7750 assert(!PartialStruct.Base.isValid() && "The base element is set.");
7751 assert(Next == CE &&
7752 "Expected last element for the overlapped elements.");
7753 assert(!IsPointer &&
7754 "Unexpected base element with the pointer type.");
7755 // Mark the whole struct as the struct that requires allocation on the
7756 // device.
7757 PartialStruct.LowestElem = {0, LB};
7758 CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7759 I->getAssociatedExpression()->getType());
7760 Address HB = CGF.Builder.CreateConstGEP(
7761 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
7762 CGF.VoidPtrTy),
7763 TypeSize.getQuantity() - 1);
7764 PartialStruct.HighestElem = {
7765 std::numeric_limits<decltype(
7766 PartialStruct.HighestElem.first)>::max(),
7767 HB};
7768 PartialStruct.Base = BP;
7769 // Emit data for non-overlapped data.
7770 OpenMPOffloadMappingFlags Flags =
7771 OMP_MAP_MEMBER_OF |
7772 getMapTypeBits(MapType, MapModifiers, MotionModifiers, IsImplicit,
7773 /*AddPtrFlag=*/false,
7774 /*AddIsTargetParamFlag=*/false, IsNonContiguous);
7775 LB = BP;
7776 llvm::Value *Size = nullptr;
7777 // Do bitcopy of all non-overlapped structure elements.
7778 for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7779 Component : OverlappedElements) {
7780 Address ComponentLB = Address::invalid();
7781 for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7782 Component) {
7783 if (MC.getAssociatedDeclaration()) {
7784 ComponentLB =
7785 CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7786 .getAddress(CGF);
7787 Size = CGF.Builder.CreatePtrDiff(
7788 CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7789 CGF.EmitCastToVoidPtr(LB.getPointer()));
7790 break;
7791 }
7792 }
7793 assert(Size && "Failed to determine structure size");
7794 CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7795 CombinedInfo.BasePointers.push_back(BP.getPointer());
7796 CombinedInfo.Pointers.push_back(LB.getPointer());
7797 CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
7798 Size, CGF.Int64Ty, /*isSigned=*/true));
7799 CombinedInfo.Types.push_back(Flags);
7800 CombinedInfo.Mappers.push_back(nullptr);
7801 CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7802 : 1);
7803 LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
7804 }
7805 CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7806 CombinedInfo.BasePointers.push_back(BP.getPointer());
7807 CombinedInfo.Pointers.push_back(LB.getPointer());
7808 Size = CGF.Builder.CreatePtrDiff(
7809 CGF.EmitCastToVoidPtr(
7810 CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
7811 CGF.EmitCastToVoidPtr(LB.getPointer()));
7812 CombinedInfo.Sizes.push_back(
7813 CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7814 CombinedInfo.Types.push_back(Flags);
7815 CombinedInfo.Mappers.push_back(nullptr);
7816 CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7817 : 1);
7818 break;
7819 }
7820 llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7821 if (!IsMemberPointerOrAddr ||
7822 (Next == CE && MapType != OMPC_MAP_unknown)) {
7823 CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7824 CombinedInfo.BasePointers.push_back(BP.getPointer());
7825 CombinedInfo.Pointers.push_back(LB.getPointer());
7826 CombinedInfo.Sizes.push_back(
7827 CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7828 CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7829 : 1);
7830
7831 // If Mapper is valid, the last component inherits the mapper.
7832 bool HasMapper = Mapper && Next == CE;
7833 CombinedInfo.Mappers.push_back(HasMapper ? Mapper : nullptr);
7834
7835 // We need to add a pointer flag for each map that comes from the
7836 // same expression except for the first one. We also need to signal
7837 // this map is the first one that relates with the current capture
7838 // (there is a set of entries for each capture).
7839 OpenMPOffloadMappingFlags Flags = getMapTypeBits(
7840 MapType, MapModifiers, MotionModifiers, IsImplicit,
7841 !IsExpressionFirstInfo || RequiresReference ||
7842 FirstPointerInComplexData,
7843 IsCaptureFirstInfo && !RequiresReference, IsNonContiguous);
7844
7845 if (!IsExpressionFirstInfo) {
7846 // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7847 // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
7848 if (IsPointer)
7849 Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
7850 OMP_MAP_DELETE | OMP_MAP_CLOSE);
7851
7852 if (ShouldBeMemberOf) {
7853 // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7854 // should be later updated with the correct value of MEMBER_OF.
7855 Flags |= OMP_MAP_MEMBER_OF;
7856 // From now on, all subsequent PTR_AND_OBJ entries should not be
7857 // marked as MEMBER_OF.
7858 ShouldBeMemberOf = false;
7859 }
7860 }
7861
7862 CombinedInfo.Types.push_back(Flags);
7863 }
7864
7865 // If we have encountered a member expression so far, keep track of the
7866 // mapped member. If the parent is "*this", then the value declaration
7867 // is nullptr.
7868 if (EncounteredME) {
7869 const auto *FD = cast<FieldDecl>(EncounteredME->getMemberDecl());
7870 unsigned FieldIndex = FD->getFieldIndex();
7871
7872 // Update info about the lowest and highest elements for this struct
7873 if (!PartialStruct.Base.isValid()) {
7874 PartialStruct.LowestElem = {FieldIndex, LB};
7875 if (IsFinalArraySection) {
7876 Address HB =
7877 CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false)
7878 .getAddress(CGF);
7879 PartialStruct.HighestElem = {FieldIndex, HB};
7880 } else {
7881 PartialStruct.HighestElem = {FieldIndex, LB};
7882 }
7883 PartialStruct.Base = BP;
7884 } else if (FieldIndex < PartialStruct.LowestElem.first) {
7885 PartialStruct.LowestElem = {FieldIndex, LB};
7886 } else if (FieldIndex > PartialStruct.HighestElem.first) {
7887 PartialStruct.HighestElem = {FieldIndex, LB};
7888 }
7889 }
7890
7891 // Need to emit combined struct for array sections.
7892 if (IsFinalArraySection || IsNonContiguous)
7893 PartialStruct.IsArraySection = true;
7894
7895 // If we have a final array section, we are done with this expression.
7896 if (IsFinalArraySection)
7897 break;
7898
7899 // The pointer becomes the base for the next element.
7900 if (Next != CE)
7901 BP = LB;
7902
7903 IsExpressionFirstInfo = false;
7904 IsCaptureFirstInfo = false;
7905 FirstPointerInComplexData = false;
7906 } else if (FirstPointerInComplexData) {
7907 QualType Ty = Components.rbegin()
7908 ->getAssociatedDeclaration()
7909 ->getType()
7910 .getNonReferenceType();
7911 BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7912 FirstPointerInComplexData = false;
7913 }
7914 }
7915
7916 if (!IsNonContiguous)
7917 return;
7918
7919 const ASTContext &Context = CGF.getContext();
7920
7921 // For supporting stride in array section, we need to initialize the first
7922 // dimension size as 1, first offset as 0, and first count as 1
7923 MapValuesArrayTy CurOffsets = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 0)};
7924 MapValuesArrayTy CurCounts = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
7925 MapValuesArrayTy CurStrides;
7926 MapValuesArrayTy DimSizes{llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
7927 uint64_t ElementTypeSize;
7928
7929 // Collect Size information for each dimension and get the element size as
7930 // the first Stride. For example, for `int arr[10][10]`, the DimSizes
7931 // should be [10, 10] and the first stride is 4 btyes.
7932 for (const OMPClauseMappableExprCommon::MappableComponent &Component :
7933 Components) {
7934 const Expr *AssocExpr = Component.getAssociatedExpression();
7935 const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7936
7937 if (!OASE)
7938 continue;
7939
7940 QualType Ty = OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
7941 auto *CAT = Context.getAsConstantArrayType(Ty);
7942 auto *VAT = Context.getAsVariableArrayType(Ty);
7943
7944 // We need all the dimension size except for the last dimension.
7945 assert((VAT || CAT || &Component == &*Components.begin()) &&
7946 "Should be either ConstantArray or VariableArray if not the "
7947 "first Component");
7948
7949 // Get element size if CurStrides is empty.
7950 if (CurStrides.empty()) {
7951 const Type *ElementType = nullptr;
7952 if (CAT)
7953 ElementType = CAT->getElementType().getTypePtr();
7954 else if (VAT)
7955 ElementType = VAT->getElementType().getTypePtr();
7956 else
7957 assert(&Component == &*Components.begin() &&
7958 "Only expect pointer (non CAT or VAT) when this is the "
7959 "first Component");
7960 // If ElementType is null, then it means the base is a pointer
7961 // (neither CAT nor VAT) and we'll attempt to get ElementType again
7962 // for next iteration.
7963 if (ElementType) {
7964 // For the case that having pointer as base, we need to remove one
7965 // level of indirection.
7966 if (&Component != &*Components.begin())
7967 ElementType = ElementType->getPointeeOrArrayElementType();
7968 ElementTypeSize =
7969 Context.getTypeSizeInChars(ElementType).getQuantity();
7970 CurStrides.push_back(
7971 llvm::ConstantInt::get(CGF.Int64Ty, ElementTypeSize));
7972 }
7973 }
7974 // Get dimension value except for the last dimension since we don't need
7975 // it.
7976 if (DimSizes.size() < Components.size() - 1) {
7977 if (CAT)
7978 DimSizes.push_back(llvm::ConstantInt::get(
7979 CGF.Int64Ty, CAT->getSize().getZExtValue()));
7980 else if (VAT)
7981 DimSizes.push_back(CGF.Builder.CreateIntCast(
7982 CGF.EmitScalarExpr(VAT->getSizeExpr()), CGF.Int64Ty,
7983 /*IsSigned=*/false));
7984 }
7985 }
7986
7987 // Skip the dummy dimension since we have already have its information.
7988 auto DI = DimSizes.begin() + 1;
7989 // Product of dimension.
7990 llvm::Value *DimProd =
7991 llvm::ConstantInt::get(CGF.CGM.Int64Ty, ElementTypeSize);
7992
7993 // Collect info for non-contiguous. Notice that offset, count, and stride
7994 // are only meaningful for array-section, so we insert a null for anything
7995 // other than array-section.
7996 // Also, the size of offset, count, and stride are not the same as
7997 // pointers, base_pointers, sizes, or dims. Instead, the size of offset,
7998 // count, and stride are the same as the number of non-contiguous
7999 // declaration in target update to/from clause.
8000 for (const OMPClauseMappableExprCommon::MappableComponent &Component :
8001 Components) {
8002 const Expr *AssocExpr = Component.getAssociatedExpression();
8003
8004 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr)) {
8005 llvm::Value *Offset = CGF.Builder.CreateIntCast(
8006 CGF.EmitScalarExpr(AE->getIdx()), CGF.Int64Ty,
8007 /*isSigned=*/false);
8008 CurOffsets.push_back(Offset);
8009 CurCounts.push_back(llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/1));
8010 CurStrides.push_back(CurStrides.back());
8011 continue;
8012 }
8013
8014 const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
8015
8016 if (!OASE)
8017 continue;
8018
8019 // Offset
8020 const Expr *OffsetExpr = OASE->getLowerBound();
8021 llvm::Value *Offset = nullptr;
8022 if (!OffsetExpr) {
8023 // If offset is absent, then we just set it to zero.
8024 Offset = llvm::ConstantInt::get(CGF.Int64Ty, 0);
8025 } else {
8026 Offset = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(OffsetExpr),
8027 CGF.Int64Ty,
8028 /*isSigned=*/false);
8029 }
8030 CurOffsets.push_back(Offset);
8031
8032 // Count
8033 const Expr *CountExpr = OASE->getLength();
8034 llvm::Value *Count = nullptr;
8035 if (!CountExpr) {
8036 // In Clang, once a high dimension is an array section, we construct all
8037 // the lower dimension as array section, however, for case like
8038 // arr[0:2][2], Clang construct the inner dimension as an array section
8039 // but it actually is not in an array section form according to spec.
8040 if (!OASE->getColonLocFirst().isValid() &&
8041 !OASE->getColonLocSecond().isValid()) {
8042 Count = llvm::ConstantInt::get(CGF.Int64Ty, 1);
8043 } else {
8044 // OpenMP 5.0, 2.1.5 Array Sections, Description.
8045 // When the length is absent it defaults to ⌈(size −
8046 // lower-bound)/stride⌉, where size is the size of the array
8047 // dimension.
8048 const Expr *StrideExpr = OASE->getStride();
8049 llvm::Value *Stride =
8050 StrideExpr
8051 ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
8052 CGF.Int64Ty, /*isSigned=*/false)
8053 : nullptr;
8054 if (Stride)
8055 Count = CGF.Builder.CreateUDiv(
8056 CGF.Builder.CreateNUWSub(*DI, Offset), Stride);
8057 else
8058 Count = CGF.Builder.CreateNUWSub(*DI, Offset);
8059 }
8060 } else {
8061 Count = CGF.EmitScalarExpr(CountExpr);
8062 }
8063 Count = CGF.Builder.CreateIntCast(Count, CGF.Int64Ty, /*isSigned=*/false);
8064 CurCounts.push_back(Count);
8065
8066 // Stride_n' = Stride_n * (D_0 * D_1 ... * D_n-1) * Unit size
8067 // Take `int arr[5][5][5]` and `arr[0:2:2][1:2:1][0:2:2]` as an example:
8068 // Offset Count Stride
8069 // D0 0 1 4 (int) <- dummy dimension
8070 // D1 0 2 8 (2 * (1) * 4)
8071 // D2 1 2 20 (1 * (1 * 5) * 4)
8072 // D3 0 2 200 (2 * (1 * 5 * 4) * 4)
8073 const Expr *StrideExpr = OASE->getStride();
8074 llvm::Value *Stride =
8075 StrideExpr
8076 ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
8077 CGF.Int64Ty, /*isSigned=*/false)
8078 : nullptr;
8079 DimProd = CGF.Builder.CreateNUWMul(DimProd, *(DI - 1));
8080 if (Stride)
8081 CurStrides.push_back(CGF.Builder.CreateNUWMul(DimProd, Stride));
8082 else
8083 CurStrides.push_back(DimProd);
8084 if (DI != DimSizes.end())
8085 ++DI;
8086 }
8087
8088 CombinedInfo.NonContigInfo.Offsets.push_back(CurOffsets);
8089 CombinedInfo.NonContigInfo.Counts.push_back(CurCounts);
8090 CombinedInfo.NonContigInfo.Strides.push_back(CurStrides);
8091 }
8092
8093 /// Return the adjusted map modifiers if the declaration a capture refers to
8094 /// appears in a first-private clause. This is expected to be used only with
8095 /// directives that start with 'target'.
8096 MappableExprsHandler::OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture & Cap) const8097 getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
8098 assert(Cap.capturesVariable() && "Expected capture by reference only!");
8099
8100 // A first private variable captured by reference will use only the
8101 // 'private ptr' and 'map to' flag. Return the right flags if the captured
8102 // declaration is known as first-private in this handler.
8103 if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
8104 if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
8105 Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
8106 return MappableExprsHandler::OMP_MAP_ALWAYS |
8107 MappableExprsHandler::OMP_MAP_TO;
8108 if (Cap.getCapturedVar()->getType()->isAnyPointerType())
8109 return MappableExprsHandler::OMP_MAP_TO |
8110 MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
8111 return MappableExprsHandler::OMP_MAP_PRIVATE |
8112 MappableExprsHandler::OMP_MAP_TO;
8113 }
8114 return MappableExprsHandler::OMP_MAP_TO |
8115 MappableExprsHandler::OMP_MAP_FROM;
8116 }
8117
getMemberOfFlag(unsigned Position)8118 static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
8119 // Rotate by getFlagMemberOffset() bits.
8120 return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
8121 << getFlagMemberOffset());
8122 }
8123
setCorrectMemberOfFlag(OpenMPOffloadMappingFlags & Flags,OpenMPOffloadMappingFlags MemberOfFlag)8124 static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
8125 OpenMPOffloadMappingFlags MemberOfFlag) {
8126 // If the entry is PTR_AND_OBJ but has not been marked with the special
8127 // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
8128 // marked as MEMBER_OF.
8129 if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
8130 ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
8131 return;
8132
8133 // Reset the placeholder value to prepare the flag for the assignment of the
8134 // proper MEMBER_OF value.
8135 Flags &= ~OMP_MAP_MEMBER_OF;
8136 Flags |= MemberOfFlag;
8137 }
8138
getPlainLayout(const CXXRecordDecl * RD,llvm::SmallVectorImpl<const FieldDecl * > & Layout,bool AsBase) const8139 void getPlainLayout(const CXXRecordDecl *RD,
8140 llvm::SmallVectorImpl<const FieldDecl *> &Layout,
8141 bool AsBase) const {
8142 const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
8143
8144 llvm::StructType *St =
8145 AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
8146
8147 unsigned NumElements = St->getNumElements();
8148 llvm::SmallVector<
8149 llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
8150 RecordLayout(NumElements);
8151
8152 // Fill bases.
8153 for (const auto &I : RD->bases()) {
8154 if (I.isVirtual())
8155 continue;
8156 const auto *Base = I.getType()->getAsCXXRecordDecl();
8157 // Ignore empty bases.
8158 if (Base->isEmpty() || CGF.getContext()
8159 .getASTRecordLayout(Base)
8160 .getNonVirtualSize()
8161 .isZero())
8162 continue;
8163
8164 unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
8165 RecordLayout[FieldIndex] = Base;
8166 }
8167 // Fill in virtual bases.
8168 for (const auto &I : RD->vbases()) {
8169 const auto *Base = I.getType()->getAsCXXRecordDecl();
8170 // Ignore empty bases.
8171 if (Base->isEmpty())
8172 continue;
8173 unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
8174 if (RecordLayout[FieldIndex])
8175 continue;
8176 RecordLayout[FieldIndex] = Base;
8177 }
8178 // Fill in all the fields.
8179 assert(!RD->isUnion() && "Unexpected union.");
8180 for (const auto *Field : RD->fields()) {
8181 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
8182 // will fill in later.)
8183 if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
8184 unsigned FieldIndex = RL.getLLVMFieldNo(Field);
8185 RecordLayout[FieldIndex] = Field;
8186 }
8187 }
8188 for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
8189 &Data : RecordLayout) {
8190 if (Data.isNull())
8191 continue;
8192 if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
8193 getPlainLayout(Base, Layout, /*AsBase=*/true);
8194 else
8195 Layout.push_back(Data.get<const FieldDecl *>());
8196 }
8197 }
8198
8199 public:
MappableExprsHandler(const OMPExecutableDirective & Dir,CodeGenFunction & CGF)8200 MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
8201 : CurDir(&Dir), CGF(CGF) {
8202 // Extract firstprivate clause information.
8203 for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
8204 for (const auto *D : C->varlists())
8205 FirstPrivateDecls.try_emplace(
8206 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
8207 // Extract implicit firstprivates from uses_allocators clauses.
8208 for (const auto *C : Dir.getClausesOfKind<OMPUsesAllocatorsClause>()) {
8209 for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
8210 OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
8211 if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(D.AllocatorTraits))
8212 FirstPrivateDecls.try_emplace(cast<VarDecl>(DRE->getDecl()),
8213 /*Implicit=*/true);
8214 else if (const auto *VD = dyn_cast<VarDecl>(
8215 cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts())
8216 ->getDecl()))
8217 FirstPrivateDecls.try_emplace(VD, /*Implicit=*/true);
8218 }
8219 }
8220 // Extract device pointer clause information.
8221 for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
8222 for (auto L : C->component_lists())
8223 DevPointersMap[std::get<0>(L)].push_back(std::get<1>(L));
8224 }
8225
8226 /// Constructor for the declare mapper directive.
MappableExprsHandler(const OMPDeclareMapperDecl & Dir,CodeGenFunction & CGF)8227 MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
8228 : CurDir(&Dir), CGF(CGF) {}
8229
8230 /// Generate code for the combined entry if we have a partially mapped struct
8231 /// and take care of the mapping flags of the arguments corresponding to
8232 /// individual struct members.
emitCombinedEntry(MapCombinedInfoTy & CombinedInfo,MapFlagsArrayTy & CurTypes,const StructRangeInfoTy & PartialStruct,const ValueDecl * VD=nullptr,bool NotTargetParams=false) const8233 void emitCombinedEntry(MapCombinedInfoTy &CombinedInfo,
8234 MapFlagsArrayTy &CurTypes,
8235 const StructRangeInfoTy &PartialStruct,
8236 const ValueDecl *VD = nullptr,
8237 bool NotTargetParams = false) const {
8238 if (CurTypes.size() == 1 &&
8239 ((CurTypes.back() & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF) &&
8240 !PartialStruct.IsArraySection)
8241 return;
8242 CombinedInfo.Exprs.push_back(VD);
8243 // Base is the base of the struct
8244 CombinedInfo.BasePointers.push_back(PartialStruct.Base.getPointer());
8245 // Pointer is the address of the lowest element
8246 llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
8247 CombinedInfo.Pointers.push_back(LB);
8248 // There should not be a mapper for a combined entry.
8249 CombinedInfo.Mappers.push_back(nullptr);
8250 // Size is (addr of {highest+1} element) - (addr of lowest element)
8251 llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
8252 llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
8253 llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
8254 llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
8255 llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
8256 llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
8257 /*isSigned=*/false);
8258 CombinedInfo.Sizes.push_back(Size);
8259 // Map type is always TARGET_PARAM, if generate info for captures.
8260 CombinedInfo.Types.push_back(NotTargetParams ? OMP_MAP_NONE
8261 : OMP_MAP_TARGET_PARAM);
8262 // If any element has the present modifier, then make sure the runtime
8263 // doesn't attempt to allocate the struct.
8264 if (CurTypes.end() !=
8265 llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) {
8266 return Type & OMP_MAP_PRESENT;
8267 }))
8268 CombinedInfo.Types.back() |= OMP_MAP_PRESENT;
8269 // Remove TARGET_PARAM flag from the first element if any.
8270 if (!CurTypes.empty())
8271 CurTypes.front() &= ~OMP_MAP_TARGET_PARAM;
8272
8273 // All other current entries will be MEMBER_OF the combined entry
8274 // (except for PTR_AND_OBJ entries which do not have a placeholder value
8275 // 0xFFFF in the MEMBER_OF field).
8276 OpenMPOffloadMappingFlags MemberOfFlag =
8277 getMemberOfFlag(CombinedInfo.BasePointers.size() - 1);
8278 for (auto &M : CurTypes)
8279 setCorrectMemberOfFlag(M, MemberOfFlag);
8280 }
8281
8282 /// Generate all the base pointers, section pointers, sizes, map types, and
8283 /// mappers for the extracted mappable expressions (all included in \a
8284 /// CombinedInfo). Also, for each item that relates with a device pointer, a
8285 /// pair of the relevant declaration and index where it occurs is appended to
8286 /// the device pointers info array.
generateAllInfo(MapCombinedInfoTy & CombinedInfo,bool NotTargetParams=false,const llvm::DenseSet<CanonicalDeclPtr<const Decl>> & SkipVarSet=llvm::DenseSet<CanonicalDeclPtr<const Decl>> ()) const8287 void generateAllInfo(
8288 MapCombinedInfoTy &CombinedInfo, bool NotTargetParams = false,
8289 const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet =
8290 llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const {
8291 // We have to process the component lists that relate with the same
8292 // declaration in a single chunk so that we can generate the map flags
8293 // correctly. Therefore, we organize all lists in a map.
8294 llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
8295
8296 // Helper function to fill the information map for the different supported
8297 // clauses.
8298 auto &&InfoGen =
8299 [&Info, &SkipVarSet](
8300 const ValueDecl *D,
8301 OMPClauseMappableExprCommon::MappableExprComponentListRef L,
8302 OpenMPMapClauseKind MapType,
8303 ArrayRef<OpenMPMapModifierKind> MapModifiers,
8304 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
8305 bool ReturnDevicePointer, bool IsImplicit, const ValueDecl *Mapper,
8306 const Expr *VarRef = nullptr, bool ForDeviceAddr = false) {
8307 const ValueDecl *VD =
8308 D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
8309 if (SkipVarSet.count(VD))
8310 return;
8311 Info[VD].emplace_back(L, MapType, MapModifiers, MotionModifiers,
8312 ReturnDevicePointer, IsImplicit, Mapper, VarRef,
8313 ForDeviceAddr);
8314 };
8315
8316 assert(CurDir.is<const OMPExecutableDirective *>() &&
8317 "Expect a executable directive");
8318 const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8319 for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8320 const auto *EI = C->getVarRefs().begin();
8321 for (const auto L : C->component_lists()) {
8322 // The Expression is not correct if the mapping is implicit
8323 const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
8324 InfoGen(std::get<0>(L), std::get<1>(L), C->getMapType(),
8325 C->getMapTypeModifiers(), llvm::None,
8326 /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L),
8327 E);
8328 ++EI;
8329 }
8330 }
8331 for (const auto *C : CurExecDir->getClausesOfKind<OMPToClause>()) {
8332 const auto *EI = C->getVarRefs().begin();
8333 for (const auto L : C->component_lists()) {
8334 InfoGen(std::get<0>(L), std::get<1>(L), OMPC_MAP_to, llvm::None,
8335 C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
8336 C->isImplicit(), std::get<2>(L), *EI);
8337 ++EI;
8338 }
8339 }
8340 for (const auto *C : CurExecDir->getClausesOfKind<OMPFromClause>()) {
8341 const auto *EI = C->getVarRefs().begin();
8342 for (const auto L : C->component_lists()) {
8343 InfoGen(std::get<0>(L), std::get<1>(L), OMPC_MAP_from, llvm::None,
8344 C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
8345 C->isImplicit(), std::get<2>(L), *EI);
8346 ++EI;
8347 }
8348 }
8349
8350 // Look at the use_device_ptr clause information and mark the existing map
8351 // entries as such. If there is no map information for an entry in the
8352 // use_device_ptr list, we create one with map type 'alloc' and zero size
8353 // section. It is the user fault if that was not mapped before. If there is
8354 // no map information and the pointer is a struct member, then we defer the
8355 // emission of that entry until the whole struct has been processed.
8356 llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
8357 DeferredInfo;
8358 MapCombinedInfoTy UseDevicePtrCombinedInfo;
8359
8360 for (const auto *C :
8361 CurExecDir->getClausesOfKind<OMPUseDevicePtrClause>()) {
8362 for (const auto L : C->component_lists()) {
8363 OMPClauseMappableExprCommon::MappableExprComponentListRef Components =
8364 std::get<1>(L);
8365 assert(!Components.empty() &&
8366 "Not expecting empty list of components!");
8367 const ValueDecl *VD = Components.back().getAssociatedDeclaration();
8368 VD = cast<ValueDecl>(VD->getCanonicalDecl());
8369 const Expr *IE = Components.back().getAssociatedExpression();
8370 // If the first component is a member expression, we have to look into
8371 // 'this', which maps to null in the map of map information. Otherwise
8372 // look directly for the information.
8373 auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8374
8375 // We potentially have map information for this declaration already.
8376 // Look for the first set of components that refer to it.
8377 if (It != Info.end()) {
8378 auto *CI = llvm::find_if(It->second, [VD](const MapInfo &MI) {
8379 return MI.Components.back().getAssociatedDeclaration() == VD;
8380 });
8381 // If we found a map entry, signal that the pointer has to be returned
8382 // and move on to the next declaration.
8383 // Exclude cases where the base pointer is mapped as array subscript,
8384 // array section or array shaping. The base address is passed as a
8385 // pointer to base in this case and cannot be used as a base for
8386 // use_device_ptr list item.
8387 if (CI != It->second.end()) {
8388 auto PrevCI = std::next(CI->Components.rbegin());
8389 const auto *VarD = dyn_cast<VarDecl>(VD);
8390 if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
8391 isa<MemberExpr>(IE) ||
8392 !VD->getType().getNonReferenceType()->isPointerType() ||
8393 PrevCI == CI->Components.rend() ||
8394 isa<MemberExpr>(PrevCI->getAssociatedExpression()) || !VarD ||
8395 VarD->hasLocalStorage()) {
8396 CI->ReturnDevicePointer = true;
8397 continue;
8398 }
8399 }
8400 }
8401
8402 // We didn't find any match in our map information - generate a zero
8403 // size array section - if the pointer is a struct member we defer this
8404 // action until the whole struct has been processed.
8405 if (isa<MemberExpr>(IE)) {
8406 // Insert the pointer into Info to be processed by
8407 // generateInfoForComponentList. Because it is a member pointer
8408 // without a pointee, no entry will be generated for it, therefore
8409 // we need to generate one after the whole struct has been processed.
8410 // Nonetheless, generateInfoForComponentList must be called to take
8411 // the pointer into account for the calculation of the range of the
8412 // partial struct.
8413 InfoGen(nullptr, Components, OMPC_MAP_unknown, llvm::None, llvm::None,
8414 /*ReturnDevicePointer=*/false, C->isImplicit(), nullptr);
8415 DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/false);
8416 } else {
8417 llvm::Value *Ptr =
8418 CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
8419 UseDevicePtrCombinedInfo.Exprs.push_back(VD);
8420 UseDevicePtrCombinedInfo.BasePointers.emplace_back(Ptr, VD);
8421 UseDevicePtrCombinedInfo.Pointers.push_back(Ptr);
8422 UseDevicePtrCombinedInfo.Sizes.push_back(
8423 llvm::Constant::getNullValue(CGF.Int64Ty));
8424 UseDevicePtrCombinedInfo.Types.push_back(
8425 OMP_MAP_RETURN_PARAM |
8426 (NotTargetParams ? OMP_MAP_NONE : OMP_MAP_TARGET_PARAM));
8427 UseDevicePtrCombinedInfo.Mappers.push_back(nullptr);
8428 }
8429 }
8430 }
8431
8432 // Look at the use_device_addr clause information and mark the existing map
8433 // entries as such. If there is no map information for an entry in the
8434 // use_device_addr list, we create one with map type 'alloc' and zero size
8435 // section. It is the user fault if that was not mapped before. If there is
8436 // no map information and the pointer is a struct member, then we defer the
8437 // emission of that entry until the whole struct has been processed.
8438 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
8439 for (const auto *C :
8440 CurExecDir->getClausesOfKind<OMPUseDeviceAddrClause>()) {
8441 for (const auto L : C->component_lists()) {
8442 assert(!std::get<1>(L).empty() &&
8443 "Not expecting empty list of components!");
8444 const ValueDecl *VD = std::get<1>(L).back().getAssociatedDeclaration();
8445 if (!Processed.insert(VD).second)
8446 continue;
8447 VD = cast<ValueDecl>(VD->getCanonicalDecl());
8448 const Expr *IE = std::get<1>(L).back().getAssociatedExpression();
8449 // If the first component is a member expression, we have to look into
8450 // 'this', which maps to null in the map of map information. Otherwise
8451 // look directly for the information.
8452 auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8453
8454 // We potentially have map information for this declaration already.
8455 // Look for the first set of components that refer to it.
8456 if (It != Info.end()) {
8457 auto *CI = llvm::find_if(It->second, [VD](const MapInfo &MI) {
8458 return MI.Components.back().getAssociatedDeclaration() == VD;
8459 });
8460 // If we found a map entry, signal that the pointer has to be returned
8461 // and move on to the next declaration.
8462 if (CI != It->second.end()) {
8463 CI->ReturnDevicePointer = true;
8464 continue;
8465 }
8466 }
8467
8468 // We didn't find any match in our map information - generate a zero
8469 // size array section - if the pointer is a struct member we defer this
8470 // action until the whole struct has been processed.
8471 if (isa<MemberExpr>(IE)) {
8472 // Insert the pointer into Info to be processed by
8473 // generateInfoForComponentList. Because it is a member pointer
8474 // without a pointee, no entry will be generated for it, therefore
8475 // we need to generate one after the whole struct has been processed.
8476 // Nonetheless, generateInfoForComponentList must be called to take
8477 // the pointer into account for the calculation of the range of the
8478 // partial struct.
8479 InfoGen(nullptr, std::get<1>(L), OMPC_MAP_unknown, llvm::None,
8480 llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(),
8481 nullptr, nullptr, /*ForDeviceAddr=*/true);
8482 DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/true);
8483 } else {
8484 llvm::Value *Ptr;
8485 if (IE->isGLValue())
8486 Ptr = CGF.EmitLValue(IE).getPointer(CGF);
8487 else
8488 Ptr = CGF.EmitScalarExpr(IE);
8489 CombinedInfo.Exprs.push_back(VD);
8490 CombinedInfo.BasePointers.emplace_back(Ptr, VD);
8491 CombinedInfo.Pointers.push_back(Ptr);
8492 CombinedInfo.Sizes.push_back(
8493 llvm::Constant::getNullValue(CGF.Int64Ty));
8494 CombinedInfo.Types.push_back(
8495 OMP_MAP_RETURN_PARAM |
8496 (NotTargetParams ? OMP_MAP_NONE : OMP_MAP_TARGET_PARAM));
8497 CombinedInfo.Mappers.push_back(nullptr);
8498 }
8499 }
8500 }
8501
8502 for (const auto &M : Info) {
8503 // We need to know when we generate information for the first component
8504 // associated with a capture, because the mapping flags depend on it.
8505 bool IsFirstComponentList = !NotTargetParams;
8506
8507 // Underlying variable declaration used in the map clause.
8508 const ValueDecl *VD = std::get<0>(M);
8509
8510 // Temporary generated information.
8511 MapCombinedInfoTy CurInfo;
8512 StructRangeInfoTy PartialStruct;
8513
8514 for (const MapInfo &L : M.second) {
8515 assert(!L.Components.empty() &&
8516 "Not expecting declaration with no component lists.");
8517
8518 // Remember the current base pointer index.
8519 unsigned CurrentBasePointersIdx = CurInfo.BasePointers.size();
8520 CurInfo.NonContigInfo.IsNonContiguous =
8521 L.Components.back().isNonContiguous();
8522 generateInfoForComponentList(
8523 L.MapType, L.MapModifiers, L.MotionModifiers, L.Components, CurInfo,
8524 PartialStruct, IsFirstComponentList, L.IsImplicit, L.Mapper,
8525 L.ForDeviceAddr, VD, L.VarRef);
8526
8527 // If this entry relates with a device pointer, set the relevant
8528 // declaration and add the 'return pointer' flag.
8529 if (L.ReturnDevicePointer) {
8530 assert(CurInfo.BasePointers.size() > CurrentBasePointersIdx &&
8531 "Unexpected number of mapped base pointers.");
8532
8533 const ValueDecl *RelevantVD =
8534 L.Components.back().getAssociatedDeclaration();
8535 assert(RelevantVD &&
8536 "No relevant declaration related with device pointer??");
8537
8538 CurInfo.BasePointers[CurrentBasePointersIdx].setDevicePtrDecl(
8539 RelevantVD);
8540 CurInfo.Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
8541 }
8542 IsFirstComponentList = false;
8543 }
8544
8545 // Append any pending zero-length pointers which are struct members and
8546 // used with use_device_ptr or use_device_addr.
8547 auto CI = DeferredInfo.find(M.first);
8548 if (CI != DeferredInfo.end()) {
8549 for (const DeferredDevicePtrEntryTy &L : CI->second) {
8550 llvm::Value *BasePtr;
8551 llvm::Value *Ptr;
8552 if (L.ForDeviceAddr) {
8553 if (L.IE->isGLValue())
8554 Ptr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8555 else
8556 Ptr = this->CGF.EmitScalarExpr(L.IE);
8557 BasePtr = Ptr;
8558 // Entry is RETURN_PARAM. Also, set the placeholder value
8559 // MEMBER_OF=FFFF so that the entry is later updated with the
8560 // correct value of MEMBER_OF.
8561 CurInfo.Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_MEMBER_OF);
8562 } else {
8563 BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8564 Ptr = this->CGF.EmitLoadOfScalar(this->CGF.EmitLValue(L.IE),
8565 L.IE->getExprLoc());
8566 // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
8567 // value MEMBER_OF=FFFF so that the entry is later updated with the
8568 // correct value of MEMBER_OF.
8569 CurInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
8570 OMP_MAP_MEMBER_OF);
8571 }
8572 CurInfo.Exprs.push_back(L.VD);
8573 CurInfo.BasePointers.emplace_back(BasePtr, L.VD);
8574 CurInfo.Pointers.push_back(Ptr);
8575 CurInfo.Sizes.push_back(
8576 llvm::Constant::getNullValue(this->CGF.Int64Ty));
8577 CurInfo.Mappers.push_back(nullptr);
8578 }
8579 }
8580
8581 // If there is an entry in PartialStruct it means we have a struct with
8582 // individual members mapped. Emit an extra combined entry.
8583 if (PartialStruct.Base.isValid())
8584 emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct, VD,
8585 NotTargetParams);
8586
8587 // We need to append the results of this capture to what we already have.
8588 CombinedInfo.append(CurInfo);
8589 }
8590 // Append data for use_device_ptr clauses.
8591 CombinedInfo.append(UseDevicePtrCombinedInfo);
8592 }
8593
8594 /// Generate all the base pointers, section pointers, sizes, map types, and
8595 /// mappers for the extracted map clauses of user-defined mapper (all included
8596 /// in \a CombinedInfo).
generateAllInfoForMapper(MapCombinedInfoTy & CombinedInfo) const8597 void generateAllInfoForMapper(MapCombinedInfoTy &CombinedInfo) const {
8598 assert(CurDir.is<const OMPDeclareMapperDecl *>() &&
8599 "Expect a declare mapper directive");
8600 const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>();
8601 // We have to process the component lists that relate with the same
8602 // declaration in a single chunk so that we can generate the map flags
8603 // correctly. Therefore, we organize all lists in a map.
8604 llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
8605
8606 // Fill the information map for map clauses.
8607 for (const auto *C : CurMapperDir->clauselists()) {
8608 const auto *MC = cast<OMPMapClause>(C);
8609 const auto *EI = MC->getVarRefs().begin();
8610 for (const auto L : MC->component_lists()) {
8611 // The Expression is not correct if the mapping is implicit
8612 const Expr *E = (MC->getMapLoc().isValid()) ? *EI : nullptr;
8613 const ValueDecl *VD =
8614 std::get<0>(L) ? cast<ValueDecl>(std::get<0>(L)->getCanonicalDecl())
8615 : nullptr;
8616 // Get the corresponding user-defined mapper.
8617 Info[VD].emplace_back(std::get<1>(L), MC->getMapType(),
8618 MC->getMapTypeModifiers(), llvm::None,
8619 /*ReturnDevicePointer=*/false, MC->isImplicit(),
8620 std::get<2>(L), E);
8621 ++EI;
8622 }
8623 }
8624
8625 for (const auto &M : Info) {
8626 // We need to know when we generate information for the first component
8627 // associated with a capture, because the mapping flags depend on it.
8628 bool IsFirstComponentList = true;
8629
8630 // Underlying variable declaration used in the map clause.
8631 const ValueDecl *VD = std::get<0>(M);
8632
8633 // Temporary generated information.
8634 MapCombinedInfoTy CurInfo;
8635 StructRangeInfoTy PartialStruct;
8636
8637 for (const MapInfo &L : M.second) {
8638 assert(!L.Components.empty() &&
8639 "Not expecting declaration with no component lists.");
8640 generateInfoForComponentList(
8641 L.MapType, L.MapModifiers, L.MotionModifiers, L.Components, CurInfo,
8642 PartialStruct, IsFirstComponentList, L.IsImplicit, L.Mapper,
8643 L.ForDeviceAddr, VD, L.VarRef);
8644 IsFirstComponentList = false;
8645 }
8646
8647 // If there is an entry in PartialStruct it means we have a struct with
8648 // individual members mapped. Emit an extra combined entry.
8649 if (PartialStruct.Base.isValid()) {
8650 CurInfo.NonContigInfo.Dims.push_back(0);
8651 emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct, VD);
8652 }
8653
8654 // We need to append the results of this capture to what we already have.
8655 CombinedInfo.append(CurInfo);
8656 }
8657 }
8658
8659 /// Emit capture info for lambdas for variables captured by reference.
generateInfoForLambdaCaptures(const ValueDecl * VD,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers) const8660 void generateInfoForLambdaCaptures(
8661 const ValueDecl *VD, llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8662 llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
8663 const auto *RD = VD->getType()
8664 .getCanonicalType()
8665 .getNonReferenceType()
8666 ->getAsCXXRecordDecl();
8667 if (!RD || !RD->isLambda())
8668 return;
8669 Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
8670 LValue VDLVal = CGF.MakeAddrLValue(
8671 VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
8672 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
8673 FieldDecl *ThisCapture = nullptr;
8674 RD->getCaptureFields(Captures, ThisCapture);
8675 if (ThisCapture) {
8676 LValue ThisLVal =
8677 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
8678 LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
8679 LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
8680 VDLVal.getPointer(CGF));
8681 CombinedInfo.Exprs.push_back(VD);
8682 CombinedInfo.BasePointers.push_back(ThisLVal.getPointer(CGF));
8683 CombinedInfo.Pointers.push_back(ThisLValVal.getPointer(CGF));
8684 CombinedInfo.Sizes.push_back(
8685 CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8686 CGF.Int64Ty, /*isSigned=*/true));
8687 CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8688 OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8689 CombinedInfo.Mappers.push_back(nullptr);
8690 }
8691 for (const LambdaCapture &LC : RD->captures()) {
8692 if (!LC.capturesVariable())
8693 continue;
8694 const VarDecl *VD = LC.getCapturedVar();
8695 if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
8696 continue;
8697 auto It = Captures.find(VD);
8698 assert(It != Captures.end() && "Found lambda capture without field.");
8699 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
8700 if (LC.getCaptureKind() == LCK_ByRef) {
8701 LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
8702 LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8703 VDLVal.getPointer(CGF));
8704 CombinedInfo.Exprs.push_back(VD);
8705 CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8706 CombinedInfo.Pointers.push_back(VarLValVal.getPointer(CGF));
8707 CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8708 CGF.getTypeSize(
8709 VD->getType().getCanonicalType().getNonReferenceType()),
8710 CGF.Int64Ty, /*isSigned=*/true));
8711 } else {
8712 RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
8713 LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8714 VDLVal.getPointer(CGF));
8715 CombinedInfo.Exprs.push_back(VD);
8716 CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8717 CombinedInfo.Pointers.push_back(VarRVal.getScalarVal());
8718 CombinedInfo.Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
8719 }
8720 CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8721 OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8722 CombinedInfo.Mappers.push_back(nullptr);
8723 }
8724 }
8725
8726 /// Set correct indices for lambdas captures.
adjustMemberOfForLambdaCaptures(const llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapFlagsArrayTy & Types) const8727 void adjustMemberOfForLambdaCaptures(
8728 const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
8729 MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
8730 MapFlagsArrayTy &Types) const {
8731 for (unsigned I = 0, E = Types.size(); I < E; ++I) {
8732 // Set correct member_of idx for all implicit lambda captures.
8733 if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8734 OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
8735 continue;
8736 llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
8737 assert(BasePtr && "Unable to find base lambda address.");
8738 int TgtIdx = -1;
8739 for (unsigned J = I; J > 0; --J) {
8740 unsigned Idx = J - 1;
8741 if (Pointers[Idx] != BasePtr)
8742 continue;
8743 TgtIdx = Idx;
8744 break;
8745 }
8746 assert(TgtIdx != -1 && "Unable to find parent lambda.");
8747 // All other current entries will be MEMBER_OF the combined entry
8748 // (except for PTR_AND_OBJ entries which do not have a placeholder value
8749 // 0xFFFF in the MEMBER_OF field).
8750 OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
8751 setCorrectMemberOfFlag(Types[I], MemberOfFlag);
8752 }
8753 }
8754
8755 /// Generate the base pointers, section pointers, sizes, map types, and
8756 /// mappers associated to a given capture (all included in \a CombinedInfo).
generateInfoForCapture(const CapturedStmt::Capture * Cap,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct) const8757 void generateInfoForCapture(const CapturedStmt::Capture *Cap,
8758 llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8759 StructRangeInfoTy &PartialStruct) const {
8760 assert(!Cap->capturesVariableArrayType() &&
8761 "Not expecting to generate map info for a variable array type!");
8762
8763 // We need to know when we generating information for the first component
8764 const ValueDecl *VD = Cap->capturesThis()
8765 ? nullptr
8766 : Cap->getCapturedVar()->getCanonicalDecl();
8767
8768 // If this declaration appears in a is_device_ptr clause we just have to
8769 // pass the pointer by value. If it is a reference to a declaration, we just
8770 // pass its value.
8771 if (DevPointersMap.count(VD)) {
8772 CombinedInfo.Exprs.push_back(VD);
8773 CombinedInfo.BasePointers.emplace_back(Arg, VD);
8774 CombinedInfo.Pointers.push_back(Arg);
8775 CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8776 CGF.getTypeSize(CGF.getContext().VoidPtrTy), CGF.Int64Ty,
8777 /*isSigned=*/true));
8778 CombinedInfo.Types.push_back(
8779 (Cap->capturesVariable() ? OMP_MAP_TO : OMP_MAP_LITERAL) |
8780 OMP_MAP_TARGET_PARAM);
8781 CombinedInfo.Mappers.push_back(nullptr);
8782 return;
8783 }
8784
8785 using MapData =
8786 std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
8787 OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool,
8788 const ValueDecl *, const Expr *>;
8789 SmallVector<MapData, 4> DeclComponentLists;
8790 assert(CurDir.is<const OMPExecutableDirective *>() &&
8791 "Expect a executable directive");
8792 const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8793 for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8794 const auto *EI = C->getVarRefs().begin();
8795 for (const auto L : C->decl_component_lists(VD)) {
8796 const ValueDecl *VDecl, *Mapper;
8797 // The Expression is not correct if the mapping is implicit
8798 const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
8799 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8800 std::tie(VDecl, Components, Mapper) = L;
8801 assert(VDecl == VD && "We got information for the wrong declaration??");
8802 assert(!Components.empty() &&
8803 "Not expecting declaration with no component lists.");
8804 DeclComponentLists.emplace_back(Components, C->getMapType(),
8805 C->getMapTypeModifiers(),
8806 C->isImplicit(), Mapper, E);
8807 ++EI;
8808 }
8809 }
8810
8811 // Find overlapping elements (including the offset from the base element).
8812 llvm::SmallDenseMap<
8813 const MapData *,
8814 llvm::SmallVector<
8815 OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
8816 4>
8817 OverlappedData;
8818 size_t Count = 0;
8819 for (const MapData &L : DeclComponentLists) {
8820 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8821 OpenMPMapClauseKind MapType;
8822 ArrayRef<OpenMPMapModifierKind> MapModifiers;
8823 bool IsImplicit;
8824 const ValueDecl *Mapper;
8825 const Expr *VarRef;
8826 std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8827 L;
8828 ++Count;
8829 for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
8830 OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
8831 std::tie(Components1, MapType, MapModifiers, IsImplicit, Mapper,
8832 VarRef) = L1;
8833 auto CI = Components.rbegin();
8834 auto CE = Components.rend();
8835 auto SI = Components1.rbegin();
8836 auto SE = Components1.rend();
8837 for (; CI != CE && SI != SE; ++CI, ++SI) {
8838 if (CI->getAssociatedExpression()->getStmtClass() !=
8839 SI->getAssociatedExpression()->getStmtClass())
8840 break;
8841 // Are we dealing with different variables/fields?
8842 if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
8843 break;
8844 }
8845 // Found overlapping if, at least for one component, reached the head of
8846 // the components list.
8847 if (CI == CE || SI == SE) {
8848 assert((CI != CE || SI != SE) &&
8849 "Unexpected full match of the mapping components.");
8850 const MapData &BaseData = CI == CE ? L : L1;
8851 OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
8852 SI == SE ? Components : Components1;
8853 auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
8854 OverlappedElements.getSecond().push_back(SubData);
8855 }
8856 }
8857 }
8858 // Sort the overlapped elements for each item.
8859 llvm::SmallVector<const FieldDecl *, 4> Layout;
8860 if (!OverlappedData.empty()) {
8861 if (const auto *CRD =
8862 VD->getType().getCanonicalType()->getAsCXXRecordDecl())
8863 getPlainLayout(CRD, Layout, /*AsBase=*/false);
8864 else {
8865 const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
8866 Layout.append(RD->field_begin(), RD->field_end());
8867 }
8868 }
8869 for (auto &Pair : OverlappedData) {
8870 llvm::sort(
8871 Pair.getSecond(),
8872 [&Layout](
8873 OMPClauseMappableExprCommon::MappableExprComponentListRef First,
8874 OMPClauseMappableExprCommon::MappableExprComponentListRef
8875 Second) {
8876 auto CI = First.rbegin();
8877 auto CE = First.rend();
8878 auto SI = Second.rbegin();
8879 auto SE = Second.rend();
8880 for (; CI != CE && SI != SE; ++CI, ++SI) {
8881 if (CI->getAssociatedExpression()->getStmtClass() !=
8882 SI->getAssociatedExpression()->getStmtClass())
8883 break;
8884 // Are we dealing with different variables/fields?
8885 if (CI->getAssociatedDeclaration() !=
8886 SI->getAssociatedDeclaration())
8887 break;
8888 }
8889
8890 // Lists contain the same elements.
8891 if (CI == CE && SI == SE)
8892 return false;
8893
8894 // List with less elements is less than list with more elements.
8895 if (CI == CE || SI == SE)
8896 return CI == CE;
8897
8898 const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
8899 const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
8900 if (FD1->getParent() == FD2->getParent())
8901 return FD1->getFieldIndex() < FD2->getFieldIndex();
8902 const auto It =
8903 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
8904 return FD == FD1 || FD == FD2;
8905 });
8906 return *It == FD1;
8907 });
8908 }
8909
8910 // Associated with a capture, because the mapping flags depend on it.
8911 // Go through all of the elements with the overlapped elements.
8912 for (const auto &Pair : OverlappedData) {
8913 const MapData &L = *Pair.getFirst();
8914 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8915 OpenMPMapClauseKind MapType;
8916 ArrayRef<OpenMPMapModifierKind> MapModifiers;
8917 bool IsImplicit;
8918 const ValueDecl *Mapper;
8919 const Expr *VarRef;
8920 std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8921 L;
8922 ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
8923 OverlappedComponents = Pair.getSecond();
8924 bool IsFirstComponentList = true;
8925 generateInfoForComponentList(
8926 MapType, MapModifiers, llvm::None, Components, CombinedInfo,
8927 PartialStruct, IsFirstComponentList, IsImplicit, Mapper,
8928 /*ForDeviceAddr=*/false, VD, VarRef, OverlappedComponents);
8929 }
8930 // Go through other elements without overlapped elements.
8931 bool IsFirstComponentList = OverlappedData.empty();
8932 for (const MapData &L : DeclComponentLists) {
8933 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8934 OpenMPMapClauseKind MapType;
8935 ArrayRef<OpenMPMapModifierKind> MapModifiers;
8936 bool IsImplicit;
8937 const ValueDecl *Mapper;
8938 const Expr *VarRef;
8939 std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8940 L;
8941 auto It = OverlappedData.find(&L);
8942 if (It == OverlappedData.end())
8943 generateInfoForComponentList(MapType, MapModifiers, llvm::None,
8944 Components, CombinedInfo, PartialStruct,
8945 IsFirstComponentList, IsImplicit, Mapper,
8946 /*ForDeviceAddr=*/false, VD, VarRef);
8947 IsFirstComponentList = false;
8948 }
8949 }
8950
8951 /// Generate the default map information for a given capture \a CI,
8952 /// record field declaration \a RI and captured value \a CV.
generateDefaultMapInfo(const CapturedStmt::Capture & CI,const FieldDecl & RI,llvm::Value * CV,MapCombinedInfoTy & CombinedInfo) const8953 void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
8954 const FieldDecl &RI, llvm::Value *CV,
8955 MapCombinedInfoTy &CombinedInfo) const {
8956 bool IsImplicit = true;
8957 // Do the default mapping.
8958 if (CI.capturesThis()) {
8959 CombinedInfo.Exprs.push_back(nullptr);
8960 CombinedInfo.BasePointers.push_back(CV);
8961 CombinedInfo.Pointers.push_back(CV);
8962 const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
8963 CombinedInfo.Sizes.push_back(
8964 CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
8965 CGF.Int64Ty, /*isSigned=*/true));
8966 // Default map type.
8967 CombinedInfo.Types.push_back(OMP_MAP_TO | OMP_MAP_FROM);
8968 } else if (CI.capturesVariableByCopy()) {
8969 const VarDecl *VD = CI.getCapturedVar();
8970 CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
8971 CombinedInfo.BasePointers.push_back(CV);
8972 CombinedInfo.Pointers.push_back(CV);
8973 if (!RI.getType()->isAnyPointerType()) {
8974 // We have to signal to the runtime captures passed by value that are
8975 // not pointers.
8976 CombinedInfo.Types.push_back(OMP_MAP_LITERAL);
8977 CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8978 CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
8979 } else {
8980 // Pointers are implicitly mapped with a zero size and no flags
8981 // (other than first map that is added for all implicit maps).
8982 CombinedInfo.Types.push_back(OMP_MAP_NONE);
8983 CombinedInfo.Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
8984 }
8985 auto I = FirstPrivateDecls.find(VD);
8986 if (I != FirstPrivateDecls.end())
8987 IsImplicit = I->getSecond();
8988 } else {
8989 assert(CI.capturesVariable() && "Expected captured reference.");
8990 const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
8991 QualType ElementType = PtrTy->getPointeeType();
8992 CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8993 CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
8994 // The default map type for a scalar/complex type is 'to' because by
8995 // default the value doesn't have to be retrieved. For an aggregate
8996 // type, the default is 'tofrom'.
8997 CombinedInfo.Types.push_back(getMapModifiersForPrivateClauses(CI));
8998 const VarDecl *VD = CI.getCapturedVar();
8999 auto I = FirstPrivateDecls.find(VD);
9000 if (I != FirstPrivateDecls.end() &&
9001 VD->getType().isConstant(CGF.getContext())) {
9002 llvm::Constant *Addr =
9003 CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
9004 // Copy the value of the original variable to the new global copy.
9005 CGF.Builder.CreateMemCpy(
9006 CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(CGF),
9007 Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
9008 CombinedInfo.Sizes.back(), /*IsVolatile=*/false);
9009 // Use new global variable as the base pointers.
9010 CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
9011 CombinedInfo.BasePointers.push_back(Addr);
9012 CombinedInfo.Pointers.push_back(Addr);
9013 } else {
9014 CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
9015 CombinedInfo.BasePointers.push_back(CV);
9016 if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
9017 Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
9018 CV, ElementType, CGF.getContext().getDeclAlign(VD),
9019 AlignmentSource::Decl));
9020 CombinedInfo.Pointers.push_back(PtrAddr.getPointer());
9021 } else {
9022 CombinedInfo.Pointers.push_back(CV);
9023 }
9024 }
9025 if (I != FirstPrivateDecls.end())
9026 IsImplicit = I->getSecond();
9027 }
9028 // Every default map produces a single argument which is a target parameter.
9029 CombinedInfo.Types.back() |= OMP_MAP_TARGET_PARAM;
9030
9031 // Add flag stating this is an implicit map.
9032 if (IsImplicit)
9033 CombinedInfo.Types.back() |= OMP_MAP_IMPLICIT;
9034
9035 // No user-defined mapper for default mapping.
9036 CombinedInfo.Mappers.push_back(nullptr);
9037 }
9038 };
9039 } // anonymous namespace
9040
emitNonContiguousDescriptor(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info)9041 static void emitNonContiguousDescriptor(
9042 CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
9043 CGOpenMPRuntime::TargetDataInfo &Info) {
9044 CodeGenModule &CGM = CGF.CGM;
9045 MappableExprsHandler::MapCombinedInfoTy::StructNonContiguousInfo
9046 &NonContigInfo = CombinedInfo.NonContigInfo;
9047
9048 // Build an array of struct descriptor_dim and then assign it to
9049 // offload_args.
9050 //
9051 // struct descriptor_dim {
9052 // uint64_t offset;
9053 // uint64_t count;
9054 // uint64_t stride
9055 // };
9056 ASTContext &C = CGF.getContext();
9057 QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
9058 RecordDecl *RD;
9059 RD = C.buildImplicitRecord("descriptor_dim");
9060 RD->startDefinition();
9061 addFieldToRecordDecl(C, RD, Int64Ty);
9062 addFieldToRecordDecl(C, RD, Int64Ty);
9063 addFieldToRecordDecl(C, RD, Int64Ty);
9064 RD->completeDefinition();
9065 QualType DimTy = C.getRecordType(RD);
9066
9067 enum { OffsetFD = 0, CountFD, StrideFD };
9068 // We need two index variable here since the size of "Dims" is the same as the
9069 // size of Components, however, the size of offset, count, and stride is equal
9070 // to the size of base declaration that is non-contiguous.
9071 for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) {
9072 // Skip emitting ir if dimension size is 1 since it cannot be
9073 // non-contiguous.
9074 if (NonContigInfo.Dims[I] == 1)
9075 continue;
9076 llvm::APInt Size(/*numBits=*/32, NonContigInfo.Dims[I]);
9077 QualType ArrayTy =
9078 C.getConstantArrayType(DimTy, Size, nullptr, ArrayType::Normal, 0);
9079 Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
9080 for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) {
9081 unsigned RevIdx = EE - II - 1;
9082 LValue DimsLVal = CGF.MakeAddrLValue(
9083 CGF.Builder.CreateConstArrayGEP(DimsAddr, II), DimTy);
9084 // Offset
9085 LValue OffsetLVal = CGF.EmitLValueForField(
9086 DimsLVal, *std::next(RD->field_begin(), OffsetFD));
9087 CGF.EmitStoreOfScalar(NonContigInfo.Offsets[L][RevIdx], OffsetLVal);
9088 // Count
9089 LValue CountLVal = CGF.EmitLValueForField(
9090 DimsLVal, *std::next(RD->field_begin(), CountFD));
9091 CGF.EmitStoreOfScalar(NonContigInfo.Counts[L][RevIdx], CountLVal);
9092 // Stride
9093 LValue StrideLVal = CGF.EmitLValueForField(
9094 DimsLVal, *std::next(RD->field_begin(), StrideFD));
9095 CGF.EmitStoreOfScalar(NonContigInfo.Strides[L][RevIdx], StrideLVal);
9096 }
9097 // args[I] = &dims
9098 Address DAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9099 DimsAddr, CGM.Int8PtrTy);
9100 llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9101 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9102 Info.PointersArray, 0, I);
9103 Address PAddr(P, CGF.getPointerAlign());
9104 CGF.Builder.CreateStore(DAddr.getPointer(), PAddr);
9105 ++L;
9106 }
9107 }
9108
9109 /// Emit a string constant containing the names of the values mapped to the
9110 /// offloading runtime library.
9111 llvm::Constant *
emitMappingInformation(CodeGenFunction & CGF,llvm::OpenMPIRBuilder & OMPBuilder,MappableExprsHandler::MappingExprInfo & MapExprs)9112 emitMappingInformation(CodeGenFunction &CGF, llvm::OpenMPIRBuilder &OMPBuilder,
9113 MappableExprsHandler::MappingExprInfo &MapExprs) {
9114 llvm::Constant *SrcLocStr;
9115 if (!MapExprs.getMapDecl()) {
9116 SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr();
9117 } else {
9118 std::string ExprName = "";
9119 if (MapExprs.getMapExpr()) {
9120 PrintingPolicy P(CGF.getContext().getLangOpts());
9121 llvm::raw_string_ostream OS(ExprName);
9122 MapExprs.getMapExpr()->printPretty(OS, nullptr, P);
9123 OS.flush();
9124 } else {
9125 ExprName = MapExprs.getMapDecl()->getNameAsString();
9126 }
9127
9128 SourceLocation Loc = MapExprs.getMapDecl()->getLocation();
9129 PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
9130 const char *FileName = PLoc.getFilename();
9131 unsigned Line = PLoc.getLine();
9132 unsigned Column = PLoc.getColumn();
9133 SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FileName, ExprName.c_str(),
9134 Line, Column);
9135 }
9136
9137 return SrcLocStr;
9138 }
9139
9140 /// Emit the arrays used to pass the captures and map information to the
9141 /// offloading runtime library. If there is no map or capture information,
9142 /// return nullptr by reference.
emitOffloadingArrays(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info,llvm::OpenMPIRBuilder & OMPBuilder,bool IsNonContiguous=false)9143 static void emitOffloadingArrays(
9144 CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
9145 CGOpenMPRuntime::TargetDataInfo &Info, llvm::OpenMPIRBuilder &OMPBuilder,
9146 bool IsNonContiguous = false) {
9147 CodeGenModule &CGM = CGF.CGM;
9148 ASTContext &Ctx = CGF.getContext();
9149
9150 // Reset the array information.
9151 Info.clearArrayInfo();
9152 Info.NumberOfPtrs = CombinedInfo.BasePointers.size();
9153
9154 if (Info.NumberOfPtrs) {
9155 // Detect if we have any capture size requiring runtime evaluation of the
9156 // size so that a constant array could be eventually used.
9157 bool hasRuntimeEvaluationCaptureSize = false;
9158 for (llvm::Value *S : CombinedInfo.Sizes)
9159 if (!isa<llvm::Constant>(S)) {
9160 hasRuntimeEvaluationCaptureSize = true;
9161 break;
9162 }
9163
9164 llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
9165 QualType PointerArrayType = Ctx.getConstantArrayType(
9166 Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal,
9167 /*IndexTypeQuals=*/0);
9168
9169 Info.BasePointersArray =
9170 CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
9171 Info.PointersArray =
9172 CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
9173 Address MappersArray =
9174 CGF.CreateMemTemp(PointerArrayType, ".offload_mappers");
9175 Info.MappersArray = MappersArray.getPointer();
9176
9177 // If we don't have any VLA types or other types that require runtime
9178 // evaluation, we can use a constant array for the map sizes, otherwise we
9179 // need to fill up the arrays as we do for the pointers.
9180 QualType Int64Ty =
9181 Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
9182 if (hasRuntimeEvaluationCaptureSize) {
9183 QualType SizeArrayType = Ctx.getConstantArrayType(
9184 Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
9185 /*IndexTypeQuals=*/0);
9186 Info.SizesArray =
9187 CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
9188 } else {
9189 // We expect all the sizes to be constant, so we collect them to create
9190 // a constant array.
9191 SmallVector<llvm::Constant *, 16> ConstSizes;
9192 for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) {
9193 if (IsNonContiguous &&
9194 (CombinedInfo.Types[I] & MappableExprsHandler::OMP_MAP_NON_CONTIG)) {
9195 ConstSizes.push_back(llvm::ConstantInt::get(
9196 CGF.Int64Ty, CombinedInfo.NonContigInfo.Dims[I]));
9197 } else {
9198 ConstSizes.push_back(cast<llvm::Constant>(CombinedInfo.Sizes[I]));
9199 }
9200 }
9201
9202 auto *SizesArrayInit = llvm::ConstantArray::get(
9203 llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
9204 std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
9205 auto *SizesArrayGbl = new llvm::GlobalVariable(
9206 CGM.getModule(), SizesArrayInit->getType(),
9207 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9208 SizesArrayInit, Name);
9209 SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
9210 Info.SizesArray = SizesArrayGbl;
9211 }
9212
9213 // The map types are always constant so we don't need to generate code to
9214 // fill arrays. Instead, we create an array constant.
9215 SmallVector<uint64_t, 4> Mapping(CombinedInfo.Types.size(), 0);
9216 llvm::copy(CombinedInfo.Types, Mapping.begin());
9217 llvm::Constant *MapTypesArrayInit =
9218 llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
9219 std::string MaptypesName =
9220 CGM.getOpenMPRuntime().getName({"offload_maptypes"});
9221 auto *MapTypesArrayGbl = new llvm::GlobalVariable(
9222 CGM.getModule(), MapTypesArrayInit->getType(),
9223 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9224 MapTypesArrayInit, MaptypesName);
9225 MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
9226 Info.MapTypesArray = MapTypesArrayGbl;
9227
9228 // The information types are only built if there is debug information
9229 // requested.
9230 if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) {
9231 Info.MapNamesArray = llvm::Constant::getNullValue(
9232 llvm::Type::getInt8Ty(CGF.Builder.getContext())->getPointerTo());
9233 } else {
9234 auto fillInfoMap = [&](MappableExprsHandler::MappingExprInfo &MapExpr) {
9235 return emitMappingInformation(CGF, OMPBuilder, MapExpr);
9236 };
9237 SmallVector<llvm::Constant *, 4> InfoMap(CombinedInfo.Exprs.size());
9238 llvm::transform(CombinedInfo.Exprs, InfoMap.begin(), fillInfoMap);
9239
9240 llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get(
9241 llvm::ArrayType::get(
9242 llvm::Type::getInt8Ty(CGF.Builder.getContext())->getPointerTo(),
9243 CombinedInfo.Exprs.size()),
9244 InfoMap);
9245 auto *MapNamesArrayGbl = new llvm::GlobalVariable(
9246 CGM.getModule(), MapNamesArrayInit->getType(),
9247 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9248 MapNamesArrayInit,
9249 CGM.getOpenMPRuntime().getName({"offload_mapnames"}));
9250 Info.MapNamesArray = MapNamesArrayGbl;
9251 }
9252
9253 // If there's a present map type modifier, it must not be applied to the end
9254 // of a region, so generate a separate map type array in that case.
9255 if (Info.separateBeginEndCalls()) {
9256 bool EndMapTypesDiffer = false;
9257 for (uint64_t &Type : Mapping) {
9258 if (Type & MappableExprsHandler::OMP_MAP_PRESENT) {
9259 Type &= ~MappableExprsHandler::OMP_MAP_PRESENT;
9260 EndMapTypesDiffer = true;
9261 }
9262 }
9263 if (EndMapTypesDiffer) {
9264 MapTypesArrayInit =
9265 llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
9266 MaptypesName = CGM.getOpenMPRuntime().getName({"offload_maptypes"});
9267 MapTypesArrayGbl = new llvm::GlobalVariable(
9268 CGM.getModule(), MapTypesArrayInit->getType(),
9269 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9270 MapTypesArrayInit, MaptypesName);
9271 MapTypesArrayGbl->setUnnamedAddr(
9272 llvm::GlobalValue::UnnamedAddr::Global);
9273 Info.MapTypesArrayEnd = MapTypesArrayGbl;
9274 }
9275 }
9276
9277 for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
9278 llvm::Value *BPVal = *CombinedInfo.BasePointers[I];
9279 llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
9280 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9281 Info.BasePointersArray, 0, I);
9282 BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9283 BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
9284 Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9285 CGF.Builder.CreateStore(BPVal, BPAddr);
9286
9287 if (Info.requiresDevicePointerInfo())
9288 if (const ValueDecl *DevVD =
9289 CombinedInfo.BasePointers[I].getDevicePtrDecl())
9290 Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
9291
9292 llvm::Value *PVal = CombinedInfo.Pointers[I];
9293 llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9294 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9295 Info.PointersArray, 0, I);
9296 P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9297 P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
9298 Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9299 CGF.Builder.CreateStore(PVal, PAddr);
9300
9301 if (hasRuntimeEvaluationCaptureSize) {
9302 llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
9303 llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
9304 Info.SizesArray,
9305 /*Idx0=*/0,
9306 /*Idx1=*/I);
9307 Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
9308 CGF.Builder.CreateStore(CGF.Builder.CreateIntCast(CombinedInfo.Sizes[I],
9309 CGM.Int64Ty,
9310 /*isSigned=*/true),
9311 SAddr);
9312 }
9313
9314 // Fill up the mapper array.
9315 llvm::Value *MFunc = llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
9316 if (CombinedInfo.Mappers[I]) {
9317 MFunc = CGM.getOpenMPRuntime().getOrCreateUserDefinedMapperFunc(
9318 cast<OMPDeclareMapperDecl>(CombinedInfo.Mappers[I]));
9319 MFunc = CGF.Builder.CreatePointerCast(MFunc, CGM.VoidPtrTy);
9320 Info.HasMapper = true;
9321 }
9322 Address MAddr = CGF.Builder.CreateConstArrayGEP(MappersArray, I);
9323 CGF.Builder.CreateStore(MFunc, MAddr);
9324 }
9325 }
9326
9327 if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() ||
9328 Info.NumberOfPtrs == 0)
9329 return;
9330
9331 emitNonContiguousDescriptor(CGF, CombinedInfo, Info);
9332 }
9333
9334 namespace {
9335 /// Additional arguments for emitOffloadingArraysArgument function.
9336 struct ArgumentsOptions {
9337 bool ForEndCall = false;
9338 ArgumentsOptions() = default;
ArgumentsOptions__anon8f021c724611::ArgumentsOptions9339 ArgumentsOptions(bool ForEndCall) : ForEndCall(ForEndCall) {}
9340 };
9341 } // namespace
9342
9343 /// Emit the arguments to be passed to the runtime library based on the
9344 /// arrays of base pointers, pointers, sizes, map types, and mappers. If
9345 /// ForEndCall, emit map types to be passed for the end of the region instead of
9346 /// the beginning.
emitOffloadingArraysArgument(CodeGenFunction & CGF,llvm::Value * & BasePointersArrayArg,llvm::Value * & PointersArrayArg,llvm::Value * & SizesArrayArg,llvm::Value * & MapTypesArrayArg,llvm::Value * & MapNamesArrayArg,llvm::Value * & MappersArrayArg,CGOpenMPRuntime::TargetDataInfo & Info,const ArgumentsOptions & Options=ArgumentsOptions ())9347 static void emitOffloadingArraysArgument(
9348 CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
9349 llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
9350 llvm::Value *&MapTypesArrayArg, llvm::Value *&MapNamesArrayArg,
9351 llvm::Value *&MappersArrayArg, CGOpenMPRuntime::TargetDataInfo &Info,
9352 const ArgumentsOptions &Options = ArgumentsOptions()) {
9353 assert((!Options.ForEndCall || Info.separateBeginEndCalls()) &&
9354 "expected region end call to runtime only when end call is separate");
9355 CodeGenModule &CGM = CGF.CGM;
9356 if (Info.NumberOfPtrs) {
9357 BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9358 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9359 Info.BasePointersArray,
9360 /*Idx0=*/0, /*Idx1=*/0);
9361 PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9362 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9363 Info.PointersArray,
9364 /*Idx0=*/0,
9365 /*Idx1=*/0);
9366 SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9367 llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
9368 /*Idx0=*/0, /*Idx1=*/0);
9369 MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9370 llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
9371 Options.ForEndCall && Info.MapTypesArrayEnd ? Info.MapTypesArrayEnd
9372 : Info.MapTypesArray,
9373 /*Idx0=*/0,
9374 /*Idx1=*/0);
9375
9376 // Only emit the mapper information arrays if debug information is
9377 // requested.
9378 if (CGF.CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo)
9379 MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9380 else
9381 MapNamesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9382 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9383 Info.MapNamesArray,
9384 /*Idx0=*/0,
9385 /*Idx1=*/0);
9386 // If there is no user-defined mapper, set the mapper array to nullptr to
9387 // avoid an unnecessary data privatization
9388 if (!Info.HasMapper)
9389 MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9390 else
9391 MappersArrayArg =
9392 CGF.Builder.CreatePointerCast(Info.MappersArray, CGM.VoidPtrPtrTy);
9393 } else {
9394 BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9395 PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9396 SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
9397 MapTypesArrayArg =
9398 llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
9399 MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9400 MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9401 }
9402 }
9403
9404 /// Check for inner distribute directive.
9405 static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext & Ctx,const OMPExecutableDirective & D)9406 getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
9407 const auto *CS = D.getInnermostCapturedStmt();
9408 const auto *Body =
9409 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
9410 const Stmt *ChildStmt =
9411 CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9412
9413 if (const auto *NestedDir =
9414 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9415 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
9416 switch (D.getDirectiveKind()) {
9417 case OMPD_target:
9418 if (isOpenMPDistributeDirective(DKind))
9419 return NestedDir;
9420 if (DKind == OMPD_teams) {
9421 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
9422 /*IgnoreCaptured=*/true);
9423 if (!Body)
9424 return nullptr;
9425 ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9426 if (const auto *NND =
9427 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9428 DKind = NND->getDirectiveKind();
9429 if (isOpenMPDistributeDirective(DKind))
9430 return NND;
9431 }
9432 }
9433 return nullptr;
9434 case OMPD_target_teams:
9435 if (isOpenMPDistributeDirective(DKind))
9436 return NestedDir;
9437 return nullptr;
9438 case OMPD_target_parallel:
9439 case OMPD_target_simd:
9440 case OMPD_target_parallel_for:
9441 case OMPD_target_parallel_for_simd:
9442 return nullptr;
9443 case OMPD_target_teams_distribute:
9444 case OMPD_target_teams_distribute_simd:
9445 case OMPD_target_teams_distribute_parallel_for:
9446 case OMPD_target_teams_distribute_parallel_for_simd:
9447 case OMPD_parallel:
9448 case OMPD_for:
9449 case OMPD_parallel_for:
9450 case OMPD_parallel_master:
9451 case OMPD_parallel_sections:
9452 case OMPD_for_simd:
9453 case OMPD_parallel_for_simd:
9454 case OMPD_cancel:
9455 case OMPD_cancellation_point:
9456 case OMPD_ordered:
9457 case OMPD_threadprivate:
9458 case OMPD_allocate:
9459 case OMPD_task:
9460 case OMPD_simd:
9461 case OMPD_sections:
9462 case OMPD_section:
9463 case OMPD_single:
9464 case OMPD_master:
9465 case OMPD_critical:
9466 case OMPD_taskyield:
9467 case OMPD_barrier:
9468 case OMPD_taskwait:
9469 case OMPD_taskgroup:
9470 case OMPD_atomic:
9471 case OMPD_flush:
9472 case OMPD_depobj:
9473 case OMPD_scan:
9474 case OMPD_teams:
9475 case OMPD_target_data:
9476 case OMPD_target_exit_data:
9477 case OMPD_target_enter_data:
9478 case OMPD_distribute:
9479 case OMPD_distribute_simd:
9480 case OMPD_distribute_parallel_for:
9481 case OMPD_distribute_parallel_for_simd:
9482 case OMPD_teams_distribute:
9483 case OMPD_teams_distribute_simd:
9484 case OMPD_teams_distribute_parallel_for:
9485 case OMPD_teams_distribute_parallel_for_simd:
9486 case OMPD_target_update:
9487 case OMPD_declare_simd:
9488 case OMPD_declare_variant:
9489 case OMPD_begin_declare_variant:
9490 case OMPD_end_declare_variant:
9491 case OMPD_declare_target:
9492 case OMPD_end_declare_target:
9493 case OMPD_declare_reduction:
9494 case OMPD_declare_mapper:
9495 case OMPD_taskloop:
9496 case OMPD_taskloop_simd:
9497 case OMPD_master_taskloop:
9498 case OMPD_master_taskloop_simd:
9499 case OMPD_parallel_master_taskloop:
9500 case OMPD_parallel_master_taskloop_simd:
9501 case OMPD_requires:
9502 case OMPD_unknown:
9503 default:
9504 llvm_unreachable("Unexpected directive.");
9505 }
9506 }
9507
9508 return nullptr;
9509 }
9510
9511 /// Emit the user-defined mapper function. The code generation follows the
9512 /// pattern in the example below.
9513 /// \code
9514 /// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
9515 /// void *base, void *begin,
9516 /// int64_t size, int64_t type) {
9517 /// // Allocate space for an array section first.
9518 /// if (size > 1 && !maptype.IsDelete)
9519 /// __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9520 /// size*sizeof(Ty), clearToFrom(type));
9521 /// // Map members.
9522 /// for (unsigned i = 0; i < size; i++) {
9523 /// // For each component specified by this mapper:
9524 /// for (auto c : all_components) {
9525 /// if (c.hasMapper())
9526 /// (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
9527 /// c.arg_type);
9528 /// else
9529 /// __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
9530 /// c.arg_begin, c.arg_size, c.arg_type);
9531 /// }
9532 /// }
9533 /// // Delete the array section.
9534 /// if (size > 1 && maptype.IsDelete)
9535 /// __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9536 /// size*sizeof(Ty), clearToFrom(type));
9537 /// }
9538 /// \endcode
emitUserDefinedMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)9539 void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
9540 CodeGenFunction *CGF) {
9541 if (UDMMap.count(D) > 0)
9542 return;
9543 ASTContext &C = CGM.getContext();
9544 QualType Ty = D->getType();
9545 QualType PtrTy = C.getPointerType(Ty).withRestrict();
9546 QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
9547 auto *MapperVarDecl =
9548 cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
9549 SourceLocation Loc = D->getLocation();
9550 CharUnits ElementSize = C.getTypeSizeInChars(Ty);
9551
9552 // Prepare mapper function arguments and attributes.
9553 ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9554 C.VoidPtrTy, ImplicitParamDecl::Other);
9555 ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
9556 ImplicitParamDecl::Other);
9557 ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9558 C.VoidPtrTy, ImplicitParamDecl::Other);
9559 ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9560 ImplicitParamDecl::Other);
9561 ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9562 ImplicitParamDecl::Other);
9563 FunctionArgList Args;
9564 Args.push_back(&HandleArg);
9565 Args.push_back(&BaseArg);
9566 Args.push_back(&BeginArg);
9567 Args.push_back(&SizeArg);
9568 Args.push_back(&TypeArg);
9569 const CGFunctionInfo &FnInfo =
9570 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
9571 llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
9572 SmallString<64> TyStr;
9573 llvm::raw_svector_ostream Out(TyStr);
9574 CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out);
9575 std::string Name = getName({"omp_mapper", TyStr, D->getName()});
9576 auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
9577 Name, &CGM.getModule());
9578 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
9579 Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
9580 // Start the mapper function code generation.
9581 CodeGenFunction MapperCGF(CGM);
9582 MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
9583 // Compute the starting and end addreses of array elements.
9584 llvm::Value *Size = MapperCGF.EmitLoadOfScalar(
9585 MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false,
9586 C.getPointerType(Int64Ty), Loc);
9587 // Convert the size in bytes into the number of array elements.
9588 Size = MapperCGF.Builder.CreateExactUDiv(
9589 Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9590 llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast(
9591 MapperCGF.GetAddrOfLocalVar(&BeginArg).getPointer(),
9592 CGM.getTypes().ConvertTypeForMem(C.getPointerType(PtrTy)));
9593 llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size);
9594 llvm::Value *MapType = MapperCGF.EmitLoadOfScalar(
9595 MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false,
9596 C.getPointerType(Int64Ty), Loc);
9597 // Prepare common arguments for array initiation and deletion.
9598 llvm::Value *Handle = MapperCGF.EmitLoadOfScalar(
9599 MapperCGF.GetAddrOfLocalVar(&HandleArg),
9600 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9601 llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar(
9602 MapperCGF.GetAddrOfLocalVar(&BaseArg),
9603 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9604 llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar(
9605 MapperCGF.GetAddrOfLocalVar(&BeginArg),
9606 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9607
9608 // Emit array initiation if this is an array section and \p MapType indicates
9609 // that memory allocation is required.
9610 llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head");
9611 emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9612 ElementSize, HeadBB, /*IsInit=*/true);
9613
9614 // Emit a for loop to iterate through SizeArg of elements and map all of them.
9615
9616 // Emit the loop header block.
9617 MapperCGF.EmitBlock(HeadBB);
9618 llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body");
9619 llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done");
9620 // Evaluate whether the initial condition is satisfied.
9621 llvm::Value *IsEmpty =
9622 MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty");
9623 MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
9624 llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock();
9625
9626 // Emit the loop body block.
9627 MapperCGF.EmitBlock(BodyBB);
9628 llvm::BasicBlock *LastBB = BodyBB;
9629 llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI(
9630 PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent");
9631 PtrPHI->addIncoming(PtrBegin, EntryBB);
9632 Address PtrCurrent =
9633 Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg)
9634 .getAlignment()
9635 .alignmentOfArrayElement(ElementSize));
9636 // Privatize the declared variable of mapper to be the current array element.
9637 CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
9638 Scope.addPrivate(MapperVarDecl, [&MapperCGF, PtrCurrent, PtrTy]() {
9639 return MapperCGF
9640 .EmitLoadOfPointerLValue(PtrCurrent, PtrTy->castAs<PointerType>())
9641 .getAddress(MapperCGF);
9642 });
9643 (void)Scope.Privatize();
9644
9645 // Get map clause information. Fill up the arrays with all mapped variables.
9646 MappableExprsHandler::MapCombinedInfoTy Info;
9647 MappableExprsHandler MEHandler(*D, MapperCGF);
9648 MEHandler.generateAllInfoForMapper(Info);
9649
9650 // Call the runtime API __tgt_mapper_num_components to get the number of
9651 // pre-existing components.
9652 llvm::Value *OffloadingArgs[] = {Handle};
9653 llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall(
9654 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9655 OMPRTL___tgt_mapper_num_components),
9656 OffloadingArgs);
9657 llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl(
9658 PreviousSize,
9659 MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset()));
9660
9661 // Fill up the runtime mapper handle for all components.
9662 for (unsigned I = 0; I < Info.BasePointers.size(); ++I) {
9663 llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast(
9664 *Info.BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9665 llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast(
9666 Info.Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9667 llvm::Value *CurSizeArg = Info.Sizes[I];
9668
9669 // Extract the MEMBER_OF field from the map type.
9670 llvm::BasicBlock *MemberBB = MapperCGF.createBasicBlock("omp.member");
9671 MapperCGF.EmitBlock(MemberBB);
9672 llvm::Value *OriMapType = MapperCGF.Builder.getInt64(Info.Types[I]);
9673 llvm::Value *Member = MapperCGF.Builder.CreateAnd(
9674 OriMapType,
9675 MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_MEMBER_OF));
9676 llvm::BasicBlock *MemberCombineBB =
9677 MapperCGF.createBasicBlock("omp.member.combine");
9678 llvm::BasicBlock *TypeBB = MapperCGF.createBasicBlock("omp.type");
9679 llvm::Value *IsMember = MapperCGF.Builder.CreateIsNull(Member);
9680 MapperCGF.Builder.CreateCondBr(IsMember, TypeBB, MemberCombineBB);
9681 // Add the number of pre-existing components to the MEMBER_OF field if it
9682 // is valid.
9683 MapperCGF.EmitBlock(MemberCombineBB);
9684 llvm::Value *CombinedMember =
9685 MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize);
9686 // Do nothing if it is not a member of previous components.
9687 MapperCGF.EmitBlock(TypeBB);
9688 llvm::PHINode *MemberMapType =
9689 MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.membermaptype");
9690 MemberMapType->addIncoming(OriMapType, MemberBB);
9691 MemberMapType->addIncoming(CombinedMember, MemberCombineBB);
9692
9693 // Combine the map type inherited from user-defined mapper with that
9694 // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM
9695 // bits of the \a MapType, which is the input argument of the mapper
9696 // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM
9697 // bits of MemberMapType.
9698 // [OpenMP 5.0], 1.2.6. map-type decay.
9699 // | alloc | to | from | tofrom | release | delete
9700 // ----------------------------------------------------------
9701 // alloc | alloc | alloc | alloc | alloc | release | delete
9702 // to | alloc | to | alloc | to | release | delete
9703 // from | alloc | alloc | from | from | release | delete
9704 // tofrom | alloc | to | from | tofrom | release | delete
9705 llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd(
9706 MapType,
9707 MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO |
9708 MappableExprsHandler::OMP_MAP_FROM));
9709 llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc");
9710 llvm::BasicBlock *AllocElseBB =
9711 MapperCGF.createBasicBlock("omp.type.alloc.else");
9712 llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to");
9713 llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else");
9714 llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from");
9715 llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end");
9716 llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom);
9717 MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB);
9718 // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM.
9719 MapperCGF.EmitBlock(AllocBB);
9720 llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd(
9721 MemberMapType,
9722 MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9723 MappableExprsHandler::OMP_MAP_FROM)));
9724 MapperCGF.Builder.CreateBr(EndBB);
9725 MapperCGF.EmitBlock(AllocElseBB);
9726 llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ(
9727 LeftToFrom,
9728 MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO));
9729 MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB);
9730 // In case of to, clear OMP_MAP_FROM.
9731 MapperCGF.EmitBlock(ToBB);
9732 llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd(
9733 MemberMapType,
9734 MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM));
9735 MapperCGF.Builder.CreateBr(EndBB);
9736 MapperCGF.EmitBlock(ToElseBB);
9737 llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ(
9738 LeftToFrom,
9739 MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM));
9740 MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB);
9741 // In case of from, clear OMP_MAP_TO.
9742 MapperCGF.EmitBlock(FromBB);
9743 llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd(
9744 MemberMapType,
9745 MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO));
9746 // In case of tofrom, do nothing.
9747 MapperCGF.EmitBlock(EndBB);
9748 LastBB = EndBB;
9749 llvm::PHINode *CurMapType =
9750 MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype");
9751 CurMapType->addIncoming(AllocMapType, AllocBB);
9752 CurMapType->addIncoming(ToMapType, ToBB);
9753 CurMapType->addIncoming(FromMapType, FromBB);
9754 CurMapType->addIncoming(MemberMapType, ToElseBB);
9755
9756 llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg,
9757 CurSizeArg, CurMapType};
9758 if (Info.Mappers[I]) {
9759 // Call the corresponding mapper function.
9760 llvm::Function *MapperFunc = getOrCreateUserDefinedMapperFunc(
9761 cast<OMPDeclareMapperDecl>(Info.Mappers[I]));
9762 assert(MapperFunc && "Expect a valid mapper function is available.");
9763 MapperCGF.EmitNounwindRuntimeCall(MapperFunc, OffloadingArgs);
9764 } else {
9765 // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9766 // data structure.
9767 MapperCGF.EmitRuntimeCall(
9768 OMPBuilder.getOrCreateRuntimeFunction(
9769 CGM.getModule(), OMPRTL___tgt_push_mapper_component),
9770 OffloadingArgs);
9771 }
9772 }
9773
9774 // Update the pointer to point to the next element that needs to be mapped,
9775 // and check whether we have mapped all elements.
9776 llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32(
9777 PtrPHI, /*Idx0=*/1, "omp.arraymap.next");
9778 PtrPHI->addIncoming(PtrNext, LastBB);
9779 llvm::Value *IsDone =
9780 MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone");
9781 llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit");
9782 MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB);
9783
9784 MapperCGF.EmitBlock(ExitBB);
9785 // Emit array deletion if this is an array section and \p MapType indicates
9786 // that deletion is required.
9787 emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9788 ElementSize, DoneBB, /*IsInit=*/false);
9789
9790 // Emit the function exit block.
9791 MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true);
9792 MapperCGF.FinishFunction();
9793 UDMMap.try_emplace(D, Fn);
9794 if (CGF) {
9795 auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn);
9796 Decls.second.push_back(D);
9797 }
9798 }
9799
9800 /// Emit the array initialization or deletion portion for user-defined mapper
9801 /// code generation. First, it evaluates whether an array section is mapped and
9802 /// whether the \a MapType instructs to delete this section. If \a IsInit is
9803 /// true, and \a MapType indicates to not delete this array, array
9804 /// initialization code is generated. If \a IsInit is false, and \a MapType
9805 /// indicates to not this array, array deletion code is generated.
emitUDMapperArrayInitOrDel(CodeGenFunction & MapperCGF,llvm::Value * Handle,llvm::Value * Base,llvm::Value * Begin,llvm::Value * Size,llvm::Value * MapType,CharUnits ElementSize,llvm::BasicBlock * ExitBB,bool IsInit)9806 void CGOpenMPRuntime::emitUDMapperArrayInitOrDel(
9807 CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base,
9808 llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType,
9809 CharUnits ElementSize, llvm::BasicBlock *ExitBB, bool IsInit) {
9810 StringRef Prefix = IsInit ? ".init" : ".del";
9811
9812 // Evaluate if this is an array section.
9813 llvm::BasicBlock *IsDeleteBB =
9814 MapperCGF.createBasicBlock(getName({"omp.array", Prefix, ".evaldelete"}));
9815 llvm::BasicBlock *BodyBB =
9816 MapperCGF.createBasicBlock(getName({"omp.array", Prefix}));
9817 llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGE(
9818 Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray");
9819 MapperCGF.Builder.CreateCondBr(IsArray, IsDeleteBB, ExitBB);
9820
9821 // Evaluate if we are going to delete this section.
9822 MapperCGF.EmitBlock(IsDeleteBB);
9823 llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd(
9824 MapType,
9825 MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE));
9826 llvm::Value *DeleteCond;
9827 if (IsInit) {
9828 DeleteCond = MapperCGF.Builder.CreateIsNull(
9829 DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9830 } else {
9831 DeleteCond = MapperCGF.Builder.CreateIsNotNull(
9832 DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9833 }
9834 MapperCGF.Builder.CreateCondBr(DeleteCond, BodyBB, ExitBB);
9835
9836 MapperCGF.EmitBlock(BodyBB);
9837 // Get the array size by multiplying element size and element number (i.e., \p
9838 // Size).
9839 llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul(
9840 Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9841 // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves
9842 // memory allocation/deletion purpose only.
9843 llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd(
9844 MapType,
9845 MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9846 MappableExprsHandler::OMP_MAP_FROM)));
9847 // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9848 // data structure.
9849 llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, ArraySize, MapTypeArg};
9850 MapperCGF.EmitRuntimeCall(
9851 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9852 OMPRTL___tgt_push_mapper_component),
9853 OffloadingArgs);
9854 }
9855
getOrCreateUserDefinedMapperFunc(const OMPDeclareMapperDecl * D)9856 llvm::Function *CGOpenMPRuntime::getOrCreateUserDefinedMapperFunc(
9857 const OMPDeclareMapperDecl *D) {
9858 auto I = UDMMap.find(D);
9859 if (I != UDMMap.end())
9860 return I->second;
9861 emitUserDefinedMapper(D);
9862 return UDMMap.lookup(D);
9863 }
9864
emitTargetNumIterationsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Value * DeviceID,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9865 void CGOpenMPRuntime::emitTargetNumIterationsCall(
9866 CodeGenFunction &CGF, const OMPExecutableDirective &D,
9867 llvm::Value *DeviceID,
9868 llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9869 const OMPLoopDirective &D)>
9870 SizeEmitter) {
9871 OpenMPDirectiveKind Kind = D.getDirectiveKind();
9872 const OMPExecutableDirective *TD = &D;
9873 // Get nested teams distribute kind directive, if any.
9874 if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
9875 TD = getNestedDistributeDirective(CGM.getContext(), D);
9876 if (!TD)
9877 return;
9878 const auto *LD = cast<OMPLoopDirective>(TD);
9879 auto &&CodeGen = [LD, DeviceID, SizeEmitter, &D, this](CodeGenFunction &CGF,
9880 PrePostActionTy &) {
9881 if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) {
9882 llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
9883 llvm::Value *Args[] = {RTLoc, DeviceID, NumIterations};
9884 CGF.EmitRuntimeCall(
9885 OMPBuilder.getOrCreateRuntimeFunction(
9886 CGM.getModule(), OMPRTL___kmpc_push_target_tripcount),
9887 Args);
9888 }
9889 };
9890 emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
9891 }
9892
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9893 void CGOpenMPRuntime::emitTargetCall(
9894 CodeGenFunction &CGF, const OMPExecutableDirective &D,
9895 llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
9896 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
9897 llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9898 const OMPLoopDirective &D)>
9899 SizeEmitter) {
9900 if (!CGF.HaveInsertPoint())
9901 return;
9902
9903 assert(OutlinedFn && "Invalid outlined function!");
9904
9905 const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
9906 D.hasClausesOfKind<OMPNowaitClause>();
9907 llvm::SmallVector<llvm::Value *, 16> CapturedVars;
9908 const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
9909 auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
9910 PrePostActionTy &) {
9911 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9912 };
9913 emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
9914
9915 CodeGenFunction::OMPTargetDataInfo InputInfo;
9916 llvm::Value *MapTypesArray = nullptr;
9917 llvm::Value *MapNamesArray = nullptr;
9918 // Fill up the pointer arrays and transfer execution to the device.
9919 auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
9920 &MapTypesArray, &MapNamesArray, &CS, RequiresOuterTask,
9921 &CapturedVars,
9922 SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) {
9923 if (Device.getInt() == OMPC_DEVICE_ancestor) {
9924 // Reverse offloading is not supported, so just execute on the host.
9925 if (RequiresOuterTask) {
9926 CapturedVars.clear();
9927 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9928 }
9929 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9930 return;
9931 }
9932
9933 // On top of the arrays that were filled up, the target offloading call
9934 // takes as arguments the device id as well as the host pointer. The host
9935 // pointer is used by the runtime library to identify the current target
9936 // region, so it only has to be unique and not necessarily point to
9937 // anything. It could be the pointer to the outlined function that
9938 // implements the target region, but we aren't using that so that the
9939 // compiler doesn't need to keep that, and could therefore inline the host
9940 // function if proven worthwhile during optimization.
9941
9942 // From this point on, we need to have an ID of the target region defined.
9943 assert(OutlinedFnID && "Invalid outlined function ID!");
9944
9945 // Emit device ID if any.
9946 llvm::Value *DeviceID;
9947 if (Device.getPointer()) {
9948 assert((Device.getInt() == OMPC_DEVICE_unknown ||
9949 Device.getInt() == OMPC_DEVICE_device_num) &&
9950 "Expected device_num modifier.");
9951 llvm::Value *DevVal = CGF.EmitScalarExpr(Device.getPointer());
9952 DeviceID =
9953 CGF.Builder.CreateIntCast(DevVal, CGF.Int64Ty, /*isSigned=*/true);
9954 } else {
9955 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9956 }
9957
9958 // Emit the number of elements in the offloading arrays.
9959 llvm::Value *PointerNum =
9960 CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
9961
9962 // Return value of the runtime offloading call.
9963 llvm::Value *Return;
9964
9965 llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
9966 llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
9967
9968 // Source location for the ident struct
9969 llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
9970
9971 // Emit tripcount for the target loop-based directive.
9972 emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter);
9973
9974 bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
9975 // The target region is an outlined function launched by the runtime
9976 // via calls __tgt_target() or __tgt_target_teams().
9977 //
9978 // __tgt_target() launches a target region with one team and one thread,
9979 // executing a serial region. This master thread may in turn launch
9980 // more threads within its team upon encountering a parallel region,
9981 // however, no additional teams can be launched on the device.
9982 //
9983 // __tgt_target_teams() launches a target region with one or more teams,
9984 // each with one or more threads. This call is required for target
9985 // constructs such as:
9986 // 'target teams'
9987 // 'target' / 'teams'
9988 // 'target teams distribute parallel for'
9989 // 'target parallel'
9990 // and so on.
9991 //
9992 // Note that on the host and CPU targets, the runtime implementation of
9993 // these calls simply call the outlined function without forking threads.
9994 // The outlined functions themselves have runtime calls to
9995 // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
9996 // the compiler in emitTeamsCall() and emitParallelCall().
9997 //
9998 // In contrast, on the NVPTX target, the implementation of
9999 // __tgt_target_teams() launches a GPU kernel with the requested number
10000 // of teams and threads so no additional calls to the runtime are required.
10001 if (NumTeams) {
10002 // If we have NumTeams defined this means that we have an enclosed teams
10003 // region. Therefore we also expect to have NumThreads defined. These two
10004 // values should be defined in the presence of a teams directive,
10005 // regardless of having any clauses associated. If the user is using teams
10006 // but no clauses, these two values will be the default that should be
10007 // passed to the runtime library - a 32-bit integer with the value zero.
10008 assert(NumThreads && "Thread limit expression should be available along "
10009 "with number of teams.");
10010 llvm::Value *OffloadingArgs[] = {RTLoc,
10011 DeviceID,
10012 OutlinedFnID,
10013 PointerNum,
10014 InputInfo.BasePointersArray.getPointer(),
10015 InputInfo.PointersArray.getPointer(),
10016 InputInfo.SizesArray.getPointer(),
10017 MapTypesArray,
10018 MapNamesArray,
10019 InputInfo.MappersArray.getPointer(),
10020 NumTeams,
10021 NumThreads};
10022 Return = CGF.EmitRuntimeCall(
10023 OMPBuilder.getOrCreateRuntimeFunction(
10024 CGM.getModule(), HasNowait
10025 ? OMPRTL___tgt_target_teams_nowait_mapper
10026 : OMPRTL___tgt_target_teams_mapper),
10027 OffloadingArgs);
10028 } else {
10029 llvm::Value *OffloadingArgs[] = {RTLoc,
10030 DeviceID,
10031 OutlinedFnID,
10032 PointerNum,
10033 InputInfo.BasePointersArray.getPointer(),
10034 InputInfo.PointersArray.getPointer(),
10035 InputInfo.SizesArray.getPointer(),
10036 MapTypesArray,
10037 MapNamesArray,
10038 InputInfo.MappersArray.getPointer()};
10039 Return = CGF.EmitRuntimeCall(
10040 OMPBuilder.getOrCreateRuntimeFunction(
10041 CGM.getModule(), HasNowait ? OMPRTL___tgt_target_nowait_mapper
10042 : OMPRTL___tgt_target_mapper),
10043 OffloadingArgs);
10044 }
10045
10046 // Check the error code and execute the host version if required.
10047 llvm::BasicBlock *OffloadFailedBlock =
10048 CGF.createBasicBlock("omp_offload.failed");
10049 llvm::BasicBlock *OffloadContBlock =
10050 CGF.createBasicBlock("omp_offload.cont");
10051 llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
10052 CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
10053
10054 CGF.EmitBlock(OffloadFailedBlock);
10055 if (RequiresOuterTask) {
10056 CapturedVars.clear();
10057 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
10058 }
10059 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
10060 CGF.EmitBranch(OffloadContBlock);
10061
10062 CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
10063 };
10064
10065 // Notify that the host version must be executed.
10066 auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
10067 RequiresOuterTask](CodeGenFunction &CGF,
10068 PrePostActionTy &) {
10069 if (RequiresOuterTask) {
10070 CapturedVars.clear();
10071 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
10072 }
10073 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
10074 };
10075
10076 auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
10077 &MapNamesArray, &CapturedVars, RequiresOuterTask,
10078 &CS](CodeGenFunction &CGF, PrePostActionTy &) {
10079 // Fill up the arrays with all the captured variables.
10080 MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10081
10082 // Get mappable expression information.
10083 MappableExprsHandler MEHandler(D, CGF);
10084 llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
10085 llvm::DenseSet<CanonicalDeclPtr<const Decl>> MappedVarSet;
10086
10087 auto RI = CS.getCapturedRecordDecl()->field_begin();
10088 auto CV = CapturedVars.begin();
10089 for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
10090 CE = CS.capture_end();
10091 CI != CE; ++CI, ++RI, ++CV) {
10092 MappableExprsHandler::MapCombinedInfoTy CurInfo;
10093 MappableExprsHandler::StructRangeInfoTy PartialStruct;
10094
10095 // VLA sizes are passed to the outlined region by copy and do not have map
10096 // information associated.
10097 if (CI->capturesVariableArrayType()) {
10098 CurInfo.Exprs.push_back(nullptr);
10099 CurInfo.BasePointers.push_back(*CV);
10100 CurInfo.Pointers.push_back(*CV);
10101 CurInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
10102 CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
10103 // Copy to the device as an argument. No need to retrieve it.
10104 CurInfo.Types.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
10105 MappableExprsHandler::OMP_MAP_TARGET_PARAM |
10106 MappableExprsHandler::OMP_MAP_IMPLICIT);
10107 CurInfo.Mappers.push_back(nullptr);
10108 } else {
10109 // If we have any information in the map clause, we use it, otherwise we
10110 // just do a default mapping.
10111 MEHandler.generateInfoForCapture(CI, *CV, CurInfo, PartialStruct);
10112 if (!CI->capturesThis())
10113 MappedVarSet.insert(CI->getCapturedVar());
10114 else
10115 MappedVarSet.insert(nullptr);
10116 if (CurInfo.BasePointers.empty() && !PartialStruct.Base.isValid())
10117 MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurInfo);
10118 // Generate correct mapping for variables captured by reference in
10119 // lambdas.
10120 if (CI->capturesVariable())
10121 MEHandler.generateInfoForLambdaCaptures(CI->getCapturedVar(), *CV,
10122 CurInfo, LambdaPointers);
10123 }
10124 // We expect to have at least an element of information for this capture.
10125 assert((!CurInfo.BasePointers.empty() || PartialStruct.Base.isValid()) &&
10126 "Non-existing map pointer for capture!");
10127 assert(CurInfo.BasePointers.size() == CurInfo.Pointers.size() &&
10128 CurInfo.BasePointers.size() == CurInfo.Sizes.size() &&
10129 CurInfo.BasePointers.size() == CurInfo.Types.size() &&
10130 CurInfo.BasePointers.size() == CurInfo.Mappers.size() &&
10131 "Inconsistent map information sizes!");
10132
10133 // If there is an entry in PartialStruct it means we have a struct with
10134 // individual members mapped. Emit an extra combined entry.
10135 if (PartialStruct.Base.isValid())
10136 MEHandler.emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct);
10137
10138 // We need to append the results of this capture to what we already have.
10139 CombinedInfo.append(CurInfo);
10140 }
10141 // Adjust MEMBER_OF flags for the lambdas captures.
10142 MEHandler.adjustMemberOfForLambdaCaptures(
10143 LambdaPointers, CombinedInfo.BasePointers, CombinedInfo.Pointers,
10144 CombinedInfo.Types);
10145 // Map any list items in a map clause that were not captures because they
10146 // weren't referenced within the construct.
10147 MEHandler.generateAllInfo(CombinedInfo, /*NotTargetParams=*/true,
10148 MappedVarSet);
10149
10150 TargetDataInfo Info;
10151 // Fill up the arrays and create the arguments.
10152 emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder);
10153 emitOffloadingArraysArgument(
10154 CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray,
10155 Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info,
10156 {/*ForEndTask=*/false});
10157
10158 InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
10159 InputInfo.BasePointersArray =
10160 Address(Info.BasePointersArray, CGM.getPointerAlign());
10161 InputInfo.PointersArray =
10162 Address(Info.PointersArray, CGM.getPointerAlign());
10163 InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
10164 InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign());
10165 MapTypesArray = Info.MapTypesArray;
10166 MapNamesArray = Info.MapNamesArray;
10167 if (RequiresOuterTask)
10168 CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
10169 else
10170 emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
10171 };
10172
10173 auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
10174 CodeGenFunction &CGF, PrePostActionTy &) {
10175 if (RequiresOuterTask) {
10176 CodeGenFunction::OMPTargetDataInfo InputInfo;
10177 CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
10178 } else {
10179 emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
10180 }
10181 };
10182
10183 // If we have a target function ID it means that we need to support
10184 // offloading, otherwise, just execute on the host. We need to execute on host
10185 // regardless of the conditional in the if clause if, e.g., the user do not
10186 // specify target triples.
10187 if (OutlinedFnID) {
10188 if (IfCond) {
10189 emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
10190 } else {
10191 RegionCodeGenTy ThenRCG(TargetThenGen);
10192 ThenRCG(CGF);
10193 }
10194 } else {
10195 RegionCodeGenTy ElseRCG(TargetElseGen);
10196 ElseRCG(CGF);
10197 }
10198 }
10199
scanForTargetRegionsFunctions(const Stmt * S,StringRef ParentName)10200 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
10201 StringRef ParentName) {
10202 if (!S)
10203 return;
10204
10205 // Codegen OMP target directives that offload compute to the device.
10206 bool RequiresDeviceCodegen =
10207 isa<OMPExecutableDirective>(S) &&
10208 isOpenMPTargetExecutionDirective(
10209 cast<OMPExecutableDirective>(S)->getDirectiveKind());
10210
10211 if (RequiresDeviceCodegen) {
10212 const auto &E = *cast<OMPExecutableDirective>(S);
10213 unsigned DeviceID;
10214 unsigned FileID;
10215 unsigned Line;
10216 getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
10217 FileID, Line);
10218
10219 // Is this a target region that should not be emitted as an entry point? If
10220 // so just signal we are done with this target region.
10221 if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
10222 ParentName, Line))
10223 return;
10224
10225 switch (E.getDirectiveKind()) {
10226 case OMPD_target:
10227 CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
10228 cast<OMPTargetDirective>(E));
10229 break;
10230 case OMPD_target_parallel:
10231 CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
10232 CGM, ParentName, cast<OMPTargetParallelDirective>(E));
10233 break;
10234 case OMPD_target_teams:
10235 CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
10236 CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
10237 break;
10238 case OMPD_target_teams_distribute:
10239 CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
10240 CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
10241 break;
10242 case OMPD_target_teams_distribute_simd:
10243 CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
10244 CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
10245 break;
10246 case OMPD_target_parallel_for:
10247 CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
10248 CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
10249 break;
10250 case OMPD_target_parallel_for_simd:
10251 CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
10252 CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
10253 break;
10254 case OMPD_target_simd:
10255 CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
10256 CGM, ParentName, cast<OMPTargetSimdDirective>(E));
10257 break;
10258 case OMPD_target_teams_distribute_parallel_for:
10259 CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
10260 CGM, ParentName,
10261 cast<OMPTargetTeamsDistributeParallelForDirective>(E));
10262 break;
10263 case OMPD_target_teams_distribute_parallel_for_simd:
10264 CodeGenFunction::
10265 EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
10266 CGM, ParentName,
10267 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
10268 break;
10269 case OMPD_parallel:
10270 case OMPD_for:
10271 case OMPD_parallel_for:
10272 case OMPD_parallel_master:
10273 case OMPD_parallel_sections:
10274 case OMPD_for_simd:
10275 case OMPD_parallel_for_simd:
10276 case OMPD_cancel:
10277 case OMPD_cancellation_point:
10278 case OMPD_ordered:
10279 case OMPD_threadprivate:
10280 case OMPD_allocate:
10281 case OMPD_task:
10282 case OMPD_simd:
10283 case OMPD_sections:
10284 case OMPD_section:
10285 case OMPD_single:
10286 case OMPD_master:
10287 case OMPD_critical:
10288 case OMPD_taskyield:
10289 case OMPD_barrier:
10290 case OMPD_taskwait:
10291 case OMPD_taskgroup:
10292 case OMPD_atomic:
10293 case OMPD_flush:
10294 case OMPD_depobj:
10295 case OMPD_scan:
10296 case OMPD_teams:
10297 case OMPD_target_data:
10298 case OMPD_target_exit_data:
10299 case OMPD_target_enter_data:
10300 case OMPD_distribute:
10301 case OMPD_distribute_simd:
10302 case OMPD_distribute_parallel_for:
10303 case OMPD_distribute_parallel_for_simd:
10304 case OMPD_teams_distribute:
10305 case OMPD_teams_distribute_simd:
10306 case OMPD_teams_distribute_parallel_for:
10307 case OMPD_teams_distribute_parallel_for_simd:
10308 case OMPD_target_update:
10309 case OMPD_declare_simd:
10310 case OMPD_declare_variant:
10311 case OMPD_begin_declare_variant:
10312 case OMPD_end_declare_variant:
10313 case OMPD_declare_target:
10314 case OMPD_end_declare_target:
10315 case OMPD_declare_reduction:
10316 case OMPD_declare_mapper:
10317 case OMPD_taskloop:
10318 case OMPD_taskloop_simd:
10319 case OMPD_master_taskloop:
10320 case OMPD_master_taskloop_simd:
10321 case OMPD_parallel_master_taskloop:
10322 case OMPD_parallel_master_taskloop_simd:
10323 case OMPD_requires:
10324 case OMPD_unknown:
10325 default:
10326 llvm_unreachable("Unknown target directive for OpenMP device codegen.");
10327 }
10328 return;
10329 }
10330
10331 if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
10332 if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
10333 return;
10334
10335 scanForTargetRegionsFunctions(E->getRawStmt(), ParentName);
10336 return;
10337 }
10338
10339 // If this is a lambda function, look into its body.
10340 if (const auto *L = dyn_cast<LambdaExpr>(S))
10341 S = L->getBody();
10342
10343 // Keep looking for target regions recursively.
10344 for (const Stmt *II : S->children())
10345 scanForTargetRegionsFunctions(II, ParentName);
10346 }
10347
emitTargetFunctions(GlobalDecl GD)10348 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
10349 // If emitting code for the host, we do not process FD here. Instead we do
10350 // the normal code generation.
10351 if (!CGM.getLangOpts().OpenMPIsDevice) {
10352 if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) {
10353 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10354 OMPDeclareTargetDeclAttr::getDeviceType(FD);
10355 // Do not emit device_type(nohost) functions for the host.
10356 if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
10357 return true;
10358 }
10359 return false;
10360 }
10361
10362 const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
10363 // Try to detect target regions in the function.
10364 if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
10365 StringRef Name = CGM.getMangledName(GD);
10366 scanForTargetRegionsFunctions(FD->getBody(), Name);
10367 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10368 OMPDeclareTargetDeclAttr::getDeviceType(FD);
10369 // Do not emit device_type(nohost) functions for the host.
10370 if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_Host)
10371 return true;
10372 }
10373
10374 // Do not to emit function if it is not marked as declare target.
10375 return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
10376 AlreadyEmittedTargetDecls.count(VD) == 0;
10377 }
10378
emitTargetGlobalVariable(GlobalDecl GD)10379 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
10380 if (!CGM.getLangOpts().OpenMPIsDevice)
10381 return false;
10382
10383 // Check if there are Ctors/Dtors in this declaration and look for target
10384 // regions in it. We use the complete variant to produce the kernel name
10385 // mangling.
10386 QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
10387 if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
10388 for (const CXXConstructorDecl *Ctor : RD->ctors()) {
10389 StringRef ParentName =
10390 CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
10391 scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
10392 }
10393 if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
10394 StringRef ParentName =
10395 CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
10396 scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
10397 }
10398 }
10399
10400 // Do not to emit variable if it is not marked as declare target.
10401 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10402 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
10403 cast<VarDecl>(GD.getDecl()));
10404 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
10405 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10406 HasRequiresUnifiedSharedMemory)) {
10407 DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
10408 return true;
10409 }
10410 return false;
10411 }
10412
10413 llvm::Constant *
registerTargetFirstprivateCopy(CodeGenFunction & CGF,const VarDecl * VD)10414 CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
10415 const VarDecl *VD) {
10416 assert(VD->getType().isConstant(CGM.getContext()) &&
10417 "Expected constant variable.");
10418 StringRef VarName;
10419 llvm::Constant *Addr;
10420 llvm::GlobalValue::LinkageTypes Linkage;
10421 QualType Ty = VD->getType();
10422 SmallString<128> Buffer;
10423 {
10424 unsigned DeviceID;
10425 unsigned FileID;
10426 unsigned Line;
10427 getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
10428 FileID, Line);
10429 llvm::raw_svector_ostream OS(Buffer);
10430 OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
10431 << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
10432 VarName = OS.str();
10433 }
10434 Linkage = llvm::GlobalValue::InternalLinkage;
10435 Addr =
10436 getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
10437 getDefaultFirstprivateAddressSpace());
10438 cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
10439 CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
10440 CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
10441 OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
10442 VarName, Addr, VarSize,
10443 OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
10444 return Addr;
10445 }
10446
registerTargetGlobalVariable(const VarDecl * VD,llvm::Constant * Addr)10447 void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
10448 llvm::Constant *Addr) {
10449 if (CGM.getLangOpts().OMPTargetTriples.empty() &&
10450 !CGM.getLangOpts().OpenMPIsDevice)
10451 return;
10452 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10453 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10454 if (!Res) {
10455 if (CGM.getLangOpts().OpenMPIsDevice) {
10456 // Register non-target variables being emitted in device code (debug info
10457 // may cause this).
10458 StringRef VarName = CGM.getMangledName(VD);
10459 EmittedNonTargetVariables.try_emplace(VarName, Addr);
10460 }
10461 return;
10462 }
10463 // Register declare target variables.
10464 OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
10465 StringRef VarName;
10466 CharUnits VarSize;
10467 llvm::GlobalValue::LinkageTypes Linkage;
10468
10469 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10470 !HasRequiresUnifiedSharedMemory) {
10471 Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
10472 VarName = CGM.getMangledName(VD);
10473 if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
10474 VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
10475 assert(!VarSize.isZero() && "Expected non-zero size of the variable");
10476 } else {
10477 VarSize = CharUnits::Zero();
10478 }
10479 Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
10480 // Temp solution to prevent optimizations of the internal variables.
10481 if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
10482 std::string RefName = getName({VarName, "ref"});
10483 if (!CGM.GetGlobalValue(RefName)) {
10484 llvm::Constant *AddrRef =
10485 getOrCreateInternalVariable(Addr->getType(), RefName);
10486 auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
10487 GVAddrRef->setConstant(/*Val=*/true);
10488 GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
10489 GVAddrRef->setInitializer(Addr);
10490 CGM.addCompilerUsedGlobal(GVAddrRef);
10491 }
10492 }
10493 } else {
10494 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
10495 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10496 HasRequiresUnifiedSharedMemory)) &&
10497 "Declare target attribute must link or to with unified memory.");
10498 if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
10499 Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
10500 else
10501 Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
10502
10503 if (CGM.getLangOpts().OpenMPIsDevice) {
10504 VarName = Addr->getName();
10505 Addr = nullptr;
10506 } else {
10507 VarName = getAddrOfDeclareTargetVar(VD).getName();
10508 Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
10509 }
10510 VarSize = CGM.getPointerSize();
10511 Linkage = llvm::GlobalValue::WeakAnyLinkage;
10512 }
10513
10514 OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
10515 VarName, Addr, VarSize, Flags, Linkage);
10516 }
10517
emitTargetGlobal(GlobalDecl GD)10518 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
10519 if (isa<FunctionDecl>(GD.getDecl()) ||
10520 isa<OMPDeclareReductionDecl>(GD.getDecl()))
10521 return emitTargetFunctions(GD);
10522
10523 return emitTargetGlobalVariable(GD);
10524 }
10525
emitDeferredTargetDecls() const10526 void CGOpenMPRuntime::emitDeferredTargetDecls() const {
10527 for (const VarDecl *VD : DeferredGlobalVariables) {
10528 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10529 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10530 if (!Res)
10531 continue;
10532 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10533 !HasRequiresUnifiedSharedMemory) {
10534 CGM.EmitGlobal(VD);
10535 } else {
10536 assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
10537 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10538 HasRequiresUnifiedSharedMemory)) &&
10539 "Expected link clause or to clause with unified memory.");
10540 (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
10541 }
10542 }
10543 }
10544
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const10545 void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
10546 CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
10547 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
10548 " Expected target-based directive.");
10549 }
10550
processRequiresDirective(const OMPRequiresDecl * D)10551 void CGOpenMPRuntime::processRequiresDirective(const OMPRequiresDecl *D) {
10552 for (const OMPClause *Clause : D->clauselists()) {
10553 if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
10554 HasRequiresUnifiedSharedMemory = true;
10555 } else if (const auto *AC =
10556 dyn_cast<OMPAtomicDefaultMemOrderClause>(Clause)) {
10557 switch (AC->getAtomicDefaultMemOrderKind()) {
10558 case OMPC_ATOMIC_DEFAULT_MEM_ORDER_acq_rel:
10559 RequiresAtomicOrdering = llvm::AtomicOrdering::AcquireRelease;
10560 break;
10561 case OMPC_ATOMIC_DEFAULT_MEM_ORDER_seq_cst:
10562 RequiresAtomicOrdering = llvm::AtomicOrdering::SequentiallyConsistent;
10563 break;
10564 case OMPC_ATOMIC_DEFAULT_MEM_ORDER_relaxed:
10565 RequiresAtomicOrdering = llvm::AtomicOrdering::Monotonic;
10566 break;
10567 case OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown:
10568 break;
10569 }
10570 }
10571 }
10572 }
10573
getDefaultMemoryOrdering() const10574 llvm::AtomicOrdering CGOpenMPRuntime::getDefaultMemoryOrdering() const {
10575 return RequiresAtomicOrdering;
10576 }
10577
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)10578 bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
10579 LangAS &AS) {
10580 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
10581 return false;
10582 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
10583 switch(A->getAllocatorType()) {
10584 case OMPAllocateDeclAttr::OMPNullMemAlloc:
10585 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
10586 // Not supported, fallback to the default mem space.
10587 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
10588 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
10589 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
10590 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
10591 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
10592 case OMPAllocateDeclAttr::OMPConstMemAlloc:
10593 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
10594 AS = LangAS::Default;
10595 return true;
10596 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
10597 llvm_unreachable("Expected predefined allocator for the variables with the "
10598 "static storage.");
10599 }
10600 return false;
10601 }
10602
hasRequiresUnifiedSharedMemory() const10603 bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
10604 return HasRequiresUnifiedSharedMemory;
10605 }
10606
DisableAutoDeclareTargetRAII(CodeGenModule & CGM)10607 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
10608 CodeGenModule &CGM)
10609 : CGM(CGM) {
10610 if (CGM.getLangOpts().OpenMPIsDevice) {
10611 SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
10612 CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
10613 }
10614 }
10615
~DisableAutoDeclareTargetRAII()10616 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
10617 if (CGM.getLangOpts().OpenMPIsDevice)
10618 CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
10619 }
10620
markAsGlobalTarget(GlobalDecl GD)10621 bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
10622 if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
10623 return true;
10624
10625 const auto *D = cast<FunctionDecl>(GD.getDecl());
10626 // Do not to emit function if it is marked as declare target as it was already
10627 // emitted.
10628 if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
10629 if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) {
10630 if (auto *F = dyn_cast_or_null<llvm::Function>(
10631 CGM.GetGlobalValue(CGM.getMangledName(GD))))
10632 return !F->isDeclaration();
10633 return false;
10634 }
10635 return true;
10636 }
10637
10638 return !AlreadyEmittedTargetDecls.insert(D).second;
10639 }
10640
emitRequiresDirectiveRegFun()10641 llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
10642 // If we don't have entries or if we are emitting code for the device, we
10643 // don't need to do anything.
10644 if (CGM.getLangOpts().OMPTargetTriples.empty() ||
10645 CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
10646 (OffloadEntriesInfoManager.empty() &&
10647 !HasEmittedDeclareTargetRegion &&
10648 !HasEmittedTargetRegion))
10649 return nullptr;
10650
10651 // Create and register the function that handles the requires directives.
10652 ASTContext &C = CGM.getContext();
10653
10654 llvm::Function *RequiresRegFn;
10655 {
10656 CodeGenFunction CGF(CGM);
10657 const auto &FI = CGM.getTypes().arrangeNullaryFunction();
10658 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
10659 std::string ReqName = getName({"omp_offloading", "requires_reg"});
10660 RequiresRegFn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, ReqName, FI);
10661 CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
10662 OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
10663 // TODO: check for other requires clauses.
10664 // The requires directive takes effect only when a target region is
10665 // present in the compilation unit. Otherwise it is ignored and not
10666 // passed to the runtime. This avoids the runtime from throwing an error
10667 // for mismatching requires clauses across compilation units that don't
10668 // contain at least 1 target region.
10669 assert((HasEmittedTargetRegion ||
10670 HasEmittedDeclareTargetRegion ||
10671 !OffloadEntriesInfoManager.empty()) &&
10672 "Target or declare target region expected.");
10673 if (HasRequiresUnifiedSharedMemory)
10674 Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
10675 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10676 CGM.getModule(), OMPRTL___tgt_register_requires),
10677 llvm::ConstantInt::get(CGM.Int64Ty, Flags));
10678 CGF.FinishFunction();
10679 }
10680 return RequiresRegFn;
10681 }
10682
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)10683 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
10684 const OMPExecutableDirective &D,
10685 SourceLocation Loc,
10686 llvm::Function *OutlinedFn,
10687 ArrayRef<llvm::Value *> CapturedVars) {
10688 if (!CGF.HaveInsertPoint())
10689 return;
10690
10691 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10692 CodeGenFunction::RunCleanupsScope Scope(CGF);
10693
10694 // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
10695 llvm::Value *Args[] = {
10696 RTLoc,
10697 CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
10698 CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
10699 llvm::SmallVector<llvm::Value *, 16> RealArgs;
10700 RealArgs.append(std::begin(Args), std::end(Args));
10701 RealArgs.append(CapturedVars.begin(), CapturedVars.end());
10702
10703 llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
10704 CGM.getModule(), OMPRTL___kmpc_fork_teams);
10705 CGF.EmitRuntimeCall(RTLFn, RealArgs);
10706 }
10707
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)10708 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
10709 const Expr *NumTeams,
10710 const Expr *ThreadLimit,
10711 SourceLocation Loc) {
10712 if (!CGF.HaveInsertPoint())
10713 return;
10714
10715 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10716
10717 llvm::Value *NumTeamsVal =
10718 NumTeams
10719 ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
10720 CGF.CGM.Int32Ty, /* isSigned = */ true)
10721 : CGF.Builder.getInt32(0);
10722
10723 llvm::Value *ThreadLimitVal =
10724 ThreadLimit
10725 ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
10726 CGF.CGM.Int32Ty, /* isSigned = */ true)
10727 : CGF.Builder.getInt32(0);
10728
10729 // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
10730 llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
10731 ThreadLimitVal};
10732 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10733 CGM.getModule(), OMPRTL___kmpc_push_num_teams),
10734 PushNumTeamsArgs);
10735 }
10736
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)10737 void CGOpenMPRuntime::emitTargetDataCalls(
10738 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10739 const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
10740 if (!CGF.HaveInsertPoint())
10741 return;
10742
10743 // Action used to replace the default codegen action and turn privatization
10744 // off.
10745 PrePostActionTy NoPrivAction;
10746
10747 // Generate the code for the opening of the data environment. Capture all the
10748 // arguments of the runtime call by reference because they are used in the
10749 // closing of the region.
10750 auto &&BeginThenGen = [this, &D, Device, &Info,
10751 &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
10752 // Fill up the arrays with all the mapped variables.
10753 MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10754
10755 // Get map clause information.
10756 MappableExprsHandler MEHandler(D, CGF);
10757 MEHandler.generateAllInfo(CombinedInfo);
10758
10759 // Fill up the arrays and create the arguments.
10760 emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder,
10761 /*IsNonContiguous=*/true);
10762
10763 llvm::Value *BasePointersArrayArg = nullptr;
10764 llvm::Value *PointersArrayArg = nullptr;
10765 llvm::Value *SizesArrayArg = nullptr;
10766 llvm::Value *MapTypesArrayArg = nullptr;
10767 llvm::Value *MapNamesArrayArg = nullptr;
10768 llvm::Value *MappersArrayArg = nullptr;
10769 emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10770 SizesArrayArg, MapTypesArrayArg,
10771 MapNamesArrayArg, MappersArrayArg, Info);
10772
10773 // Emit device ID if any.
10774 llvm::Value *DeviceID = nullptr;
10775 if (Device) {
10776 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10777 CGF.Int64Ty, /*isSigned=*/true);
10778 } else {
10779 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10780 }
10781
10782 // Emit the number of elements in the offloading arrays.
10783 llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10784 //
10785 // Source location for the ident struct
10786 llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10787
10788 llvm::Value *OffloadingArgs[] = {RTLoc,
10789 DeviceID,
10790 PointerNum,
10791 BasePointersArrayArg,
10792 PointersArrayArg,
10793 SizesArrayArg,
10794 MapTypesArrayArg,
10795 MapNamesArrayArg,
10796 MappersArrayArg};
10797 CGF.EmitRuntimeCall(
10798 OMPBuilder.getOrCreateRuntimeFunction(
10799 CGM.getModule(), OMPRTL___tgt_target_data_begin_mapper),
10800 OffloadingArgs);
10801
10802 // If device pointer privatization is required, emit the body of the region
10803 // here. It will have to be duplicated: with and without privatization.
10804 if (!Info.CaptureDeviceAddrMap.empty())
10805 CodeGen(CGF);
10806 };
10807
10808 // Generate code for the closing of the data region.
10809 auto &&EndThenGen = [this, Device, &Info, &D](CodeGenFunction &CGF,
10810 PrePostActionTy &) {
10811 assert(Info.isValid() && "Invalid data environment closing arguments.");
10812
10813 llvm::Value *BasePointersArrayArg = nullptr;
10814 llvm::Value *PointersArrayArg = nullptr;
10815 llvm::Value *SizesArrayArg = nullptr;
10816 llvm::Value *MapTypesArrayArg = nullptr;
10817 llvm::Value *MapNamesArrayArg = nullptr;
10818 llvm::Value *MappersArrayArg = nullptr;
10819 emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10820 SizesArrayArg, MapTypesArrayArg,
10821 MapNamesArrayArg, MappersArrayArg, Info,
10822 {/*ForEndCall=*/true});
10823
10824 // Emit device ID if any.
10825 llvm::Value *DeviceID = nullptr;
10826 if (Device) {
10827 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10828 CGF.Int64Ty, /*isSigned=*/true);
10829 } else {
10830 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10831 }
10832
10833 // Emit the number of elements in the offloading arrays.
10834 llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10835
10836 // Source location for the ident struct
10837 llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10838
10839 llvm::Value *OffloadingArgs[] = {RTLoc,
10840 DeviceID,
10841 PointerNum,
10842 BasePointersArrayArg,
10843 PointersArrayArg,
10844 SizesArrayArg,
10845 MapTypesArrayArg,
10846 MapNamesArrayArg,
10847 MappersArrayArg};
10848 CGF.EmitRuntimeCall(
10849 OMPBuilder.getOrCreateRuntimeFunction(
10850 CGM.getModule(), OMPRTL___tgt_target_data_end_mapper),
10851 OffloadingArgs);
10852 };
10853
10854 // If we need device pointer privatization, we need to emit the body of the
10855 // region with no privatization in the 'else' branch of the conditional.
10856 // Otherwise, we don't have to do anything.
10857 auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
10858 PrePostActionTy &) {
10859 if (!Info.CaptureDeviceAddrMap.empty()) {
10860 CodeGen.setAction(NoPrivAction);
10861 CodeGen(CGF);
10862 }
10863 };
10864
10865 // We don't have to do anything to close the region if the if clause evaluates
10866 // to false.
10867 auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
10868
10869 if (IfCond) {
10870 emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
10871 } else {
10872 RegionCodeGenTy RCG(BeginThenGen);
10873 RCG(CGF);
10874 }
10875
10876 // If we don't require privatization of device pointers, we emit the body in
10877 // between the runtime calls. This avoids duplicating the body code.
10878 if (Info.CaptureDeviceAddrMap.empty()) {
10879 CodeGen.setAction(NoPrivAction);
10880 CodeGen(CGF);
10881 }
10882
10883 if (IfCond) {
10884 emitIfClause(CGF, IfCond, EndThenGen, EndElseGen);
10885 } else {
10886 RegionCodeGenTy RCG(EndThenGen);
10887 RCG(CGF);
10888 }
10889 }
10890
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)10891 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
10892 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10893 const Expr *Device) {
10894 if (!CGF.HaveInsertPoint())
10895 return;
10896
10897 assert((isa<OMPTargetEnterDataDirective>(D) ||
10898 isa<OMPTargetExitDataDirective>(D) ||
10899 isa<OMPTargetUpdateDirective>(D)) &&
10900 "Expecting either target enter, exit data, or update directives.");
10901
10902 CodeGenFunction::OMPTargetDataInfo InputInfo;
10903 llvm::Value *MapTypesArray = nullptr;
10904 llvm::Value *MapNamesArray = nullptr;
10905 // Generate the code for the opening of the data environment.
10906 auto &&ThenGen = [this, &D, Device, &InputInfo, &MapTypesArray,
10907 &MapNamesArray](CodeGenFunction &CGF, PrePostActionTy &) {
10908 // Emit device ID if any.
10909 llvm::Value *DeviceID = nullptr;
10910 if (Device) {
10911 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10912 CGF.Int64Ty, /*isSigned=*/true);
10913 } else {
10914 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10915 }
10916
10917 // Emit the number of elements in the offloading arrays.
10918 llvm::Constant *PointerNum =
10919 CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
10920
10921 // Source location for the ident struct
10922 llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10923
10924 llvm::Value *OffloadingArgs[] = {RTLoc,
10925 DeviceID,
10926 PointerNum,
10927 InputInfo.BasePointersArray.getPointer(),
10928 InputInfo.PointersArray.getPointer(),
10929 InputInfo.SizesArray.getPointer(),
10930 MapTypesArray,
10931 MapNamesArray,
10932 InputInfo.MappersArray.getPointer()};
10933
10934 // Select the right runtime function call for each standalone
10935 // directive.
10936 const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
10937 RuntimeFunction RTLFn;
10938 switch (D.getDirectiveKind()) {
10939 case OMPD_target_enter_data:
10940 RTLFn = HasNowait ? OMPRTL___tgt_target_data_begin_nowait_mapper
10941 : OMPRTL___tgt_target_data_begin_mapper;
10942 break;
10943 case OMPD_target_exit_data:
10944 RTLFn = HasNowait ? OMPRTL___tgt_target_data_end_nowait_mapper
10945 : OMPRTL___tgt_target_data_end_mapper;
10946 break;
10947 case OMPD_target_update:
10948 RTLFn = HasNowait ? OMPRTL___tgt_target_data_update_nowait_mapper
10949 : OMPRTL___tgt_target_data_update_mapper;
10950 break;
10951 case OMPD_parallel:
10952 case OMPD_for:
10953 case OMPD_parallel_for:
10954 case OMPD_parallel_master:
10955 case OMPD_parallel_sections:
10956 case OMPD_for_simd:
10957 case OMPD_parallel_for_simd:
10958 case OMPD_cancel:
10959 case OMPD_cancellation_point:
10960 case OMPD_ordered:
10961 case OMPD_threadprivate:
10962 case OMPD_allocate:
10963 case OMPD_task:
10964 case OMPD_simd:
10965 case OMPD_sections:
10966 case OMPD_section:
10967 case OMPD_single:
10968 case OMPD_master:
10969 case OMPD_critical:
10970 case OMPD_taskyield:
10971 case OMPD_barrier:
10972 case OMPD_taskwait:
10973 case OMPD_taskgroup:
10974 case OMPD_atomic:
10975 case OMPD_flush:
10976 case OMPD_depobj:
10977 case OMPD_scan:
10978 case OMPD_teams:
10979 case OMPD_target_data:
10980 case OMPD_distribute:
10981 case OMPD_distribute_simd:
10982 case OMPD_distribute_parallel_for:
10983 case OMPD_distribute_parallel_for_simd:
10984 case OMPD_teams_distribute:
10985 case OMPD_teams_distribute_simd:
10986 case OMPD_teams_distribute_parallel_for:
10987 case OMPD_teams_distribute_parallel_for_simd:
10988 case OMPD_declare_simd:
10989 case OMPD_declare_variant:
10990 case OMPD_begin_declare_variant:
10991 case OMPD_end_declare_variant:
10992 case OMPD_declare_target:
10993 case OMPD_end_declare_target:
10994 case OMPD_declare_reduction:
10995 case OMPD_declare_mapper:
10996 case OMPD_taskloop:
10997 case OMPD_taskloop_simd:
10998 case OMPD_master_taskloop:
10999 case OMPD_master_taskloop_simd:
11000 case OMPD_parallel_master_taskloop:
11001 case OMPD_parallel_master_taskloop_simd:
11002 case OMPD_target:
11003 case OMPD_target_simd:
11004 case OMPD_target_teams_distribute:
11005 case OMPD_target_teams_distribute_simd:
11006 case OMPD_target_teams_distribute_parallel_for:
11007 case OMPD_target_teams_distribute_parallel_for_simd:
11008 case OMPD_target_teams:
11009 case OMPD_target_parallel:
11010 case OMPD_target_parallel_for:
11011 case OMPD_target_parallel_for_simd:
11012 case OMPD_requires:
11013 case OMPD_unknown:
11014 default:
11015 llvm_unreachable("Unexpected standalone target data directive.");
11016 break;
11017 }
11018 CGF.EmitRuntimeCall(
11019 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), RTLFn),
11020 OffloadingArgs);
11021 };
11022
11023 auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
11024 &MapNamesArray](CodeGenFunction &CGF,
11025 PrePostActionTy &) {
11026 // Fill up the arrays with all the mapped variables.
11027 MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
11028
11029 // Get map clause information.
11030 MappableExprsHandler MEHandler(D, CGF);
11031 MEHandler.generateAllInfo(CombinedInfo);
11032
11033 TargetDataInfo Info;
11034 // Fill up the arrays and create the arguments.
11035 emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder,
11036 /*IsNonContiguous=*/true);
11037 bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
11038 D.hasClausesOfKind<OMPNowaitClause>();
11039 emitOffloadingArraysArgument(
11040 CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray,
11041 Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info,
11042 {/*ForEndTask=*/false});
11043 InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
11044 InputInfo.BasePointersArray =
11045 Address(Info.BasePointersArray, CGM.getPointerAlign());
11046 InputInfo.PointersArray =
11047 Address(Info.PointersArray, CGM.getPointerAlign());
11048 InputInfo.SizesArray =
11049 Address(Info.SizesArray, CGM.getPointerAlign());
11050 InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign());
11051 MapTypesArray = Info.MapTypesArray;
11052 MapNamesArray = Info.MapNamesArray;
11053 if (RequiresOuterTask)
11054 CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
11055 else
11056 emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
11057 };
11058
11059 if (IfCond) {
11060 emitIfClause(CGF, IfCond, TargetThenGen,
11061 [](CodeGenFunction &CGF, PrePostActionTy &) {});
11062 } else {
11063 RegionCodeGenTy ThenRCG(TargetThenGen);
11064 ThenRCG(CGF);
11065 }
11066 }
11067
11068 namespace {
11069 /// Kind of parameter in a function with 'declare simd' directive.
11070 enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
11071 /// Attribute set of the parameter.
11072 struct ParamAttrTy {
11073 ParamKindTy Kind = Vector;
11074 llvm::APSInt StrideOrArg;
11075 llvm::APSInt Alignment;
11076 };
11077 } // namespace
11078
evaluateCDTSize(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)11079 static unsigned evaluateCDTSize(const FunctionDecl *FD,
11080 ArrayRef<ParamAttrTy> ParamAttrs) {
11081 // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
11082 // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
11083 // of that clause. The VLEN value must be power of 2.
11084 // In other case the notion of the function`s "characteristic data type" (CDT)
11085 // is used to compute the vector length.
11086 // CDT is defined in the following order:
11087 // a) For non-void function, the CDT is the return type.
11088 // b) If the function has any non-uniform, non-linear parameters, then the
11089 // CDT is the type of the first such parameter.
11090 // c) If the CDT determined by a) or b) above is struct, union, or class
11091 // type which is pass-by-value (except for the type that maps to the
11092 // built-in complex data type), the characteristic data type is int.
11093 // d) If none of the above three cases is applicable, the CDT is int.
11094 // The VLEN is then determined based on the CDT and the size of vector
11095 // register of that ISA for which current vector version is generated. The
11096 // VLEN is computed using the formula below:
11097 // VLEN = sizeof(vector_register) / sizeof(CDT),
11098 // where vector register size specified in section 3.2.1 Registers and the
11099 // Stack Frame of original AMD64 ABI document.
11100 QualType RetType = FD->getReturnType();
11101 if (RetType.isNull())
11102 return 0;
11103 ASTContext &C = FD->getASTContext();
11104 QualType CDT;
11105 if (!RetType.isNull() && !RetType->isVoidType()) {
11106 CDT = RetType;
11107 } else {
11108 unsigned Offset = 0;
11109 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11110 if (ParamAttrs[Offset].Kind == Vector)
11111 CDT = C.getPointerType(C.getRecordType(MD->getParent()));
11112 ++Offset;
11113 }
11114 if (CDT.isNull()) {
11115 for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
11116 if (ParamAttrs[I + Offset].Kind == Vector) {
11117 CDT = FD->getParamDecl(I)->getType();
11118 break;
11119 }
11120 }
11121 }
11122 }
11123 if (CDT.isNull())
11124 CDT = C.IntTy;
11125 CDT = CDT->getCanonicalTypeUnqualified();
11126 if (CDT->isRecordType() || CDT->isUnionType())
11127 CDT = C.IntTy;
11128 return C.getTypeSize(CDT);
11129 }
11130
11131 static void
emitX86DeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn,const llvm::APSInt & VLENVal,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State)11132 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
11133 const llvm::APSInt &VLENVal,
11134 ArrayRef<ParamAttrTy> ParamAttrs,
11135 OMPDeclareSimdDeclAttr::BranchStateTy State) {
11136 struct ISADataTy {
11137 char ISA;
11138 unsigned VecRegSize;
11139 };
11140 ISADataTy ISAData[] = {
11141 {
11142 'b', 128
11143 }, // SSE
11144 {
11145 'c', 256
11146 }, // AVX
11147 {
11148 'd', 256
11149 }, // AVX2
11150 {
11151 'e', 512
11152 }, // AVX512
11153 };
11154 llvm::SmallVector<char, 2> Masked;
11155 switch (State) {
11156 case OMPDeclareSimdDeclAttr::BS_Undefined:
11157 Masked.push_back('N');
11158 Masked.push_back('M');
11159 break;
11160 case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11161 Masked.push_back('N');
11162 break;
11163 case OMPDeclareSimdDeclAttr::BS_Inbranch:
11164 Masked.push_back('M');
11165 break;
11166 }
11167 for (char Mask : Masked) {
11168 for (const ISADataTy &Data : ISAData) {
11169 SmallString<256> Buffer;
11170 llvm::raw_svector_ostream Out(Buffer);
11171 Out << "_ZGV" << Data.ISA << Mask;
11172 if (!VLENVal) {
11173 unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
11174 assert(NumElts && "Non-zero simdlen/cdtsize expected");
11175 Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
11176 } else {
11177 Out << VLENVal;
11178 }
11179 for (const ParamAttrTy &ParamAttr : ParamAttrs) {
11180 switch (ParamAttr.Kind){
11181 case LinearWithVarStride:
11182 Out << 's' << ParamAttr.StrideOrArg;
11183 break;
11184 case Linear:
11185 Out << 'l';
11186 if (ParamAttr.StrideOrArg != 1)
11187 Out << ParamAttr.StrideOrArg;
11188 break;
11189 case Uniform:
11190 Out << 'u';
11191 break;
11192 case Vector:
11193 Out << 'v';
11194 break;
11195 }
11196 if (!!ParamAttr.Alignment)
11197 Out << 'a' << ParamAttr.Alignment;
11198 }
11199 Out << '_' << Fn->getName();
11200 Fn->addFnAttr(Out.str());
11201 }
11202 }
11203 }
11204
11205 // This are the Functions that are needed to mangle the name of the
11206 // vector functions generated by the compiler, according to the rules
11207 // defined in the "Vector Function ABI specifications for AArch64",
11208 // available at
11209 // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
11210
11211 /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
11212 ///
11213 /// TODO: Need to implement the behavior for reference marked with a
11214 /// var or no linear modifiers (1.b in the section). For this, we
11215 /// need to extend ParamKindTy to support the linear modifiers.
getAArch64MTV(QualType QT,ParamKindTy Kind)11216 static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
11217 QT = QT.getCanonicalType();
11218
11219 if (QT->isVoidType())
11220 return false;
11221
11222 if (Kind == ParamKindTy::Uniform)
11223 return false;
11224
11225 if (Kind == ParamKindTy::Linear)
11226 return false;
11227
11228 // TODO: Handle linear references with modifiers
11229
11230 if (Kind == ParamKindTy::LinearWithVarStride)
11231 return false;
11232
11233 return true;
11234 }
11235
11236 /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
getAArch64PBV(QualType QT,ASTContext & C)11237 static bool getAArch64PBV(QualType QT, ASTContext &C) {
11238 QT = QT.getCanonicalType();
11239 unsigned Size = C.getTypeSize(QT);
11240
11241 // Only scalars and complex within 16 bytes wide set PVB to true.
11242 if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
11243 return false;
11244
11245 if (QT->isFloatingType())
11246 return true;
11247
11248 if (QT->isIntegerType())
11249 return true;
11250
11251 if (QT->isPointerType())
11252 return true;
11253
11254 // TODO: Add support for complex types (section 3.1.2, item 2).
11255
11256 return false;
11257 }
11258
11259 /// Computes the lane size (LS) of a return type or of an input parameter,
11260 /// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
11261 /// TODO: Add support for references, section 3.2.1, item 1.
getAArch64LS(QualType QT,ParamKindTy Kind,ASTContext & C)11262 static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
11263 if (!getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
11264 QualType PTy = QT.getCanonicalType()->getPointeeType();
11265 if (getAArch64PBV(PTy, C))
11266 return C.getTypeSize(PTy);
11267 }
11268 if (getAArch64PBV(QT, C))
11269 return C.getTypeSize(QT);
11270
11271 return C.getTypeSize(C.getUIntPtrType());
11272 }
11273
11274 // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
11275 // signature of the scalar function, as defined in 3.2.2 of the
11276 // AAVFABI.
11277 static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)11278 getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
11279 QualType RetType = FD->getReturnType().getCanonicalType();
11280
11281 ASTContext &C = FD->getASTContext();
11282
11283 bool OutputBecomesInput = false;
11284
11285 llvm::SmallVector<unsigned, 8> Sizes;
11286 if (!RetType->isVoidType()) {
11287 Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
11288 if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
11289 OutputBecomesInput = true;
11290 }
11291 for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
11292 QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
11293 Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
11294 }
11295
11296 assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
11297 // The LS of a function parameter / return value can only be a power
11298 // of 2, starting from 8 bits, up to 128.
11299 assert(std::all_of(Sizes.begin(), Sizes.end(),
11300 [](unsigned Size) {
11301 return Size == 8 || Size == 16 || Size == 32 ||
11302 Size == 64 || Size == 128;
11303 }) &&
11304 "Invalid size");
11305
11306 return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
11307 *std::max_element(std::begin(Sizes), std::end(Sizes)),
11308 OutputBecomesInput);
11309 }
11310
11311 /// Mangle the parameter part of the vector function name according to
11312 /// their OpenMP classification. The mangling function is defined in
11313 /// section 3.5 of the AAVFABI.
mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs)11314 static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
11315 SmallString<256> Buffer;
11316 llvm::raw_svector_ostream Out(Buffer);
11317 for (const auto &ParamAttr : ParamAttrs) {
11318 switch (ParamAttr.Kind) {
11319 case LinearWithVarStride:
11320 Out << "ls" << ParamAttr.StrideOrArg;
11321 break;
11322 case Linear:
11323 Out << 'l';
11324 // Don't print the step value if it is not present or if it is
11325 // equal to 1.
11326 if (ParamAttr.StrideOrArg != 1)
11327 Out << ParamAttr.StrideOrArg;
11328 break;
11329 case Uniform:
11330 Out << 'u';
11331 break;
11332 case Vector:
11333 Out << 'v';
11334 break;
11335 }
11336
11337 if (!!ParamAttr.Alignment)
11338 Out << 'a' << ParamAttr.Alignment;
11339 }
11340
11341 return std::string(Out.str());
11342 }
11343
11344 // Function used to add the attribute. The parameter `VLEN` is
11345 // templated to allow the use of "x" when targeting scalable functions
11346 // for SVE.
11347 template <typename T>
addAArch64VectorName(T VLEN,StringRef LMask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11348 static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
11349 char ISA, StringRef ParSeq,
11350 StringRef MangledName, bool OutputBecomesInput,
11351 llvm::Function *Fn) {
11352 SmallString<256> Buffer;
11353 llvm::raw_svector_ostream Out(Buffer);
11354 Out << Prefix << ISA << LMask << VLEN;
11355 if (OutputBecomesInput)
11356 Out << "v";
11357 Out << ParSeq << "_" << MangledName;
11358 Fn->addFnAttr(Out.str());
11359 }
11360
11361 // Helper function to generate the Advanced SIMD names depending on
11362 // the value of the NDS when simdlen is not present.
addAArch64AdvSIMDNDSNames(unsigned NDS,StringRef Mask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11363 static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
11364 StringRef Prefix, char ISA,
11365 StringRef ParSeq, StringRef MangledName,
11366 bool OutputBecomesInput,
11367 llvm::Function *Fn) {
11368 switch (NDS) {
11369 case 8:
11370 addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11371 OutputBecomesInput, Fn);
11372 addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
11373 OutputBecomesInput, Fn);
11374 break;
11375 case 16:
11376 addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11377 OutputBecomesInput, Fn);
11378 addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11379 OutputBecomesInput, Fn);
11380 break;
11381 case 32:
11382 addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11383 OutputBecomesInput, Fn);
11384 addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11385 OutputBecomesInput, Fn);
11386 break;
11387 case 64:
11388 case 128:
11389 addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11390 OutputBecomesInput, Fn);
11391 break;
11392 default:
11393 llvm_unreachable("Scalar type is too wide.");
11394 }
11395 }
11396
11397 /// Emit vector function attributes for AArch64, as defined in the AAVFABI.
emitAArch64DeclareSimdFunction(CodeGenModule & CGM,const FunctionDecl * FD,unsigned UserVLEN,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State,StringRef MangledName,char ISA,unsigned VecRegSize,llvm::Function * Fn,SourceLocation SLoc)11398 static void emitAArch64DeclareSimdFunction(
11399 CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
11400 ArrayRef<ParamAttrTy> ParamAttrs,
11401 OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
11402 char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
11403
11404 // Get basic data for building the vector signature.
11405 const auto Data = getNDSWDS(FD, ParamAttrs);
11406 const unsigned NDS = std::get<0>(Data);
11407 const unsigned WDS = std::get<1>(Data);
11408 const bool OutputBecomesInput = std::get<2>(Data);
11409
11410 // Check the values provided via `simdlen` by the user.
11411 // 1. A `simdlen(1)` doesn't produce vector signatures,
11412 if (UserVLEN == 1) {
11413 unsigned DiagID = CGM.getDiags().getCustomDiagID(
11414 DiagnosticsEngine::Warning,
11415 "The clause simdlen(1) has no effect when targeting aarch64.");
11416 CGM.getDiags().Report(SLoc, DiagID);
11417 return;
11418 }
11419
11420 // 2. Section 3.3.1, item 1: user input must be a power of 2 for
11421 // Advanced SIMD output.
11422 if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
11423 unsigned DiagID = CGM.getDiags().getCustomDiagID(
11424 DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
11425 "power of 2 when targeting Advanced SIMD.");
11426 CGM.getDiags().Report(SLoc, DiagID);
11427 return;
11428 }
11429
11430 // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
11431 // limits.
11432 if (ISA == 's' && UserVLEN != 0) {
11433 if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
11434 unsigned DiagID = CGM.getDiags().getCustomDiagID(
11435 DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
11436 "lanes in the architectural constraints "
11437 "for SVE (min is 128-bit, max is "
11438 "2048-bit, by steps of 128-bit)");
11439 CGM.getDiags().Report(SLoc, DiagID) << WDS;
11440 return;
11441 }
11442 }
11443
11444 // Sort out parameter sequence.
11445 const std::string ParSeq = mangleVectorParameters(ParamAttrs);
11446 StringRef Prefix = "_ZGV";
11447 // Generate simdlen from user input (if any).
11448 if (UserVLEN) {
11449 if (ISA == 's') {
11450 // SVE generates only a masked function.
11451 addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11452 OutputBecomesInput, Fn);
11453 } else {
11454 assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11455 // Advanced SIMD generates one or two functions, depending on
11456 // the `[not]inbranch` clause.
11457 switch (State) {
11458 case OMPDeclareSimdDeclAttr::BS_Undefined:
11459 addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11460 OutputBecomesInput, Fn);
11461 addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11462 OutputBecomesInput, Fn);
11463 break;
11464 case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11465 addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11466 OutputBecomesInput, Fn);
11467 break;
11468 case OMPDeclareSimdDeclAttr::BS_Inbranch:
11469 addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11470 OutputBecomesInput, Fn);
11471 break;
11472 }
11473 }
11474 } else {
11475 // If no user simdlen is provided, follow the AAVFABI rules for
11476 // generating the vector length.
11477 if (ISA == 's') {
11478 // SVE, section 3.4.1, item 1.
11479 addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
11480 OutputBecomesInput, Fn);
11481 } else {
11482 assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11483 // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
11484 // two vector names depending on the use of the clause
11485 // `[not]inbranch`.
11486 switch (State) {
11487 case OMPDeclareSimdDeclAttr::BS_Undefined:
11488 addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11489 OutputBecomesInput, Fn);
11490 addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11491 OutputBecomesInput, Fn);
11492 break;
11493 case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11494 addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11495 OutputBecomesInput, Fn);
11496 break;
11497 case OMPDeclareSimdDeclAttr::BS_Inbranch:
11498 addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11499 OutputBecomesInput, Fn);
11500 break;
11501 }
11502 }
11503 }
11504 }
11505
emitDeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn)11506 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
11507 llvm::Function *Fn) {
11508 ASTContext &C = CGM.getContext();
11509 FD = FD->getMostRecentDecl();
11510 // Map params to their positions in function decl.
11511 llvm::DenseMap<const Decl *, unsigned> ParamPositions;
11512 if (isa<CXXMethodDecl>(FD))
11513 ParamPositions.try_emplace(FD, 0);
11514 unsigned ParamPos = ParamPositions.size();
11515 for (const ParmVarDecl *P : FD->parameters()) {
11516 ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
11517 ++ParamPos;
11518 }
11519 while (FD) {
11520 for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
11521 llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
11522 // Mark uniform parameters.
11523 for (const Expr *E : Attr->uniforms()) {
11524 E = E->IgnoreParenImpCasts();
11525 unsigned Pos;
11526 if (isa<CXXThisExpr>(E)) {
11527 Pos = ParamPositions[FD];
11528 } else {
11529 const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11530 ->getCanonicalDecl();
11531 Pos = ParamPositions[PVD];
11532 }
11533 ParamAttrs[Pos].Kind = Uniform;
11534 }
11535 // Get alignment info.
11536 auto NI = Attr->alignments_begin();
11537 for (const Expr *E : Attr->aligneds()) {
11538 E = E->IgnoreParenImpCasts();
11539 unsigned Pos;
11540 QualType ParmTy;
11541 if (isa<CXXThisExpr>(E)) {
11542 Pos = ParamPositions[FD];
11543 ParmTy = E->getType();
11544 } else {
11545 const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11546 ->getCanonicalDecl();
11547 Pos = ParamPositions[PVD];
11548 ParmTy = PVD->getType();
11549 }
11550 ParamAttrs[Pos].Alignment =
11551 (*NI)
11552 ? (*NI)->EvaluateKnownConstInt(C)
11553 : llvm::APSInt::getUnsigned(
11554 C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
11555 .getQuantity());
11556 ++NI;
11557 }
11558 // Mark linear parameters.
11559 auto SI = Attr->steps_begin();
11560 auto MI = Attr->modifiers_begin();
11561 for (const Expr *E : Attr->linears()) {
11562 E = E->IgnoreParenImpCasts();
11563 unsigned Pos;
11564 // Rescaling factor needed to compute the linear parameter
11565 // value in the mangled name.
11566 unsigned PtrRescalingFactor = 1;
11567 if (isa<CXXThisExpr>(E)) {
11568 Pos = ParamPositions[FD];
11569 } else {
11570 const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11571 ->getCanonicalDecl();
11572 Pos = ParamPositions[PVD];
11573 if (auto *P = dyn_cast<PointerType>(PVD->getType()))
11574 PtrRescalingFactor = CGM.getContext()
11575 .getTypeSizeInChars(P->getPointeeType())
11576 .getQuantity();
11577 }
11578 ParamAttrTy &ParamAttr = ParamAttrs[Pos];
11579 ParamAttr.Kind = Linear;
11580 // Assuming a stride of 1, for `linear` without modifiers.
11581 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(1);
11582 if (*SI) {
11583 Expr::EvalResult Result;
11584 if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
11585 if (const auto *DRE =
11586 cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
11587 if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
11588 ParamAttr.Kind = LinearWithVarStride;
11589 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
11590 ParamPositions[StridePVD->getCanonicalDecl()]);
11591 }
11592 }
11593 } else {
11594 ParamAttr.StrideOrArg = Result.Val.getInt();
11595 }
11596 }
11597 // If we are using a linear clause on a pointer, we need to
11598 // rescale the value of linear_step with the byte size of the
11599 // pointee type.
11600 if (Linear == ParamAttr.Kind)
11601 ParamAttr.StrideOrArg = ParamAttr.StrideOrArg * PtrRescalingFactor;
11602 ++SI;
11603 ++MI;
11604 }
11605 llvm::APSInt VLENVal;
11606 SourceLocation ExprLoc;
11607 const Expr *VLENExpr = Attr->getSimdlen();
11608 if (VLENExpr) {
11609 VLENVal = VLENExpr->EvaluateKnownConstInt(C);
11610 ExprLoc = VLENExpr->getExprLoc();
11611 }
11612 OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
11613 if (CGM.getTriple().isX86()) {
11614 emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
11615 } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
11616 unsigned VLEN = VLENVal.getExtValue();
11617 StringRef MangledName = Fn->getName();
11618 if (CGM.getTarget().hasFeature("sve"))
11619 emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11620 MangledName, 's', 128, Fn, ExprLoc);
11621 if (CGM.getTarget().hasFeature("neon"))
11622 emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11623 MangledName, 'n', 128, Fn, ExprLoc);
11624 }
11625 }
11626 FD = FD->getPreviousDecl();
11627 }
11628 }
11629
11630 namespace {
11631 /// Cleanup action for doacross support.
11632 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
11633 public:
11634 static const int DoacrossFinArgs = 2;
11635
11636 private:
11637 llvm::FunctionCallee RTLFn;
11638 llvm::Value *Args[DoacrossFinArgs];
11639
11640 public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)11641 DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
11642 ArrayRef<llvm::Value *> CallArgs)
11643 : RTLFn(RTLFn) {
11644 assert(CallArgs.size() == DoacrossFinArgs);
11645 std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
11646 }
Emit(CodeGenFunction & CGF,Flags)11647 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11648 if (!CGF.HaveInsertPoint())
11649 return;
11650 CGF.EmitRuntimeCall(RTLFn, Args);
11651 }
11652 };
11653 } // namespace
11654
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)11655 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
11656 const OMPLoopDirective &D,
11657 ArrayRef<Expr *> NumIterations) {
11658 if (!CGF.HaveInsertPoint())
11659 return;
11660
11661 ASTContext &C = CGM.getContext();
11662 QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
11663 RecordDecl *RD;
11664 if (KmpDimTy.isNull()) {
11665 // Build struct kmp_dim { // loop bounds info casted to kmp_int64
11666 // kmp_int64 lo; // lower
11667 // kmp_int64 up; // upper
11668 // kmp_int64 st; // stride
11669 // };
11670 RD = C.buildImplicitRecord("kmp_dim");
11671 RD->startDefinition();
11672 addFieldToRecordDecl(C, RD, Int64Ty);
11673 addFieldToRecordDecl(C, RD, Int64Ty);
11674 addFieldToRecordDecl(C, RD, Int64Ty);
11675 RD->completeDefinition();
11676 KmpDimTy = C.getRecordType(RD);
11677 } else {
11678 RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
11679 }
11680 llvm::APInt Size(/*numBits=*/32, NumIterations.size());
11681 QualType ArrayTy =
11682 C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0);
11683
11684 Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
11685 CGF.EmitNullInitialization(DimsAddr, ArrayTy);
11686 enum { LowerFD = 0, UpperFD, StrideFD };
11687 // Fill dims with data.
11688 for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
11689 LValue DimsLVal = CGF.MakeAddrLValue(
11690 CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
11691 // dims.upper = num_iterations;
11692 LValue UpperLVal = CGF.EmitLValueForField(
11693 DimsLVal, *std::next(RD->field_begin(), UpperFD));
11694 llvm::Value *NumIterVal = CGF.EmitScalarConversion(
11695 CGF.EmitScalarExpr(NumIterations[I]), NumIterations[I]->getType(),
11696 Int64Ty, NumIterations[I]->getExprLoc());
11697 CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
11698 // dims.stride = 1;
11699 LValue StrideLVal = CGF.EmitLValueForField(
11700 DimsLVal, *std::next(RD->field_begin(), StrideFD));
11701 CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
11702 StrideLVal);
11703 }
11704
11705 // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
11706 // kmp_int32 num_dims, struct kmp_dim * dims);
11707 llvm::Value *Args[] = {
11708 emitUpdateLocation(CGF, D.getBeginLoc()),
11709 getThreadID(CGF, D.getBeginLoc()),
11710 llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
11711 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11712 CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
11713 CGM.VoidPtrTy)};
11714
11715 llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11716 CGM.getModule(), OMPRTL___kmpc_doacross_init);
11717 CGF.EmitRuntimeCall(RTLFn, Args);
11718 llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
11719 emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
11720 llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11721 CGM.getModule(), OMPRTL___kmpc_doacross_fini);
11722 CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
11723 llvm::makeArrayRef(FiniArgs));
11724 }
11725
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)11726 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
11727 const OMPDependClause *C) {
11728 QualType Int64Ty =
11729 CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
11730 llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
11731 QualType ArrayTy = CGM.getContext().getConstantArrayType(
11732 Int64Ty, Size, nullptr, ArrayType::Normal, 0);
11733 Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
11734 for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
11735 const Expr *CounterVal = C->getLoopData(I);
11736 assert(CounterVal);
11737 llvm::Value *CntVal = CGF.EmitScalarConversion(
11738 CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
11739 CounterVal->getExprLoc());
11740 CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
11741 /*Volatile=*/false, Int64Ty);
11742 }
11743 llvm::Value *Args[] = {
11744 emitUpdateLocation(CGF, C->getBeginLoc()),
11745 getThreadID(CGF, C->getBeginLoc()),
11746 CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
11747 llvm::FunctionCallee RTLFn;
11748 if (C->getDependencyKind() == OMPC_DEPEND_source) {
11749 RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11750 OMPRTL___kmpc_doacross_post);
11751 } else {
11752 assert(C->getDependencyKind() == OMPC_DEPEND_sink);
11753 RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11754 OMPRTL___kmpc_doacross_wait);
11755 }
11756 CGF.EmitRuntimeCall(RTLFn, Args);
11757 }
11758
emitCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args) const11759 void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
11760 llvm::FunctionCallee Callee,
11761 ArrayRef<llvm::Value *> Args) const {
11762 assert(Loc.isValid() && "Outlined function call location must be valid.");
11763 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
11764
11765 if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
11766 if (Fn->doesNotThrow()) {
11767 CGF.EmitNounwindRuntimeCall(Fn, Args);
11768 return;
11769 }
11770 }
11771 CGF.EmitRuntimeCall(Callee, Args);
11772 }
11773
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const11774 void CGOpenMPRuntime::emitOutlinedFunctionCall(
11775 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
11776 ArrayRef<llvm::Value *> Args) const {
11777 emitCall(CGF, Loc, OutlinedFn, Args);
11778 }
11779
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)11780 void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
11781 if (const auto *FD = dyn_cast<FunctionDecl>(D))
11782 if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
11783 HasEmittedDeclareTargetRegion = true;
11784 }
11785
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const11786 Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
11787 const VarDecl *NativeParam,
11788 const VarDecl *TargetParam) const {
11789 return CGF.GetAddrOfLocalVar(NativeParam);
11790 }
11791
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)11792 Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
11793 const VarDecl *VD) {
11794 if (!VD)
11795 return Address::invalid();
11796 Address UntiedAddr = Address::invalid();
11797 Address UntiedRealAddr = Address::invalid();
11798 auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
11799 if (It != FunctionToUntiedTaskStackMap.end()) {
11800 const UntiedLocalVarsAddressesMap &UntiedData =
11801 UntiedLocalVarsStack[It->second];
11802 auto I = UntiedData.find(VD);
11803 if (I != UntiedData.end()) {
11804 UntiedAddr = I->second.first;
11805 UntiedRealAddr = I->second.second;
11806 }
11807 }
11808 const VarDecl *CVD = VD->getCanonicalDecl();
11809 if (CVD->hasAttr<OMPAllocateDeclAttr>()) {
11810 // Use the default allocation.
11811 if (!isAllocatableDecl(VD))
11812 return UntiedAddr;
11813 llvm::Value *Size;
11814 CharUnits Align = CGM.getContext().getDeclAlign(CVD);
11815 if (CVD->getType()->isVariablyModifiedType()) {
11816 Size = CGF.getTypeSize(CVD->getType());
11817 // Align the size: ((size + align - 1) / align) * align
11818 Size = CGF.Builder.CreateNUWAdd(
11819 Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
11820 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
11821 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
11822 } else {
11823 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
11824 Size = CGM.getSize(Sz.alignTo(Align));
11825 }
11826 llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
11827 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
11828 assert(AA->getAllocator() &&
11829 "Expected allocator expression for non-default allocator.");
11830 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
11831 // According to the standard, the original allocator type is a enum
11832 // (integer). Convert to pointer type, if required.
11833 Allocator = CGF.EmitScalarConversion(
11834 Allocator, AA->getAllocator()->getType(), CGF.getContext().VoidPtrTy,
11835 AA->getAllocator()->getExprLoc());
11836 llvm::Value *Args[] = {ThreadID, Size, Allocator};
11837
11838 llvm::Value *Addr =
11839 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
11840 CGM.getModule(), OMPRTL___kmpc_alloc),
11841 Args, getName({CVD->getName(), ".void.addr"}));
11842 llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11843 CGM.getModule(), OMPRTL___kmpc_free);
11844 QualType Ty = CGM.getContext().getPointerType(CVD->getType());
11845 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11846 Addr, CGF.ConvertTypeForMem(Ty), getName({CVD->getName(), ".addr"}));
11847 if (UntiedAddr.isValid())
11848 CGF.EmitStoreOfScalar(Addr, UntiedAddr, /*Volatile=*/false, Ty);
11849
11850 // Cleanup action for allocate support.
11851 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
11852 llvm::FunctionCallee RTLFn;
11853 unsigned LocEncoding;
11854 Address Addr;
11855 const Expr *Allocator;
11856
11857 public:
11858 OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn, unsigned LocEncoding,
11859 Address Addr, const Expr *Allocator)
11860 : RTLFn(RTLFn), LocEncoding(LocEncoding), Addr(Addr),
11861 Allocator(Allocator) {}
11862 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11863 if (!CGF.HaveInsertPoint())
11864 return;
11865 llvm::Value *Args[3];
11866 Args[0] = CGF.CGM.getOpenMPRuntime().getThreadID(
11867 CGF, SourceLocation::getFromRawEncoding(LocEncoding));
11868 Args[1] = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11869 Addr.getPointer(), CGF.VoidPtrTy);
11870 llvm::Value *AllocVal = CGF.EmitScalarExpr(Allocator);
11871 // According to the standard, the original allocator type is a enum
11872 // (integer). Convert to pointer type, if required.
11873 AllocVal = CGF.EmitScalarConversion(AllocVal, Allocator->getType(),
11874 CGF.getContext().VoidPtrTy,
11875 Allocator->getExprLoc());
11876 Args[2] = AllocVal;
11877
11878 CGF.EmitRuntimeCall(RTLFn, Args);
11879 }
11880 };
11881 Address VDAddr =
11882 UntiedRealAddr.isValid() ? UntiedRealAddr : Address(Addr, Align);
11883 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(
11884 NormalAndEHCleanup, FiniRTLFn, CVD->getLocation().getRawEncoding(),
11885 VDAddr, AA->getAllocator());
11886 if (UntiedRealAddr.isValid())
11887 if (auto *Region =
11888 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
11889 Region->emitUntiedSwitch(CGF);
11890 return VDAddr;
11891 }
11892 return UntiedAddr;
11893 }
11894
isLocalVarInUntiedTask(CodeGenFunction & CGF,const VarDecl * VD) const11895 bool CGOpenMPRuntime::isLocalVarInUntiedTask(CodeGenFunction &CGF,
11896 const VarDecl *VD) const {
11897 auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
11898 if (It == FunctionToUntiedTaskStackMap.end())
11899 return false;
11900 return UntiedLocalVarsStack[It->second].count(VD) > 0;
11901 }
11902
NontemporalDeclsRAII(CodeGenModule & CGM,const OMPLoopDirective & S)11903 CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII(
11904 CodeGenModule &CGM, const OMPLoopDirective &S)
11905 : CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) {
11906 assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11907 if (!NeedToPush)
11908 return;
11909 NontemporalDeclsSet &DS =
11910 CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back();
11911 for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) {
11912 for (const Stmt *Ref : C->private_refs()) {
11913 const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts();
11914 const ValueDecl *VD;
11915 if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) {
11916 VD = DRE->getDecl();
11917 } else {
11918 const auto *ME = cast<MemberExpr>(SimpleRefExpr);
11919 assert((ME->isImplicitCXXThis() ||
11920 isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&
11921 "Expected member of current class.");
11922 VD = ME->getMemberDecl();
11923 }
11924 DS.insert(VD);
11925 }
11926 }
11927 }
11928
~NontemporalDeclsRAII()11929 CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() {
11930 if (!NeedToPush)
11931 return;
11932 CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back();
11933 }
11934
UntiedTaskLocalDeclsRAII(CodeGenFunction & CGF,const llvm::DenseMap<CanonicalDeclPtr<const VarDecl>,std::pair<Address,Address>> & LocalVars)11935 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::UntiedTaskLocalDeclsRAII(
11936 CodeGenFunction &CGF,
11937 const llvm::DenseMap<CanonicalDeclPtr<const VarDecl>,
11938 std::pair<Address, Address>> &LocalVars)
11939 : CGM(CGF.CGM), NeedToPush(!LocalVars.empty()) {
11940 if (!NeedToPush)
11941 return;
11942 CGM.getOpenMPRuntime().FunctionToUntiedTaskStackMap.try_emplace(
11943 CGF.CurFn, CGM.getOpenMPRuntime().UntiedLocalVarsStack.size());
11944 CGM.getOpenMPRuntime().UntiedLocalVarsStack.push_back(LocalVars);
11945 }
11946
~UntiedTaskLocalDeclsRAII()11947 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::~UntiedTaskLocalDeclsRAII() {
11948 if (!NeedToPush)
11949 return;
11950 CGM.getOpenMPRuntime().UntiedLocalVarsStack.pop_back();
11951 }
11952
isNontemporalDecl(const ValueDecl * VD) const11953 bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const {
11954 assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11955
11956 return llvm::any_of(
11957 CGM.getOpenMPRuntime().NontemporalDeclsStack,
11958 [VD](const NontemporalDeclsSet &Set) { return Set.count(VD) > 0; });
11959 }
11960
tryToDisableInnerAnalysis(const OMPExecutableDirective & S,llvm::DenseSet<CanonicalDeclPtr<const Decl>> & NeedToAddForLPCsAsDisabled) const11961 void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis(
11962 const OMPExecutableDirective &S,
11963 llvm::DenseSet<CanonicalDeclPtr<const Decl>> &NeedToAddForLPCsAsDisabled)
11964 const {
11965 llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToCheckForLPCs;
11966 // Vars in target/task regions must be excluded completely.
11967 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) ||
11968 isOpenMPTaskingDirective(S.getDirectiveKind())) {
11969 SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
11970 getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind());
11971 const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front());
11972 for (const CapturedStmt::Capture &Cap : CS->captures()) {
11973 if (Cap.capturesVariable() || Cap.capturesVariableByCopy())
11974 NeedToCheckForLPCs.insert(Cap.getCapturedVar());
11975 }
11976 }
11977 // Exclude vars in private clauses.
11978 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
11979 for (const Expr *Ref : C->varlists()) {
11980 if (!Ref->getType()->isScalarType())
11981 continue;
11982 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11983 if (!DRE)
11984 continue;
11985 NeedToCheckForLPCs.insert(DRE->getDecl());
11986 }
11987 }
11988 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
11989 for (const Expr *Ref : C->varlists()) {
11990 if (!Ref->getType()->isScalarType())
11991 continue;
11992 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11993 if (!DRE)
11994 continue;
11995 NeedToCheckForLPCs.insert(DRE->getDecl());
11996 }
11997 }
11998 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
11999 for (const Expr *Ref : C->varlists()) {
12000 if (!Ref->getType()->isScalarType())
12001 continue;
12002 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12003 if (!DRE)
12004 continue;
12005 NeedToCheckForLPCs.insert(DRE->getDecl());
12006 }
12007 }
12008 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
12009 for (const Expr *Ref : C->varlists()) {
12010 if (!Ref->getType()->isScalarType())
12011 continue;
12012 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12013 if (!DRE)
12014 continue;
12015 NeedToCheckForLPCs.insert(DRE->getDecl());
12016 }
12017 }
12018 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
12019 for (const Expr *Ref : C->varlists()) {
12020 if (!Ref->getType()->isScalarType())
12021 continue;
12022 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12023 if (!DRE)
12024 continue;
12025 NeedToCheckForLPCs.insert(DRE->getDecl());
12026 }
12027 }
12028 for (const Decl *VD : NeedToCheckForLPCs) {
12029 for (const LastprivateConditionalData &Data :
12030 llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) {
12031 if (Data.DeclToUniqueName.count(VD) > 0) {
12032 if (!Data.Disabled)
12033 NeedToAddForLPCsAsDisabled.insert(VD);
12034 break;
12035 }
12036 }
12037 }
12038 }
12039
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S,LValue IVLVal)12040 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
12041 CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal)
12042 : CGM(CGF.CGM),
12043 Action((CGM.getLangOpts().OpenMP >= 50 &&
12044 llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
12045 [](const OMPLastprivateClause *C) {
12046 return C->getKind() ==
12047 OMPC_LASTPRIVATE_conditional;
12048 }))
12049 ? ActionToDo::PushAsLastprivateConditional
12050 : ActionToDo::DoNotPush) {
12051 assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12052 if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush)
12053 return;
12054 assert(Action == ActionToDo::PushAsLastprivateConditional &&
12055 "Expected a push action.");
12056 LastprivateConditionalData &Data =
12057 CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
12058 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
12059 if (C->getKind() != OMPC_LASTPRIVATE_conditional)
12060 continue;
12061
12062 for (const Expr *Ref : C->varlists()) {
12063 Data.DeclToUniqueName.insert(std::make_pair(
12064 cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(),
12065 SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref))));
12066 }
12067 }
12068 Data.IVLVal = IVLVal;
12069 Data.Fn = CGF.CurFn;
12070 }
12071
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S)12072 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
12073 CodeGenFunction &CGF, const OMPExecutableDirective &S)
12074 : CGM(CGF.CGM), Action(ActionToDo::DoNotPush) {
12075 assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12076 if (CGM.getLangOpts().OpenMP < 50)
12077 return;
12078 llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToAddForLPCsAsDisabled;
12079 tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled);
12080 if (!NeedToAddForLPCsAsDisabled.empty()) {
12081 Action = ActionToDo::DisableLastprivateConditional;
12082 LastprivateConditionalData &Data =
12083 CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
12084 for (const Decl *VD : NeedToAddForLPCsAsDisabled)
12085 Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>()));
12086 Data.Fn = CGF.CurFn;
12087 Data.Disabled = true;
12088 }
12089 }
12090
12091 CGOpenMPRuntime::LastprivateConditionalRAII
disable(CodeGenFunction & CGF,const OMPExecutableDirective & S)12092 CGOpenMPRuntime::LastprivateConditionalRAII::disable(
12093 CodeGenFunction &CGF, const OMPExecutableDirective &S) {
12094 return LastprivateConditionalRAII(CGF, S);
12095 }
12096
~LastprivateConditionalRAII()12097 CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() {
12098 if (CGM.getLangOpts().OpenMP < 50)
12099 return;
12100 if (Action == ActionToDo::DisableLastprivateConditional) {
12101 assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
12102 "Expected list of disabled private vars.");
12103 CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
12104 }
12105 if (Action == ActionToDo::PushAsLastprivateConditional) {
12106 assert(
12107 !CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
12108 "Expected list of lastprivate conditional vars.");
12109 CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
12110 }
12111 }
12112
emitLastprivateConditionalInit(CodeGenFunction & CGF,const VarDecl * VD)12113 Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF,
12114 const VarDecl *VD) {
12115 ASTContext &C = CGM.getContext();
12116 auto I = LastprivateConditionalToTypes.find(CGF.CurFn);
12117 if (I == LastprivateConditionalToTypes.end())
12118 I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first;
12119 QualType NewType;
12120 const FieldDecl *VDField;
12121 const FieldDecl *FiredField;
12122 LValue BaseLVal;
12123 auto VI = I->getSecond().find(VD);
12124 if (VI == I->getSecond().end()) {
12125 RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional");
12126 RD->startDefinition();
12127 VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType());
12128 FiredField = addFieldToRecordDecl(C, RD, C.CharTy);
12129 RD->completeDefinition();
12130 NewType = C.getRecordType(RD);
12131 Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName());
12132 BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl);
12133 I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal);
12134 } else {
12135 NewType = std::get<0>(VI->getSecond());
12136 VDField = std::get<1>(VI->getSecond());
12137 FiredField = std::get<2>(VI->getSecond());
12138 BaseLVal = std::get<3>(VI->getSecond());
12139 }
12140 LValue FiredLVal =
12141 CGF.EmitLValueForField(BaseLVal, FiredField);
12142 CGF.EmitStoreOfScalar(
12143 llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)),
12144 FiredLVal);
12145 return CGF.EmitLValueForField(BaseLVal, VDField).getAddress(CGF);
12146 }
12147
12148 namespace {
12149 /// Checks if the lastprivate conditional variable is referenced in LHS.
12150 class LastprivateConditionalRefChecker final
12151 : public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> {
12152 ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM;
12153 const Expr *FoundE = nullptr;
12154 const Decl *FoundD = nullptr;
12155 StringRef UniqueDeclName;
12156 LValue IVLVal;
12157 llvm::Function *FoundFn = nullptr;
12158 SourceLocation Loc;
12159
12160 public:
VisitDeclRefExpr(const DeclRefExpr * E)12161 bool VisitDeclRefExpr(const DeclRefExpr *E) {
12162 for (const CGOpenMPRuntime::LastprivateConditionalData &D :
12163 llvm::reverse(LPM)) {
12164 auto It = D.DeclToUniqueName.find(E->getDecl());
12165 if (It == D.DeclToUniqueName.end())
12166 continue;
12167 if (D.Disabled)
12168 return false;
12169 FoundE = E;
12170 FoundD = E->getDecl()->getCanonicalDecl();
12171 UniqueDeclName = It->second;
12172 IVLVal = D.IVLVal;
12173 FoundFn = D.Fn;
12174 break;
12175 }
12176 return FoundE == E;
12177 }
VisitMemberExpr(const MemberExpr * E)12178 bool VisitMemberExpr(const MemberExpr *E) {
12179 if (!CodeGenFunction::IsWrappedCXXThis(E->getBase()))
12180 return false;
12181 for (const CGOpenMPRuntime::LastprivateConditionalData &D :
12182 llvm::reverse(LPM)) {
12183 auto It = D.DeclToUniqueName.find(E->getMemberDecl());
12184 if (It == D.DeclToUniqueName.end())
12185 continue;
12186 if (D.Disabled)
12187 return false;
12188 FoundE = E;
12189 FoundD = E->getMemberDecl()->getCanonicalDecl();
12190 UniqueDeclName = It->second;
12191 IVLVal = D.IVLVal;
12192 FoundFn = D.Fn;
12193 break;
12194 }
12195 return FoundE == E;
12196 }
VisitStmt(const Stmt * S)12197 bool VisitStmt(const Stmt *S) {
12198 for (const Stmt *Child : S->children()) {
12199 if (!Child)
12200 continue;
12201 if (const auto *E = dyn_cast<Expr>(Child))
12202 if (!E->isGLValue())
12203 continue;
12204 if (Visit(Child))
12205 return true;
12206 }
12207 return false;
12208 }
LastprivateConditionalRefChecker(ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)12209 explicit LastprivateConditionalRefChecker(
12210 ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)
12211 : LPM(LPM) {}
12212 std::tuple<const Expr *, const Decl *, StringRef, LValue, llvm::Function *>
getFoundData() const12213 getFoundData() const {
12214 return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn);
12215 }
12216 };
12217 } // namespace
12218
emitLastprivateConditionalUpdate(CodeGenFunction & CGF,LValue IVLVal,StringRef UniqueDeclName,LValue LVal,SourceLocation Loc)12219 void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF,
12220 LValue IVLVal,
12221 StringRef UniqueDeclName,
12222 LValue LVal,
12223 SourceLocation Loc) {
12224 // Last updated loop counter for the lastprivate conditional var.
12225 // int<xx> last_iv = 0;
12226 llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType());
12227 llvm::Constant *LastIV =
12228 getOrCreateInternalVariable(LLIVTy, getName({UniqueDeclName, "iv"}));
12229 cast<llvm::GlobalVariable>(LastIV)->setAlignment(
12230 IVLVal.getAlignment().getAsAlign());
12231 LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType());
12232
12233 // Last value of the lastprivate conditional.
12234 // decltype(priv_a) last_a;
12235 llvm::Constant *Last = getOrCreateInternalVariable(
12236 CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName);
12237 cast<llvm::GlobalVariable>(Last)->setAlignment(
12238 LVal.getAlignment().getAsAlign());
12239 LValue LastLVal =
12240 CGF.MakeAddrLValue(Last, LVal.getType(), LVal.getAlignment());
12241
12242 // Global loop counter. Required to handle inner parallel-for regions.
12243 // iv
12244 llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc);
12245
12246 // #pragma omp critical(a)
12247 // if (last_iv <= iv) {
12248 // last_iv = iv;
12249 // last_a = priv_a;
12250 // }
12251 auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal,
12252 Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
12253 Action.Enter(CGF);
12254 llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc);
12255 // (last_iv <= iv) ? Check if the variable is updated and store new
12256 // value in global var.
12257 llvm::Value *CmpRes;
12258 if (IVLVal.getType()->isSignedIntegerType()) {
12259 CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal);
12260 } else {
12261 assert(IVLVal.getType()->isUnsignedIntegerType() &&
12262 "Loop iteration variable must be integer.");
12263 CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal);
12264 }
12265 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then");
12266 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit");
12267 CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB);
12268 // {
12269 CGF.EmitBlock(ThenBB);
12270
12271 // last_iv = iv;
12272 CGF.EmitStoreOfScalar(IVVal, LastIVLVal);
12273
12274 // last_a = priv_a;
12275 switch (CGF.getEvaluationKind(LVal.getType())) {
12276 case TEK_Scalar: {
12277 llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc);
12278 CGF.EmitStoreOfScalar(PrivVal, LastLVal);
12279 break;
12280 }
12281 case TEK_Complex: {
12282 CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc);
12283 CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false);
12284 break;
12285 }
12286 case TEK_Aggregate:
12287 llvm_unreachable(
12288 "Aggregates are not supported in lastprivate conditional.");
12289 }
12290 // }
12291 CGF.EmitBranch(ExitBB);
12292 // There is no need to emit line number for unconditional branch.
12293 (void)ApplyDebugLocation::CreateEmpty(CGF);
12294 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
12295 };
12296
12297 if (CGM.getLangOpts().OpenMPSimd) {
12298 // Do not emit as a critical region as no parallel region could be emitted.
12299 RegionCodeGenTy ThenRCG(CodeGen);
12300 ThenRCG(CGF);
12301 } else {
12302 emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc);
12303 }
12304 }
12305
checkAndEmitLastprivateConditional(CodeGenFunction & CGF,const Expr * LHS)12306 void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF,
12307 const Expr *LHS) {
12308 if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12309 return;
12310 LastprivateConditionalRefChecker Checker(LastprivateConditionalStack);
12311 if (!Checker.Visit(LHS))
12312 return;
12313 const Expr *FoundE;
12314 const Decl *FoundD;
12315 StringRef UniqueDeclName;
12316 LValue IVLVal;
12317 llvm::Function *FoundFn;
12318 std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) =
12319 Checker.getFoundData();
12320 if (FoundFn != CGF.CurFn) {
12321 // Special codegen for inner parallel regions.
12322 // ((struct.lastprivate.conditional*)&priv_a)->Fired = 1;
12323 auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD);
12324 assert(It != LastprivateConditionalToTypes[FoundFn].end() &&
12325 "Lastprivate conditional is not found in outer region.");
12326 QualType StructTy = std::get<0>(It->getSecond());
12327 const FieldDecl* FiredDecl = std::get<2>(It->getSecond());
12328 LValue PrivLVal = CGF.EmitLValue(FoundE);
12329 Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
12330 PrivLVal.getAddress(CGF),
12331 CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy)));
12332 LValue BaseLVal =
12333 CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl);
12334 LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl);
12335 CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get(
12336 CGF.ConvertTypeForMem(FiredDecl->getType()), 1)),
12337 FiredLVal, llvm::AtomicOrdering::Unordered,
12338 /*IsVolatile=*/true, /*isInit=*/false);
12339 return;
12340 }
12341
12342 // Private address of the lastprivate conditional in the current context.
12343 // priv_a
12344 LValue LVal = CGF.EmitLValue(FoundE);
12345 emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal,
12346 FoundE->getExprLoc());
12347 }
12348
checkAndEmitSharedLastprivateConditional(CodeGenFunction & CGF,const OMPExecutableDirective & D,const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> & IgnoredDecls)12349 void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional(
12350 CodeGenFunction &CGF, const OMPExecutableDirective &D,
12351 const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> &IgnoredDecls) {
12352 if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12353 return;
12354 auto Range = llvm::reverse(LastprivateConditionalStack);
12355 auto It = llvm::find_if(
12356 Range, [](const LastprivateConditionalData &D) { return !D.Disabled; });
12357 if (It == Range.end() || It->Fn != CGF.CurFn)
12358 return;
12359 auto LPCI = LastprivateConditionalToTypes.find(It->Fn);
12360 assert(LPCI != LastprivateConditionalToTypes.end() &&
12361 "Lastprivates must be registered already.");
12362 SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
12363 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
12364 const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back());
12365 for (const auto &Pair : It->DeclToUniqueName) {
12366 const auto *VD = cast<VarDecl>(Pair.first->getCanonicalDecl());
12367 if (!CS->capturesVariable(VD) || IgnoredDecls.count(VD) > 0)
12368 continue;
12369 auto I = LPCI->getSecond().find(Pair.first);
12370 assert(I != LPCI->getSecond().end() &&
12371 "Lastprivate must be rehistered already.");
12372 // bool Cmp = priv_a.Fired != 0;
12373 LValue BaseLVal = std::get<3>(I->getSecond());
12374 LValue FiredLVal =
12375 CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond()));
12376 llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc());
12377 llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res);
12378 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then");
12379 llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done");
12380 // if (Cmp) {
12381 CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB);
12382 CGF.EmitBlock(ThenBB);
12383 Address Addr = CGF.GetAddrOfLocalVar(VD);
12384 LValue LVal;
12385 if (VD->getType()->isReferenceType())
12386 LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
12387 AlignmentSource::Decl);
12388 else
12389 LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(),
12390 AlignmentSource::Decl);
12391 emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal,
12392 D.getBeginLoc());
12393 auto AL = ApplyDebugLocation::CreateArtificial(CGF);
12394 CGF.EmitBlock(DoneBB, /*IsFinal=*/true);
12395 // }
12396 }
12397 }
12398
emitLastprivateConditionalFinalUpdate(CodeGenFunction & CGF,LValue PrivLVal,const VarDecl * VD,SourceLocation Loc)12399 void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate(
12400 CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD,
12401 SourceLocation Loc) {
12402 if (CGF.getLangOpts().OpenMP < 50)
12403 return;
12404 auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD);
12405 assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() &&
12406 "Unknown lastprivate conditional variable.");
12407 StringRef UniqueName = It->second;
12408 llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName);
12409 // The variable was not updated in the region - exit.
12410 if (!GV)
12411 return;
12412 LValue LPLVal = CGF.MakeAddrLValue(
12413 GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment());
12414 llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc);
12415 CGF.EmitStoreOfScalar(Res, PrivLVal);
12416 }
12417
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12418 llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
12419 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12420 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12421 llvm_unreachable("Not supported in SIMD-only mode");
12422 }
12423
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12424 llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
12425 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12426 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12427 llvm_unreachable("Not supported in SIMD-only mode");
12428 }
12429
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)12430 llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
12431 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12432 const VarDecl *PartIDVar, const VarDecl *TaskTVar,
12433 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
12434 bool Tied, unsigned &NumberOfParts) {
12435 llvm_unreachable("Not supported in SIMD-only mode");
12436 }
12437
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)12438 void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
12439 SourceLocation Loc,
12440 llvm::Function *OutlinedFn,
12441 ArrayRef<llvm::Value *> CapturedVars,
12442 const Expr *IfCond) {
12443 llvm_unreachable("Not supported in SIMD-only mode");
12444 }
12445
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)12446 void CGOpenMPSIMDRuntime::emitCriticalRegion(
12447 CodeGenFunction &CGF, StringRef CriticalName,
12448 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
12449 const Expr *Hint) {
12450 llvm_unreachable("Not supported in SIMD-only mode");
12451 }
12452
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)12453 void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
12454 const RegionCodeGenTy &MasterOpGen,
12455 SourceLocation Loc) {
12456 llvm_unreachable("Not supported in SIMD-only mode");
12457 }
12458
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)12459 void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
12460 SourceLocation Loc) {
12461 llvm_unreachable("Not supported in SIMD-only mode");
12462 }
12463
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)12464 void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
12465 CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
12466 SourceLocation Loc) {
12467 llvm_unreachable("Not supported in SIMD-only mode");
12468 }
12469
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps)12470 void CGOpenMPSIMDRuntime::emitSingleRegion(
12471 CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
12472 SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
12473 ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
12474 ArrayRef<const Expr *> AssignmentOps) {
12475 llvm_unreachable("Not supported in SIMD-only mode");
12476 }
12477
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)12478 void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
12479 const RegionCodeGenTy &OrderedOpGen,
12480 SourceLocation Loc,
12481 bool IsThreads) {
12482 llvm_unreachable("Not supported in SIMD-only mode");
12483 }
12484
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)12485 void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
12486 SourceLocation Loc,
12487 OpenMPDirectiveKind Kind,
12488 bool EmitChecks,
12489 bool ForceSimpleCall) {
12490 llvm_unreachable("Not supported in SIMD-only mode");
12491 }
12492
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)12493 void CGOpenMPSIMDRuntime::emitForDispatchInit(
12494 CodeGenFunction &CGF, SourceLocation Loc,
12495 const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
12496 bool Ordered, const DispatchRTInput &DispatchValues) {
12497 llvm_unreachable("Not supported in SIMD-only mode");
12498 }
12499
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)12500 void CGOpenMPSIMDRuntime::emitForStaticInit(
12501 CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
12502 const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
12503 llvm_unreachable("Not supported in SIMD-only mode");
12504 }
12505
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const StaticRTInput & Values)12506 void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
12507 CodeGenFunction &CGF, SourceLocation Loc,
12508 OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
12509 llvm_unreachable("Not supported in SIMD-only mode");
12510 }
12511
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)12512 void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
12513 SourceLocation Loc,
12514 unsigned IVSize,
12515 bool IVSigned) {
12516 llvm_unreachable("Not supported in SIMD-only mode");
12517 }
12518
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)12519 void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
12520 SourceLocation Loc,
12521 OpenMPDirectiveKind DKind) {
12522 llvm_unreachable("Not supported in SIMD-only mode");
12523 }
12524
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)12525 llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
12526 SourceLocation Loc,
12527 unsigned IVSize, bool IVSigned,
12528 Address IL, Address LB,
12529 Address UB, Address ST) {
12530 llvm_unreachable("Not supported in SIMD-only mode");
12531 }
12532
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)12533 void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
12534 llvm::Value *NumThreads,
12535 SourceLocation Loc) {
12536 llvm_unreachable("Not supported in SIMD-only mode");
12537 }
12538
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)12539 void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
12540 ProcBindKind ProcBind,
12541 SourceLocation Loc) {
12542 llvm_unreachable("Not supported in SIMD-only mode");
12543 }
12544
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)12545 Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
12546 const VarDecl *VD,
12547 Address VDAddr,
12548 SourceLocation Loc) {
12549 llvm_unreachable("Not supported in SIMD-only mode");
12550 }
12551
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)12552 llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
12553 const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
12554 CodeGenFunction *CGF) {
12555 llvm_unreachable("Not supported in SIMD-only mode");
12556 }
12557
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)12558 Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
12559 CodeGenFunction &CGF, QualType VarType, StringRef Name) {
12560 llvm_unreachable("Not supported in SIMD-only mode");
12561 }
12562
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * > Vars,SourceLocation Loc,llvm::AtomicOrdering AO)12563 void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
12564 ArrayRef<const Expr *> Vars,
12565 SourceLocation Loc,
12566 llvm::AtomicOrdering AO) {
12567 llvm_unreachable("Not supported in SIMD-only mode");
12568 }
12569
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12570 void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
12571 const OMPExecutableDirective &D,
12572 llvm::Function *TaskFunction,
12573 QualType SharedsTy, Address Shareds,
12574 const Expr *IfCond,
12575 const OMPTaskDataTy &Data) {
12576 llvm_unreachable("Not supported in SIMD-only mode");
12577 }
12578
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12579 void CGOpenMPSIMDRuntime::emitTaskLoopCall(
12580 CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
12581 llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
12582 const Expr *IfCond, const OMPTaskDataTy &Data) {
12583 llvm_unreachable("Not supported in SIMD-only mode");
12584 }
12585
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)12586 void CGOpenMPSIMDRuntime::emitReduction(
12587 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
12588 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
12589 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
12590 assert(Options.SimpleReduction && "Only simple reduction is expected.");
12591 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
12592 ReductionOps, Options);
12593 }
12594
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)12595 llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
12596 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
12597 ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
12598 llvm_unreachable("Not supported in SIMD-only mode");
12599 }
12600
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)12601 void CGOpenMPSIMDRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
12602 SourceLocation Loc,
12603 bool IsWorksharingReduction) {
12604 llvm_unreachable("Not supported in SIMD-only mode");
12605 }
12606
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)12607 void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
12608 SourceLocation Loc,
12609 ReductionCodeGen &RCG,
12610 unsigned N) {
12611 llvm_unreachable("Not supported in SIMD-only mode");
12612 }
12613
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)12614 Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
12615 SourceLocation Loc,
12616 llvm::Value *ReductionsPtr,
12617 LValue SharedLVal) {
12618 llvm_unreachable("Not supported in SIMD-only mode");
12619 }
12620
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)12621 void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
12622 SourceLocation Loc) {
12623 llvm_unreachable("Not supported in SIMD-only mode");
12624 }
12625
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)12626 void CGOpenMPSIMDRuntime::emitCancellationPointCall(
12627 CodeGenFunction &CGF, SourceLocation Loc,
12628 OpenMPDirectiveKind CancelRegion) {
12629 llvm_unreachable("Not supported in SIMD-only mode");
12630 }
12631
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)12632 void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
12633 SourceLocation Loc, const Expr *IfCond,
12634 OpenMPDirectiveKind CancelRegion) {
12635 llvm_unreachable("Not supported in SIMD-only mode");
12636 }
12637
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)12638 void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
12639 const OMPExecutableDirective &D, StringRef ParentName,
12640 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
12641 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
12642 llvm_unreachable("Not supported in SIMD-only mode");
12643 }
12644
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)12645 void CGOpenMPSIMDRuntime::emitTargetCall(
12646 CodeGenFunction &CGF, const OMPExecutableDirective &D,
12647 llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
12648 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
12649 llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
12650 const OMPLoopDirective &D)>
12651 SizeEmitter) {
12652 llvm_unreachable("Not supported in SIMD-only mode");
12653 }
12654
emitTargetFunctions(GlobalDecl GD)12655 bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
12656 llvm_unreachable("Not supported in SIMD-only mode");
12657 }
12658
emitTargetGlobalVariable(GlobalDecl GD)12659 bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
12660 llvm_unreachable("Not supported in SIMD-only mode");
12661 }
12662
emitTargetGlobal(GlobalDecl GD)12663 bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
12664 return false;
12665 }
12666
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)12667 void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
12668 const OMPExecutableDirective &D,
12669 SourceLocation Loc,
12670 llvm::Function *OutlinedFn,
12671 ArrayRef<llvm::Value *> CapturedVars) {
12672 llvm_unreachable("Not supported in SIMD-only mode");
12673 }
12674
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)12675 void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
12676 const Expr *NumTeams,
12677 const Expr *ThreadLimit,
12678 SourceLocation Loc) {
12679 llvm_unreachable("Not supported in SIMD-only mode");
12680 }
12681
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)12682 void CGOpenMPSIMDRuntime::emitTargetDataCalls(
12683 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12684 const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
12685 llvm_unreachable("Not supported in SIMD-only mode");
12686 }
12687
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)12688 void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
12689 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12690 const Expr *Device) {
12691 llvm_unreachable("Not supported in SIMD-only mode");
12692 }
12693
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)12694 void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
12695 const OMPLoopDirective &D,
12696 ArrayRef<Expr *> NumIterations) {
12697 llvm_unreachable("Not supported in SIMD-only mode");
12698 }
12699
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)12700 void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
12701 const OMPDependClause *C) {
12702 llvm_unreachable("Not supported in SIMD-only mode");
12703 }
12704
12705 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const12706 CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
12707 const VarDecl *NativeParam) const {
12708 llvm_unreachable("Not supported in SIMD-only mode");
12709 }
12710
12711 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const12712 CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
12713 const VarDecl *NativeParam,
12714 const VarDecl *TargetParam) const {
12715 llvm_unreachable("Not supported in SIMD-only mode");
12716 }
12717