1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "record.h"
18
19 #include <inttypes.h>
20 #include <algorithm>
21 #include <unordered_map>
22
23 #include <android-base/logging.h>
24 #include <android-base/stringprintf.h>
25
26 #include "OfflineUnwinder.h"
27 #include "dso.h"
28 #include "perf_regs.h"
29 #include "tracing.h"
30 #include "utils.h"
31
32 namespace simpleperf {
33
RecordTypeToString(int record_type)34 static std::string RecordTypeToString(int record_type) {
35 static std::unordered_map<int, std::string> record_type_names = {
36 {PERF_RECORD_MMAP, "mmap"},
37 {PERF_RECORD_LOST, "lost"},
38 {PERF_RECORD_COMM, "comm"},
39 {PERF_RECORD_EXIT, "exit"},
40 {PERF_RECORD_THROTTLE, "throttle"},
41 {PERF_RECORD_UNTHROTTLE, "unthrottle"},
42 {PERF_RECORD_FORK, "fork"},
43 {PERF_RECORD_READ, "read"},
44 {PERF_RECORD_SAMPLE, "sample"},
45 {PERF_RECORD_BUILD_ID, "build_id"},
46 {PERF_RECORD_MMAP2, "mmap2"},
47 {PERF_RECORD_AUX, "aux"},
48 {PERF_RECORD_TRACING_DATA, "tracing_data"},
49 {PERF_RECORD_AUXTRACE_INFO, "auxtrace_info"},
50 {PERF_RECORD_AUXTRACE, "auxtrace"},
51 {SIMPLE_PERF_RECORD_KERNEL_SYMBOL, "kernel_symbol"},
52 {SIMPLE_PERF_RECORD_DSO, "dso"},
53 {SIMPLE_PERF_RECORD_SYMBOL, "symbol"},
54 {SIMPLE_PERF_RECORD_EVENT_ID, "event_id"},
55 {SIMPLE_PERF_RECORD_CALLCHAIN, "callchain"},
56 {SIMPLE_PERF_RECORD_UNWINDING_RESULT, "unwinding_result"},
57 {SIMPLE_PERF_RECORD_TRACING_DATA, "tracing_data"},
58 };
59
60 auto it = record_type_names.find(record_type);
61 if (it != record_type_names.end()) {
62 return it->second;
63 }
64 return android::base::StringPrintf("unknown(%d)", record_type);
65 }
66
67 template <>
MoveToBinaryFormat(const RecordHeader & data,char * & p)68 void MoveToBinaryFormat(const RecordHeader& data, char*& p) {
69 data.MoveToBinaryFormat(p);
70 }
71
SampleId()72 SampleId::SampleId() {
73 memset(this, 0, sizeof(SampleId));
74 }
75
76 // Return sample_id size in binary format.
CreateContent(const perf_event_attr & attr,uint64_t event_id)77 size_t SampleId::CreateContent(const perf_event_attr& attr, uint64_t event_id) {
78 sample_id_all = attr.sample_id_all;
79 sample_type = attr.sample_type;
80 id_data.id = event_id;
81 // Other data are not necessary. TODO: Set missing SampleId data.
82 return Size();
83 }
84
ReadFromBinaryFormat(const perf_event_attr & attr,const char * p,const char * end)85 void SampleId::ReadFromBinaryFormat(const perf_event_attr& attr, const char* p, const char* end) {
86 sample_id_all = attr.sample_id_all;
87 sample_type = attr.sample_type;
88 if (sample_id_all) {
89 if (sample_type & PERF_SAMPLE_TID) {
90 MoveFromBinaryFormat(tid_data, p);
91 }
92 if (sample_type & PERF_SAMPLE_TIME) {
93 MoveFromBinaryFormat(time_data, p);
94 }
95 if (sample_type & PERF_SAMPLE_ID) {
96 MoveFromBinaryFormat(id_data, p);
97 }
98 if (sample_type & PERF_SAMPLE_STREAM_ID) {
99 MoveFromBinaryFormat(stream_id_data, p);
100 }
101 if (sample_type & PERF_SAMPLE_CPU) {
102 MoveFromBinaryFormat(cpu_data, p);
103 }
104 if (sample_type & PERF_SAMPLE_IDENTIFIER) {
105 MoveFromBinaryFormat(id_data, p);
106 }
107 }
108 CHECK_LE(p, end);
109 if (p < end) {
110 LOG(DEBUG) << "Record SampleId part has " << end - p << " bytes left\n";
111 }
112 }
113
WriteToBinaryFormat(char * & p) const114 void SampleId::WriteToBinaryFormat(char*& p) const {
115 if (sample_id_all) {
116 if (sample_type & PERF_SAMPLE_TID) {
117 MoveToBinaryFormat(tid_data, p);
118 }
119 if (sample_type & PERF_SAMPLE_TIME) {
120 MoveToBinaryFormat(time_data, p);
121 }
122 if (sample_type & PERF_SAMPLE_ID) {
123 MoveToBinaryFormat(id_data, p);
124 }
125 if (sample_type & PERF_SAMPLE_STREAM_ID) {
126 MoveToBinaryFormat(stream_id_data, p);
127 }
128 if (sample_type & PERF_SAMPLE_CPU) {
129 MoveToBinaryFormat(cpu_data, p);
130 }
131 }
132 }
133
Dump(size_t indent) const134 void SampleId::Dump(size_t indent) const {
135 if (sample_id_all) {
136 if (sample_type & PERF_SAMPLE_TID) {
137 PrintIndented(indent, "sample_id: pid %u, tid %u\n", tid_data.pid, tid_data.tid);
138 }
139 if (sample_type & PERF_SAMPLE_TIME) {
140 PrintIndented(indent, "sample_id: time %" PRId64 "\n", time_data.time);
141 }
142 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) {
143 PrintIndented(indent, "sample_id: id %" PRId64 "\n", id_data.id);
144 }
145 if (sample_type & PERF_SAMPLE_STREAM_ID) {
146 PrintIndented(indent, "sample_id: stream_id %" PRId64 "\n", stream_id_data.stream_id);
147 }
148 if (sample_type & PERF_SAMPLE_CPU) {
149 PrintIndented(indent, "sample_id: cpu %u, res %u\n", cpu_data.cpu, cpu_data.res);
150 }
151 }
152 }
153
Size() const154 size_t SampleId::Size() const {
155 size_t size = 0;
156 if (sample_id_all) {
157 if (sample_type & PERF_SAMPLE_TID) {
158 size += sizeof(PerfSampleTidType);
159 }
160 if (sample_type & PERF_SAMPLE_TIME) {
161 size += sizeof(PerfSampleTimeType);
162 }
163 if (sample_type & PERF_SAMPLE_ID) {
164 size += sizeof(PerfSampleIdType);
165 }
166 if (sample_type & PERF_SAMPLE_STREAM_ID) {
167 size += sizeof(PerfSampleStreamIdType);
168 }
169 if (sample_type & PERF_SAMPLE_CPU) {
170 size += sizeof(PerfSampleCpuType);
171 }
172 if (sample_type & PERF_SAMPLE_IDENTIFIER) {
173 size += sizeof(PerfSampleIdType);
174 }
175 }
176 return size;
177 }
178
Record(Record && other)179 Record::Record(Record&& other) noexcept {
180 header = other.header;
181 sample_id = other.sample_id;
182 binary_ = other.binary_;
183 own_binary_ = other.own_binary_;
184 other.binary_ = nullptr;
185 other.own_binary_ = false;
186 }
187
Dump(size_t indent) const188 void Record::Dump(size_t indent) const {
189 PrintIndented(indent, "record %s: type %u, misc %u, size %u\n",
190 RecordTypeToString(type()).c_str(), type(), misc(), size());
191 DumpData(indent + 1);
192 sample_id.Dump(indent + 1);
193 }
194
Timestamp() const195 uint64_t Record::Timestamp() const {
196 return sample_id.time_data.time;
197 }
Cpu() const198 uint32_t Record::Cpu() const {
199 return sample_id.cpu_data.cpu;
200 }
Id() const201 uint64_t Record::Id() const {
202 return sample_id.id_data.id;
203 }
204
UpdateBinary(char * new_binary)205 void Record::UpdateBinary(char* new_binary) {
206 if (own_binary_) {
207 delete[] binary_;
208 }
209 own_binary_ = true;
210 binary_ = new_binary;
211 }
212
MmapRecord(const perf_event_attr & attr,char * p)213 MmapRecord::MmapRecord(const perf_event_attr& attr, char* p) : Record(p) {
214 const char* end = p + size();
215 p += header_size();
216 data = reinterpret_cast<const MmapRecordDataType*>(p);
217 p += sizeof(*data);
218 filename = p;
219 p += Align(strlen(filename) + 1, 8);
220 CHECK_LE(p, end);
221 sample_id.ReadFromBinaryFormat(attr, p, end);
222 }
223
MmapRecord(const perf_event_attr & attr,bool in_kernel,uint32_t pid,uint32_t tid,uint64_t addr,uint64_t len,uint64_t pgoff,const std::string & filename,uint64_t event_id,uint64_t time)224 MmapRecord::MmapRecord(const perf_event_attr& attr, bool in_kernel, uint32_t pid, uint32_t tid,
225 uint64_t addr, uint64_t len, uint64_t pgoff, const std::string& filename,
226 uint64_t event_id, uint64_t time) {
227 SetTypeAndMisc(PERF_RECORD_MMAP, in_kernel ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER);
228 sample_id.CreateContent(attr, event_id);
229 sample_id.time_data.time = time;
230 MmapRecordDataType data;
231 data.pid = pid;
232 data.tid = tid;
233 data.addr = addr;
234 data.len = len;
235 data.pgoff = pgoff;
236 SetDataAndFilename(data, filename);
237 }
238
SetDataAndFilename(const MmapRecordDataType & data,const std::string & filename)239 void MmapRecord::SetDataAndFilename(const MmapRecordDataType& data, const std::string& filename) {
240 SetSize(header_size() + sizeof(data) + Align(filename.size() + 1, 8) + sample_id.Size());
241 char* new_binary = new char[size()];
242 char* p = new_binary;
243 MoveToBinaryFormat(header, p);
244 this->data = reinterpret_cast<MmapRecordDataType*>(p);
245 MoveToBinaryFormat(data, p);
246 this->filename = p;
247 strcpy(p, filename.c_str());
248 p += Align(filename.size() + 1, 8);
249 sample_id.WriteToBinaryFormat(p);
250 UpdateBinary(new_binary);
251 }
252
DumpData(size_t indent) const253 void MmapRecord::DumpData(size_t indent) const {
254 PrintIndented(indent, "pid %u, tid %u, addr 0x%" PRIx64 ", len 0x%" PRIx64 "\n", data->pid,
255 data->tid, data->addr, data->len);
256 PrintIndented(indent, "pgoff 0x%" PRIx64 ", filename %s\n", data->pgoff, filename);
257 }
258
Mmap2Record(const perf_event_attr & attr,char * p)259 Mmap2Record::Mmap2Record(const perf_event_attr& attr, char* p) : Record(p) {
260 const char* end = p + size();
261 p += header_size();
262 data = reinterpret_cast<const Mmap2RecordDataType*>(p);
263 p += sizeof(*data);
264 filename = p;
265 p += Align(strlen(filename) + 1, 8);
266 CHECK_LE(p, end);
267 sample_id.ReadFromBinaryFormat(attr, p, end);
268 }
269
Mmap2Record(const perf_event_attr & attr,bool in_kernel,uint32_t pid,uint32_t tid,uint64_t addr,uint64_t len,uint64_t pgoff,uint32_t prot,const std::string & filename,uint64_t event_id,uint64_t time)270 Mmap2Record::Mmap2Record(const perf_event_attr& attr, bool in_kernel, uint32_t pid, uint32_t tid,
271 uint64_t addr, uint64_t len, uint64_t pgoff, uint32_t prot,
272 const std::string& filename, uint64_t event_id, uint64_t time) {
273 SetTypeAndMisc(PERF_RECORD_MMAP2, in_kernel ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER);
274 sample_id.CreateContent(attr, event_id);
275 sample_id.time_data.time = time;
276 Mmap2RecordDataType data;
277 data.pid = pid;
278 data.tid = tid;
279 data.addr = addr;
280 data.len = len;
281 data.pgoff = pgoff;
282 data.prot = prot;
283 SetDataAndFilename(data, filename);
284 }
285
SetDataAndFilename(const Mmap2RecordDataType & data,const std::string & filename)286 void Mmap2Record::SetDataAndFilename(const Mmap2RecordDataType& data, const std::string& filename) {
287 SetSize(header_size() + sizeof(data) + Align(filename.size() + 1, 8) + sample_id.Size());
288 char* new_binary = new char[size()];
289 char* p = new_binary;
290 MoveToBinaryFormat(header, p);
291 this->data = reinterpret_cast<Mmap2RecordDataType*>(p);
292 MoveToBinaryFormat(data, p);
293 this->filename = p;
294 strcpy(p, filename.c_str());
295 p += Align(filename.size() + 1, 8);
296 sample_id.WriteToBinaryFormat(p);
297 UpdateBinary(new_binary);
298 }
299
DumpData(size_t indent) const300 void Mmap2Record::DumpData(size_t indent) const {
301 PrintIndented(indent, "pid %u, tid %u, addr 0x%" PRIx64 ", len 0x%" PRIx64 "\n", data->pid,
302 data->tid, data->addr, data->len);
303 PrintIndented(
304 indent, "pgoff 0x%" PRIx64 ", maj %u, min %u, ino %" PRId64 ", ino_generation %" PRIu64 "\n",
305 data->pgoff, data->maj, data->min, data->ino, data->ino_generation);
306 PrintIndented(indent, "prot %u, flags %u, filename %s\n", data->prot, data->flags, filename);
307 }
308
CommRecord(const perf_event_attr & attr,char * p)309 CommRecord::CommRecord(const perf_event_attr& attr, char* p) : Record(p) {
310 const char* end = p + size();
311 p += header_size();
312 data = reinterpret_cast<const CommRecordDataType*>(p);
313 p += sizeof(*data);
314 comm = p;
315 p += Align(strlen(p) + 1, 8);
316 CHECK_LE(p, end);
317 sample_id.ReadFromBinaryFormat(attr, p, end);
318 }
319
CommRecord(const perf_event_attr & attr,uint32_t pid,uint32_t tid,const std::string & comm,uint64_t event_id,uint64_t time)320 CommRecord::CommRecord(const perf_event_attr& attr, uint32_t pid, uint32_t tid,
321 const std::string& comm, uint64_t event_id, uint64_t time) {
322 SetTypeAndMisc(PERF_RECORD_COMM, 0);
323 CommRecordDataType data;
324 data.pid = pid;
325 data.tid = tid;
326 size_t sample_id_size = sample_id.CreateContent(attr, event_id);
327 sample_id.time_data.time = time;
328 SetSize(header_size() + sizeof(data) + Align(comm.size() + 1, 8) + sample_id_size);
329 char* new_binary = new char[size()];
330 char* p = new_binary;
331 MoveToBinaryFormat(header, p);
332 this->data = reinterpret_cast<CommRecordDataType*>(p);
333 MoveToBinaryFormat(data, p);
334 this->comm = p;
335 strcpy(p, comm.c_str());
336 p += Align(comm.size() + 1, 8);
337 sample_id.WriteToBinaryFormat(p);
338 UpdateBinary(new_binary);
339 }
340
SetCommandName(const std::string & name)341 void CommRecord::SetCommandName(const std::string& name) {
342 if (name.compare(comm) == 0) {
343 return;
344 }
345 // The kernel uses a 8-byte aligned space to store command name. Follow it here to allow the same
346 // reading code.
347 size_t old_name_len = Align(strlen(comm) + 1, 8);
348 size_t new_name_len = Align(name.size() + 1, 8);
349 size_t new_size = size() - old_name_len + new_name_len;
350 char* new_binary = new char[new_size];
351 char* p = new_binary;
352 header.size = new_size;
353 MoveToBinaryFormat(header, p);
354 MoveToBinaryFormat(*data, p);
355 data = reinterpret_cast<CommRecordDataType*>(p - sizeof(CommRecordDataType));
356 comm = p;
357 strcpy(p, name.c_str());
358 p += new_name_len;
359 sample_id.WriteToBinaryFormat(p);
360 CHECK_EQ(p, new_binary + new_size);
361 UpdateBinary(new_binary);
362 }
363
DumpData(size_t indent) const364 void CommRecord::DumpData(size_t indent) const {
365 PrintIndented(indent, "pid %u, tid %u, comm %s\n", data->pid, data->tid, comm);
366 }
367
ExitOrForkRecord(const perf_event_attr & attr,char * p)368 ExitOrForkRecord::ExitOrForkRecord(const perf_event_attr& attr, char* p) : Record(p) {
369 const char* end = p + size();
370 p += header_size();
371 data = reinterpret_cast<const ExitOrForkRecordDataType*>(p);
372 p += sizeof(*data);
373 CHECK_LE(p, end);
374 sample_id.ReadFromBinaryFormat(attr, p, end);
375 }
376
DumpData(size_t indent) const377 void ExitOrForkRecord::DumpData(size_t indent) const {
378 PrintIndented(indent, "pid %u, ppid %u, tid %u, ptid %u\n", data->pid, data->ppid, data->tid,
379 data->ptid);
380 }
381
ForkRecord(const perf_event_attr & attr,uint32_t pid,uint32_t tid,uint32_t ppid,uint32_t ptid,uint64_t event_id)382 ForkRecord::ForkRecord(const perf_event_attr& attr, uint32_t pid, uint32_t tid, uint32_t ppid,
383 uint32_t ptid, uint64_t event_id) {
384 SetTypeAndMisc(PERF_RECORD_FORK, 0);
385 ExitOrForkRecordDataType data;
386 data.pid = pid;
387 data.ppid = ppid;
388 data.tid = tid;
389 data.ptid = ptid;
390 data.time = 0;
391 size_t sample_id_size = sample_id.CreateContent(attr, event_id);
392 SetSize(header_size() + sizeof(data) + sample_id_size);
393 char* new_binary = new char[size()];
394 char* p = new_binary;
395 MoveToBinaryFormat(header, p);
396 this->data = reinterpret_cast<ExitOrForkRecordDataType*>(p);
397 MoveToBinaryFormat(data, p);
398 sample_id.WriteToBinaryFormat(p);
399 UpdateBinary(new_binary);
400 }
401
LostRecord(const perf_event_attr & attr,char * p)402 LostRecord::LostRecord(const perf_event_attr& attr, char* p) : Record(p) {
403 const char* end = p + size();
404 p += header_size();
405 MoveFromBinaryFormat(id, p);
406 MoveFromBinaryFormat(lost, p);
407 CHECK_LE(p, end);
408 sample_id.ReadFromBinaryFormat(attr, p, end);
409 }
410
DumpData(size_t indent) const411 void LostRecord::DumpData(size_t indent) const {
412 PrintIndented(indent, "id %" PRIu64 ", lost %" PRIu64 "\n", id, lost);
413 }
414
SampleRecord(const perf_event_attr & attr,char * p)415 SampleRecord::SampleRecord(const perf_event_attr& attr, char* p) : Record(p) {
416 const char* end = p + size();
417 p += header_size();
418 sample_type = attr.sample_type;
419
420 // Set a default id value to report correctly even if ID is not recorded.
421 id_data.id = 0;
422 if (sample_type & PERF_SAMPLE_IDENTIFIER) {
423 MoveFromBinaryFormat(id_data, p);
424 }
425 if (sample_type & PERF_SAMPLE_IP) {
426 MoveFromBinaryFormat(ip_data, p);
427 }
428 if (sample_type & PERF_SAMPLE_TID) {
429 MoveFromBinaryFormat(tid_data, p);
430 }
431 if (sample_type & PERF_SAMPLE_TIME) {
432 MoveFromBinaryFormat(time_data, p);
433 }
434 if (sample_type & PERF_SAMPLE_ADDR) {
435 MoveFromBinaryFormat(addr_data, p);
436 }
437 if (sample_type & PERF_SAMPLE_ID) {
438 MoveFromBinaryFormat(id_data, p);
439 }
440 if (sample_type & PERF_SAMPLE_STREAM_ID) {
441 MoveFromBinaryFormat(stream_id_data, p);
442 }
443 if (sample_type & PERF_SAMPLE_CPU) {
444 MoveFromBinaryFormat(cpu_data, p);
445 }
446 if (sample_type & PERF_SAMPLE_PERIOD) {
447 MoveFromBinaryFormat(period_data, p);
448 }
449 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
450 MoveFromBinaryFormat(callchain_data.ip_nr, p);
451 callchain_data.ips = reinterpret_cast<uint64_t*>(p);
452 p += callchain_data.ip_nr * sizeof(uint64_t);
453 }
454 if (sample_type & PERF_SAMPLE_RAW) {
455 MoveFromBinaryFormat(raw_data.size, p);
456 raw_data.data = p;
457 p += raw_data.size;
458 }
459 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
460 MoveFromBinaryFormat(branch_stack_data.stack_nr, p);
461 branch_stack_data.stack = reinterpret_cast<BranchStackItemType*>(p);
462 p += branch_stack_data.stack_nr * sizeof(BranchStackItemType);
463 }
464 if (sample_type & PERF_SAMPLE_REGS_USER) {
465 MoveFromBinaryFormat(regs_user_data.abi, p);
466 if (regs_user_data.abi == 0) {
467 regs_user_data.reg_mask = 0;
468 } else {
469 regs_user_data.reg_mask = attr.sample_regs_user;
470 size_t bit_nr = __builtin_popcountll(regs_user_data.reg_mask);
471 regs_user_data.reg_nr = bit_nr;
472 regs_user_data.regs = reinterpret_cast<uint64_t*>(p);
473 p += bit_nr * sizeof(uint64_t);
474 }
475 }
476 if (sample_type & PERF_SAMPLE_STACK_USER) {
477 MoveFromBinaryFormat(stack_user_data.size, p);
478 if (stack_user_data.size == 0) {
479 stack_user_data.dyn_size = 0;
480 } else {
481 stack_user_data.data = p;
482 p += stack_user_data.size;
483 MoveFromBinaryFormat(stack_user_data.dyn_size, p);
484 }
485 }
486 // TODO: Add parsing of other PERF_SAMPLE_*.
487 CHECK_LE(p, end);
488 if (p < end) {
489 LOG(DEBUG) << "Record has " << end - p << " bytes left\n";
490 }
491 }
492
SampleRecord(const perf_event_attr & attr,uint64_t id,uint64_t ip,uint32_t pid,uint32_t tid,uint64_t time,uint32_t cpu,uint64_t period,const std::vector<uint64_t> & ips,const std::vector<char> & stack,uint64_t dyn_stack_size)493 SampleRecord::SampleRecord(const perf_event_attr& attr, uint64_t id, uint64_t ip, uint32_t pid,
494 uint32_t tid, uint64_t time, uint32_t cpu, uint64_t period,
495 const std::vector<uint64_t>& ips, const std::vector<char>& stack,
496 uint64_t dyn_stack_size) {
497 SetTypeAndMisc(PERF_RECORD_SAMPLE, PERF_RECORD_MISC_USER);
498 sample_type = attr.sample_type;
499 CHECK_EQ(0u,
500 sample_type & ~(PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_TIME | PERF_SAMPLE_ID |
501 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD | PERF_SAMPLE_CALLCHAIN |
502 PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER));
503 ip_data.ip = ip;
504 tid_data.pid = pid;
505 tid_data.tid = tid;
506 time_data.time = time;
507 id_data.id = id;
508 cpu_data.cpu = cpu;
509 cpu_data.res = 0;
510 period_data.period = period;
511 callchain_data.ip_nr = ips.size();
512 raw_data.size = 0;
513 branch_stack_data.stack_nr = 0;
514 regs_user_data.abi = 0;
515 regs_user_data.reg_mask = 0;
516 regs_user_data.reg_nr = 0;
517 stack_user_data.size = stack.size();
518 stack_user_data.dyn_size = dyn_stack_size;
519
520 uint32_t size = header_size();
521 if (sample_type & PERF_SAMPLE_IP) {
522 size += sizeof(ip_data);
523 }
524 if (sample_type & PERF_SAMPLE_TID) {
525 size += sizeof(tid_data);
526 }
527 if (sample_type & PERF_SAMPLE_TIME) {
528 size += sizeof(time_data);
529 }
530 if (sample_type & PERF_SAMPLE_ID) {
531 size += sizeof(id_data);
532 }
533 if (sample_type & PERF_SAMPLE_CPU) {
534 size += sizeof(cpu_data);
535 }
536 if (sample_type & PERF_SAMPLE_PERIOD) {
537 size += sizeof(period_data);
538 }
539 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
540 size += sizeof(uint64_t) * (ips.size() + 1);
541 }
542 if (sample_type & PERF_SAMPLE_REGS_USER) {
543 size += sizeof(uint64_t);
544 }
545 if (sample_type & PERF_SAMPLE_STACK_USER) {
546 size += sizeof(uint64_t) + (stack.empty() ? 0 : stack.size() + sizeof(uint64_t));
547 }
548
549 SetSize(size);
550 char* new_binary = new char[size];
551 char* p = new_binary;
552 MoveToBinaryFormat(header, p);
553 if (sample_type & PERF_SAMPLE_IP) {
554 MoveToBinaryFormat(ip_data, p);
555 }
556 if (sample_type & PERF_SAMPLE_TID) {
557 MoveToBinaryFormat(tid_data, p);
558 }
559 if (sample_type & PERF_SAMPLE_TIME) {
560 MoveToBinaryFormat(time_data, p);
561 }
562 if (sample_type & PERF_SAMPLE_ID) {
563 MoveToBinaryFormat(id_data, p);
564 }
565 if (sample_type & PERF_SAMPLE_CPU) {
566 MoveToBinaryFormat(cpu_data, p);
567 }
568 if (sample_type & PERF_SAMPLE_PERIOD) {
569 MoveToBinaryFormat(period_data, p);
570 }
571 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
572 MoveToBinaryFormat(callchain_data.ip_nr, p);
573 callchain_data.ips = reinterpret_cast<uint64_t*>(p);
574 MoveToBinaryFormat(ips.data(), ips.size(), p);
575 }
576 if (sample_type & PERF_SAMPLE_REGS_USER) {
577 MoveToBinaryFormat(regs_user_data.abi, p);
578 }
579 if (sample_type & PERF_SAMPLE_STACK_USER) {
580 MoveToBinaryFormat(stack_user_data.size, p);
581 if (stack_user_data.size > 0) {
582 stack_user_data.data = p;
583 MoveToBinaryFormat(stack.data(), stack_user_data.size, p);
584 MoveToBinaryFormat(stack_user_data.dyn_size, p);
585 }
586 }
587 CHECK_EQ(p, new_binary + size);
588 UpdateBinary(new_binary);
589 }
590
ReplaceRegAndStackWithCallChain(const std::vector<uint64_t> & ips)591 void SampleRecord::ReplaceRegAndStackWithCallChain(const std::vector<uint64_t>& ips) {
592 uint32_t size_added_in_callchain = sizeof(uint64_t) * (ips.size() + 1);
593 uint32_t size_reduced_in_reg_stack =
594 regs_user_data.reg_nr * sizeof(uint64_t) + stack_user_data.size + sizeof(uint64_t);
595 uint32_t new_size = size() + size_added_in_callchain - size_reduced_in_reg_stack;
596 BuildBinaryWithNewCallChain(new_size, ips);
597 }
598
ExcludeKernelCallChain()599 bool SampleRecord::ExcludeKernelCallChain() {
600 if (!(sample_type & PERF_SAMPLE_CALLCHAIN)) {
601 return true;
602 }
603 size_t i;
604 for (i = 0; i < callchain_data.ip_nr; ++i) {
605 if (callchain_data.ips[i] == PERF_CONTEXT_USER) {
606 break;
607 }
608 // Erase kernel callchain.
609 callchain_data.ips[i] = PERF_CONTEXT_USER;
610 }
611 while (++i < callchain_data.ip_nr) {
612 if (callchain_data.ips[i] < PERF_CONTEXT_MAX) {
613 // Change the sample to make it hit the user space ip address.
614 ip_data.ip = callchain_data.ips[i];
615 if (sample_type & PERF_SAMPLE_IP) {
616 *reinterpret_cast<uint64_t*>(binary_ + header_size()) = ip_data.ip;
617 }
618 header.misc = (header.misc & ~PERF_RECORD_MISC_CPUMODE_MASK) | PERF_RECORD_MISC_USER;
619 reinterpret_cast<perf_event_header*>(binary_)->misc = header.misc;
620 return true;
621 }
622 }
623 return false;
624 }
625
HasUserCallChain() const626 bool SampleRecord::HasUserCallChain() const {
627 if ((sample_type & PERF_SAMPLE_CALLCHAIN) == 0) {
628 return false;
629 }
630 bool in_user_context = !InKernel();
631 for (size_t i = 0; i < callchain_data.ip_nr; ++i) {
632 if (in_user_context && callchain_data.ips[i] < PERF_CONTEXT_MAX) {
633 return true;
634 }
635 if (callchain_data.ips[i] == PERF_CONTEXT_USER) {
636 in_user_context = true;
637 }
638 }
639 return false;
640 }
641
UpdateUserCallChain(const std::vector<uint64_t> & user_ips)642 void SampleRecord::UpdateUserCallChain(const std::vector<uint64_t>& user_ips) {
643 size_t kernel_ip_count = 0;
644 for (size_t i = 0; i < callchain_data.ip_nr; ++i) {
645 if (callchain_data.ips[i] == PERF_CONTEXT_USER) {
646 break;
647 }
648 kernel_ip_count++;
649 }
650 if (kernel_ip_count + 1 + user_ips.size() <= callchain_data.ip_nr) {
651 // Callchain isn't changed.
652 return;
653 }
654 size_t new_size =
655 size() + (kernel_ip_count + 1 + user_ips.size() - callchain_data.ip_nr) * sizeof(uint64_t);
656 callchain_data.ip_nr = kernel_ip_count;
657 BuildBinaryWithNewCallChain(new_size, user_ips);
658 }
659
BuildBinaryWithNewCallChain(uint32_t new_size,const std::vector<uint64_t> & ips)660 void SampleRecord::BuildBinaryWithNewCallChain(uint32_t new_size,
661 const std::vector<uint64_t>& ips) {
662 size_t callchain_pos = reinterpret_cast<char*>(callchain_data.ips) - binary_ - sizeof(uint64_t);
663 char* new_binary = binary_;
664 if (new_size > size()) {
665 new_binary = new char[new_size];
666 memcpy(new_binary, binary_, callchain_pos);
667 }
668 char* p = new_binary;
669 SetSize(new_size);
670 MoveToBinaryFormat(header, p);
671 p = new_binary + new_size;
672 if (sample_type & PERF_SAMPLE_STACK_USER) {
673 stack_user_data.size = 0;
674 p -= sizeof(uint64_t);
675 memcpy(p, &stack_user_data.size, sizeof(uint64_t));
676 }
677 if (sample_type & PERF_SAMPLE_REGS_USER) {
678 regs_user_data.abi = 0;
679 p -= sizeof(uint64_t);
680 memcpy(p, ®s_user_data.abi, sizeof(uint64_t));
681 }
682 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
683 p -= branch_stack_data.stack_nr * sizeof(BranchStackItemType);
684 memcpy(p, branch_stack_data.stack, branch_stack_data.stack_nr * sizeof(BranchStackItemType));
685 branch_stack_data.stack = reinterpret_cast<BranchStackItemType*>(p);
686 p -= sizeof(uint64_t);
687 memcpy(p, &branch_stack_data.stack_nr, sizeof(uint64_t));
688 }
689 if (sample_type & PERF_SAMPLE_RAW) {
690 p -= raw_data.size;
691 memcpy(p, raw_data.data, raw_data.size);
692 raw_data.data = p;
693 p -= sizeof(uint32_t);
694 memcpy(p, &raw_data.size, sizeof(uint32_t));
695 }
696 uint64_t* p64 = reinterpret_cast<uint64_t*>(p);
697 p64 -= ips.size();
698 memcpy(p64, ips.data(), ips.size() * sizeof(uint64_t));
699 *--p64 = PERF_CONTEXT_USER;
700 if (callchain_data.ip_nr > 0) {
701 p64 -= callchain_data.ip_nr;
702 memcpy(p64, callchain_data.ips, callchain_data.ip_nr * sizeof(uint64_t));
703 }
704 callchain_data.ips = p64;
705 callchain_data.ip_nr += 1 + ips.size();
706 *--p64 = callchain_data.ip_nr;
707 CHECK_EQ(callchain_pos, static_cast<size_t>(reinterpret_cast<char*>(p64) - new_binary))
708 << "record time " << time_data.time;
709 if (new_binary != binary_) {
710 UpdateBinary(new_binary);
711 }
712 }
713
DumpData(size_t indent) const714 void SampleRecord::DumpData(size_t indent) const {
715 PrintIndented(indent, "sample_type: 0x%" PRIx64 "\n", sample_type);
716 if (sample_type & PERF_SAMPLE_IP) {
717 PrintIndented(indent, "ip %p\n", reinterpret_cast<void*>(ip_data.ip));
718 }
719 if (sample_type & PERF_SAMPLE_TID) {
720 PrintIndented(indent, "pid %u, tid %u\n", tid_data.pid, tid_data.tid);
721 }
722 if (sample_type & PERF_SAMPLE_TIME) {
723 PrintIndented(indent, "time %" PRId64 "\n", time_data.time);
724 }
725 if (sample_type & PERF_SAMPLE_ADDR) {
726 PrintIndented(indent, "addr %p\n", reinterpret_cast<void*>(addr_data.addr));
727 }
728 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) {
729 PrintIndented(indent, "id %" PRId64 "\n", id_data.id);
730 }
731 if (sample_type & PERF_SAMPLE_STREAM_ID) {
732 PrintIndented(indent, "stream_id %" PRId64 "\n", stream_id_data.stream_id);
733 }
734 if (sample_type & PERF_SAMPLE_CPU) {
735 PrintIndented(indent, "cpu %u, res %u\n", cpu_data.cpu, cpu_data.res);
736 }
737 if (sample_type & PERF_SAMPLE_PERIOD) {
738 PrintIndented(indent, "period %" PRId64 "\n", period_data.period);
739 }
740 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
741 PrintIndented(indent, "callchain nr=%" PRIu64 "\n", callchain_data.ip_nr);
742 for (uint64_t i = 0; i < callchain_data.ip_nr; ++i) {
743 PrintIndented(indent + 1, "0x%" PRIx64 "\n", callchain_data.ips[i]);
744 }
745 }
746 if (sample_type & PERF_SAMPLE_RAW) {
747 PrintIndented(indent, "raw size=%zu\n", raw_data.size);
748 const uint32_t* data = reinterpret_cast<const uint32_t*>(raw_data.data);
749 size_t size = raw_data.size / sizeof(uint32_t);
750 for (size_t i = 0; i < size; ++i) {
751 PrintIndented(indent + 1, "0x%08x (%zu)\n", data[i], data[i]);
752 }
753 }
754 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
755 PrintIndented(indent, "branch_stack nr=%" PRIu64 "\n", branch_stack_data.stack_nr);
756 for (uint64_t i = 0; i < branch_stack_data.stack_nr; ++i) {
757 auto& item = branch_stack_data.stack[i];
758 PrintIndented(indent + 1, "from 0x%" PRIx64 ", to 0x%" PRIx64 ", flags 0x%" PRIx64 "\n",
759 item.from, item.to, item.flags);
760 }
761 }
762 if (sample_type & PERF_SAMPLE_REGS_USER) {
763 PrintIndented(indent, "user regs: abi=%" PRId64 "\n", regs_user_data.abi);
764 RegSet regs(regs_user_data.abi, regs_user_data.reg_mask, regs_user_data.regs);
765 for (size_t i = 0; i < 64; ++i) {
766 uint64_t value;
767 if (regs.GetRegValue(i, &value)) {
768 PrintIndented(indent + 1, "reg (%s) 0x%016" PRIx64 "\n", GetRegName(i, regs.arch).c_str(),
769 value);
770 }
771 }
772 }
773 if (sample_type & PERF_SAMPLE_STACK_USER) {
774 PrintIndented(indent, "user stack: size %zu dyn_size %" PRIu64 "\n", stack_user_data.size,
775 stack_user_data.dyn_size);
776 const uint64_t* p = reinterpret_cast<const uint64_t*>(stack_user_data.data);
777 const uint64_t* end = p + (stack_user_data.size / sizeof(uint64_t));
778 while (p < end) {
779 PrintIndented(indent + 1, "");
780 for (size_t i = 0; i < 4 && p < end; ++i, ++p) {
781 printf(" %016" PRIx64, *p);
782 }
783 printf("\n");
784 }
785 printf("\n");
786 }
787 }
788
Timestamp() const789 uint64_t SampleRecord::Timestamp() const {
790 return time_data.time;
791 }
Cpu() const792 uint32_t SampleRecord::Cpu() const {
793 return cpu_data.cpu;
794 }
Id() const795 uint64_t SampleRecord::Id() const {
796 return id_data.id;
797 }
798
AdjustCallChainGeneratedByKernel()799 void SampleRecord::AdjustCallChainGeneratedByKernel() {
800 // The kernel stores return addrs in the callchain, but we want the addrs of call instructions
801 // along the callchain.
802 uint64_t* ips = callchain_data.ips;
803 uint64_t context =
804 header.misc == PERF_RECORD_MISC_KERNEL ? PERF_CONTEXT_KERNEL : PERF_CONTEXT_USER;
805 bool first_frame = true;
806 for (size_t i = 0; i < callchain_data.ip_nr; ++i) {
807 if (ips[i] < PERF_CONTEXT_MAX) {
808 if (first_frame) {
809 first_frame = false;
810 } else {
811 if (ips[i] < 2) {
812 // A wrong ip address, erase it.
813 ips[i] = context;
814 } else {
815 // Here we want to change the return addr to the addr of the previous instruction. We
816 // don't need to find the exact start addr of the previous instruction. A location in
817 // [start_addr_of_call_inst, start_addr_of_next_inst) is enough.
818 #if defined(__arm__) || defined(__aarch64__)
819 // If we are built for arm/aarch64, this may be a callchain of thumb code. For thumb code,
820 // the real instruction addr is (ip & ~1), and ip - 2 can used to hit the address range
821 // of the previous instruction. For non thumb code, any addr in [ip - 4, ip - 1] is fine.
822 ips[i] -= 2;
823 #else
824 ips[i]--;
825 #endif
826 }
827 }
828 } else {
829 context = ips[i];
830 }
831 }
832 }
833
GetCallChain(size_t * kernel_ip_count) const834 std::vector<uint64_t> SampleRecord::GetCallChain(size_t* kernel_ip_count) const {
835 std::vector<uint64_t> ips;
836 bool in_kernel = InKernel();
837 ips.push_back(ip_data.ip);
838 *kernel_ip_count = in_kernel ? 1 : 0;
839 if ((sample_type & PERF_SAMPLE_CALLCHAIN) == 0) {
840 return ips;
841 }
842 bool first_ip = true;
843 for (uint64_t i = 0; i < callchain_data.ip_nr; ++i) {
844 uint64_t ip = callchain_data.ips[i];
845 if (ip >= PERF_CONTEXT_MAX) {
846 switch (ip) {
847 case PERF_CONTEXT_KERNEL:
848 in_kernel = true;
849 break;
850 case PERF_CONTEXT_USER:
851 in_kernel = false;
852 break;
853 default:
854 LOG(DEBUG) << "Unexpected perf_context in callchain: " << std::hex << ip << std::dec;
855 }
856 } else {
857 if (first_ip) {
858 first_ip = false;
859 // Remove duplication with sample ip.
860 if (ip == ip_data.ip) {
861 continue;
862 }
863 }
864 ips.push_back(ip);
865 if (in_kernel) {
866 ++*kernel_ip_count;
867 }
868 }
869 }
870 return ips;
871 }
872
AuxRecord(const perf_event_attr & attr,char * p)873 AuxRecord::AuxRecord(const perf_event_attr& attr, char* p) : Record(p) {
874 const char* end = p + size();
875 p += header_size();
876 data = reinterpret_cast<DataType*>(p);
877 p += sizeof(DataType);
878 sample_id.ReadFromBinaryFormat(attr, p, end);
879 }
880
DumpData(size_t indent) const881 void AuxRecord::DumpData(size_t indent) const {
882 PrintIndented(indent, "aux_offset %" PRIu64 "\n", data->aux_offset);
883 PrintIndented(indent, "aux_size %" PRIu64 "\n", data->aux_size);
884 PrintIndented(indent, "flags 0x%" PRIx64 "\n", data->flags);
885 }
886
BuildIdRecord(char * p)887 BuildIdRecord::BuildIdRecord(char* p) : Record(p) {
888 const char* end = p + size();
889 p += header_size();
890 MoveFromBinaryFormat(pid, p);
891 build_id = BuildId(p, BUILD_ID_SIZE);
892 p += Align(build_id.Size(), 8);
893 filename = p;
894 p += Align(strlen(filename) + 1, 64);
895 CHECK_EQ(p, end);
896 }
897
DumpData(size_t indent) const898 void BuildIdRecord::DumpData(size_t indent) const {
899 PrintIndented(indent, "pid %u\n", pid);
900 PrintIndented(indent, "build_id %s\n", build_id.ToString().c_str());
901 PrintIndented(indent, "filename %s\n", filename);
902 }
903
BuildIdRecord(bool in_kernel,uint32_t pid,const BuildId & build_id,const std::string & filename)904 BuildIdRecord::BuildIdRecord(bool in_kernel, uint32_t pid, const BuildId& build_id,
905 const std::string& filename) {
906 SetTypeAndMisc(PERF_RECORD_BUILD_ID, in_kernel ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER);
907 this->pid = pid;
908 this->build_id = build_id;
909 SetSize(header_size() + sizeof(this->pid) + Align(build_id.Size(), 8) +
910 Align(filename.size() + 1, 64));
911 char* new_binary = new char[size()];
912 char* p = new_binary;
913 MoveToBinaryFormat(header, p);
914 MoveToBinaryFormat(this->pid, p);
915 memcpy(p, build_id.Data(), build_id.Size());
916 p += Align(build_id.Size(), 8);
917 this->filename = p;
918 strcpy(p, filename.c_str());
919 UpdateBinary(new_binary);
920 }
921
AuxTraceInfoRecord(char * p)922 AuxTraceInfoRecord::AuxTraceInfoRecord(char* p) : Record(p) {
923 const char* end = p + size();
924 p += header_size();
925 data = reinterpret_cast<DataType*>(p);
926 CHECK_EQ(data->aux_type, AUX_TYPE_ETM);
927 CHECK_EQ(data->version, 0);
928 for (uint32_t i = 0; i < data->nr_cpu; ++i) {
929 CHECK_EQ(data->etm4_info[i].magic, MAGIC_ETM4);
930 }
931 p += sizeof(DataType) + data->nr_cpu * sizeof(ETM4Info);
932 CHECK_EQ(p, end);
933 }
934
AuxTraceInfoRecord(const DataType & data,const std::vector<ETM4Info> & etm4_info)935 AuxTraceInfoRecord::AuxTraceInfoRecord(const DataType& data,
936 const std::vector<ETM4Info>& etm4_info) {
937 SetTypeAndMisc(PERF_RECORD_AUXTRACE_INFO, 0);
938 SetSize(header_size() + sizeof(DataType) + sizeof(ETM4Info) * etm4_info.size());
939 char* new_binary = new char[size()];
940 char* p = new_binary;
941 MoveToBinaryFormat(header, p);
942 this->data = reinterpret_cast<DataType*>(p);
943 MoveToBinaryFormat(data, p);
944 for (auto& etm4 : etm4_info) {
945 MoveToBinaryFormat(etm4, p);
946 }
947 UpdateBinary(new_binary);
948 }
949
DumpData(size_t indent) const950 void AuxTraceInfoRecord::DumpData(size_t indent) const {
951 PrintIndented(indent, "aux_type %u\n", data->aux_type);
952 PrintIndented(indent, "version %" PRIu64 "\n", data->version);
953 PrintIndented(indent, "nr_cpu %u\n", data->nr_cpu);
954 PrintIndented(indent, "pmu_type %u\n", data->pmu_type);
955 PrintIndented(indent, "snapshot %" PRIu64 "\n", data->snapshot);
956 indent++;
957 for (int i = 0; i < data->nr_cpu; i++) {
958 const ETM4Info& e = data->etm4_info[i];
959 PrintIndented(indent, "magic 0x%" PRIx64 "\n", e.magic);
960 PrintIndented(indent, "cpu %" PRIu64 "\n", e.cpu);
961 PrintIndented(indent, "trcconfigr 0x%" PRIx64 "\n", e.trcconfigr);
962 PrintIndented(indent, "trctraceidr 0x%" PRIx64 "\n", e.trctraceidr);
963 PrintIndented(indent, "trcidr0 0x%" PRIx64 "\n", e.trcidr0);
964 PrintIndented(indent, "trcidr1 0x%" PRIx64 "\n", e.trcidr1);
965 PrintIndented(indent, "trcidr2 0x%" PRIx64 "\n", e.trcidr2);
966 PrintIndented(indent, "trcidr8 0x%" PRIx64 "\n", e.trcidr8);
967 PrintIndented(indent, "trcauthstatus 0x%" PRIx64 "\n", e.trcauthstatus);
968 }
969 }
970
AuxTraceRecord(char * p)971 AuxTraceRecord::AuxTraceRecord(char* p) : Record(p) {
972 const char* end = p + header.size;
973 p += header_size();
974 data = reinterpret_cast<DataType*>(p);
975 p += sizeof(DataType);
976 CHECK_EQ(p, end);
977 }
978
AuxTraceRecord(uint64_t aux_size,uint64_t offset,uint32_t idx,uint32_t tid,uint32_t cpu)979 AuxTraceRecord::AuxTraceRecord(uint64_t aux_size, uint64_t offset, uint32_t idx, uint32_t tid,
980 uint32_t cpu) {
981 SetTypeAndMisc(PERF_RECORD_AUXTRACE, 0);
982 SetSize(header_size() + sizeof(DataType));
983 char* new_binary = new char[size()];
984 char* p = new_binary;
985 MoveToBinaryFormat(header, p);
986 data = reinterpret_cast<DataType*>(p);
987 data->aux_size = aux_size;
988 data->offset = offset;
989 data->reserved0 = 0;
990 data->idx = idx;
991 data->tid = tid;
992 data->cpu = cpu;
993 data->reserved1 = 0;
994 UpdateBinary(new_binary);
995 }
996
DumpData(size_t indent) const997 void AuxTraceRecord::DumpData(size_t indent) const {
998 PrintIndented(indent, "aux_size %" PRIu64 "\n", data->aux_size);
999 PrintIndented(indent, "offset %" PRIu64 "\n", data->offset);
1000 PrintIndented(indent, "idx %u\n", data->idx);
1001 PrintIndented(indent, "tid %u\n", data->tid);
1002 PrintIndented(indent, "cpu %u\n", data->cpu);
1003 PrintIndented(indent, "location.file_offset %" PRIu64 "\n", location.file_offset);
1004 }
1005
KernelSymbolRecord(char * p)1006 KernelSymbolRecord::KernelSymbolRecord(char* p) : Record(p) {
1007 const char* end = p + size();
1008 p += header_size();
1009 MoveFromBinaryFormat(kallsyms_size, p);
1010 kallsyms = p;
1011 p += Align(kallsyms_size, 8);
1012 CHECK_EQ(p, end);
1013 }
1014
DumpData(size_t indent) const1015 void KernelSymbolRecord::DumpData(size_t indent) const {
1016 PrintIndented(indent, "kallsyms: %s\n", std::string(kallsyms, kallsyms + kallsyms_size).c_str());
1017 }
1018
KernelSymbolRecord(const std::string & kallsyms)1019 KernelSymbolRecord::KernelSymbolRecord(const std::string& kallsyms) {
1020 SetTypeAndMisc(SIMPLE_PERF_RECORD_KERNEL_SYMBOL, 0);
1021 kallsyms_size = kallsyms.size();
1022 SetSize(header_size() + 4 + Align(kallsyms.size(), 8));
1023 char* new_binary = new char[size()];
1024 char* p = new_binary;
1025 MoveToBinaryFormat(header, p);
1026 MoveToBinaryFormat(kallsyms_size, p);
1027 this->kallsyms = p;
1028 memcpy(p, kallsyms.data(), kallsyms_size);
1029 UpdateBinary(new_binary);
1030 }
1031
DsoRecord(char * p)1032 DsoRecord::DsoRecord(char* p) : Record(p) {
1033 const char* end = p + size();
1034 p += header_size();
1035 MoveFromBinaryFormat(dso_type, p);
1036 MoveFromBinaryFormat(dso_id, p);
1037 MoveFromBinaryFormat(min_vaddr, p);
1038 dso_name = p;
1039 p += Align(strlen(dso_name) + 1, 8);
1040 CHECK_EQ(p, end);
1041 }
1042
DsoRecord(uint64_t dso_type,uint64_t dso_id,const std::string & dso_name,uint64_t min_vaddr)1043 DsoRecord::DsoRecord(uint64_t dso_type, uint64_t dso_id, const std::string& dso_name,
1044 uint64_t min_vaddr) {
1045 SetTypeAndMisc(SIMPLE_PERF_RECORD_DSO, 0);
1046 this->dso_type = dso_type;
1047 this->dso_id = dso_id;
1048 this->min_vaddr = min_vaddr;
1049 SetSize(header_size() + 3 * sizeof(uint64_t) + Align(dso_name.size() + 1, 8));
1050 char* new_binary = new char[size()];
1051 char* p = new_binary;
1052 MoveToBinaryFormat(header, p);
1053 MoveToBinaryFormat(dso_type, p);
1054 MoveToBinaryFormat(dso_id, p);
1055 MoveToBinaryFormat(min_vaddr, p);
1056 this->dso_name = p;
1057 strcpy(p, dso_name.c_str());
1058 UpdateBinary(new_binary);
1059 }
1060
DumpData(size_t indent) const1061 void DsoRecord::DumpData(size_t indent) const {
1062 PrintIndented(indent, "dso_type: %s(%" PRIu64 ")\n",
1063 DsoTypeToString(static_cast<DsoType>(dso_type)), dso_type);
1064 PrintIndented(indent, "dso_id: %" PRIu64 "\n", dso_id);
1065 PrintIndented(indent, "min_vaddr: 0x%" PRIx64 "\n", min_vaddr);
1066 PrintIndented(indent, "dso_name: %s\n", dso_name);
1067 }
1068
SymbolRecord(char * p)1069 SymbolRecord::SymbolRecord(char* p) : Record(p) {
1070 const char* end = p + size();
1071 p += header_size();
1072 MoveFromBinaryFormat(addr, p);
1073 MoveFromBinaryFormat(len, p);
1074 MoveFromBinaryFormat(dso_id, p);
1075 name = p;
1076 p += Align(strlen(name) + 1, 8);
1077 CHECK_EQ(p, end);
1078 }
1079
SymbolRecord(uint64_t addr,uint64_t len,const std::string & name,uint64_t dso_id)1080 SymbolRecord::SymbolRecord(uint64_t addr, uint64_t len, const std::string& name, uint64_t dso_id) {
1081 SetTypeAndMisc(SIMPLE_PERF_RECORD_SYMBOL, 0);
1082 this->addr = addr;
1083 this->len = len;
1084 this->dso_id = dso_id;
1085 SetSize(header_size() + 3 * sizeof(uint64_t) + Align(name.size() + 1, 8));
1086 char* new_binary = new char[size()];
1087 char* p = new_binary;
1088 MoveToBinaryFormat(header, p);
1089 MoveToBinaryFormat(addr, p);
1090 MoveToBinaryFormat(len, p);
1091 MoveToBinaryFormat(dso_id, p);
1092 this->name = p;
1093 strcpy(p, name.c_str());
1094 UpdateBinary(new_binary);
1095 }
1096
DumpData(size_t indent) const1097 void SymbolRecord::DumpData(size_t indent) const {
1098 PrintIndented(indent, "name: %s\n", name);
1099 PrintIndented(indent, "addr: 0x%" PRIx64 "\n", addr);
1100 PrintIndented(indent, "len: 0x%" PRIx64 "\n", len);
1101 PrintIndented(indent, "dso_id: %" PRIu64 "\n", dso_id);
1102 }
1103
TracingDataRecord(char * p)1104 TracingDataRecord::TracingDataRecord(char* p) : Record(p) {
1105 const char* end = p + size();
1106 p += header_size();
1107 MoveFromBinaryFormat(data_size, p);
1108 data = p;
1109 p += Align(data_size, 64);
1110 CHECK_EQ(p, end);
1111 }
1112
TracingDataRecord(const std::vector<char> & tracing_data)1113 TracingDataRecord::TracingDataRecord(const std::vector<char>& tracing_data) {
1114 SetTypeAndMisc(SIMPLE_PERF_RECORD_TRACING_DATA, 0);
1115 data_size = tracing_data.size();
1116 SetSize(header_size() + sizeof(uint32_t) + Align(tracing_data.size(), 64));
1117 char* new_binary = new char[size()];
1118 char* p = new_binary;
1119 MoveToBinaryFormat(header, p);
1120 MoveToBinaryFormat(data_size, p);
1121 data = p;
1122 memcpy(p, tracing_data.data(), data_size);
1123 UpdateBinary(new_binary);
1124 }
1125
DumpData(size_t indent) const1126 void TracingDataRecord::DumpData(size_t indent) const {
1127 Tracing tracing(std::vector<char>(data, data + data_size));
1128 tracing.Dump(indent);
1129 }
1130
EventIdRecord(char * p)1131 EventIdRecord::EventIdRecord(char* p) : Record(p) {
1132 const char* end = p + size();
1133 p += header_size();
1134 MoveFromBinaryFormat(count, p);
1135 data = reinterpret_cast<const EventIdData*>(p);
1136 p += sizeof(data[0]) * count;
1137 CHECK_EQ(p, end);
1138 }
1139
EventIdRecord(const std::vector<uint64_t> & data)1140 EventIdRecord::EventIdRecord(const std::vector<uint64_t>& data) {
1141 SetTypeAndMisc(SIMPLE_PERF_RECORD_EVENT_ID, 0);
1142 SetSize(header_size() + sizeof(uint64_t) * (1 + data.size()));
1143 char* new_binary = new char[size()];
1144 char* p = new_binary;
1145 MoveToBinaryFormat(header, p);
1146 count = data.size() / 2;
1147 MoveToBinaryFormat(count, p);
1148 this->data = reinterpret_cast<EventIdData*>(p);
1149 memcpy(p, data.data(), sizeof(uint64_t) * data.size());
1150 UpdateBinary(new_binary);
1151 }
1152
DumpData(size_t indent) const1153 void EventIdRecord::DumpData(size_t indent) const {
1154 PrintIndented(indent, "count: %" PRIu64 "\n", count);
1155 for (size_t i = 0; i < count; ++i) {
1156 PrintIndented(indent, "attr_id[%" PRIu64 "]: %" PRIu64 "\n", i, data[i].attr_id);
1157 PrintIndented(indent, "event_id[%" PRIu64 "]: %" PRIu64 "\n", i, data[i].event_id);
1158 }
1159 }
1160
CallChainRecord(char * p)1161 CallChainRecord::CallChainRecord(char* p) : Record(p) {
1162 const char* end = p + size();
1163 p += header_size();
1164 MoveFromBinaryFormat(pid, p);
1165 MoveFromBinaryFormat(tid, p);
1166 MoveFromBinaryFormat(chain_type, p);
1167 MoveFromBinaryFormat(time, p);
1168 MoveFromBinaryFormat(ip_nr, p);
1169 ips = reinterpret_cast<uint64_t*>(p);
1170 p += ip_nr * sizeof(uint64_t);
1171 sps = reinterpret_cast<uint64_t*>(p);
1172 p += ip_nr * sizeof(uint64_t);
1173 CHECK_EQ(p, end);
1174 }
1175
CallChainRecord(pid_t pid,pid_t tid,CallChainJoiner::ChainType type,uint64_t time,const std::vector<uint64_t> & ips,const std::vector<uint64_t> & sps)1176 CallChainRecord::CallChainRecord(pid_t pid, pid_t tid, CallChainJoiner::ChainType type,
1177 uint64_t time, const std::vector<uint64_t>& ips,
1178 const std::vector<uint64_t>& sps) {
1179 CHECK_EQ(ips.size(), sps.size());
1180 SetTypeAndMisc(SIMPLE_PERF_RECORD_CALLCHAIN, 0);
1181 this->pid = pid;
1182 this->tid = tid;
1183 this->chain_type = static_cast<int>(type);
1184 this->time = time;
1185 this->ip_nr = ips.size();
1186 SetSize(header_size() + (4 + ips.size() * 2) * sizeof(uint64_t));
1187 char* new_binary = new char[size()];
1188 char* p = new_binary;
1189 MoveToBinaryFormat(header, p);
1190 MoveToBinaryFormat(this->pid, p);
1191 MoveToBinaryFormat(this->tid, p);
1192 MoveToBinaryFormat(this->chain_type, p);
1193 MoveToBinaryFormat(this->time, p);
1194 MoveToBinaryFormat(this->ip_nr, p);
1195 this->ips = reinterpret_cast<uint64_t*>(p);
1196 MoveToBinaryFormat(ips.data(), ips.size(), p);
1197 this->sps = reinterpret_cast<uint64_t*>(p);
1198 MoveToBinaryFormat(sps.data(), sps.size(), p);
1199 UpdateBinary(new_binary);
1200 }
1201
DumpData(size_t indent) const1202 void CallChainRecord::DumpData(size_t indent) const {
1203 const char* type_name = "";
1204 switch (chain_type) {
1205 case CallChainJoiner::ORIGINAL_OFFLINE:
1206 type_name = "ORIGINAL_OFFLINE";
1207 break;
1208 case CallChainJoiner::ORIGINAL_REMOTE:
1209 type_name = "ORIGINAL_REMOTE";
1210 break;
1211 case CallChainJoiner::JOINED_OFFLINE:
1212 type_name = "JOINED_OFFLINE";
1213 break;
1214 case CallChainJoiner::JOINED_REMOTE:
1215 type_name = "JOINED_REMOTE";
1216 break;
1217 }
1218 PrintIndented(indent, "pid %u\n", pid);
1219 PrintIndented(indent, "tid %u\n", tid);
1220 PrintIndented(indent, "chain_type %s\n", type_name);
1221 PrintIndented(indent, "time %" PRIu64 "\n", time);
1222 PrintIndented(indent, "ip_nr %" PRIu64 "\n", ip_nr);
1223 for (size_t i = 0; i < ip_nr; ++i) {
1224 PrintIndented(indent + 1, "ip 0x%" PRIx64 ", sp 0x%" PRIx64 "\n", ips[i], sps[i]);
1225 }
1226 }
1227
UnwindingResultRecord(char * p)1228 UnwindingResultRecord::UnwindingResultRecord(char* p) : Record(p) {
1229 const char* end = p + size();
1230 p += header_size();
1231 MoveFromBinaryFormat(time, p);
1232 MoveFromBinaryFormat(unwinding_result.used_time, p);
1233 MoveFromBinaryFormat(unwinding_result.error_code, p);
1234 MoveFromBinaryFormat(unwinding_result.error_addr, p);
1235 MoveFromBinaryFormat(unwinding_result.stack_start, p);
1236 MoveFromBinaryFormat(unwinding_result.stack_end, p);
1237
1238 // regs_user_data
1239 MoveFromBinaryFormat(regs_user_data.abi, p);
1240 MoveFromBinaryFormat(regs_user_data.reg_mask, p);
1241 size_t bit_nr = __builtin_popcountll(regs_user_data.reg_mask);
1242 regs_user_data.reg_nr = bit_nr;
1243 regs_user_data.regs = reinterpret_cast<uint64_t*>(p);
1244 p += bit_nr * sizeof(uint64_t);
1245
1246 // stack_user_data
1247 MoveFromBinaryFormat(stack_user_data.size, p);
1248 if (stack_user_data.size == 0) {
1249 stack_user_data.dyn_size = 0;
1250 } else {
1251 stack_user_data.data = p;
1252 p += stack_user_data.size;
1253 MoveFromBinaryFormat(stack_user_data.dyn_size, p);
1254 }
1255
1256 // callchain
1257 if (p < end) {
1258 MoveFromBinaryFormat(callchain.length, p);
1259 callchain.ips = reinterpret_cast<uint64_t*>(p);
1260 p += callchain.length * sizeof(uint64_t);
1261 callchain.sps = reinterpret_cast<uint64_t*>(p);
1262 p += callchain.length * sizeof(uint64_t);
1263 }
1264 CHECK_LE(p, end);
1265 }
1266
UnwindingResultRecord(uint64_t time,const UnwindingResult & unwinding_result,const PerfSampleRegsUserType & regs_user_data,const PerfSampleStackUserType & stack_user_data,const std::vector<uint64_t> & ips,const std::vector<uint64_t> & sps)1267 UnwindingResultRecord::UnwindingResultRecord(uint64_t time, const UnwindingResult& unwinding_result,
1268 const PerfSampleRegsUserType& regs_user_data,
1269 const PerfSampleStackUserType& stack_user_data,
1270 const std::vector<uint64_t>& ips,
1271 const std::vector<uint64_t>& sps) {
1272 SetTypeAndMisc(SIMPLE_PERF_RECORD_UNWINDING_RESULT, 0);
1273 uint32_t size = header_size() + 6 * sizeof(uint64_t);
1274 size += (2 + regs_user_data.reg_nr) * sizeof(uint64_t);
1275 size +=
1276 stack_user_data.size == 0 ? sizeof(uint64_t) : (2 * sizeof(uint64_t) + stack_user_data.size);
1277 CHECK_EQ(ips.size(), sps.size());
1278 size += (1 + ips.size() * 2) * sizeof(uint64_t);
1279 SetSize(size);
1280 this->time = time;
1281 this->unwinding_result = unwinding_result;
1282 char* new_binary = new char[size];
1283 char* p = new_binary;
1284 MoveToBinaryFormat(header, p);
1285 MoveToBinaryFormat(this->time, p);
1286 MoveToBinaryFormat(unwinding_result.used_time, p);
1287 MoveToBinaryFormat(unwinding_result.error_code, p);
1288 MoveToBinaryFormat(unwinding_result.error_addr, p);
1289 MoveToBinaryFormat(unwinding_result.stack_start, p);
1290 MoveToBinaryFormat(unwinding_result.stack_end, p);
1291 MoveToBinaryFormat(regs_user_data.abi, p);
1292 MoveToBinaryFormat(regs_user_data.reg_mask, p);
1293 if (regs_user_data.reg_nr > 0) {
1294 MoveToBinaryFormat(regs_user_data.regs, regs_user_data.reg_nr, p);
1295 }
1296 MoveToBinaryFormat(stack_user_data.size, p);
1297 if (stack_user_data.size > 0) {
1298 MoveToBinaryFormat(stack_user_data.data, stack_user_data.size, p);
1299 MoveToBinaryFormat(stack_user_data.dyn_size, p);
1300 }
1301 MoveToBinaryFormat(static_cast<uint64_t>(ips.size()), p);
1302 MoveToBinaryFormat(ips.data(), ips.size(), p);
1303 MoveToBinaryFormat(sps.data(), sps.size(), p);
1304 CHECK_EQ(p, new_binary + size);
1305 UpdateBinary(new_binary);
1306 }
1307
DumpData(size_t indent) const1308 void UnwindingResultRecord::DumpData(size_t indent) const {
1309 PrintIndented(indent, "time %" PRIu64 "\n", time);
1310 PrintIndented(indent, "used_time %" PRIu64 "\n", unwinding_result.used_time);
1311 PrintIndented(indent, "error_code %" PRIu64 "\n", unwinding_result.error_code);
1312 PrintIndented(indent, "error_addr 0x%" PRIx64 "\n", unwinding_result.error_addr);
1313 PrintIndented(indent, "stack_start 0x%" PRIx64 "\n", unwinding_result.stack_start);
1314 PrintIndented(indent, "stack_end 0x%" PRIx64 "\n", unwinding_result.stack_end);
1315 if (regs_user_data.reg_nr > 0) {
1316 PrintIndented(indent, "user regs: abi=%" PRId64 "\n", regs_user_data.abi);
1317 RegSet regs(regs_user_data.abi, regs_user_data.reg_mask, regs_user_data.regs);
1318 for (size_t i = 0; i < 64; ++i) {
1319 uint64_t value;
1320 if (regs.GetRegValue(i, &value)) {
1321 PrintIndented(indent + 1, "reg (%s) 0x%016" PRIx64 "\n", GetRegName(i, regs.arch).c_str(),
1322 value);
1323 }
1324 }
1325 }
1326 if (stack_user_data.size > 0) {
1327 PrintIndented(indent, "user stack: size %zu dyn_size %" PRIu64 "\n", stack_user_data.size,
1328 stack_user_data.dyn_size);
1329 const uint64_t* p = reinterpret_cast<const uint64_t*>(stack_user_data.data);
1330 const uint64_t* end = p + (stack_user_data.size / sizeof(uint64_t));
1331 while (p < end) {
1332 PrintIndented(indent + 1, "");
1333 for (size_t i = 0; i < 4 && p < end; ++i, ++p) {
1334 printf(" %016" PRIx64, *p);
1335 }
1336 printf("\n");
1337 }
1338 printf("\n");
1339 }
1340 if (callchain.length > 0) {
1341 PrintIndented(indent, "callchain length=%" PRIu64 ":\n", callchain.length);
1342 for (uint64_t i = 0; i < callchain.length; i++) {
1343 PrintIndented(indent + 1, "ip_%" PRIu64 ": 0x%" PRIx64 "\n", i + 1, callchain.ips[i]);
1344 PrintIndented(indent + 1, "sp_%" PRIu64 ": 0x%" PRIx64 "\n", i + 1, callchain.sps[i]);
1345 }
1346 }
1347 }
1348
UnknownRecord(char * p)1349 UnknownRecord::UnknownRecord(char* p) : Record(p) {
1350 p += header_size();
1351 data = p;
1352 }
1353
DumpData(size_t) const1354 void UnknownRecord::DumpData(size_t) const {}
1355
ReadRecordFromBuffer(const perf_event_attr & attr,uint32_t type,char * p)1356 std::unique_ptr<Record> ReadRecordFromBuffer(const perf_event_attr& attr, uint32_t type, char* p) {
1357 switch (type) {
1358 case PERF_RECORD_MMAP:
1359 return std::unique_ptr<Record>(new MmapRecord(attr, p));
1360 case PERF_RECORD_MMAP2:
1361 return std::unique_ptr<Record>(new Mmap2Record(attr, p));
1362 case PERF_RECORD_COMM:
1363 return std::unique_ptr<Record>(new CommRecord(attr, p));
1364 case PERF_RECORD_EXIT:
1365 return std::unique_ptr<Record>(new ExitRecord(attr, p));
1366 case PERF_RECORD_FORK:
1367 return std::unique_ptr<Record>(new ForkRecord(attr, p));
1368 case PERF_RECORD_LOST:
1369 return std::unique_ptr<Record>(new LostRecord(attr, p));
1370 case PERF_RECORD_SAMPLE:
1371 return std::unique_ptr<Record>(new SampleRecord(attr, p));
1372 case PERF_RECORD_AUX:
1373 return std::unique_ptr<Record>(new AuxRecord(attr, p));
1374 case PERF_RECORD_TRACING_DATA:
1375 return std::unique_ptr<Record>(new TracingDataRecord(p));
1376 case PERF_RECORD_AUXTRACE_INFO:
1377 return std::unique_ptr<Record>(new AuxTraceInfoRecord(p));
1378 case PERF_RECORD_AUXTRACE:
1379 return std::unique_ptr<Record>(new AuxTraceRecord(p));
1380 case SIMPLE_PERF_RECORD_KERNEL_SYMBOL:
1381 return std::unique_ptr<Record>(new KernelSymbolRecord(p));
1382 case SIMPLE_PERF_RECORD_DSO:
1383 return std::unique_ptr<Record>(new DsoRecord(p));
1384 case SIMPLE_PERF_RECORD_SYMBOL:
1385 return std::unique_ptr<Record>(new SymbolRecord(p));
1386 case SIMPLE_PERF_RECORD_EVENT_ID:
1387 return std::unique_ptr<Record>(new EventIdRecord(p));
1388 case SIMPLE_PERF_RECORD_CALLCHAIN:
1389 return std::unique_ptr<Record>(new CallChainRecord(p));
1390 case SIMPLE_PERF_RECORD_UNWINDING_RESULT:
1391 return std::unique_ptr<Record>(new UnwindingResultRecord(p));
1392 case SIMPLE_PERF_RECORD_TRACING_DATA:
1393 return std::unique_ptr<Record>(new TracingDataRecord(p));
1394 default:
1395 return std::unique_ptr<Record>(new UnknownRecord(p));
1396 }
1397 }
1398
ReadRecordFromOwnedBuffer(const perf_event_attr & attr,uint32_t type,char * p)1399 std::unique_ptr<Record> ReadRecordFromOwnedBuffer(const perf_event_attr& attr, uint32_t type,
1400 char* p) {
1401 std::unique_ptr<Record> record = ReadRecordFromBuffer(attr, type, p);
1402 if (record != nullptr) {
1403 record->OwnBinary();
1404 } else {
1405 delete[] p;
1406 }
1407 return record;
1408 }
1409
ReadRecordsFromBuffer(const perf_event_attr & attr,char * buf,size_t buf_size)1410 std::vector<std::unique_ptr<Record>> ReadRecordsFromBuffer(const perf_event_attr& attr, char* buf,
1411 size_t buf_size) {
1412 std::vector<std::unique_ptr<Record>> result;
1413 char* p = buf;
1414 char* end = buf + buf_size;
1415 while (p < end) {
1416 RecordHeader header(p);
1417 CHECK_LE(p + header.size, end);
1418 CHECK_NE(0u, header.size);
1419 result.push_back(ReadRecordFromBuffer(attr, header.type, p));
1420 p += header.size;
1421 }
1422 return result;
1423 }
1424
ReadRecordFromBuffer(const perf_event_attr & attr,char * p)1425 std::unique_ptr<Record> ReadRecordFromBuffer(const perf_event_attr& attr, char* p) {
1426 auto header = reinterpret_cast<const perf_event_header*>(p);
1427 return ReadRecordFromBuffer(attr, header->type, p);
1428 }
1429
1430 } // namespace simpleperf
1431