1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "class_linker.h"
18
19 #include <unistd.h>
20
21 #include <algorithm>
22 #include <deque>
23 #include <forward_list>
24 #include <iostream>
25 #include <map>
26 #include <memory>
27 #include <queue>
28 #include <string>
29 #include <string_view>
30 #include <tuple>
31 #include <utility>
32 #include <vector>
33
34 #include "android-base/stringprintf.h"
35
36 #include "art_field-inl.h"
37 #include "art_method-inl.h"
38 #include "barrier.h"
39 #include "base/arena_allocator.h"
40 #include "base/casts.h"
41 #include "base/file_utils.h"
42 #include "base/hash_map.h"
43 #include "base/hash_set.h"
44 #include "base/leb128.h"
45 #include "base/logging.h"
46 #include "base/metrics/metrics.h"
47 #include "base/mutex-inl.h"
48 #include "base/os.h"
49 #include "base/quasi_atomic.h"
50 #include "base/scoped_arena_containers.h"
51 #include "base/scoped_flock.h"
52 #include "base/stl_util.h"
53 #include "base/string_view_cpp20.h"
54 #include "base/systrace.h"
55 #include "base/time_utils.h"
56 #include "base/unix_file/fd_file.h"
57 #include "base/utils.h"
58 #include "base/value_object.h"
59 #include "cha.h"
60 #include "class_linker-inl.h"
61 #include "class_loader_utils.h"
62 #include "class_root-inl.h"
63 #include "class_table-inl.h"
64 #include "compiler_callbacks.h"
65 #include "debug_print.h"
66 #include "debugger.h"
67 #include "dex/class_accessor-inl.h"
68 #include "dex/descriptors_names.h"
69 #include "dex/dex_file-inl.h"
70 #include "dex/dex_file_exception_helpers.h"
71 #include "dex/dex_file_loader.h"
72 #include "dex/signature-inl.h"
73 #include "dex/utf.h"
74 #include "entrypoints/entrypoint_utils-inl.h"
75 #include "entrypoints/runtime_asm_entrypoints.h"
76 #include "experimental_flags.h"
77 #include "gc/accounting/card_table-inl.h"
78 #include "gc/accounting/heap_bitmap-inl.h"
79 #include "gc/accounting/space_bitmap-inl.h"
80 #include "gc/heap-visit-objects-inl.h"
81 #include "gc/heap.h"
82 #include "gc/scoped_gc_critical_section.h"
83 #include "gc/space/image_space.h"
84 #include "gc/space/space-inl.h"
85 #include "gc_root-inl.h"
86 #include "handle_scope-inl.h"
87 #include "hidden_api.h"
88 #include "image-inl.h"
89 #include "imt_conflict_table.h"
90 #include "imtable-inl.h"
91 #include "intern_table-inl.h"
92 #include "interpreter/interpreter.h"
93 #include "interpreter/mterp/nterp.h"
94 #include "jit/debugger_interface.h"
95 #include "jit/jit.h"
96 #include "jit/jit_code_cache.h"
97 #include "jni/java_vm_ext.h"
98 #include "jni/jni_internal.h"
99 #include "linear_alloc.h"
100 #include "mirror/array-alloc-inl.h"
101 #include "mirror/array-inl.h"
102 #include "mirror/call_site.h"
103 #include "mirror/class-alloc-inl.h"
104 #include "mirror/class-inl.h"
105 #include "mirror/class.h"
106 #include "mirror/class_ext.h"
107 #include "mirror/class_loader.h"
108 #include "mirror/dex_cache-inl.h"
109 #include "mirror/dex_cache.h"
110 #include "mirror/emulated_stack_frame.h"
111 #include "mirror/field.h"
112 #include "mirror/iftable-inl.h"
113 #include "mirror/method.h"
114 #include "mirror/method_handle_impl.h"
115 #include "mirror/method_handles_lookup.h"
116 #include "mirror/method_type.h"
117 #include "mirror/object-inl.h"
118 #include "mirror/object-refvisitor-inl.h"
119 #include "mirror/object.h"
120 #include "mirror/object_array-alloc-inl.h"
121 #include "mirror/object_array-inl.h"
122 #include "mirror/object_array.h"
123 #include "mirror/object_reference.h"
124 #include "mirror/object_reference-inl.h"
125 #include "mirror/proxy.h"
126 #include "mirror/reference-inl.h"
127 #include "mirror/stack_trace_element.h"
128 #include "mirror/string-inl.h"
129 #include "mirror/throwable.h"
130 #include "mirror/var_handle.h"
131 #include "native/dalvik_system_DexFile.h"
132 #include "nativehelper/scoped_local_ref.h"
133 #include "nterp_helpers.h"
134 #include "oat.h"
135 #include "oat_file-inl.h"
136 #include "oat_file.h"
137 #include "oat_file_assistant.h"
138 #include "oat_file_manager.h"
139 #include "object_lock.h"
140 #include "profile/profile_compilation_info.h"
141 #include "runtime.h"
142 #include "runtime_callbacks.h"
143 #include "scoped_thread_state_change-inl.h"
144 #include "thread-inl.h"
145 #include "thread.h"
146 #include "thread_list.h"
147 #include "trace.h"
148 #include "transaction.h"
149 #include "vdex_file.h"
150 #include "verifier/class_verifier.h"
151 #include "verifier/verifier_deps.h"
152 #include "well_known_classes.h"
153
154 #include "interpreter/interpreter_mterp_impl.h"
155
156 namespace art {
157
158 using android::base::StringPrintf;
159
160 static constexpr bool kCheckImageObjects = kIsDebugBuild;
161 static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild;
162
163 static void ThrowNoClassDefFoundError(const char* fmt, ...)
164 __attribute__((__format__(__printf__, 1, 2)))
165 REQUIRES_SHARED(Locks::mutator_lock_);
ThrowNoClassDefFoundError(const char * fmt,...)166 static void ThrowNoClassDefFoundError(const char* fmt, ...) {
167 va_list args;
168 va_start(args, fmt);
169 Thread* self = Thread::Current();
170 self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args);
171 va_end(args);
172 }
173
HasInitWithString(Thread * self,ClassLinker * class_linker,const char * descriptor)174 static bool HasInitWithString(Thread* self, ClassLinker* class_linker, const char* descriptor)
175 REQUIRES_SHARED(Locks::mutator_lock_) {
176 ArtMethod* method = self->GetCurrentMethod(nullptr);
177 StackHandleScope<1> hs(self);
178 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method != nullptr ?
179 method->GetDeclaringClass()->GetClassLoader() : nullptr));
180 ObjPtr<mirror::Class> exception_class = class_linker->FindClass(self, descriptor, class_loader);
181
182 if (exception_class == nullptr) {
183 // No exc class ~ no <init>-with-string.
184 CHECK(self->IsExceptionPending());
185 self->ClearException();
186 return false;
187 }
188
189 ArtMethod* exception_init_method = exception_class->FindConstructor(
190 "(Ljava/lang/String;)V", class_linker->GetImagePointerSize());
191 return exception_init_method != nullptr;
192 }
193
GetVerifyError(ObjPtr<mirror::Class> c)194 static ObjPtr<mirror::Object> GetVerifyError(ObjPtr<mirror::Class> c)
195 REQUIRES_SHARED(Locks::mutator_lock_) {
196 ObjPtr<mirror::ClassExt> ext(c->GetExtData());
197 if (ext == nullptr) {
198 return nullptr;
199 } else {
200 return ext->GetVerifyError();
201 }
202 }
203
204 // Helper for ThrowEarlierClassFailure. Throws the stored error.
HandleEarlierVerifyError(Thread * self,ClassLinker * class_linker,ObjPtr<mirror::Class> c)205 static void HandleEarlierVerifyError(Thread* self,
206 ClassLinker* class_linker,
207 ObjPtr<mirror::Class> c)
208 REQUIRES_SHARED(Locks::mutator_lock_) {
209 ObjPtr<mirror::Object> obj = GetVerifyError(c);
210 DCHECK(obj != nullptr);
211 self->AssertNoPendingException();
212 if (obj->IsClass()) {
213 // Previous error has been stored as class. Create a new exception of that type.
214
215 // It's possible the exception doesn't have a <init>(String).
216 std::string temp;
217 const char* descriptor = obj->AsClass()->GetDescriptor(&temp);
218
219 if (HasInitWithString(self, class_linker, descriptor)) {
220 self->ThrowNewException(descriptor, c->PrettyDescriptor().c_str());
221 } else {
222 self->ThrowNewException(descriptor, nullptr);
223 }
224 } else {
225 // Previous error has been stored as an instance. Just rethrow.
226 ObjPtr<mirror::Class> throwable_class = GetClassRoot<mirror::Throwable>(class_linker);
227 ObjPtr<mirror::Class> error_class = obj->GetClass();
228 CHECK(throwable_class->IsAssignableFrom(error_class));
229 self->SetException(obj->AsThrowable());
230 }
231 self->AssertPendingException();
232 }
233
ChangeInterpreterBridgeToNterp(ArtMethod * method,ClassLinker * class_linker)234 static void ChangeInterpreterBridgeToNterp(ArtMethod* method, ClassLinker* class_linker)
235 REQUIRES_SHARED(Locks::mutator_lock_) {
236 Runtime* runtime = Runtime::Current();
237 if (class_linker->IsQuickToInterpreterBridge(method->GetEntryPointFromQuickCompiledCode()) &&
238 CanMethodUseNterp(method)) {
239 if (method->GetDeclaringClass()->IsVisiblyInitialized() ||
240 !NeedsClinitCheckBeforeCall(method)) {
241 runtime->GetInstrumentation()->UpdateMethodsCode(method, interpreter::GetNterpEntryPoint());
242 } else {
243 // Put the resolution stub, which will initialize the class and then
244 // call the method with nterp.
245 runtime->GetInstrumentation()->UpdateMethodsCode(method, GetQuickResolutionStub());
246 }
247 }
248 }
249
250 // Ensures that methods have the kAccSkipAccessChecks bit set. We use the
251 // kAccVerificationAttempted bit on the class access flags to determine whether this has been done
252 // before.
EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass,PointerSize pointer_size)253 static void EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass, PointerSize pointer_size)
254 REQUIRES_SHARED(Locks::mutator_lock_) {
255 Runtime* runtime = Runtime::Current();
256 ClassLinker* class_linker = runtime->GetClassLinker();
257 if (!klass->WasVerificationAttempted()) {
258 klass->SetSkipAccessChecksFlagOnAllMethods(pointer_size);
259 klass->SetVerificationAttempted();
260 // Now that the class has passed verification, try to set nterp entrypoints
261 // to methods that currently use the switch interpreter.
262 if (interpreter::CanRuntimeUseNterp()) {
263 for (ArtMethod& m : klass->GetMethods(pointer_size)) {
264 ChangeInterpreterBridgeToNterp(&m, class_linker);
265 }
266 }
267 }
268 }
269
270 // Callback responsible for making a batch of classes visibly initialized
271 // after all threads have called it from a checkpoint, ensuring visibility.
272 class ClassLinker::VisiblyInitializedCallback final
273 : public Closure, public IntrusiveForwardListNode<VisiblyInitializedCallback> {
274 public:
VisiblyInitializedCallback(ClassLinker * class_linker)275 explicit VisiblyInitializedCallback(ClassLinker* class_linker)
276 : class_linker_(class_linker),
277 num_classes_(0u),
278 thread_visibility_counter_(0),
279 barriers_() {
280 std::fill_n(classes_, kMaxClasses, nullptr);
281 }
282
IsEmpty() const283 bool IsEmpty() const {
284 DCHECK_LE(num_classes_, kMaxClasses);
285 return num_classes_ == 0u;
286 }
287
IsFull() const288 bool IsFull() const {
289 DCHECK_LE(num_classes_, kMaxClasses);
290 return num_classes_ == kMaxClasses;
291 }
292
AddClass(Thread * self,ObjPtr<mirror::Class> klass)293 void AddClass(Thread* self, ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
294 DCHECK_EQ(klass->GetStatus(), ClassStatus::kInitialized);
295 DCHECK(!IsFull());
296 classes_[num_classes_] = self->GetJniEnv()->GetVm()->AddWeakGlobalRef(self, klass);
297 ++num_classes_;
298 }
299
AddBarrier(Barrier * barrier)300 void AddBarrier(Barrier* barrier) {
301 barriers_.push_front(barrier);
302 }
303
GetAndClearBarriers()304 std::forward_list<Barrier*> GetAndClearBarriers() {
305 std::forward_list<Barrier*> result;
306 result.swap(barriers_);
307 result.reverse(); // Return barriers in insertion order.
308 return result;
309 }
310
MakeVisible(Thread * self)311 void MakeVisible(Thread* self) {
312 DCHECK_EQ(thread_visibility_counter_.load(std::memory_order_relaxed), 0);
313 size_t count = Runtime::Current()->GetThreadList()->RunCheckpoint(this);
314 AdjustThreadVisibilityCounter(self, count);
315 }
316
Run(Thread * self)317 void Run(Thread* self) override {
318 self->ClearMakeVisiblyInitializedCounter();
319 AdjustThreadVisibilityCounter(self, -1);
320 }
321
322 private:
AdjustThreadVisibilityCounter(Thread * self,ssize_t adjustment)323 void AdjustThreadVisibilityCounter(Thread* self, ssize_t adjustment) {
324 ssize_t old = thread_visibility_counter_.fetch_add(adjustment, std::memory_order_relaxed);
325 if (old + adjustment == 0) {
326 // All threads passed the checkpoint. Mark classes as visibly initialized.
327 {
328 ScopedObjectAccess soa(self);
329 StackHandleScope<1u> hs(self);
330 MutableHandle<mirror::Class> klass = hs.NewHandle<mirror::Class>(nullptr);
331 JavaVMExt* vm = self->GetJniEnv()->GetVm();
332 for (size_t i = 0, num = num_classes_; i != num; ++i) {
333 klass.Assign(ObjPtr<mirror::Class>::DownCast(self->DecodeJObject(classes_[i])));
334 vm->DeleteWeakGlobalRef(self, classes_[i]);
335 if (klass != nullptr) {
336 mirror::Class::SetStatus(klass, ClassStatus::kVisiblyInitialized, self);
337 class_linker_->FixupStaticTrampolines(self, klass.Get());
338 }
339 }
340 num_classes_ = 0u;
341 }
342 class_linker_->VisiblyInitializedCallbackDone(self, this);
343 }
344 }
345
346 static constexpr size_t kMaxClasses = 16;
347
348 ClassLinker* const class_linker_;
349 size_t num_classes_;
350 jweak classes_[kMaxClasses];
351
352 // The thread visibility counter starts at 0 and it is incremented by the number of
353 // threads that need to run this callback (by the thread that request the callback
354 // to be run) and decremented once for each `Run()` execution. When it reaches 0,
355 // whether after the increment or after a decrement, we know that `Run()` was executed
356 // for all threads and therefore we can mark the classes as visibly initialized.
357 std::atomic<ssize_t> thread_visibility_counter_;
358
359 // List of barries to `Pass()` for threads that wait for the callback to complete.
360 std::forward_list<Barrier*> barriers_;
361 };
362
MakeInitializedClassesVisiblyInitialized(Thread * self,bool wait)363 void ClassLinker::MakeInitializedClassesVisiblyInitialized(Thread* self, bool wait) {
364 if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) {
365 return; // Nothing to do. Thanks to the x86 memory model classes skip the initialized status.
366 }
367 std::optional<Barrier> maybe_barrier; // Avoid constructing the Barrier for `wait == false`.
368 if (wait) {
369 maybe_barrier.emplace(0);
370 }
371 int wait_count = 0;
372 VisiblyInitializedCallback* callback = nullptr;
373 {
374 MutexLock lock(self, visibly_initialized_callback_lock_);
375 if (visibly_initialized_callback_ != nullptr && !visibly_initialized_callback_->IsEmpty()) {
376 callback = visibly_initialized_callback_.release();
377 running_visibly_initialized_callbacks_.push_front(*callback);
378 }
379 if (wait) {
380 DCHECK(maybe_barrier.has_value());
381 Barrier* barrier = std::addressof(*maybe_barrier);
382 for (VisiblyInitializedCallback& cb : running_visibly_initialized_callbacks_) {
383 cb.AddBarrier(barrier);
384 ++wait_count;
385 }
386 }
387 }
388 if (callback != nullptr) {
389 callback->MakeVisible(self);
390 }
391 if (wait_count != 0) {
392 DCHECK(maybe_barrier.has_value());
393 maybe_barrier->Increment(self, wait_count);
394 }
395 }
396
VisiblyInitializedCallbackDone(Thread * self,VisiblyInitializedCallback * callback)397 void ClassLinker::VisiblyInitializedCallbackDone(Thread* self,
398 VisiblyInitializedCallback* callback) {
399 MutexLock lock(self, visibly_initialized_callback_lock_);
400 // Pass the barriers if requested.
401 for (Barrier* barrier : callback->GetAndClearBarriers()) {
402 barrier->Pass(self);
403 }
404 // Remove the callback from the list of running callbacks.
405 auto before = running_visibly_initialized_callbacks_.before_begin();
406 auto it = running_visibly_initialized_callbacks_.begin();
407 DCHECK(it != running_visibly_initialized_callbacks_.end());
408 while (std::addressof(*it) != callback) {
409 before = it;
410 ++it;
411 DCHECK(it != running_visibly_initialized_callbacks_.end());
412 }
413 running_visibly_initialized_callbacks_.erase_after(before);
414 // Reuse or destroy the callback object.
415 if (visibly_initialized_callback_ == nullptr) {
416 visibly_initialized_callback_.reset(callback);
417 } else {
418 delete callback;
419 }
420 }
421
ForceClassInitialized(Thread * self,Handle<mirror::Class> klass)422 void ClassLinker::ForceClassInitialized(Thread* self, Handle<mirror::Class> klass) {
423 ClassLinker::VisiblyInitializedCallback* cb = MarkClassInitialized(self, klass);
424 if (cb != nullptr) {
425 cb->MakeVisible(self);
426 }
427 ScopedThreadSuspension sts(self, ThreadState::kSuspended);
428 MakeInitializedClassesVisiblyInitialized(self, /*wait=*/true);
429 }
430
MarkClassInitialized(Thread * self,Handle<mirror::Class> klass)431 ClassLinker::VisiblyInitializedCallback* ClassLinker::MarkClassInitialized(
432 Thread* self, Handle<mirror::Class> klass) {
433 if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) {
434 // Thanks to the x86 memory model, we do not need any memory fences and
435 // we can immediately mark the class as visibly initialized.
436 mirror::Class::SetStatus(klass, ClassStatus::kVisiblyInitialized, self);
437 FixupStaticTrampolines(self, klass.Get());
438 return nullptr;
439 }
440 if (Runtime::Current()->IsActiveTransaction()) {
441 // Transactions are single-threaded, so we can mark the class as visibly intialized.
442 // (Otherwise we'd need to track the callback's entry in the transaction for rollback.)
443 mirror::Class::SetStatus(klass, ClassStatus::kVisiblyInitialized, self);
444 FixupStaticTrampolines(self, klass.Get());
445 return nullptr;
446 }
447 mirror::Class::SetStatus(klass, ClassStatus::kInitialized, self);
448 MutexLock lock(self, visibly_initialized_callback_lock_);
449 if (visibly_initialized_callback_ == nullptr) {
450 visibly_initialized_callback_.reset(new VisiblyInitializedCallback(this));
451 }
452 DCHECK(!visibly_initialized_callback_->IsFull());
453 visibly_initialized_callback_->AddClass(self, klass.Get());
454
455 if (visibly_initialized_callback_->IsFull()) {
456 VisiblyInitializedCallback* callback = visibly_initialized_callback_.release();
457 running_visibly_initialized_callbacks_.push_front(*callback);
458 return callback;
459 } else {
460 return nullptr;
461 }
462 }
463
RegisterNative(Thread * self,ArtMethod * method,const void * native_method)464 const void* ClassLinker::RegisterNative(
465 Thread* self, ArtMethod* method, const void* native_method) {
466 CHECK(method->IsNative()) << method->PrettyMethod();
467 CHECK(native_method != nullptr) << method->PrettyMethod();
468 void* new_native_method = nullptr;
469 Runtime* runtime = Runtime::Current();
470 runtime->GetRuntimeCallbacks()->RegisterNativeMethod(method,
471 native_method,
472 /*out*/&new_native_method);
473 if (method->IsCriticalNative()) {
474 MutexLock lock(self, critical_native_code_with_clinit_check_lock_);
475 // Remove old registered method if any.
476 auto it = critical_native_code_with_clinit_check_.find(method);
477 if (it != critical_native_code_with_clinit_check_.end()) {
478 critical_native_code_with_clinit_check_.erase(it);
479 }
480 // To ensure correct memory visibility, we need the class to be visibly
481 // initialized before we can set the JNI entrypoint.
482 if (method->GetDeclaringClass()->IsVisiblyInitialized()) {
483 method->SetEntryPointFromJni(new_native_method);
484 } else {
485 critical_native_code_with_clinit_check_.emplace(method, new_native_method);
486 }
487 } else {
488 method->SetEntryPointFromJni(new_native_method);
489 }
490 return new_native_method;
491 }
492
UnregisterNative(Thread * self,ArtMethod * method)493 void ClassLinker::UnregisterNative(Thread* self, ArtMethod* method) {
494 CHECK(method->IsNative()) << method->PrettyMethod();
495 // Restore stub to lookup native pointer via dlsym.
496 if (method->IsCriticalNative()) {
497 MutexLock lock(self, critical_native_code_with_clinit_check_lock_);
498 auto it = critical_native_code_with_clinit_check_.find(method);
499 if (it != critical_native_code_with_clinit_check_.end()) {
500 critical_native_code_with_clinit_check_.erase(it);
501 }
502 method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub());
503 } else {
504 method->SetEntryPointFromJni(GetJniDlsymLookupStub());
505 }
506 }
507
GetRegisteredNative(Thread * self,ArtMethod * method)508 const void* ClassLinker::GetRegisteredNative(Thread* self, ArtMethod* method) {
509 if (method->IsCriticalNative()) {
510 MutexLock lock(self, critical_native_code_with_clinit_check_lock_);
511 auto it = critical_native_code_with_clinit_check_.find(method);
512 if (it != critical_native_code_with_clinit_check_.end()) {
513 return it->second;
514 }
515 const void* native_code = method->GetEntryPointFromJni();
516 return IsJniDlsymLookupCriticalStub(native_code) ? nullptr : native_code;
517 } else {
518 const void* native_code = method->GetEntryPointFromJni();
519 return IsJniDlsymLookupStub(native_code) ? nullptr : native_code;
520 }
521 }
522
ThrowEarlierClassFailure(ObjPtr<mirror::Class> c,bool wrap_in_no_class_def,bool log)523 void ClassLinker::ThrowEarlierClassFailure(ObjPtr<mirror::Class> c,
524 bool wrap_in_no_class_def,
525 bool log) {
526 // The class failed to initialize on a previous attempt, so we want to throw
527 // a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we
528 // failed in verification, in which case v2 5.4.1 says we need to re-throw
529 // the previous error.
530 Runtime* const runtime = Runtime::Current();
531 if (!runtime->IsAotCompiler()) { // Give info if this occurs at runtime.
532 std::string extra;
533 ObjPtr<mirror::Object> verify_error = GetVerifyError(c);
534 if (verify_error != nullptr) {
535 if (verify_error->IsClass()) {
536 extra = mirror::Class::PrettyDescriptor(verify_error->AsClass());
537 } else {
538 extra = verify_error->AsThrowable()->Dump();
539 }
540 }
541 if (log) {
542 LOG(INFO) << "Rejecting re-init on previously-failed class " << c->PrettyClass()
543 << ": " << extra;
544 }
545 }
546
547 CHECK(c->IsErroneous()) << c->PrettyClass() << " " << c->GetStatus();
548 Thread* self = Thread::Current();
549 if (runtime->IsAotCompiler()) {
550 // At compile time, accurate errors and NCDFE are disabled to speed compilation.
551 ObjPtr<mirror::Throwable> pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError();
552 self->SetException(pre_allocated);
553 } else {
554 ObjPtr<mirror::Object> verify_error = GetVerifyError(c);
555 if (verify_error != nullptr) {
556 // Rethrow stored error.
557 HandleEarlierVerifyError(self, this, c);
558 }
559 // TODO This might be wrong if we hit an OOME while allocating the ClassExt. In that case we
560 // might have meant to go down the earlier if statement with the original error but it got
561 // swallowed by the OOM so we end up here.
562 if (verify_error == nullptr || wrap_in_no_class_def) {
563 // If there isn't a recorded earlier error, or this is a repeat throw from initialization,
564 // the top-level exception must be a NoClassDefFoundError. The potentially already pending
565 // exception will be a cause.
566 self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;",
567 c->PrettyDescriptor().c_str());
568 }
569 }
570 }
571
VlogClassInitializationFailure(Handle<mirror::Class> klass)572 static void VlogClassInitializationFailure(Handle<mirror::Class> klass)
573 REQUIRES_SHARED(Locks::mutator_lock_) {
574 if (VLOG_IS_ON(class_linker)) {
575 std::string temp;
576 LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from "
577 << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump();
578 }
579 }
580
WrapExceptionInInitializer(Handle<mirror::Class> klass)581 static void WrapExceptionInInitializer(Handle<mirror::Class> klass)
582 REQUIRES_SHARED(Locks::mutator_lock_) {
583 Thread* self = Thread::Current();
584 JNIEnv* env = self->GetJniEnv();
585
586 ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred());
587 CHECK(cause.get() != nullptr);
588
589 // Boot classpath classes should not fail initialization. This is a consistency debug check.
590 // This cannot in general be guaranteed, but in all likelihood leads to breakage down the line.
591 if (klass->GetClassLoader() == nullptr && !Runtime::Current()->IsAotCompiler()) {
592 std::string tmp;
593 // We want to LOG(FATAL) on debug builds since this really shouldn't be happening but we need to
594 // make sure to only do it if we don't have AsyncExceptions being thrown around since those
595 // could have caused the error.
596 bool known_impossible = kIsDebugBuild && !Runtime::Current()->AreAsyncExceptionsThrown();
597 LOG(known_impossible ? FATAL : WARNING) << klass->GetDescriptor(&tmp)
598 << " failed initialization: "
599 << self->GetException()->Dump();
600 }
601
602 env->ExceptionClear();
603 bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error);
604 env->Throw(cause.get());
605
606 // We only wrap non-Error exceptions; an Error can just be used as-is.
607 if (!is_error) {
608 self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr);
609 }
610 VlogClassInitializationFailure(klass);
611 }
612
ClassLinker(InternTable * intern_table,bool fast_class_not_found_exceptions)613 ClassLinker::ClassLinker(InternTable* intern_table, bool fast_class_not_found_exceptions)
614 : boot_class_table_(new ClassTable()),
615 failed_dex_cache_class_lookups_(0),
616 class_roots_(nullptr),
617 find_array_class_cache_next_victim_(0),
618 init_done_(false),
619 log_new_roots_(false),
620 intern_table_(intern_table),
621 fast_class_not_found_exceptions_(fast_class_not_found_exceptions),
622 jni_dlsym_lookup_trampoline_(nullptr),
623 jni_dlsym_lookup_critical_trampoline_(nullptr),
624 quick_resolution_trampoline_(nullptr),
625 quick_imt_conflict_trampoline_(nullptr),
626 quick_generic_jni_trampoline_(nullptr),
627 quick_to_interpreter_bridge_trampoline_(nullptr),
628 nterp_trampoline_(nullptr),
629 image_pointer_size_(kRuntimePointerSize),
630 visibly_initialized_callback_lock_("visibly initialized callback lock"),
631 visibly_initialized_callback_(nullptr),
632 critical_native_code_with_clinit_check_lock_("critical native code with clinit check lock"),
633 critical_native_code_with_clinit_check_(),
634 cha_(Runtime::Current()->IsAotCompiler() ? nullptr : new ClassHierarchyAnalysis()) {
635 // For CHA disabled during Aot, see b/34193647.
636
637 CHECK(intern_table_ != nullptr);
638 static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_),
639 "Array cache size wrong.");
640 std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
641 }
642
CheckSystemClass(Thread * self,Handle<mirror::Class> c1,const char * descriptor)643 void ClassLinker::CheckSystemClass(Thread* self, Handle<mirror::Class> c1, const char* descriptor) {
644 ObjPtr<mirror::Class> c2 = FindSystemClass(self, descriptor);
645 if (c2 == nullptr) {
646 LOG(FATAL) << "Could not find class " << descriptor;
647 UNREACHABLE();
648 }
649 if (c1.Get() != c2) {
650 std::ostringstream os1, os2;
651 c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail);
652 c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail);
653 LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor
654 << ". This is most likely the result of a broken build. Make sure that "
655 << "libcore and art projects match.\n\n"
656 << os1.str() << "\n\n" << os2.str();
657 UNREACHABLE();
658 }
659 }
660
InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,std::string * error_msg)661 bool ClassLinker::InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,
662 std::string* error_msg) {
663 VLOG(startup) << "ClassLinker::Init";
664
665 Thread* const self = Thread::Current();
666 Runtime* const runtime = Runtime::Current();
667 gc::Heap* const heap = runtime->GetHeap();
668
669 CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it.";
670 CHECK(!init_done_);
671
672 // Use the pointer size from the runtime since we are probably creating the image.
673 image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet());
674
675 // java_lang_Class comes first, it's needed for AllocClass
676 // The GC can't handle an object with a null class since we can't get the size of this object.
677 heap->IncrementDisableMovingGC(self);
678 StackHandleScope<64> hs(self); // 64 is picked arbitrarily.
679 auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_);
680 // Allocate the object as non-movable so that there are no cases where Object::IsClass returns
681 // the incorrect result when comparing to-space vs from-space.
682 Handle<mirror::Class> java_lang_Class(hs.NewHandle(ObjPtr<mirror::Class>::DownCast(
683 heap->AllocNonMovableObject(self, nullptr, class_class_size, VoidFunctor()))));
684 CHECK(java_lang_Class != nullptr);
685 java_lang_Class->SetClassFlags(mirror::kClassFlagClass);
686 java_lang_Class->SetClass(java_lang_Class.Get());
687 if (kUseBakerReadBarrier) {
688 java_lang_Class->AssertReadBarrierState();
689 }
690 java_lang_Class->SetClassSize(class_class_size);
691 java_lang_Class->SetPrimitiveType(Primitive::kPrimNot);
692 heap->DecrementDisableMovingGC(self);
693 // AllocClass(ObjPtr<mirror::Class>) can now be used
694
695 // Class[] is used for reflection support.
696 auto class_array_class_size = mirror::ObjectArray<mirror::Class>::ClassSize(image_pointer_size_);
697 Handle<mirror::Class> class_array_class(hs.NewHandle(
698 AllocClass(self, java_lang_Class.Get(), class_array_class_size)));
699 class_array_class->SetComponentType(java_lang_Class.Get());
700
701 // java_lang_Object comes next so that object_array_class can be created.
702 Handle<mirror::Class> java_lang_Object(hs.NewHandle(
703 AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_))));
704 CHECK(java_lang_Object != nullptr);
705 // backfill Object as the super class of Class.
706 java_lang_Class->SetSuperClass(java_lang_Object.Get());
707 mirror::Class::SetStatus(java_lang_Object, ClassStatus::kLoaded, self);
708
709 java_lang_Object->SetObjectSize(sizeof(mirror::Object));
710 // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
711 // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
712 runtime->SetSentinel(heap->AllocNonMovableObject(self,
713 java_lang_Object.Get(),
714 java_lang_Object->GetObjectSize(),
715 VoidFunctor()));
716
717 // Initialize the SubtypeCheck bitstring for java.lang.Object and java.lang.Class.
718 if (kBitstringSubtypeCheckEnabled) {
719 // It might seem the lock here is unnecessary, however all the SubtypeCheck
720 // functions are annotated to require locks all the way down.
721 //
722 // We take the lock here to avoid using NO_THREAD_SAFETY_ANALYSIS.
723 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
724 SubtypeCheck<ObjPtr<mirror::Class>>::EnsureInitialized(java_lang_Object.Get());
725 SubtypeCheck<ObjPtr<mirror::Class>>::EnsureInitialized(java_lang_Class.Get());
726 }
727
728 // Object[] next to hold class roots.
729 Handle<mirror::Class> object_array_class(hs.NewHandle(
730 AllocClass(self, java_lang_Class.Get(),
731 mirror::ObjectArray<mirror::Object>::ClassSize(image_pointer_size_))));
732 object_array_class->SetComponentType(java_lang_Object.Get());
733
734 // Setup java.lang.String.
735 //
736 // We make this class non-movable for the unlikely case where it were to be
737 // moved by a sticky-bit (minor) collection when using the Generational
738 // Concurrent Copying (CC) collector, potentially creating a stale reference
739 // in the `klass_` field of one of its instances allocated in the Large-Object
740 // Space (LOS) -- see the comment about the dirty card scanning logic in
741 // art::gc::collector::ConcurrentCopying::MarkingPhase.
742 Handle<mirror::Class> java_lang_String(hs.NewHandle(
743 AllocClass</* kMovable= */ false>(
744 self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_))));
745 java_lang_String->SetStringClass();
746 mirror::Class::SetStatus(java_lang_String, ClassStatus::kResolved, self);
747
748 // Setup java.lang.ref.Reference.
749 Handle<mirror::Class> java_lang_ref_Reference(hs.NewHandle(
750 AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_))));
751 java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize());
752 mirror::Class::SetStatus(java_lang_ref_Reference, ClassStatus::kResolved, self);
753
754 // Create storage for root classes, save away our work so far (requires descriptors).
755 class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
756 mirror::ObjectArray<mirror::Class>::Alloc(self,
757 object_array_class.Get(),
758 static_cast<int32_t>(ClassRoot::kMax)));
759 CHECK(!class_roots_.IsNull());
760 SetClassRoot(ClassRoot::kJavaLangClass, java_lang_Class.Get());
761 SetClassRoot(ClassRoot::kJavaLangObject, java_lang_Object.Get());
762 SetClassRoot(ClassRoot::kClassArrayClass, class_array_class.Get());
763 SetClassRoot(ClassRoot::kObjectArrayClass, object_array_class.Get());
764 SetClassRoot(ClassRoot::kJavaLangString, java_lang_String.Get());
765 SetClassRoot(ClassRoot::kJavaLangRefReference, java_lang_ref_Reference.Get());
766
767 // Fill in the empty iftable. Needs to be done after the kObjectArrayClass root is set.
768 java_lang_Object->SetIfTable(AllocIfTable(self, 0));
769
770 // Create array interface entries to populate once we can load system classes.
771 object_array_class->SetIfTable(AllocIfTable(self, 2));
772 DCHECK_EQ(GetArrayIfTable(), object_array_class->GetIfTable());
773
774 // Setup the primitive type classes.
775 CreatePrimitiveClass(self, Primitive::kPrimBoolean, ClassRoot::kPrimitiveBoolean);
776 CreatePrimitiveClass(self, Primitive::kPrimByte, ClassRoot::kPrimitiveByte);
777 CreatePrimitiveClass(self, Primitive::kPrimChar, ClassRoot::kPrimitiveChar);
778 CreatePrimitiveClass(self, Primitive::kPrimShort, ClassRoot::kPrimitiveShort);
779 CreatePrimitiveClass(self, Primitive::kPrimInt, ClassRoot::kPrimitiveInt);
780 CreatePrimitiveClass(self, Primitive::kPrimLong, ClassRoot::kPrimitiveLong);
781 CreatePrimitiveClass(self, Primitive::kPrimFloat, ClassRoot::kPrimitiveFloat);
782 CreatePrimitiveClass(self, Primitive::kPrimDouble, ClassRoot::kPrimitiveDouble);
783 CreatePrimitiveClass(self, Primitive::kPrimVoid, ClassRoot::kPrimitiveVoid);
784
785 // Allocate the primitive array classes. We need only the native pointer
786 // array at this point (int[] or long[], depending on architecture) but
787 // we shall perform the same setup steps for all primitive array classes.
788 AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveBoolean, ClassRoot::kBooleanArrayClass);
789 AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveByte, ClassRoot::kByteArrayClass);
790 AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveChar, ClassRoot::kCharArrayClass);
791 AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveShort, ClassRoot::kShortArrayClass);
792 AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveInt, ClassRoot::kIntArrayClass);
793 AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveLong, ClassRoot::kLongArrayClass);
794 AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveFloat, ClassRoot::kFloatArrayClass);
795 AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveDouble, ClassRoot::kDoubleArrayClass);
796
797 // now that these are registered, we can use AllocClass() and AllocObjectArray
798
799 // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache.
800 Handle<mirror::Class> java_lang_DexCache(hs.NewHandle(
801 AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_))));
802 SetClassRoot(ClassRoot::kJavaLangDexCache, java_lang_DexCache.Get());
803 java_lang_DexCache->SetDexCacheClass();
804 java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize());
805 mirror::Class::SetStatus(java_lang_DexCache, ClassStatus::kResolved, self);
806
807
808 // Setup dalvik.system.ClassExt
809 Handle<mirror::Class> dalvik_system_ClassExt(hs.NewHandle(
810 AllocClass(self, java_lang_Class.Get(), mirror::ClassExt::ClassSize(image_pointer_size_))));
811 SetClassRoot(ClassRoot::kDalvikSystemClassExt, dalvik_system_ClassExt.Get());
812 mirror::Class::SetStatus(dalvik_system_ClassExt, ClassStatus::kResolved, self);
813
814 // Set up array classes for string, field, method
815 Handle<mirror::Class> object_array_string(hs.NewHandle(
816 AllocClass(self, java_lang_Class.Get(),
817 mirror::ObjectArray<mirror::String>::ClassSize(image_pointer_size_))));
818 object_array_string->SetComponentType(java_lang_String.Get());
819 SetClassRoot(ClassRoot::kJavaLangStringArrayClass, object_array_string.Get());
820
821 LinearAlloc* linear_alloc = runtime->GetLinearAlloc();
822 // Create runtime resolution and imt conflict methods.
823 runtime->SetResolutionMethod(runtime->CreateResolutionMethod());
824 runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc));
825 runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc));
826
827 // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create
828 // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses
829 // these roots.
830 if (boot_class_path.empty()) {
831 *error_msg = "Boot classpath is empty.";
832 return false;
833 }
834 for (auto& dex_file : boot_class_path) {
835 if (dex_file == nullptr) {
836 *error_msg = "Null dex file.";
837 return false;
838 }
839 AppendToBootClassPath(self, dex_file.get());
840 boot_dex_files_.push_back(std::move(dex_file));
841 }
842
843 // now we can use FindSystemClass
844
845 // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that
846 // we do not need friend classes or a publicly exposed setter.
847 quick_generic_jni_trampoline_ = GetQuickGenericJniStub();
848 if (!runtime->IsAotCompiler()) {
849 // We need to set up the generic trampolines since we don't have an image.
850 jni_dlsym_lookup_trampoline_ = GetJniDlsymLookupStub();
851 jni_dlsym_lookup_critical_trampoline_ = GetJniDlsymLookupCriticalStub();
852 quick_resolution_trampoline_ = GetQuickResolutionStub();
853 quick_imt_conflict_trampoline_ = GetQuickImtConflictStub();
854 quick_generic_jni_trampoline_ = GetQuickGenericJniStub();
855 quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge();
856 nterp_trampoline_ = interpreter::GetNterpEntryPoint();
857 }
858
859 // Object, String, ClassExt and DexCache need to be rerun through FindSystemClass to finish init
860 mirror::Class::SetStatus(java_lang_Object, ClassStatus::kNotReady, self);
861 CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;");
862 CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize());
863 mirror::Class::SetStatus(java_lang_String, ClassStatus::kNotReady, self);
864 CheckSystemClass(self, java_lang_String, "Ljava/lang/String;");
865 mirror::Class::SetStatus(java_lang_DexCache, ClassStatus::kNotReady, self);
866 CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;");
867 CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize());
868 mirror::Class::SetStatus(dalvik_system_ClassExt, ClassStatus::kNotReady, self);
869 CheckSystemClass(self, dalvik_system_ClassExt, "Ldalvik/system/ClassExt;");
870 CHECK_EQ(dalvik_system_ClassExt->GetObjectSize(), mirror::ClassExt::InstanceSize());
871
872 // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it
873 // in class_table_.
874 CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;");
875
876 // Setup core array classes, i.e. Object[], String[] and Class[] and primitive
877 // arrays - can't be done until Object has a vtable and component classes are loaded.
878 FinishCoreArrayClassSetup(ClassRoot::kObjectArrayClass);
879 FinishCoreArrayClassSetup(ClassRoot::kClassArrayClass);
880 FinishCoreArrayClassSetup(ClassRoot::kJavaLangStringArrayClass);
881 FinishCoreArrayClassSetup(ClassRoot::kBooleanArrayClass);
882 FinishCoreArrayClassSetup(ClassRoot::kByteArrayClass);
883 FinishCoreArrayClassSetup(ClassRoot::kCharArrayClass);
884 FinishCoreArrayClassSetup(ClassRoot::kShortArrayClass);
885 FinishCoreArrayClassSetup(ClassRoot::kIntArrayClass);
886 FinishCoreArrayClassSetup(ClassRoot::kLongArrayClass);
887 FinishCoreArrayClassSetup(ClassRoot::kFloatArrayClass);
888 FinishCoreArrayClassSetup(ClassRoot::kDoubleArrayClass);
889
890 // Setup the single, global copy of "iftable".
891 auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;"));
892 CHECK(java_lang_Cloneable != nullptr);
893 auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;"));
894 CHECK(java_io_Serializable != nullptr);
895 // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to
896 // crawl up and explicitly list all of the supers as well.
897 object_array_class->GetIfTable()->SetInterface(0, java_lang_Cloneable.Get());
898 object_array_class->GetIfTable()->SetInterface(1, java_io_Serializable.Get());
899
900 // Check Class[] and Object[]'s interfaces. GetDirectInterface may cause thread suspension.
901 CHECK_EQ(java_lang_Cloneable.Get(),
902 mirror::Class::GetDirectInterface(self, class_array_class.Get(), 0));
903 CHECK_EQ(java_io_Serializable.Get(),
904 mirror::Class::GetDirectInterface(self, class_array_class.Get(), 1));
905 CHECK_EQ(java_lang_Cloneable.Get(),
906 mirror::Class::GetDirectInterface(self, object_array_class.Get(), 0));
907 CHECK_EQ(java_io_Serializable.Get(),
908 mirror::Class::GetDirectInterface(self, object_array_class.Get(), 1));
909
910 CHECK_EQ(object_array_string.Get(),
911 FindSystemClass(self, GetClassRootDescriptor(ClassRoot::kJavaLangStringArrayClass)));
912
913 // End of special init trickery, all subsequent classes may be loaded via FindSystemClass.
914
915 // Create java.lang.reflect.Proxy root.
916 SetClassRoot(ClassRoot::kJavaLangReflectProxy,
917 FindSystemClass(self, "Ljava/lang/reflect/Proxy;"));
918
919 // Create java.lang.reflect.Field.class root.
920 ObjPtr<mirror::Class> class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;");
921 CHECK(class_root != nullptr);
922 SetClassRoot(ClassRoot::kJavaLangReflectField, class_root);
923
924 // Create java.lang.reflect.Field array root.
925 class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;");
926 CHECK(class_root != nullptr);
927 SetClassRoot(ClassRoot::kJavaLangReflectFieldArrayClass, class_root);
928
929 // Create java.lang.reflect.Constructor.class root and array root.
930 class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;");
931 CHECK(class_root != nullptr);
932 SetClassRoot(ClassRoot::kJavaLangReflectConstructor, class_root);
933 class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;");
934 CHECK(class_root != nullptr);
935 SetClassRoot(ClassRoot::kJavaLangReflectConstructorArrayClass, class_root);
936
937 // Create java.lang.reflect.Method.class root and array root.
938 class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;");
939 CHECK(class_root != nullptr);
940 SetClassRoot(ClassRoot::kJavaLangReflectMethod, class_root);
941 class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;");
942 CHECK(class_root != nullptr);
943 SetClassRoot(ClassRoot::kJavaLangReflectMethodArrayClass, class_root);
944
945 // Create java.lang.invoke.CallSite.class root
946 class_root = FindSystemClass(self, "Ljava/lang/invoke/CallSite;");
947 CHECK(class_root != nullptr);
948 SetClassRoot(ClassRoot::kJavaLangInvokeCallSite, class_root);
949
950 // Create java.lang.invoke.MethodType.class root
951 class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodType;");
952 CHECK(class_root != nullptr);
953 SetClassRoot(ClassRoot::kJavaLangInvokeMethodType, class_root);
954
955 // Create java.lang.invoke.MethodHandleImpl.class root
956 class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandleImpl;");
957 CHECK(class_root != nullptr);
958 SetClassRoot(ClassRoot::kJavaLangInvokeMethodHandleImpl, class_root);
959 SetClassRoot(ClassRoot::kJavaLangInvokeMethodHandle, class_root->GetSuperClass());
960
961 // Create java.lang.invoke.MethodHandles.Lookup.class root
962 class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandles$Lookup;");
963 CHECK(class_root != nullptr);
964 SetClassRoot(ClassRoot::kJavaLangInvokeMethodHandlesLookup, class_root);
965
966 // Create java.lang.invoke.VarHandle.class root
967 class_root = FindSystemClass(self, "Ljava/lang/invoke/VarHandle;");
968 CHECK(class_root != nullptr);
969 SetClassRoot(ClassRoot::kJavaLangInvokeVarHandle, class_root);
970
971 // Create java.lang.invoke.FieldVarHandle.class root
972 class_root = FindSystemClass(self, "Ljava/lang/invoke/FieldVarHandle;");
973 CHECK(class_root != nullptr);
974 SetClassRoot(ClassRoot::kJavaLangInvokeFieldVarHandle, class_root);
975
976 // Create java.lang.invoke.ArrayElementVarHandle.class root
977 class_root = FindSystemClass(self, "Ljava/lang/invoke/ArrayElementVarHandle;");
978 CHECK(class_root != nullptr);
979 SetClassRoot(ClassRoot::kJavaLangInvokeArrayElementVarHandle, class_root);
980
981 // Create java.lang.invoke.ByteArrayViewVarHandle.class root
982 class_root = FindSystemClass(self, "Ljava/lang/invoke/ByteArrayViewVarHandle;");
983 CHECK(class_root != nullptr);
984 SetClassRoot(ClassRoot::kJavaLangInvokeByteArrayViewVarHandle, class_root);
985
986 // Create java.lang.invoke.ByteBufferViewVarHandle.class root
987 class_root = FindSystemClass(self, "Ljava/lang/invoke/ByteBufferViewVarHandle;");
988 CHECK(class_root != nullptr);
989 SetClassRoot(ClassRoot::kJavaLangInvokeByteBufferViewVarHandle, class_root);
990
991 class_root = FindSystemClass(self, "Ldalvik/system/EmulatedStackFrame;");
992 CHECK(class_root != nullptr);
993 SetClassRoot(ClassRoot::kDalvikSystemEmulatedStackFrame, class_root);
994
995 // java.lang.ref classes need to be specially flagged, but otherwise are normal classes
996 // finish initializing Reference class
997 mirror::Class::SetStatus(java_lang_ref_Reference, ClassStatus::kNotReady, self);
998 CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;");
999 CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize());
1000 CHECK_EQ(java_lang_ref_Reference->GetClassSize(),
1001 mirror::Reference::ClassSize(image_pointer_size_));
1002 class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
1003 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
1004 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference);
1005 class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;");
1006 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
1007 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference);
1008 class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;");
1009 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
1010 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference);
1011 class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;");
1012 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
1013 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference);
1014
1015 // Setup the ClassLoader, verifying the object_size_.
1016 class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;");
1017 class_root->SetClassLoaderClass();
1018 CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize());
1019 SetClassRoot(ClassRoot::kJavaLangClassLoader, class_root);
1020
1021 // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and
1022 // java.lang.StackTraceElement as a convenience.
1023 SetClassRoot(ClassRoot::kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;"));
1024 SetClassRoot(ClassRoot::kJavaLangClassNotFoundException,
1025 FindSystemClass(self, "Ljava/lang/ClassNotFoundException;"));
1026 SetClassRoot(ClassRoot::kJavaLangStackTraceElement,
1027 FindSystemClass(self, "Ljava/lang/StackTraceElement;"));
1028 SetClassRoot(ClassRoot::kJavaLangStackTraceElementArrayClass,
1029 FindSystemClass(self, "[Ljava/lang/StackTraceElement;"));
1030 SetClassRoot(ClassRoot::kJavaLangClassLoaderArrayClass,
1031 FindSystemClass(self, "[Ljava/lang/ClassLoader;"));
1032
1033 // Create conflict tables that depend on the class linker.
1034 runtime->FixupConflictTables();
1035
1036 FinishInit(self);
1037
1038 VLOG(startup) << "ClassLinker::InitFromCompiler exiting";
1039
1040 return true;
1041 }
1042
CreateStringInitBindings(Thread * self,ClassLinker * class_linker)1043 static void CreateStringInitBindings(Thread* self, ClassLinker* class_linker)
1044 REQUIRES_SHARED(Locks::mutator_lock_) {
1045 // Find String.<init> -> StringFactory bindings.
1046 ObjPtr<mirror::Class> string_factory_class =
1047 class_linker->FindSystemClass(self, "Ljava/lang/StringFactory;");
1048 CHECK(string_factory_class != nullptr);
1049 ObjPtr<mirror::Class> string_class = GetClassRoot<mirror::String>(class_linker);
1050 WellKnownClasses::InitStringInit(string_class, string_factory_class);
1051 // Update the primordial thread.
1052 self->InitStringEntryPoints();
1053 }
1054
FinishInit(Thread * self)1055 void ClassLinker::FinishInit(Thread* self) {
1056 VLOG(startup) << "ClassLinker::FinishInit entering";
1057
1058 CreateStringInitBindings(self, this);
1059
1060 // Let the heap know some key offsets into java.lang.ref instances
1061 // Note: we hard code the field indexes here rather than using FindInstanceField
1062 // as the types of the field can't be resolved prior to the runtime being
1063 // fully initialized
1064 StackHandleScope<3> hs(self);
1065 Handle<mirror::Class> java_lang_ref_Reference =
1066 hs.NewHandle(GetClassRoot<mirror::Reference>(this));
1067 Handle<mirror::Class> java_lang_ref_FinalizerReference =
1068 hs.NewHandle(FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"));
1069
1070 ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
1071 CHECK_STREQ(pendingNext->GetName(), "pendingNext");
1072 CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
1073
1074 ArtField* queue = java_lang_ref_Reference->GetInstanceField(1);
1075 CHECK_STREQ(queue->GetName(), "queue");
1076 CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;");
1077
1078 ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2);
1079 CHECK_STREQ(queueNext->GetName(), "queueNext");
1080 CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
1081
1082 ArtField* referent = java_lang_ref_Reference->GetInstanceField(3);
1083 CHECK_STREQ(referent->GetName(), "referent");
1084 CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;");
1085
1086 ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
1087 CHECK_STREQ(zombie->GetName(), "zombie");
1088 CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;");
1089
1090 // ensure all class_roots_ are initialized
1091 for (size_t i = 0; i < static_cast<size_t>(ClassRoot::kMax); i++) {
1092 ClassRoot class_root = static_cast<ClassRoot>(i);
1093 ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
1094 CHECK(klass != nullptr);
1095 DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr);
1096 // note SetClassRoot does additional validation.
1097 // if possible add new checks there to catch errors early
1098 }
1099
1100 CHECK(GetArrayIfTable() != nullptr);
1101
1102 // disable the slow paths in FindClass and CreatePrimitiveClass now
1103 // that Object, Class, and Object[] are setup
1104 init_done_ = true;
1105
1106 // Under sanitization, the small carve-out to handle stack overflow might not be enough to
1107 // initialize the StackOverflowError class (as it might require running the verifier). Instead,
1108 // ensure that the class will be initialized.
1109 if (kMemoryToolIsAvailable && !Runtime::Current()->IsAotCompiler()) {
1110 verifier::ClassVerifier::Init(this); // Need to prepare the verifier.
1111
1112 ObjPtr<mirror::Class> soe_klass = FindSystemClass(self, "Ljava/lang/StackOverflowError;");
1113 if (soe_klass == nullptr || !EnsureInitialized(self, hs.NewHandle(soe_klass), true, true)) {
1114 // Strange, but don't crash.
1115 LOG(WARNING) << "Could not prepare StackOverflowError.";
1116 self->ClearException();
1117 }
1118 }
1119
1120 VLOG(startup) << "ClassLinker::FinishInit exiting";
1121 }
1122
RunRootClinits(Thread * self)1123 void ClassLinker::RunRootClinits(Thread* self) {
1124 for (size_t i = 0; i < static_cast<size_t>(ClassRoot::kMax); ++i) {
1125 ObjPtr<mirror::Class> c = GetClassRoot(ClassRoot(i), this);
1126 if (!c->IsArrayClass() && !c->IsPrimitive()) {
1127 StackHandleScope<1> hs(self);
1128 Handle<mirror::Class> h_class(hs.NewHandle(c));
1129 if (!EnsureInitialized(self, h_class, true, true)) {
1130 LOG(FATAL) << "Exception when initializing " << h_class->PrettyClass()
1131 << ": " << self->GetException()->Dump();
1132 }
1133 } else {
1134 DCHECK(c->IsInitialized());
1135 }
1136 }
1137 }
1138
InitializeObjectVirtualMethodHashes(ObjPtr<mirror::Class> java_lang_Object,PointerSize pointer_size,ArrayRef<uint32_t> virtual_method_hashes)1139 static void InitializeObjectVirtualMethodHashes(ObjPtr<mirror::Class> java_lang_Object,
1140 PointerSize pointer_size,
1141 /*out*/ ArrayRef<uint32_t> virtual_method_hashes)
1142 REQUIRES_SHARED(Locks::mutator_lock_) {
1143 ArraySlice<ArtMethod> virtual_methods = java_lang_Object->GetVirtualMethods(pointer_size);
1144 DCHECK_EQ(virtual_method_hashes.size(), virtual_methods.size());
1145 for (size_t i = 0; i != virtual_method_hashes.size(); ++i) {
1146 const char* name = virtual_methods[i].GetName();
1147 virtual_method_hashes[i] = ComputeModifiedUtf8Hash(name);
1148 }
1149 }
1150
1151 struct TrampolineCheckData {
1152 const void* quick_resolution_trampoline;
1153 const void* quick_imt_conflict_trampoline;
1154 const void* quick_generic_jni_trampoline;
1155 const void* quick_to_interpreter_bridge_trampoline;
1156 const void* nterp_trampoline;
1157 PointerSize pointer_size;
1158 ArtMethod* m;
1159 bool error;
1160 };
1161
InitFromBootImage(std::string * error_msg)1162 bool ClassLinker::InitFromBootImage(std::string* error_msg) {
1163 VLOG(startup) << __FUNCTION__ << " entering";
1164 CHECK(!init_done_);
1165
1166 Runtime* const runtime = Runtime::Current();
1167 Thread* const self = Thread::Current();
1168 gc::Heap* const heap = runtime->GetHeap();
1169 std::vector<gc::space::ImageSpace*> spaces = heap->GetBootImageSpaces();
1170 CHECK(!spaces.empty());
1171 const ImageHeader& image_header = spaces[0]->GetImageHeader();
1172 uint32_t pointer_size_unchecked = image_header.GetPointerSizeUnchecked();
1173 if (!ValidPointerSize(pointer_size_unchecked)) {
1174 *error_msg = StringPrintf("Invalid image pointer size: %u", pointer_size_unchecked);
1175 return false;
1176 }
1177 image_pointer_size_ = image_header.GetPointerSize();
1178 if (!runtime->IsAotCompiler()) {
1179 // Only the Aot compiler supports having an image with a different pointer size than the
1180 // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart
1181 // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps.
1182 if (image_pointer_size_ != kRuntimePointerSize) {
1183 *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu",
1184 static_cast<size_t>(image_pointer_size_),
1185 sizeof(void*));
1186 return false;
1187 }
1188 }
1189 DCHECK(!runtime->HasResolutionMethod());
1190 runtime->SetResolutionMethod(image_header.GetImageMethod(ImageHeader::kResolutionMethod));
1191 runtime->SetImtConflictMethod(image_header.GetImageMethod(ImageHeader::kImtConflictMethod));
1192 runtime->SetImtUnimplementedMethod(
1193 image_header.GetImageMethod(ImageHeader::kImtUnimplementedMethod));
1194 runtime->SetCalleeSaveMethod(
1195 image_header.GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod),
1196 CalleeSaveType::kSaveAllCalleeSaves);
1197 runtime->SetCalleeSaveMethod(
1198 image_header.GetImageMethod(ImageHeader::kSaveRefsOnlyMethod),
1199 CalleeSaveType::kSaveRefsOnly);
1200 runtime->SetCalleeSaveMethod(
1201 image_header.GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod),
1202 CalleeSaveType::kSaveRefsAndArgs);
1203 runtime->SetCalleeSaveMethod(
1204 image_header.GetImageMethod(ImageHeader::kSaveEverythingMethod),
1205 CalleeSaveType::kSaveEverything);
1206 runtime->SetCalleeSaveMethod(
1207 image_header.GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit),
1208 CalleeSaveType::kSaveEverythingForClinit);
1209 runtime->SetCalleeSaveMethod(
1210 image_header.GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck),
1211 CalleeSaveType::kSaveEverythingForSuspendCheck);
1212
1213 std::vector<const OatFile*> oat_files =
1214 runtime->GetOatFileManager().RegisterImageOatFiles(spaces);
1215 DCHECK(!oat_files.empty());
1216 const OatHeader& default_oat_header = oat_files[0]->GetOatHeader();
1217 jni_dlsym_lookup_trampoline_ = default_oat_header.GetJniDlsymLookupTrampoline();
1218 jni_dlsym_lookup_critical_trampoline_ = default_oat_header.GetJniDlsymLookupCriticalTrampoline();
1219 quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline();
1220 quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline();
1221 quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline();
1222 quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge();
1223 nterp_trampoline_ = default_oat_header.GetNterpTrampoline();
1224 if (kIsDebugBuild) {
1225 // Check that the other images use the same trampoline.
1226 for (size_t i = 1; i < oat_files.size(); ++i) {
1227 const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader();
1228 const void* ith_jni_dlsym_lookup_trampoline_ =
1229 ith_oat_header.GetJniDlsymLookupTrampoline();
1230 const void* ith_jni_dlsym_lookup_critical_trampoline_ =
1231 ith_oat_header.GetJniDlsymLookupCriticalTrampoline();
1232 const void* ith_quick_resolution_trampoline =
1233 ith_oat_header.GetQuickResolutionTrampoline();
1234 const void* ith_quick_imt_conflict_trampoline =
1235 ith_oat_header.GetQuickImtConflictTrampoline();
1236 const void* ith_quick_generic_jni_trampoline =
1237 ith_oat_header.GetQuickGenericJniTrampoline();
1238 const void* ith_quick_to_interpreter_bridge_trampoline =
1239 ith_oat_header.GetQuickToInterpreterBridge();
1240 const void* ith_nterp_trampoline =
1241 ith_oat_header.GetNterpTrampoline();
1242 if (ith_jni_dlsym_lookup_trampoline_ != jni_dlsym_lookup_trampoline_ ||
1243 ith_jni_dlsym_lookup_critical_trampoline_ != jni_dlsym_lookup_critical_trampoline_ ||
1244 ith_quick_resolution_trampoline != quick_resolution_trampoline_ ||
1245 ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ ||
1246 ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ ||
1247 ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_ ||
1248 ith_nterp_trampoline != nterp_trampoline_) {
1249 // Make sure that all methods in this image do not contain those trampolines as
1250 // entrypoints. Otherwise the class-linker won't be able to work with a single set.
1251 TrampolineCheckData data;
1252 data.error = false;
1253 data.pointer_size = GetImagePointerSize();
1254 data.quick_resolution_trampoline = ith_quick_resolution_trampoline;
1255 data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline;
1256 data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline;
1257 data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline;
1258 data.nterp_trampoline = ith_nterp_trampoline;
1259 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1260 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1261 if (obj->IsClass()) {
1262 ObjPtr<mirror::Class> klass = obj->AsClass();
1263 for (ArtMethod& m : klass->GetMethods(data.pointer_size)) {
1264 const void* entrypoint =
1265 m.GetEntryPointFromQuickCompiledCodePtrSize(data.pointer_size);
1266 if (entrypoint == data.quick_resolution_trampoline ||
1267 entrypoint == data.quick_imt_conflict_trampoline ||
1268 entrypoint == data.quick_generic_jni_trampoline ||
1269 entrypoint == data.quick_to_interpreter_bridge_trampoline) {
1270 data.m = &m;
1271 data.error = true;
1272 return;
1273 }
1274 }
1275 }
1276 };
1277 spaces[i]->GetLiveBitmap()->Walk(visitor);
1278 if (data.error) {
1279 ArtMethod* m = data.m;
1280 LOG(ERROR) << "Found a broken ArtMethod: " << ArtMethod::PrettyMethod(m);
1281 *error_msg = "Found an ArtMethod with a bad entrypoint";
1282 return false;
1283 }
1284 }
1285 }
1286 }
1287
1288 class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
1289 ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(
1290 image_header.GetImageRoot(ImageHeader::kClassRoots)));
1291 DCHECK_EQ(GetClassRoot<mirror::Class>(this)->GetClassFlags(), mirror::kClassFlagClass);
1292
1293 DCHECK_EQ(GetClassRoot<mirror::Object>(this)->GetObjectSize(), sizeof(mirror::Object));
1294 ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
1295 ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
1296 image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
1297 runtime->SetSentinel(boot_image_live_objects->Get(ImageHeader::kClearedJniWeakSentinel));
1298 DCHECK(runtime->GetSentinel().Read()->GetClass() == GetClassRoot<mirror::Object>(this));
1299
1300 for (size_t i = 0u, size = spaces.size(); i != size; ++i) {
1301 // Boot class loader, use a null handle.
1302 std::vector<std::unique_ptr<const DexFile>> dex_files;
1303 if (!AddImageSpace(spaces[i],
1304 ScopedNullHandle<mirror::ClassLoader>(),
1305 /*out*/&dex_files,
1306 error_msg)) {
1307 return false;
1308 }
1309 // Append opened dex files at the end.
1310 boot_dex_files_.insert(boot_dex_files_.end(),
1311 std::make_move_iterator(dex_files.begin()),
1312 std::make_move_iterator(dex_files.end()));
1313 }
1314 for (const std::unique_ptr<const DexFile>& dex_file : boot_dex_files_) {
1315 OatDexFile::MadviseDexFile(*dex_file, MadviseState::kMadviseStateAtLoad);
1316 }
1317 InitializeObjectVirtualMethodHashes(GetClassRoot<mirror::Object>(this),
1318 image_pointer_size_,
1319 ArrayRef<uint32_t>(object_virtual_method_hashes_));
1320 FinishInit(self);
1321
1322 VLOG(startup) << __FUNCTION__ << " exiting";
1323 return true;
1324 }
1325
AddExtraBootDexFiles(Thread * self,std::vector<std::unique_ptr<const DexFile>> && additional_dex_files)1326 void ClassLinker::AddExtraBootDexFiles(
1327 Thread* self,
1328 std::vector<std::unique_ptr<const DexFile>>&& additional_dex_files) {
1329 for (std::unique_ptr<const DexFile>& dex_file : additional_dex_files) {
1330 AppendToBootClassPath(self, dex_file.get());
1331 if (kIsDebugBuild) {
1332 for (const auto& boot_dex_file : boot_dex_files_) {
1333 DCHECK_NE(boot_dex_file->GetLocation(), dex_file->GetLocation());
1334 }
1335 }
1336 boot_dex_files_.push_back(std::move(dex_file));
1337 }
1338 }
1339
IsBootClassLoader(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::ClassLoader> class_loader)1340 bool ClassLinker::IsBootClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
1341 ObjPtr<mirror::ClassLoader> class_loader) {
1342 return class_loader == nullptr ||
1343 soa.Decode<mirror::Class>(WellKnownClasses::java_lang_BootClassLoader) ==
1344 class_loader->GetClass();
1345 }
1346
1347 class CHAOnDeleteUpdateClassVisitor {
1348 public:
CHAOnDeleteUpdateClassVisitor(LinearAlloc * alloc)1349 explicit CHAOnDeleteUpdateClassVisitor(LinearAlloc* alloc)
1350 : allocator_(alloc), cha_(Runtime::Current()->GetClassLinker()->GetClassHierarchyAnalysis()),
1351 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()),
1352 self_(Thread::Current()) {}
1353
operator ()(ObjPtr<mirror::Class> klass)1354 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
1355 // This class is going to be unloaded. Tell CHA about it.
1356 cha_->ResetSingleImplementationInHierarchy(klass, allocator_, pointer_size_);
1357 return true;
1358 }
1359 private:
1360 const LinearAlloc* allocator_;
1361 const ClassHierarchyAnalysis* cha_;
1362 const PointerSize pointer_size_;
1363 const Thread* self_;
1364 };
1365
1366 /*
1367 * A class used to ensure that all references to strings interned in an AppImage have been
1368 * properly recorded in the interned references list, and is only ever run in debug mode.
1369 */
1370 class CountInternedStringReferencesVisitor {
1371 public:
CountInternedStringReferencesVisitor(const gc::space::ImageSpace & space,const InternTable::UnorderedSet & image_interns)1372 CountInternedStringReferencesVisitor(const gc::space::ImageSpace& space,
1373 const InternTable::UnorderedSet& image_interns)
1374 : space_(space),
1375 image_interns_(image_interns),
1376 count_(0u) {}
1377
TestObject(ObjPtr<mirror::Object> referred_obj) const1378 void TestObject(ObjPtr<mirror::Object> referred_obj) const
1379 REQUIRES_SHARED(Locks::mutator_lock_) {
1380 if (referred_obj != nullptr &&
1381 space_.HasAddress(referred_obj.Ptr()) &&
1382 referred_obj->IsString()) {
1383 ObjPtr<mirror::String> referred_str = referred_obj->AsString();
1384 auto it = image_interns_.find(GcRoot<mirror::String>(referred_str));
1385 if (it != image_interns_.end() && it->Read() == referred_str) {
1386 ++count_;
1387 }
1388 }
1389 }
1390
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1391 void VisitRootIfNonNull(
1392 mirror::CompressedReference<mirror::Object>* root) const
1393 REQUIRES_SHARED(Locks::mutator_lock_) {
1394 if (!root->IsNull()) {
1395 VisitRoot(root);
1396 }
1397 }
1398
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1399 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1400 REQUIRES_SHARED(Locks::mutator_lock_) {
1401 TestObject(root->AsMirrorPtr());
1402 }
1403
1404 // Visit Class Fields
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1405 void operator()(ObjPtr<mirror::Object> obj,
1406 MemberOffset offset,
1407 bool is_static ATTRIBUTE_UNUSED) const
1408 REQUIRES_SHARED(Locks::mutator_lock_) {
1409 // References within image or across images don't need a read barrier.
1410 ObjPtr<mirror::Object> referred_obj =
1411 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1412 TestObject(referred_obj);
1413 }
1414
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1415 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1416 ObjPtr<mirror::Reference> ref) const
1417 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1418 operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
1419 }
1420
GetCount() const1421 size_t GetCount() const {
1422 return count_;
1423 }
1424
1425 private:
1426 const gc::space::ImageSpace& space_;
1427 const InternTable::UnorderedSet& image_interns_;
1428 mutable size_t count_; // Modified from the `const` callbacks.
1429 };
1430
1431 /*
1432 * This function counts references to strings interned in the AppImage.
1433 * This is used in debug build to check against the number of the recorded references.
1434 */
CountInternedStringReferences(gc::space::ImageSpace & space,const InternTable::UnorderedSet & image_interns)1435 size_t CountInternedStringReferences(gc::space::ImageSpace& space,
1436 const InternTable::UnorderedSet& image_interns)
1437 REQUIRES_SHARED(Locks::mutator_lock_) {
1438 const gc::accounting::ContinuousSpaceBitmap* bitmap = space.GetMarkBitmap();
1439 const ImageHeader& image_header = space.GetImageHeader();
1440 const uint8_t* target_base = space.GetMemMap()->Begin();
1441 const ImageSection& objects_section = image_header.GetObjectsSection();
1442
1443 auto objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1444 auto objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1445
1446 CountInternedStringReferencesVisitor visitor(space, image_interns);
1447 bitmap->VisitMarkedRange(objects_begin,
1448 objects_end,
1449 [&space, &visitor](mirror::Object* obj)
1450 REQUIRES_SHARED(Locks::mutator_lock_) {
1451 if (space.HasAddress(obj)) {
1452 if (obj->IsDexCache()) {
1453 obj->VisitReferences</* kVisitNativeRoots= */ true,
1454 kVerifyNone,
1455 kWithoutReadBarrier>(visitor, visitor);
1456 } else {
1457 // Don't visit native roots for non-dex-cache as they can't contain
1458 // native references to strings. This is verified during compilation
1459 // by ImageWriter::VerifyNativeGCRootInvariants.
1460 obj->VisitReferences</* kVisitNativeRoots= */ false,
1461 kVerifyNone,
1462 kWithoutReadBarrier>(visitor, visitor);
1463 }
1464 }
1465 });
1466 return visitor.GetCount();
1467 }
1468
1469 template <typename Visitor>
VisitInternedStringReferences(gc::space::ImageSpace * space,const Visitor & visitor)1470 static void VisitInternedStringReferences(
1471 gc::space::ImageSpace* space,
1472 const Visitor& visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
1473 const uint8_t* target_base = space->Begin();
1474 const ImageSection& sro_section =
1475 space->GetImageHeader().GetImageStringReferenceOffsetsSection();
1476 const size_t num_string_offsets = sro_section.Size() / sizeof(AppImageReferenceOffsetInfo);
1477
1478 VLOG(image)
1479 << "ClassLinker:AppImage:InternStrings:imageStringReferenceOffsetCount = "
1480 << num_string_offsets;
1481
1482 const auto* sro_base =
1483 reinterpret_cast<const AppImageReferenceOffsetInfo*>(target_base + sro_section.Offset());
1484
1485 for (size_t offset_index = 0; offset_index < num_string_offsets; ++offset_index) {
1486 uint32_t base_offset = sro_base[offset_index].first;
1487
1488 uint32_t raw_member_offset = sro_base[offset_index].second;
1489 DCHECK_ALIGNED(base_offset, 2);
1490 DCHECK_ALIGNED(raw_member_offset, 2);
1491
1492 ObjPtr<mirror::Object> obj_ptr =
1493 reinterpret_cast<mirror::Object*>(space->Begin() + base_offset);
1494 MemberOffset member_offset(raw_member_offset);
1495 ObjPtr<mirror::String> referred_string =
1496 obj_ptr->GetFieldObject<mirror::String,
1497 kVerifyNone,
1498 kWithoutReadBarrier,
1499 /* kIsVolatile= */ false>(member_offset);
1500 DCHECK(referred_string != nullptr);
1501
1502 ObjPtr<mirror::String> visited = visitor(referred_string);
1503 if (visited != referred_string) {
1504 obj_ptr->SetFieldObject</* kTransactionActive= */ false,
1505 /* kCheckTransaction= */ false,
1506 kVerifyNone,
1507 /* kIsVolatile= */ false>(member_offset, visited);
1508 }
1509 }
1510 }
1511
VerifyInternedStringReferences(gc::space::ImageSpace * space)1512 static void VerifyInternedStringReferences(gc::space::ImageSpace* space)
1513 REQUIRES_SHARED(Locks::mutator_lock_) {
1514 InternTable::UnorderedSet image_interns;
1515 const ImageSection& section = space->GetImageHeader().GetInternedStringsSection();
1516 if (section.Size() > 0) {
1517 size_t read_count;
1518 const uint8_t* data = space->Begin() + section.Offset();
1519 InternTable::UnorderedSet image_set(data, /*make_copy_of_data=*/ false, &read_count);
1520 image_set.swap(image_interns);
1521 }
1522 size_t num_recorded_refs = 0u;
1523 VisitInternedStringReferences(
1524 space,
1525 [&image_interns, &num_recorded_refs](ObjPtr<mirror::String> str)
1526 REQUIRES_SHARED(Locks::mutator_lock_) {
1527 auto it = image_interns.find(GcRoot<mirror::String>(str));
1528 CHECK(it != image_interns.end());
1529 CHECK(it->Read() == str);
1530 ++num_recorded_refs;
1531 return str;
1532 });
1533 size_t num_found_refs = CountInternedStringReferences(*space, image_interns);
1534 CHECK_EQ(num_recorded_refs, num_found_refs);
1535 }
1536
1537 // new_class_set is the set of classes that were read from the class table section in the image.
1538 // If there was no class table section, it is null.
1539 // Note: using a class here to avoid having to make ClassLinker internals public.
1540 class AppImageLoadingHelper {
1541 public:
1542 static void Update(
1543 ClassLinker* class_linker,
1544 gc::space::ImageSpace* space,
1545 Handle<mirror::ClassLoader> class_loader,
1546 Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches)
1547 REQUIRES(!Locks::dex_lock_)
1548 REQUIRES_SHARED(Locks::mutator_lock_);
1549
1550 static void HandleAppImageStrings(gc::space::ImageSpace* space)
1551 REQUIRES_SHARED(Locks::mutator_lock_);
1552 };
1553
Update(ClassLinker * class_linker,gc::space::ImageSpace * space,Handle<mirror::ClassLoader> class_loader,Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches)1554 void AppImageLoadingHelper::Update(
1555 ClassLinker* class_linker,
1556 gc::space::ImageSpace* space,
1557 Handle<mirror::ClassLoader> class_loader,
1558 Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches)
1559 REQUIRES(!Locks::dex_lock_)
1560 REQUIRES_SHARED(Locks::mutator_lock_) {
1561 ScopedTrace app_image_timing("AppImage:Updating");
1562
1563 if (kIsDebugBuild && ClassLinker::kAppImageMayContainStrings) {
1564 // In debug build, verify the string references before applying
1565 // the Runtime::LoadAppImageStartupCache() option.
1566 VerifyInternedStringReferences(space);
1567 }
1568
1569 Thread* const self = Thread::Current();
1570 Runtime* const runtime = Runtime::Current();
1571 gc::Heap* const heap = runtime->GetHeap();
1572 const ImageHeader& header = space->GetImageHeader();
1573 {
1574 // Register dex caches with the class loader.
1575 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1576 for (auto dex_cache : dex_caches.Iterate<mirror::DexCache>()) {
1577 const DexFile* const dex_file = dex_cache->GetDexFile();
1578 {
1579 WriterMutexLock mu2(self, *Locks::dex_lock_);
1580 CHECK(class_linker->FindDexCacheDataLocked(*dex_file) == nullptr);
1581 class_linker->RegisterDexFileLocked(*dex_file, dex_cache, class_loader.Get());
1582 }
1583 }
1584 }
1585
1586 if (ClassLinker::kAppImageMayContainStrings) {
1587 HandleAppImageStrings(space);
1588 }
1589
1590 if (kVerifyArtMethodDeclaringClasses) {
1591 ScopedTrace timing("AppImage:VerifyDeclaringClasses");
1592 ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_);
1593 gc::accounting::HeapBitmap* live_bitmap = heap->GetLiveBitmap();
1594 header.VisitPackedArtMethods([&](ArtMethod& method)
1595 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1596 ObjPtr<mirror::Class> klass = method.GetDeclaringClassUnchecked();
1597 if (klass != nullptr) {
1598 CHECK(live_bitmap->Test(klass.Ptr())) << "Image method has unmarked declaring class";
1599 }
1600 }, space->Begin(), kRuntimePointerSize);
1601 }
1602 }
1603
HandleAppImageStrings(gc::space::ImageSpace * space)1604 void AppImageLoadingHelper::HandleAppImageStrings(gc::space::ImageSpace* space) {
1605 // Iterate over the string reference offsets stored in the image and intern
1606 // the strings they point to.
1607 ScopedTrace timing("AppImage:InternString");
1608
1609 Runtime* const runtime = Runtime::Current();
1610 InternTable* const intern_table = runtime->GetInternTable();
1611
1612 // Add the intern table, removing any conflicts. For conflicts, store the new address in a map
1613 // for faster lookup.
1614 // TODO: Optimize with a bitmap or bloom filter
1615 SafeMap<mirror::String*, mirror::String*> intern_remap;
1616 auto func = [&](InternTable::UnorderedSet& interns)
1617 REQUIRES_SHARED(Locks::mutator_lock_)
1618 REQUIRES(Locks::intern_table_lock_) {
1619 const size_t non_boot_image_strings = intern_table->CountInterns(
1620 /*visit_boot_images=*/false,
1621 /*visit_non_boot_images=*/true);
1622 VLOG(image) << "AppImage:stringsInInternTableSize = " << interns.size();
1623 VLOG(image) << "AppImage:nonBootImageInternStrings = " << non_boot_image_strings;
1624 // Visit the smaller of the two sets to compute the intersection.
1625 if (interns.size() < non_boot_image_strings) {
1626 for (auto it = interns.begin(); it != interns.end(); ) {
1627 ObjPtr<mirror::String> string = it->Read();
1628 ObjPtr<mirror::String> existing = intern_table->LookupWeakLocked(string);
1629 if (existing == nullptr) {
1630 existing = intern_table->LookupStrongLocked(string);
1631 }
1632 if (existing != nullptr) {
1633 intern_remap.Put(string.Ptr(), existing.Ptr());
1634 it = interns.erase(it);
1635 } else {
1636 ++it;
1637 }
1638 }
1639 } else {
1640 intern_table->VisitInterns([&](const GcRoot<mirror::String>& root)
1641 REQUIRES_SHARED(Locks::mutator_lock_)
1642 REQUIRES(Locks::intern_table_lock_) {
1643 auto it = interns.find(root);
1644 if (it != interns.end()) {
1645 ObjPtr<mirror::String> existing = root.Read();
1646 intern_remap.Put(it->Read(), existing.Ptr());
1647 it = interns.erase(it);
1648 }
1649 }, /*visit_boot_images=*/false, /*visit_non_boot_images=*/true);
1650 }
1651 // Consistency check to ensure correctness.
1652 if (kIsDebugBuild) {
1653 for (GcRoot<mirror::String>& root : interns) {
1654 ObjPtr<mirror::String> string = root.Read();
1655 CHECK(intern_table->LookupWeakLocked(string) == nullptr) << string->ToModifiedUtf8();
1656 CHECK(intern_table->LookupStrongLocked(string) == nullptr) << string->ToModifiedUtf8();
1657 }
1658 }
1659 };
1660 intern_table->AddImageStringsToTable(space, func);
1661 if (!intern_remap.empty()) {
1662 VLOG(image) << "AppImage:conflictingInternStrings = " << intern_remap.size();
1663 VisitInternedStringReferences(
1664 space,
1665 [&intern_remap](ObjPtr<mirror::String> str) REQUIRES_SHARED(Locks::mutator_lock_) {
1666 auto it = intern_remap.find(str.Ptr());
1667 if (it != intern_remap.end()) {
1668 return ObjPtr<mirror::String>(it->second);
1669 }
1670 return str;
1671 });
1672 }
1673 }
1674
OpenOatDexFile(const OatFile * oat_file,const char * location,std::string * error_msg)1675 static std::unique_ptr<const DexFile> OpenOatDexFile(const OatFile* oat_file,
1676 const char* location,
1677 std::string* error_msg)
1678 REQUIRES_SHARED(Locks::mutator_lock_) {
1679 DCHECK(error_msg != nullptr);
1680 std::unique_ptr<const DexFile> dex_file;
1681 const OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr, error_msg);
1682 if (oat_dex_file == nullptr) {
1683 return std::unique_ptr<const DexFile>();
1684 }
1685 std::string inner_error_msg;
1686 dex_file = oat_dex_file->OpenDexFile(&inner_error_msg);
1687 if (dex_file == nullptr) {
1688 *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'",
1689 location,
1690 oat_file->GetLocation().c_str(),
1691 inner_error_msg.c_str());
1692 return std::unique_ptr<const DexFile>();
1693 }
1694
1695 if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) {
1696 *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x",
1697 location,
1698 dex_file->GetLocationChecksum(),
1699 oat_dex_file->GetDexFileLocationChecksum());
1700 return std::unique_ptr<const DexFile>();
1701 }
1702 return dex_file;
1703 }
1704
OpenImageDexFiles(gc::space::ImageSpace * space,std::vector<std::unique_ptr<const DexFile>> * out_dex_files,std::string * error_msg)1705 bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space,
1706 std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1707 std::string* error_msg) {
1708 ScopedAssertNoThreadSuspension nts(__FUNCTION__);
1709 const ImageHeader& header = space->GetImageHeader();
1710 ObjPtr<mirror::Object> dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1711 DCHECK(dex_caches_object != nullptr);
1712 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
1713 dex_caches_object->AsObjectArray<mirror::DexCache>();
1714 const OatFile* oat_file = space->GetOatFile();
1715 for (auto dex_cache : dex_caches->Iterate()) {
1716 std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
1717 std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1718 dex_file_location.c_str(),
1719 error_msg);
1720 if (dex_file == nullptr) {
1721 return false;
1722 }
1723 dex_cache->SetDexFile(dex_file.get());
1724 out_dex_files->push_back(std::move(dex_file));
1725 }
1726 return true;
1727 }
1728
1729 // Helper class for ArtMethod checks when adding an image. Keeps all required functionality
1730 // together and caches some intermediate results.
1731 class ImageChecker final {
1732 public:
CheckObjects(gc::Heap * heap,ClassLinker * class_linker)1733 static void CheckObjects(gc::Heap* heap, ClassLinker* class_linker)
1734 REQUIRES_SHARED(Locks::mutator_lock_) {
1735 ImageChecker ic(heap, class_linker);
1736 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1737 DCHECK(obj != nullptr);
1738 CHECK(obj->GetClass() != nullptr) << "Null class in object " << obj;
1739 CHECK(obj->GetClass()->GetClass() != nullptr) << "Null class class " << obj;
1740 if (obj->IsClass()) {
1741 auto klass = obj->AsClass();
1742 for (ArtField& field : klass->GetIFields()) {
1743 CHECK_EQ(field.GetDeclaringClass(), klass);
1744 }
1745 for (ArtField& field : klass->GetSFields()) {
1746 CHECK_EQ(field.GetDeclaringClass(), klass);
1747 }
1748 const PointerSize pointer_size = ic.pointer_size_;
1749 for (ArtMethod& m : klass->GetMethods(pointer_size)) {
1750 ic.CheckArtMethod(&m, klass);
1751 }
1752 ObjPtr<mirror::PointerArray> vtable = klass->GetVTable();
1753 if (vtable != nullptr) {
1754 ic.CheckArtMethodPointerArray(vtable, nullptr);
1755 }
1756 if (klass->ShouldHaveImt()) {
1757 ImTable* imt = klass->GetImt(pointer_size);
1758 for (size_t i = 0; i < ImTable::kSize; ++i) {
1759 ic.CheckArtMethod(imt->Get(i, pointer_size), nullptr);
1760 }
1761 }
1762 if (klass->ShouldHaveEmbeddedVTable()) {
1763 for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) {
1764 ic.CheckArtMethod(klass->GetEmbeddedVTableEntry(i, pointer_size), nullptr);
1765 }
1766 }
1767 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable();
1768 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
1769 if (iftable->GetMethodArrayCount(i) > 0) {
1770 ic.CheckArtMethodPointerArray(iftable->GetMethodArray(i), nullptr);
1771 }
1772 }
1773 }
1774 };
1775 heap->VisitObjects(visitor);
1776 }
1777
1778 private:
ImageChecker(gc::Heap * heap,ClassLinker * class_linker)1779 ImageChecker(gc::Heap* heap, ClassLinker* class_linker)
1780 : spaces_(heap->GetBootImageSpaces()),
1781 pointer_size_(class_linker->GetImagePointerSize()) {
1782 space_begin_.reserve(spaces_.size());
1783 method_sections_.reserve(spaces_.size());
1784 runtime_method_sections_.reserve(spaces_.size());
1785 for (gc::space::ImageSpace* space : spaces_) {
1786 space_begin_.push_back(space->Begin());
1787 auto& header = space->GetImageHeader();
1788 method_sections_.push_back(&header.GetMethodsSection());
1789 runtime_method_sections_.push_back(&header.GetRuntimeMethodsSection());
1790 }
1791 }
1792
CheckArtMethod(ArtMethod * m,ObjPtr<mirror::Class> expected_class)1793 void CheckArtMethod(ArtMethod* m, ObjPtr<mirror::Class> expected_class)
1794 REQUIRES_SHARED(Locks::mutator_lock_) {
1795 if (m->IsRuntimeMethod()) {
1796 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClassUnchecked();
1797 CHECK(declaring_class == nullptr) << declaring_class << " " << m->PrettyMethod();
1798 } else if (m->IsCopied()) {
1799 CHECK(m->GetDeclaringClass() != nullptr) << m->PrettyMethod();
1800 } else if (expected_class != nullptr) {
1801 CHECK_EQ(m->GetDeclaringClassUnchecked(), expected_class) << m->PrettyMethod();
1802 }
1803 if (!spaces_.empty()) {
1804 bool contains = false;
1805 for (size_t i = 0; !contains && i != space_begin_.size(); ++i) {
1806 const size_t offset = reinterpret_cast<uint8_t*>(m) - space_begin_[i];
1807 contains = method_sections_[i]->Contains(offset) ||
1808 runtime_method_sections_[i]->Contains(offset);
1809 }
1810 CHECK(contains) << m << " not found";
1811 }
1812 }
1813
CheckArtMethodPointerArray(ObjPtr<mirror::PointerArray> arr,ObjPtr<mirror::Class> expected_class)1814 void CheckArtMethodPointerArray(ObjPtr<mirror::PointerArray> arr,
1815 ObjPtr<mirror::Class> expected_class)
1816 REQUIRES_SHARED(Locks::mutator_lock_) {
1817 CHECK(arr != nullptr);
1818 for (int32_t j = 0; j < arr->GetLength(); ++j) {
1819 auto* method = arr->GetElementPtrSize<ArtMethod*>(j, pointer_size_);
1820 // expected_class == null means we are a dex cache.
1821 if (expected_class != nullptr) {
1822 CHECK(method != nullptr);
1823 }
1824 if (method != nullptr) {
1825 CheckArtMethod(method, expected_class);
1826 }
1827 }
1828 }
1829
1830 const std::vector<gc::space::ImageSpace*>& spaces_;
1831 const PointerSize pointer_size_;
1832
1833 // Cached sections from the spaces.
1834 std::vector<const uint8_t*> space_begin_;
1835 std::vector<const ImageSection*> method_sections_;
1836 std::vector<const ImageSection*> runtime_method_sections_;
1837 };
1838
VerifyAppImage(const ImageHeader & header,const Handle<mirror::ClassLoader> & class_loader,ClassTable * class_table,gc::space::ImageSpace * space)1839 static void VerifyAppImage(const ImageHeader& header,
1840 const Handle<mirror::ClassLoader>& class_loader,
1841 ClassTable* class_table,
1842 gc::space::ImageSpace* space)
1843 REQUIRES_SHARED(Locks::mutator_lock_) {
1844 header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) {
1845 ObjPtr<mirror::Class> klass = method.GetDeclaringClass();
1846 if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
1847 CHECK_EQ(class_table->LookupByDescriptor(klass), klass)
1848 << mirror::Class::PrettyClass(klass);
1849 }
1850 }, space->Begin(), kRuntimePointerSize);
1851 {
1852 // Verify that all direct interfaces of classes in the class table are also resolved.
1853 std::vector<ObjPtr<mirror::Class>> classes;
1854 auto verify_direct_interfaces_in_table = [&](ObjPtr<mirror::Class> klass)
1855 REQUIRES_SHARED(Locks::mutator_lock_) {
1856 if (!klass->IsPrimitive() && klass->GetClassLoader() == class_loader.Get()) {
1857 classes.push_back(klass);
1858 }
1859 return true;
1860 };
1861 class_table->Visit(verify_direct_interfaces_in_table);
1862 Thread* self = Thread::Current();
1863 for (ObjPtr<mirror::Class> klass : classes) {
1864 for (uint32_t i = 0, num = klass->NumDirectInterfaces(); i != num; ++i) {
1865 CHECK(klass->GetDirectInterface(self, klass, i) != nullptr)
1866 << klass->PrettyDescriptor() << " iface #" << i;
1867 }
1868 }
1869 }
1870 }
1871
AddImageSpace(gc::space::ImageSpace * space,Handle<mirror::ClassLoader> class_loader,std::vector<std::unique_ptr<const DexFile>> * out_dex_files,std::string * error_msg)1872 bool ClassLinker::AddImageSpace(
1873 gc::space::ImageSpace* space,
1874 Handle<mirror::ClassLoader> class_loader,
1875 std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1876 std::string* error_msg) {
1877 DCHECK(out_dex_files != nullptr);
1878 DCHECK(error_msg != nullptr);
1879 const uint64_t start_time = NanoTime();
1880 const bool app_image = class_loader != nullptr;
1881 const ImageHeader& header = space->GetImageHeader();
1882 ObjPtr<mirror::Object> dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1883 DCHECK(dex_caches_object != nullptr);
1884 Runtime* const runtime = Runtime::Current();
1885 gc::Heap* const heap = runtime->GetHeap();
1886 Thread* const self = Thread::Current();
1887 // Check that the image is what we are expecting.
1888 if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) {
1889 *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu",
1890 static_cast<size_t>(space->GetImageHeader().GetPointerSize()),
1891 image_pointer_size_);
1892 return false;
1893 }
1894 size_t expected_image_roots = ImageHeader::NumberOfImageRoots(app_image);
1895 if (static_cast<size_t>(header.GetImageRoots()->GetLength()) != expected_image_roots) {
1896 *error_msg = StringPrintf("Expected %zu image roots but got %d",
1897 expected_image_roots,
1898 header.GetImageRoots()->GetLength());
1899 return false;
1900 }
1901 StackHandleScope<3> hs(self);
1902 Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches(
1903 hs.NewHandle(dex_caches_object->AsObjectArray<mirror::DexCache>()));
1904 Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle(
1905 header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray<mirror::Class>()));
1906 MutableHandle<mirror::ClassLoader> image_class_loader(hs.NewHandle(
1907 app_image ? header.GetImageRoot(ImageHeader::kAppImageClassLoader)->AsClassLoader()
1908 : nullptr));
1909 DCHECK(class_roots != nullptr);
1910 if (class_roots->GetLength() != static_cast<int32_t>(ClassRoot::kMax)) {
1911 *error_msg = StringPrintf("Expected %d class roots but got %d",
1912 class_roots->GetLength(),
1913 static_cast<int32_t>(ClassRoot::kMax));
1914 return false;
1915 }
1916 // Check against existing class roots to make sure they match the ones in the boot image.
1917 ObjPtr<mirror::ObjectArray<mirror::Class>> existing_class_roots = GetClassRoots();
1918 for (size_t i = 0; i < static_cast<size_t>(ClassRoot::kMax); i++) {
1919 if (class_roots->Get(i) != GetClassRoot(static_cast<ClassRoot>(i), existing_class_roots)) {
1920 *error_msg = "App image class roots must have pointer equality with runtime ones.";
1921 return false;
1922 }
1923 }
1924 const OatFile* oat_file = space->GetOatFile();
1925 if (oat_file->GetOatHeader().GetDexFileCount() !=
1926 static_cast<uint32_t>(dex_caches->GetLength())) {
1927 *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from "
1928 "image";
1929 return false;
1930 }
1931
1932 for (auto dex_cache : dex_caches.Iterate<mirror::DexCache>()) {
1933 std::string dex_file_location = dex_cache->GetLocation()->ToModifiedUtf8();
1934 std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1935 dex_file_location.c_str(),
1936 error_msg);
1937 if (dex_file == nullptr) {
1938 return false;
1939 }
1940
1941 LinearAlloc* linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader.Get());
1942 DCHECK(linear_alloc != nullptr);
1943 DCHECK_EQ(linear_alloc == Runtime::Current()->GetLinearAlloc(), !app_image);
1944 {
1945 // Native fields are all null. Initialize them and allocate native memory.
1946 WriterMutexLock mu(self, *Locks::dex_lock_);
1947 dex_cache->InitializeNativeFields(dex_file.get(), linear_alloc);
1948 }
1949 if (!app_image) {
1950 // Register dex files, keep track of existing ones that are conflicts.
1951 AppendToBootClassPath(dex_file.get(), dex_cache);
1952 }
1953 out_dex_files->push_back(std::move(dex_file));
1954 }
1955
1956 if (app_image) {
1957 ScopedObjectAccessUnchecked soa(Thread::Current());
1958 ScopedAssertNoThreadSuspension sants("Checking app image", soa.Self());
1959 if (IsBootClassLoader(soa, image_class_loader.Get())) {
1960 *error_msg = "Unexpected BootClassLoader in app image";
1961 return false;
1962 }
1963 }
1964
1965 if (kCheckImageObjects) {
1966 if (!app_image) {
1967 ImageChecker::CheckObjects(heap, this);
1968 }
1969 }
1970
1971 // Set entry point to interpreter if in InterpretOnly mode.
1972 if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) {
1973 // Set image methods' entry point to interpreter.
1974 header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) {
1975 if (!method.IsRuntimeMethod()) {
1976 DCHECK(method.GetDeclaringClass() != nullptr);
1977 if (!method.IsNative() && !method.IsResolutionMethod()) {
1978 method.SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(),
1979 image_pointer_size_);
1980 }
1981 }
1982 }, space->Begin(), image_pointer_size_);
1983 }
1984
1985 if (!runtime->IsAotCompiler()) {
1986 ScopedTrace trace("AppImage:UpdateCodeItemAndNterp");
1987 bool can_use_nterp = interpreter::CanRuntimeUseNterp();
1988 header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) {
1989 // In the image, the `data` pointer field of the ArtMethod contains the code
1990 // item offset. Change this to the actual pointer to the code item.
1991 if (method.HasCodeItem()) {
1992 const dex::CodeItem* code_item = method.GetDexFile()->GetCodeItem(
1993 reinterpret_cast32<uint32_t>(method.GetDataPtrSize(image_pointer_size_)));
1994 method.SetCodeItem(code_item);
1995 }
1996 // Set image methods' entry point that point to the interpreter bridge to the
1997 // nterp entry point.
1998 if (method.GetEntryPointFromQuickCompiledCode() == nterp_trampoline_) {
1999 if (can_use_nterp) {
2000 DCHECK(!NeedsClinitCheckBeforeCall(&method) ||
2001 method.GetDeclaringClass()->IsVisiblyInitialized());
2002 method.SetEntryPointFromQuickCompiledCode(interpreter::GetNterpEntryPoint());
2003 } else {
2004 method.SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
2005 }
2006 }
2007 }, space->Begin(), image_pointer_size_);
2008 }
2009
2010 if (runtime->IsVerificationSoftFail()) {
2011 header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) {
2012 if (!method.IsNative() && method.IsInvokable()) {
2013 method.ClearSkipAccessChecks();
2014 }
2015 }, space->Begin(), image_pointer_size_);
2016 }
2017
2018 ClassTable* class_table = nullptr;
2019 {
2020 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
2021 class_table = InsertClassTableForClassLoader(class_loader.Get());
2022 }
2023 // If we have a class table section, read it and use it for verification in
2024 // UpdateAppImageClassLoadersAndDexCaches.
2025 ClassTable::ClassSet temp_set;
2026 const ImageSection& class_table_section = header.GetClassTableSection();
2027 const bool added_class_table = class_table_section.Size() > 0u;
2028 if (added_class_table) {
2029 const uint64_t start_time2 = NanoTime();
2030 size_t read_count = 0;
2031 temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(),
2032 /*make copy*/false,
2033 &read_count);
2034 VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2);
2035 }
2036 if (app_image) {
2037 AppImageLoadingHelper::Update(this, space, class_loader, dex_caches);
2038
2039 {
2040 ScopedTrace trace("AppImage:UpdateClassLoaders");
2041 // Update class loader and resolved strings. If added_class_table is false, the resolved
2042 // strings were forwarded UpdateAppImageClassLoadersAndDexCaches.
2043 ObjPtr<mirror::ClassLoader> loader(class_loader.Get());
2044 for (const ClassTable::TableSlot& root : temp_set) {
2045 // Note: We probably don't need the read barrier unless we copy the app image objects into
2046 // the region space.
2047 ObjPtr<mirror::Class> klass(root.Read());
2048 // Do not update class loader for boot image classes where the app image
2049 // class loader is only the initiating loader but not the defining loader.
2050 // Avoid read barrier since we are comparing against null.
2051 if (klass->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>() != nullptr) {
2052 klass->SetClassLoader(loader);
2053 }
2054 }
2055 }
2056
2057 if (kBitstringSubtypeCheckEnabled) {
2058 // Every class in the app image has initially SubtypeCheckInfo in the
2059 // Uninitialized state.
2060 //
2061 // The SubtypeCheck invariants imply that a SubtypeCheckInfo is at least Initialized
2062 // after class initialization is complete. The app image ClassStatus as-is
2063 // are almost all ClassStatus::Initialized, and being in the
2064 // SubtypeCheckInfo::kUninitialized state is violating that invariant.
2065 //
2066 // Force every app image class's SubtypeCheck to be at least kIninitialized.
2067 //
2068 // See also ImageWriter::FixupClass.
2069 ScopedTrace trace("AppImage:RecacluateSubtypeCheckBitstrings");
2070 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
2071 for (const ClassTable::TableSlot& root : temp_set) {
2072 SubtypeCheck<ObjPtr<mirror::Class>>::EnsureInitialized(root.Read());
2073 }
2074 }
2075 }
2076 if (!oat_file->GetBssGcRoots().empty()) {
2077 // Insert oat file to class table for visiting .bss GC roots.
2078 class_table->InsertOatFile(oat_file);
2079 }
2080
2081 if (added_class_table) {
2082 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
2083 class_table->AddClassSet(std::move(temp_set));
2084 }
2085
2086 if (kIsDebugBuild && app_image) {
2087 // This verification needs to happen after the classes have been added to the class loader.
2088 // Since it ensures classes are in the class table.
2089 ScopedTrace trace("AppImage:Verify");
2090 VerifyAppImage(header, class_loader, class_table, space);
2091 }
2092
2093 VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time);
2094 return true;
2095 }
2096
VisitClassRoots(RootVisitor * visitor,VisitRootFlags flags)2097 void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) {
2098 // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since
2099 // enabling tracing requires the mutator lock, there are no race conditions here.
2100 const bool tracing_enabled = Trace::IsTracingEnabled();
2101 Thread* const self = Thread::Current();
2102 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
2103 if (kUseReadBarrier) {
2104 // We do not track new roots for CC.
2105 DCHECK_EQ(0, flags & (kVisitRootFlagNewRoots |
2106 kVisitRootFlagClearRootLog |
2107 kVisitRootFlagStartLoggingNewRoots |
2108 kVisitRootFlagStopLoggingNewRoots));
2109 }
2110 if ((flags & kVisitRootFlagAllRoots) != 0) {
2111 // Argument for how root visiting deals with ArtField and ArtMethod roots.
2112 // There is 3 GC cases to handle:
2113 // Non moving concurrent:
2114 // This case is easy to handle since the reference members of ArtMethod and ArtFields are held
2115 // live by the class and class roots.
2116 //
2117 // Moving non-concurrent:
2118 // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move.
2119 // To prevent missing roots, this case needs to ensure that there is no
2120 // suspend points between the point which we allocate ArtMethod arrays and place them in a
2121 // class which is in the class table.
2122 //
2123 // Moving concurrent:
2124 // Need to make sure to not copy ArtMethods without doing read barriers since the roots are
2125 // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy.
2126 //
2127 // Use an unbuffered visitor since the class table uses a temporary GcRoot for holding decoded
2128 // ClassTable::TableSlot. The buffered root visiting would access a stale stack location for
2129 // these objects.
2130 UnbufferedRootVisitor root_visitor(visitor, RootInfo(kRootStickyClass));
2131 boot_class_table_->VisitRoots(root_visitor);
2132 // If tracing is enabled, then mark all the class loaders to prevent unloading.
2133 if ((flags & kVisitRootFlagClassLoader) != 0 || tracing_enabled) {
2134 for (const ClassLoaderData& data : class_loaders_) {
2135 GcRoot<mirror::Object> root(GcRoot<mirror::Object>(self->DecodeJObject(data.weak_root)));
2136 root.VisitRoot(visitor, RootInfo(kRootVMInternal));
2137 }
2138 }
2139 } else if (!kUseReadBarrier && (flags & kVisitRootFlagNewRoots) != 0) {
2140 for (auto& root : new_class_roots_) {
2141 ObjPtr<mirror::Class> old_ref = root.Read<kWithoutReadBarrier>();
2142 root.VisitRoot(visitor, RootInfo(kRootStickyClass));
2143 ObjPtr<mirror::Class> new_ref = root.Read<kWithoutReadBarrier>();
2144 // Concurrent moving GC marked new roots through the to-space invariant.
2145 CHECK_EQ(new_ref, old_ref);
2146 }
2147 for (const OatFile* oat_file : new_bss_roots_boot_oat_files_) {
2148 for (GcRoot<mirror::Object>& root : oat_file->GetBssGcRoots()) {
2149 ObjPtr<mirror::Object> old_ref = root.Read<kWithoutReadBarrier>();
2150 if (old_ref != nullptr) {
2151 DCHECK(old_ref->IsClass());
2152 root.VisitRoot(visitor, RootInfo(kRootStickyClass));
2153 ObjPtr<mirror::Object> new_ref = root.Read<kWithoutReadBarrier>();
2154 // Concurrent moving GC marked new roots through the to-space invariant.
2155 CHECK_EQ(new_ref, old_ref);
2156 }
2157 }
2158 }
2159 }
2160 if (!kUseReadBarrier && (flags & kVisitRootFlagClearRootLog) != 0) {
2161 new_class_roots_.clear();
2162 new_bss_roots_boot_oat_files_.clear();
2163 }
2164 if (!kUseReadBarrier && (flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
2165 log_new_roots_ = true;
2166 } else if (!kUseReadBarrier && (flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
2167 log_new_roots_ = false;
2168 }
2169 // We deliberately ignore the class roots in the image since we
2170 // handle image roots by using the MS/CMS rescanning of dirty cards.
2171 }
2172
2173 // Keep in sync with InitCallback. Anything we visit, we need to
2174 // reinit references to when reinitializing a ClassLinker from a
2175 // mapped image.
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2176 void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2177 class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2178 VisitClassRoots(visitor, flags);
2179 // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class
2180 // unloading if we are marking roots.
2181 DropFindArrayClassCache();
2182 }
2183
2184 class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor {
2185 public:
VisitClassLoaderClassesVisitor(ClassVisitor * visitor)2186 explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor)
2187 : visitor_(visitor),
2188 done_(false) {}
2189
Visit(ObjPtr<mirror::ClassLoader> class_loader)2190 void Visit(ObjPtr<mirror::ClassLoader> class_loader)
2191 REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override {
2192 ClassTable* const class_table = class_loader->GetClassTable();
2193 if (!done_ && class_table != nullptr) {
2194 DefiningClassLoaderFilterVisitor visitor(class_loader, visitor_);
2195 if (!class_table->Visit(visitor)) {
2196 // If the visitor ClassTable returns false it means that we don't need to continue.
2197 done_ = true;
2198 }
2199 }
2200 }
2201
2202 private:
2203 // Class visitor that limits the class visits from a ClassTable to the classes with
2204 // the provided defining class loader. This filter is used to avoid multiple visits
2205 // of the same class which can be recorded for multiple initiating class loaders.
2206 class DefiningClassLoaderFilterVisitor : public ClassVisitor {
2207 public:
DefiningClassLoaderFilterVisitor(ObjPtr<mirror::ClassLoader> defining_class_loader,ClassVisitor * visitor)2208 DefiningClassLoaderFilterVisitor(ObjPtr<mirror::ClassLoader> defining_class_loader,
2209 ClassVisitor* visitor)
2210 : defining_class_loader_(defining_class_loader), visitor_(visitor) { }
2211
operator ()(ObjPtr<mirror::Class> klass)2212 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
2213 if (klass->GetClassLoader() != defining_class_loader_) {
2214 return true;
2215 }
2216 return (*visitor_)(klass);
2217 }
2218
2219 const ObjPtr<mirror::ClassLoader> defining_class_loader_;
2220 ClassVisitor* const visitor_;
2221 };
2222
2223 ClassVisitor* const visitor_;
2224 // If done is true then we don't need to do any more visiting.
2225 bool done_;
2226 };
2227
VisitClassesInternal(ClassVisitor * visitor)2228 void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) {
2229 if (boot_class_table_->Visit(*visitor)) {
2230 VisitClassLoaderClassesVisitor loader_visitor(visitor);
2231 VisitClassLoaders(&loader_visitor);
2232 }
2233 }
2234
VisitClasses(ClassVisitor * visitor)2235 void ClassLinker::VisitClasses(ClassVisitor* visitor) {
2236 Thread* const self = Thread::Current();
2237 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2238 // Not safe to have thread suspension when we are holding a lock.
2239 if (self != nullptr) {
2240 ScopedAssertNoThreadSuspension nts(__FUNCTION__);
2241 VisitClassesInternal(visitor);
2242 } else {
2243 VisitClassesInternal(visitor);
2244 }
2245 }
2246
2247 class GetClassesInToVector : public ClassVisitor {
2248 public:
operator ()(ObjPtr<mirror::Class> klass)2249 bool operator()(ObjPtr<mirror::Class> klass) override {
2250 classes_.push_back(klass);
2251 return true;
2252 }
2253 std::vector<ObjPtr<mirror::Class>> classes_;
2254 };
2255
2256 class GetClassInToObjectArray : public ClassVisitor {
2257 public:
GetClassInToObjectArray(mirror::ObjectArray<mirror::Class> * arr)2258 explicit GetClassInToObjectArray(mirror::ObjectArray<mirror::Class>* arr)
2259 : arr_(arr), index_(0) {}
2260
operator ()(ObjPtr<mirror::Class> klass)2261 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
2262 ++index_;
2263 if (index_ <= arr_->GetLength()) {
2264 arr_->Set(index_ - 1, klass);
2265 return true;
2266 }
2267 return false;
2268 }
2269
Succeeded() const2270 bool Succeeded() const REQUIRES_SHARED(Locks::mutator_lock_) {
2271 return index_ <= arr_->GetLength();
2272 }
2273
2274 private:
2275 mirror::ObjectArray<mirror::Class>* const arr_;
2276 int32_t index_;
2277 };
2278
VisitClassesWithoutClassesLock(ClassVisitor * visitor)2279 void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) {
2280 // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem
2281 // is avoiding duplicates.
2282 if (!kMovingClasses) {
2283 ScopedAssertNoThreadSuspension nts(__FUNCTION__);
2284 GetClassesInToVector accumulator;
2285 VisitClasses(&accumulator);
2286 for (ObjPtr<mirror::Class> klass : accumulator.classes_) {
2287 if (!visitor->operator()(klass)) {
2288 return;
2289 }
2290 }
2291 } else {
2292 Thread* const self = Thread::Current();
2293 StackHandleScope<1> hs(self);
2294 auto classes = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
2295 // We size the array assuming classes won't be added to the class table during the visit.
2296 // If this assumption fails we iterate again.
2297 while (true) {
2298 size_t class_table_size;
2299 {
2300 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2301 // Add 100 in case new classes get loaded when we are filling in the object array.
2302 class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100;
2303 }
2304 ObjPtr<mirror::Class> array_of_class = GetClassRoot<mirror::ObjectArray<mirror::Class>>(this);
2305 classes.Assign(
2306 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, class_table_size));
2307 CHECK(classes != nullptr); // OOME.
2308 GetClassInToObjectArray accumulator(classes.Get());
2309 VisitClasses(&accumulator);
2310 if (accumulator.Succeeded()) {
2311 break;
2312 }
2313 }
2314 for (int32_t i = 0; i < classes->GetLength(); ++i) {
2315 // If the class table shrank during creation of the clases array we expect null elements. If
2316 // the class table grew then the loop repeats. If classes are created after the loop has
2317 // finished then we don't visit.
2318 ObjPtr<mirror::Class> klass = classes->Get(i);
2319 if (klass != nullptr && !visitor->operator()(klass)) {
2320 return;
2321 }
2322 }
2323 }
2324 }
2325
~ClassLinker()2326 ClassLinker::~ClassLinker() {
2327 Thread* const self = Thread::Current();
2328 for (const ClassLoaderData& data : class_loaders_) {
2329 // CHA unloading analysis is not needed. No negative consequences are expected because
2330 // all the classloaders are deleted at the same time.
2331 DeleteClassLoader(self, data, /*cleanup_cha=*/ false);
2332 }
2333 class_loaders_.clear();
2334 while (!running_visibly_initialized_callbacks_.empty()) {
2335 std::unique_ptr<VisiblyInitializedCallback> callback(
2336 std::addressof(running_visibly_initialized_callbacks_.front()));
2337 running_visibly_initialized_callbacks_.pop_front();
2338 }
2339 }
2340
DeleteClassLoader(Thread * self,const ClassLoaderData & data,bool cleanup_cha)2341 void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data, bool cleanup_cha) {
2342 Runtime* const runtime = Runtime::Current();
2343 JavaVMExt* const vm = runtime->GetJavaVM();
2344 vm->DeleteWeakGlobalRef(self, data.weak_root);
2345 // Notify the JIT that we need to remove the methods and/or profiling info.
2346 if (runtime->GetJit() != nullptr) {
2347 jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache();
2348 if (code_cache != nullptr) {
2349 // For the JIT case, RemoveMethodsIn removes the CHA dependencies.
2350 code_cache->RemoveMethodsIn(self, *data.allocator);
2351 }
2352 } else if (cha_ != nullptr) {
2353 // If we don't have a JIT, we need to manually remove the CHA dependencies manually.
2354 cha_->RemoveDependenciesForLinearAlloc(data.allocator);
2355 }
2356 // Cleanup references to single implementation ArtMethods that will be deleted.
2357 if (cleanup_cha) {
2358 CHAOnDeleteUpdateClassVisitor visitor(data.allocator);
2359 data.class_table->Visit<CHAOnDeleteUpdateClassVisitor, kWithoutReadBarrier>(visitor);
2360 }
2361 {
2362 MutexLock lock(self, critical_native_code_with_clinit_check_lock_);
2363 auto end = critical_native_code_with_clinit_check_.end();
2364 for (auto it = critical_native_code_with_clinit_check_.begin(); it != end; ) {
2365 if (data.allocator->ContainsUnsafe(it->first)) {
2366 it = critical_native_code_with_clinit_check_.erase(it);
2367 } else {
2368 ++it;
2369 }
2370 }
2371 }
2372
2373 delete data.allocator;
2374 delete data.class_table;
2375 }
2376
AllocPointerArray(Thread * self,size_t length)2377 ObjPtr<mirror::PointerArray> ClassLinker::AllocPointerArray(Thread* self, size_t length) {
2378 return ObjPtr<mirror::PointerArray>::DownCast(
2379 image_pointer_size_ == PointerSize::k64
2380 ? ObjPtr<mirror::Array>(mirror::LongArray::Alloc(self, length))
2381 : ObjPtr<mirror::Array>(mirror::IntArray::Alloc(self, length)));
2382 }
2383
AllocDexCache(Thread * self,const DexFile & dex_file)2384 ObjPtr<mirror::DexCache> ClassLinker::AllocDexCache(Thread* self, const DexFile& dex_file) {
2385 StackHandleScope<1> hs(self);
2386 auto dex_cache(hs.NewHandle(ObjPtr<mirror::DexCache>::DownCast(
2387 GetClassRoot<mirror::DexCache>(this)->AllocObject(self))));
2388 if (dex_cache == nullptr) {
2389 self->AssertPendingOOMException();
2390 return nullptr;
2391 }
2392 // Use InternWeak() so that the location String can be collected when the ClassLoader
2393 // with this DexCache is collected.
2394 ObjPtr<mirror::String> location = intern_table_->InternWeak(dex_file.GetLocation().c_str());
2395 if (location == nullptr) {
2396 self->AssertPendingOOMException();
2397 return nullptr;
2398 }
2399 dex_cache->SetLocation(location);
2400 return dex_cache.Get();
2401 }
2402
AllocAndInitializeDexCache(Thread * self,const DexFile & dex_file,LinearAlloc * linear_alloc)2403 ObjPtr<mirror::DexCache> ClassLinker::AllocAndInitializeDexCache(Thread* self,
2404 const DexFile& dex_file,
2405 LinearAlloc* linear_alloc) {
2406 ObjPtr<mirror::DexCache> dex_cache = AllocDexCache(self, dex_file);
2407 if (dex_cache != nullptr) {
2408 WriterMutexLock mu(self, *Locks::dex_lock_);
2409 dex_cache->InitializeNativeFields(&dex_file, linear_alloc);
2410 }
2411 return dex_cache;
2412 }
2413
2414 template <bool kMovable, typename PreFenceVisitor>
AllocClass(Thread * self,ObjPtr<mirror::Class> java_lang_Class,uint32_t class_size,const PreFenceVisitor & pre_fence_visitor)2415 ObjPtr<mirror::Class> ClassLinker::AllocClass(Thread* self,
2416 ObjPtr<mirror::Class> java_lang_Class,
2417 uint32_t class_size,
2418 const PreFenceVisitor& pre_fence_visitor) {
2419 DCHECK_GE(class_size, sizeof(mirror::Class));
2420 gc::Heap* heap = Runtime::Current()->GetHeap();
2421 ObjPtr<mirror::Object> k = (kMovingClasses && kMovable) ?
2422 heap->AllocObject(self, java_lang_Class, class_size, pre_fence_visitor) :
2423 heap->AllocNonMovableObject(self, java_lang_Class, class_size, pre_fence_visitor);
2424 if (UNLIKELY(k == nullptr)) {
2425 self->AssertPendingOOMException();
2426 return nullptr;
2427 }
2428 return k->AsClass();
2429 }
2430
2431 template <bool kMovable>
AllocClass(Thread * self,ObjPtr<mirror::Class> java_lang_Class,uint32_t class_size)2432 ObjPtr<mirror::Class> ClassLinker::AllocClass(Thread* self,
2433 ObjPtr<mirror::Class> java_lang_Class,
2434 uint32_t class_size) {
2435 mirror::Class::InitializeClassVisitor visitor(class_size);
2436 return AllocClass<kMovable>(self, java_lang_Class, class_size, visitor);
2437 }
2438
AllocClass(Thread * self,uint32_t class_size)2439 ObjPtr<mirror::Class> ClassLinker::AllocClass(Thread* self, uint32_t class_size) {
2440 return AllocClass(self, GetClassRoot<mirror::Class>(this), class_size);
2441 }
2442
AllocPrimitiveArrayClass(Thread * self,ClassRoot primitive_root,ClassRoot array_root)2443 void ClassLinker::AllocPrimitiveArrayClass(Thread* self,
2444 ClassRoot primitive_root,
2445 ClassRoot array_root) {
2446 // We make this class non-movable for the unlikely case where it were to be
2447 // moved by a sticky-bit (minor) collection when using the Generational
2448 // Concurrent Copying (CC) collector, potentially creating a stale reference
2449 // in the `klass_` field of one of its instances allocated in the Large-Object
2450 // Space (LOS) -- see the comment about the dirty card scanning logic in
2451 // art::gc::collector::ConcurrentCopying::MarkingPhase.
2452 ObjPtr<mirror::Class> array_class = AllocClass</* kMovable= */ false>(
2453 self, GetClassRoot<mirror::Class>(this), mirror::Array::ClassSize(image_pointer_size_));
2454 ObjPtr<mirror::Class> component_type = GetClassRoot(primitive_root, this);
2455 DCHECK(component_type->IsPrimitive());
2456 array_class->SetComponentType(component_type);
2457 SetClassRoot(array_root, array_class);
2458 }
2459
FinishArrayClassSetup(ObjPtr<mirror::Class> array_class)2460 void ClassLinker::FinishArrayClassSetup(ObjPtr<mirror::Class> array_class) {
2461 ObjPtr<mirror::Class> java_lang_Object = GetClassRoot<mirror::Object>(this);
2462 array_class->SetSuperClass(java_lang_Object);
2463 array_class->SetVTable(java_lang_Object->GetVTable());
2464 array_class->SetPrimitiveType(Primitive::kPrimNot);
2465 ObjPtr<mirror::Class> component_type = array_class->GetComponentType();
2466 array_class->SetClassFlags(component_type->IsPrimitive()
2467 ? mirror::kClassFlagNoReferenceFields
2468 : mirror::kClassFlagObjectArray);
2469 array_class->SetClassLoader(component_type->GetClassLoader());
2470 array_class->SetStatusForPrimitiveOrArray(ClassStatus::kLoaded);
2471 array_class->PopulateEmbeddedVTable(image_pointer_size_);
2472 ImTable* object_imt = java_lang_Object->GetImt(image_pointer_size_);
2473 array_class->SetImt(object_imt, image_pointer_size_);
2474 // Skip EnsureSkipAccessChecksMethods(). We can skip the verified status,
2475 // the kAccVerificationAttempted flag is added below, and there are no
2476 // methods that need the kAccSkipAccessChecks flag.
2477 DCHECK_EQ(array_class->NumMethods(), 0u);
2478
2479 // don't need to set new_class->SetObjectSize(..)
2480 // because Object::SizeOf delegates to Array::SizeOf
2481
2482 // All arrays have java/lang/Cloneable and java/io/Serializable as
2483 // interfaces. We need to set that up here, so that stuff like
2484 // "instanceof" works right.
2485
2486 // Use the single, global copies of "interfaces" and "iftable"
2487 // (remember not to free them for arrays).
2488 {
2489 ObjPtr<mirror::IfTable> array_iftable = GetArrayIfTable();
2490 CHECK(array_iftable != nullptr);
2491 array_class->SetIfTable(array_iftable);
2492 }
2493
2494 // Inherit access flags from the component type.
2495 int access_flags = component_type->GetAccessFlags();
2496 // Lose any implementation detail flags; in particular, arrays aren't finalizable.
2497 access_flags &= kAccJavaFlagsMask;
2498 // Arrays can't be used as a superclass or interface, so we want to add "abstract final"
2499 // and remove "interface".
2500 access_flags |= kAccAbstract | kAccFinal;
2501 access_flags &= ~kAccInterface;
2502 // Arrays are access-checks-clean and preverified.
2503 access_flags |= kAccVerificationAttempted;
2504
2505 array_class->SetAccessFlagsDuringLinking(access_flags);
2506
2507 // Array classes are fully initialized either during single threaded startup,
2508 // or from a pre-fence visitor, so visibly initialized.
2509 array_class->SetStatusForPrimitiveOrArray(ClassStatus::kVisiblyInitialized);
2510 }
2511
FinishCoreArrayClassSetup(ClassRoot array_root)2512 void ClassLinker::FinishCoreArrayClassSetup(ClassRoot array_root) {
2513 // Do not hold lock on the array class object, the initialization of
2514 // core array classes is done while the process is still single threaded.
2515 ObjPtr<mirror::Class> array_class = GetClassRoot(array_root, this);
2516 FinishArrayClassSetup(array_class);
2517
2518 std::string temp;
2519 const char* descriptor = array_class->GetDescriptor(&temp);
2520 size_t hash = ComputeModifiedUtf8Hash(descriptor);
2521 ObjPtr<mirror::Class> existing = InsertClass(descriptor, array_class, hash);
2522 CHECK(existing == nullptr);
2523 }
2524
AllocStackTraceElementArray(Thread * self,size_t length)2525 ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> ClassLinker::AllocStackTraceElementArray(
2526 Thread* self,
2527 size_t length) {
2528 return mirror::ObjectArray<mirror::StackTraceElement>::Alloc(
2529 self, GetClassRoot<mirror::ObjectArray<mirror::StackTraceElement>>(this), length);
2530 }
2531
EnsureResolved(Thread * self,const char * descriptor,ObjPtr<mirror::Class> klass)2532 ObjPtr<mirror::Class> ClassLinker::EnsureResolved(Thread* self,
2533 const char* descriptor,
2534 ObjPtr<mirror::Class> klass) {
2535 DCHECK(klass != nullptr);
2536 if (kIsDebugBuild) {
2537 StackHandleScope<1> hs(self);
2538 HandleWrapperObjPtr<mirror::Class> h = hs.NewHandleWrapper(&klass);
2539 Thread::PoisonObjectPointersIfDebug();
2540 }
2541
2542 // For temporary classes we must wait for them to be retired.
2543 if (init_done_ && klass->IsTemp()) {
2544 CHECK(!klass->IsResolved());
2545 if (klass->IsErroneousUnresolved()) {
2546 ThrowEarlierClassFailure(klass);
2547 return nullptr;
2548 }
2549 StackHandleScope<1> hs(self);
2550 Handle<mirror::Class> h_class(hs.NewHandle(klass));
2551 ObjectLock<mirror::Class> lock(self, h_class);
2552 // Loop and wait for the resolving thread to retire this class.
2553 while (!h_class->IsRetired() && !h_class->IsErroneousUnresolved()) {
2554 lock.WaitIgnoringInterrupts();
2555 }
2556 if (h_class->IsErroneousUnresolved()) {
2557 ThrowEarlierClassFailure(h_class.Get());
2558 return nullptr;
2559 }
2560 CHECK(h_class->IsRetired());
2561 // Get the updated class from class table.
2562 klass = LookupClass(self, descriptor, h_class.Get()->GetClassLoader());
2563 }
2564
2565 // Wait for the class if it has not already been linked.
2566 size_t index = 0;
2567 // Maximum number of yield iterations until we start sleeping.
2568 static const size_t kNumYieldIterations = 1000;
2569 // How long each sleep is in us.
2570 static const size_t kSleepDurationUS = 1000; // 1 ms.
2571 while (!klass->IsResolved() && !klass->IsErroneousUnresolved()) {
2572 StackHandleScope<1> hs(self);
2573 HandleWrapperObjPtr<mirror::Class> h_class(hs.NewHandleWrapper(&klass));
2574 {
2575 ObjectTryLock<mirror::Class> lock(self, h_class);
2576 // Can not use a monitor wait here since it may block when returning and deadlock if another
2577 // thread has locked klass.
2578 if (lock.Acquired()) {
2579 // Check for circular dependencies between classes, the lock is required for SetStatus.
2580 if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) {
2581 ThrowClassCircularityError(h_class.Get());
2582 mirror::Class::SetStatus(h_class, ClassStatus::kErrorUnresolved, self);
2583 return nullptr;
2584 }
2585 }
2586 }
2587 {
2588 // Handle wrapper deals with klass moving.
2589 ScopedThreadSuspension sts(self, kSuspended);
2590 if (index < kNumYieldIterations) {
2591 sched_yield();
2592 } else {
2593 usleep(kSleepDurationUS);
2594 }
2595 }
2596 ++index;
2597 }
2598
2599 if (klass->IsErroneousUnresolved()) {
2600 ThrowEarlierClassFailure(klass);
2601 return nullptr;
2602 }
2603 // Return the loaded class. No exceptions should be pending.
2604 CHECK(klass->IsResolved()) << klass->PrettyClass();
2605 self->AssertNoPendingException();
2606 return klass;
2607 }
2608
2609 using ClassPathEntry = std::pair<const DexFile*, const dex::ClassDef*>;
2610
2611 // Search a collection of DexFiles for a descriptor
FindInClassPath(const char * descriptor,size_t hash,const std::vector<const DexFile * > & class_path)2612 ClassPathEntry FindInClassPath(const char* descriptor,
2613 size_t hash, const std::vector<const DexFile*>& class_path) {
2614 for (const DexFile* dex_file : class_path) {
2615 DCHECK(dex_file != nullptr);
2616 const dex::ClassDef* dex_class_def = OatDexFile::FindClassDef(*dex_file, descriptor, hash);
2617 if (dex_class_def != nullptr) {
2618 return ClassPathEntry(dex_file, dex_class_def);
2619 }
2620 }
2621 return ClassPathEntry(nullptr, nullptr);
2622 }
2623
FindClassInSharedLibraries(ScopedObjectAccessAlreadyRunnable & soa,Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader,ObjPtr<mirror::Class> * result)2624 bool ClassLinker::FindClassInSharedLibraries(ScopedObjectAccessAlreadyRunnable& soa,
2625 Thread* self,
2626 const char* descriptor,
2627 size_t hash,
2628 Handle<mirror::ClassLoader> class_loader,
2629 /*out*/ ObjPtr<mirror::Class>* result) {
2630 ArtField* field =
2631 jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders);
2632 ObjPtr<mirror::Object> raw_shared_libraries = field->GetObject(class_loader.Get());
2633 if (raw_shared_libraries == nullptr) {
2634 return true;
2635 }
2636
2637 StackHandleScope<2> hs(self);
2638 Handle<mirror::ObjectArray<mirror::ClassLoader>> shared_libraries(
2639 hs.NewHandle(raw_shared_libraries->AsObjectArray<mirror::ClassLoader>()));
2640 MutableHandle<mirror::ClassLoader> temp_loader = hs.NewHandle<mirror::ClassLoader>(nullptr);
2641 for (auto loader : shared_libraries.Iterate<mirror::ClassLoader>()) {
2642 temp_loader.Assign(loader);
2643 if (!FindClassInBaseDexClassLoader(soa, self, descriptor, hash, temp_loader, result)) {
2644 return false; // One of the shared libraries is not supported.
2645 }
2646 if (*result != nullptr) {
2647 return true; // Found the class up the chain.
2648 }
2649 }
2650 return true;
2651 }
2652
FindClassInBaseDexClassLoader(ScopedObjectAccessAlreadyRunnable & soa,Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader,ObjPtr<mirror::Class> * result)2653 bool ClassLinker::FindClassInBaseDexClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
2654 Thread* self,
2655 const char* descriptor,
2656 size_t hash,
2657 Handle<mirror::ClassLoader> class_loader,
2658 /*out*/ ObjPtr<mirror::Class>* result) {
2659 // Termination case: boot class loader.
2660 if (IsBootClassLoader(soa, class_loader.Get())) {
2661 *result = FindClassInBootClassLoaderClassPath(self, descriptor, hash);
2662 return true;
2663 }
2664
2665 if (IsPathOrDexClassLoader(soa, class_loader) || IsInMemoryDexClassLoader(soa, class_loader)) {
2666 // For regular path or dex class loader the search order is:
2667 // - parent
2668 // - shared libraries
2669 // - class loader dex files
2670
2671 // Handles as RegisterDexFile may allocate dex caches (and cause thread suspension).
2672 StackHandleScope<1> hs(self);
2673 Handle<mirror::ClassLoader> h_parent(hs.NewHandle(class_loader->GetParent()));
2674 if (!FindClassInBaseDexClassLoader(soa, self, descriptor, hash, h_parent, result)) {
2675 return false; // One of the parents is not supported.
2676 }
2677 if (*result != nullptr) {
2678 return true; // Found the class up the chain.
2679 }
2680
2681 if (!FindClassInSharedLibraries(soa, self, descriptor, hash, class_loader, result)) {
2682 return false; // One of the shared library loader is not supported.
2683 }
2684 if (*result != nullptr) {
2685 return true; // Found the class in a shared library.
2686 }
2687
2688 // Search the current class loader classpath.
2689 *result = FindClassInBaseDexClassLoaderClassPath(soa, descriptor, hash, class_loader);
2690 return !soa.Self()->IsExceptionPending();
2691 }
2692
2693 if (IsDelegateLastClassLoader(soa, class_loader)) {
2694 // For delegate last, the search order is:
2695 // - boot class path
2696 // - shared libraries
2697 // - class loader dex files
2698 // - parent
2699 *result = FindClassInBootClassLoaderClassPath(self, descriptor, hash);
2700 if (*result != nullptr) {
2701 return true; // The class is part of the boot class path.
2702 }
2703 if (self->IsExceptionPending()) {
2704 // Pending exception means there was an error other than ClassNotFound that must be returned
2705 // to the caller.
2706 return false;
2707 }
2708
2709 if (!FindClassInSharedLibraries(soa, self, descriptor, hash, class_loader, result)) {
2710 return false; // One of the shared library loader is not supported.
2711 }
2712 if (*result != nullptr) {
2713 return true; // Found the class in a shared library.
2714 }
2715
2716 *result = FindClassInBaseDexClassLoaderClassPath(soa, descriptor, hash, class_loader);
2717 if (*result != nullptr) {
2718 return true; // Found the class in the current class loader
2719 }
2720 if (self->IsExceptionPending()) {
2721 // Pending exception means there was an error other than ClassNotFound that must be returned
2722 // to the caller.
2723 return false;
2724 }
2725
2726 // Handles as RegisterDexFile may allocate dex caches (and cause thread suspension).
2727 StackHandleScope<1> hs(self);
2728 Handle<mirror::ClassLoader> h_parent(hs.NewHandle(class_loader->GetParent()));
2729 return FindClassInBaseDexClassLoader(soa, self, descriptor, hash, h_parent, result);
2730 }
2731
2732 // Unsupported class loader.
2733 *result = nullptr;
2734 return false;
2735 }
2736
2737 namespace {
2738
2739 // Matches exceptions caught in DexFile.defineClass.
MatchesDexFileCaughtExceptions(ObjPtr<mirror::Throwable> throwable,ClassLinker * class_linker)2740 ALWAYS_INLINE bool MatchesDexFileCaughtExceptions(ObjPtr<mirror::Throwable> throwable,
2741 ClassLinker* class_linker)
2742 REQUIRES_SHARED(Locks::mutator_lock_) {
2743 return
2744 // ClassNotFoundException.
2745 throwable->InstanceOf(GetClassRoot(ClassRoot::kJavaLangClassNotFoundException,
2746 class_linker))
2747 ||
2748 // NoClassDefFoundError. TODO: Reconsider this. b/130746382.
2749 throwable->InstanceOf(Runtime::Current()->GetPreAllocatedNoClassDefFoundError()->GetClass());
2750 }
2751
2752 // Clear exceptions caught in DexFile.defineClass.
FilterDexFileCaughtExceptions(Thread * self,ClassLinker * class_linker)2753 ALWAYS_INLINE void FilterDexFileCaughtExceptions(Thread* self, ClassLinker* class_linker)
2754 REQUIRES_SHARED(Locks::mutator_lock_) {
2755 if (MatchesDexFileCaughtExceptions(self->GetException(), class_linker)) {
2756 self->ClearException();
2757 }
2758 }
2759
2760 } // namespace
2761
2762 // Finds the class in the boot class loader.
2763 // If the class is found the method returns the resolved class. Otherwise it returns null.
FindClassInBootClassLoaderClassPath(Thread * self,const char * descriptor,size_t hash)2764 ObjPtr<mirror::Class> ClassLinker::FindClassInBootClassLoaderClassPath(Thread* self,
2765 const char* descriptor,
2766 size_t hash) {
2767 ObjPtr<mirror::Class> result = nullptr;
2768 ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2769 if (pair.second != nullptr) {
2770 ObjPtr<mirror::Class> klass = LookupClass(self, descriptor, hash, nullptr);
2771 if (klass != nullptr) {
2772 result = EnsureResolved(self, descriptor, klass);
2773 } else {
2774 result = DefineClass(self,
2775 descriptor,
2776 hash,
2777 ScopedNullHandle<mirror::ClassLoader>(),
2778 *pair.first,
2779 *pair.second);
2780 }
2781 if (result == nullptr) {
2782 CHECK(self->IsExceptionPending()) << descriptor;
2783 FilterDexFileCaughtExceptions(self, this);
2784 }
2785 }
2786 return result;
2787 }
2788
FindClassInBaseDexClassLoaderClassPath(ScopedObjectAccessAlreadyRunnable & soa,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader)2789 ObjPtr<mirror::Class> ClassLinker::FindClassInBaseDexClassLoaderClassPath(
2790 ScopedObjectAccessAlreadyRunnable& soa,
2791 const char* descriptor,
2792 size_t hash,
2793 Handle<mirror::ClassLoader> class_loader) {
2794 DCHECK(IsPathOrDexClassLoader(soa, class_loader) ||
2795 IsInMemoryDexClassLoader(soa, class_loader) ||
2796 IsDelegateLastClassLoader(soa, class_loader))
2797 << "Unexpected class loader for descriptor " << descriptor;
2798
2799 const DexFile* dex_file = nullptr;
2800 const dex::ClassDef* class_def = nullptr;
2801 ObjPtr<mirror::Class> ret;
2802 auto find_class_def = [&](const DexFile* cp_dex_file) REQUIRES_SHARED(Locks::mutator_lock_) {
2803 const dex::ClassDef* cp_class_def = OatDexFile::FindClassDef(*cp_dex_file, descriptor, hash);
2804 if (cp_class_def != nullptr) {
2805 dex_file = cp_dex_file;
2806 class_def = cp_class_def;
2807 return false; // Found a class definition, stop visit.
2808 }
2809 return true; // Continue with the next DexFile.
2810 };
2811 VisitClassLoaderDexFiles(soa, class_loader, find_class_def);
2812
2813 ObjPtr<mirror::Class> klass = nullptr;
2814 if (class_def != nullptr) {
2815 klass = DefineClass(soa.Self(), descriptor, hash, class_loader, *dex_file, *class_def);
2816 if (UNLIKELY(klass == nullptr)) {
2817 CHECK(soa.Self()->IsExceptionPending()) << descriptor;
2818 FilterDexFileCaughtExceptions(soa.Self(), this);
2819 } else {
2820 DCHECK(!soa.Self()->IsExceptionPending());
2821 }
2822 }
2823 return klass;
2824 }
2825
FindClass(Thread * self,const char * descriptor,Handle<mirror::ClassLoader> class_loader)2826 ObjPtr<mirror::Class> ClassLinker::FindClass(Thread* self,
2827 const char* descriptor,
2828 Handle<mirror::ClassLoader> class_loader) {
2829 DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
2830 DCHECK(self != nullptr);
2831 self->AssertNoPendingException();
2832 self->PoisonObjectPointers(); // For DefineClass, CreateArrayClass, etc...
2833 if (descriptor[1] == '\0') {
2834 // only the descriptors of primitive types should be 1 character long, also avoid class lookup
2835 // for primitive classes that aren't backed by dex files.
2836 return FindPrimitiveClass(descriptor[0]);
2837 }
2838 const size_t hash = ComputeModifiedUtf8Hash(descriptor);
2839 // Find the class in the loaded classes table.
2840 ObjPtr<mirror::Class> klass = LookupClass(self, descriptor, hash, class_loader.Get());
2841 if (klass != nullptr) {
2842 return EnsureResolved(self, descriptor, klass);
2843 }
2844 // Class is not yet loaded.
2845 if (descriptor[0] != '[' && class_loader == nullptr) {
2846 // Non-array class and the boot class loader, search the boot class path.
2847 ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2848 if (pair.second != nullptr) {
2849 return DefineClass(self,
2850 descriptor,
2851 hash,
2852 ScopedNullHandle<mirror::ClassLoader>(),
2853 *pair.first,
2854 *pair.second);
2855 } else {
2856 // The boot class loader is searched ahead of the application class loader, failures are
2857 // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to
2858 // trigger the chaining with a proper stack trace.
2859 ObjPtr<mirror::Throwable> pre_allocated =
2860 Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2861 self->SetException(pre_allocated);
2862 return nullptr;
2863 }
2864 }
2865 ObjPtr<mirror::Class> result_ptr;
2866 bool descriptor_equals;
2867 if (descriptor[0] == '[') {
2868 result_ptr = CreateArrayClass(self, descriptor, hash, class_loader);
2869 DCHECK_EQ(result_ptr == nullptr, self->IsExceptionPending());
2870 DCHECK(result_ptr == nullptr || result_ptr->DescriptorEquals(descriptor));
2871 descriptor_equals = true;
2872 } else {
2873 ScopedObjectAccessUnchecked soa(self);
2874 bool known_hierarchy =
2875 FindClassInBaseDexClassLoader(soa, self, descriptor, hash, class_loader, &result_ptr);
2876 if (result_ptr != nullptr) {
2877 // The chain was understood and we found the class. We still need to add the class to
2878 // the class table to protect from racy programs that can try and redefine the path list
2879 // which would change the Class<?> returned for subsequent evaluation of const-class.
2880 DCHECK(known_hierarchy);
2881 DCHECK(result_ptr->DescriptorEquals(descriptor));
2882 descriptor_equals = true;
2883 } else if (!self->IsExceptionPending()) {
2884 // Either the chain wasn't understood or the class wasn't found.
2885 // If there is a pending exception we didn't clear, it is a not a ClassNotFoundException and
2886 // we should return it instead of silently clearing and retrying.
2887 //
2888 // If the chain was understood but we did not find the class, let the Java-side
2889 // rediscover all this and throw the exception with the right stack trace. Note that
2890 // the Java-side could still succeed for racy programs if another thread is actively
2891 // modifying the class loader's path list.
2892
2893 // The runtime is not allowed to call into java from a runtime-thread so just abort.
2894 if (self->IsRuntimeThread()) {
2895 // Oops, we can't call into java so we can't run actual class-loader code.
2896 // This is true for e.g. for the compiler (jit or aot).
2897 ObjPtr<mirror::Throwable> pre_allocated =
2898 Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2899 self->SetException(pre_allocated);
2900 return nullptr;
2901 }
2902
2903 // Inlined DescriptorToDot(descriptor) with extra validation.
2904 //
2905 // Throw NoClassDefFoundError early rather than potentially load a class only to fail
2906 // the DescriptorEquals() check below and give a confusing error message. For example,
2907 // when native code erroneously calls JNI GetFieldId() with signature "java/lang/String"
2908 // instead of "Ljava/lang/String;", the message below using the "dot" names would be
2909 // "class loader [...] returned class java.lang.String instead of java.lang.String".
2910 size_t descriptor_length = strlen(descriptor);
2911 if (UNLIKELY(descriptor[0] != 'L') ||
2912 UNLIKELY(descriptor[descriptor_length - 1] != ';') ||
2913 UNLIKELY(memchr(descriptor + 1, '.', descriptor_length - 2) != nullptr)) {
2914 ThrowNoClassDefFoundError("Invalid descriptor: %s.", descriptor);
2915 return nullptr;
2916 }
2917
2918 std::string class_name_string(descriptor + 1, descriptor_length - 2);
2919 std::replace(class_name_string.begin(), class_name_string.end(), '/', '.');
2920 if (known_hierarchy &&
2921 fast_class_not_found_exceptions_ &&
2922 !Runtime::Current()->IsJavaDebuggable()) {
2923 // For known hierarchy, we know that the class is going to throw an exception. If we aren't
2924 // debuggable, optimize this path by throwing directly here without going back to Java
2925 // language. This reduces how many ClassNotFoundExceptions happen.
2926 self->ThrowNewExceptionF("Ljava/lang/ClassNotFoundException;",
2927 "%s",
2928 class_name_string.c_str());
2929 } else {
2930 ScopedLocalRef<jobject> class_loader_object(
2931 soa.Env(), soa.AddLocalReference<jobject>(class_loader.Get()));
2932 ScopedLocalRef<jobject> result(soa.Env(), nullptr);
2933 {
2934 ScopedThreadStateChange tsc(self, kNative);
2935 ScopedLocalRef<jobject> class_name_object(
2936 soa.Env(), soa.Env()->NewStringUTF(class_name_string.c_str()));
2937 if (class_name_object.get() == nullptr) {
2938 DCHECK(self->IsExceptionPending()); // OOME.
2939 return nullptr;
2940 }
2941 CHECK(class_loader_object.get() != nullptr);
2942 result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(),
2943 WellKnownClasses::java_lang_ClassLoader_loadClass,
2944 class_name_object.get()));
2945 }
2946 if (result.get() == nullptr && !self->IsExceptionPending()) {
2947 // broken loader - throw NPE to be compatible with Dalvik
2948 ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s",
2949 class_name_string.c_str()).c_str());
2950 return nullptr;
2951 }
2952 result_ptr = soa.Decode<mirror::Class>(result.get());
2953 // Check the name of the returned class.
2954 descriptor_equals = (result_ptr != nullptr) && result_ptr->DescriptorEquals(descriptor);
2955 }
2956 } else {
2957 DCHECK(!MatchesDexFileCaughtExceptions(self->GetException(), this));
2958 }
2959 }
2960
2961 if (self->IsExceptionPending()) {
2962 // If the ClassLoader threw or array class allocation failed, pass that exception up.
2963 // However, to comply with the RI behavior, first check if another thread succeeded.
2964 result_ptr = LookupClass(self, descriptor, hash, class_loader.Get());
2965 if (result_ptr != nullptr && !result_ptr->IsErroneous()) {
2966 self->ClearException();
2967 return EnsureResolved(self, descriptor, result_ptr);
2968 }
2969 return nullptr;
2970 }
2971
2972 // Try to insert the class to the class table, checking for mismatch.
2973 ObjPtr<mirror::Class> old;
2974 {
2975 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
2976 ClassTable* const class_table = InsertClassTableForClassLoader(class_loader.Get());
2977 old = class_table->Lookup(descriptor, hash);
2978 if (old == nullptr) {
2979 old = result_ptr; // For the comparison below, after releasing the lock.
2980 if (descriptor_equals) {
2981 class_table->InsertWithHash(result_ptr, hash);
2982 WriteBarrier::ForEveryFieldWrite(class_loader.Get());
2983 } // else throw below, after releasing the lock.
2984 }
2985 }
2986 if (UNLIKELY(old != result_ptr)) {
2987 // Return `old` (even if `!descriptor_equals`) to mimic the RI behavior for parallel
2988 // capable class loaders. (All class loaders are considered parallel capable on Android.)
2989 ObjPtr<mirror::Class> loader_class = class_loader->GetClass();
2990 const char* loader_class_name =
2991 loader_class->GetDexFile().StringByTypeIdx(loader_class->GetDexTypeIndex());
2992 LOG(WARNING) << "Initiating class loader of type " << DescriptorToDot(loader_class_name)
2993 << " is not well-behaved; it returned a different Class for racing loadClass(\""
2994 << DescriptorToDot(descriptor) << "\").";
2995 return EnsureResolved(self, descriptor, old);
2996 }
2997 if (UNLIKELY(!descriptor_equals)) {
2998 std::string result_storage;
2999 const char* result_name = result_ptr->GetDescriptor(&result_storage);
3000 std::string loader_storage;
3001 const char* loader_class_name = class_loader->GetClass()->GetDescriptor(&loader_storage);
3002 ThrowNoClassDefFoundError(
3003 "Initiating class loader of type %s returned class %s instead of %s.",
3004 DescriptorToDot(loader_class_name).c_str(),
3005 DescriptorToDot(result_name).c_str(),
3006 DescriptorToDot(descriptor).c_str());
3007 return nullptr;
3008 }
3009 // Success.
3010 return result_ptr;
3011 }
3012
3013 // Helper for maintaining DefineClass counting. We need to notify callbacks when we start/end a
3014 // define-class and how many recursive DefineClasses we are at in order to allow for doing things
3015 // like pausing class definition.
3016 struct ScopedDefiningClass {
3017 public:
REQUIRES_SHAREDart::ScopedDefiningClass3018 explicit ScopedDefiningClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_)
3019 : self_(self), returned_(false) {
3020 Locks::mutator_lock_->AssertSharedHeld(self_);
3021 Runtime::Current()->GetRuntimeCallbacks()->BeginDefineClass();
3022 self_->IncrDefineClassCount();
3023 }
REQUIRES_SHAREDart::ScopedDefiningClass3024 ~ScopedDefiningClass() REQUIRES_SHARED(Locks::mutator_lock_) {
3025 Locks::mutator_lock_->AssertSharedHeld(self_);
3026 CHECK(returned_);
3027 }
3028
Finishart::ScopedDefiningClass3029 ObjPtr<mirror::Class> Finish(Handle<mirror::Class> h_klass)
3030 REQUIRES_SHARED(Locks::mutator_lock_) {
3031 CHECK(!returned_);
3032 self_->DecrDefineClassCount();
3033 Runtime::Current()->GetRuntimeCallbacks()->EndDefineClass();
3034 Thread::PoisonObjectPointersIfDebug();
3035 returned_ = true;
3036 return h_klass.Get();
3037 }
3038
Finishart::ScopedDefiningClass3039 ObjPtr<mirror::Class> Finish(ObjPtr<mirror::Class> klass)
3040 REQUIRES_SHARED(Locks::mutator_lock_) {
3041 StackHandleScope<1> hs(self_);
3042 Handle<mirror::Class> h_klass(hs.NewHandle(klass));
3043 return Finish(h_klass);
3044 }
3045
Finishart::ScopedDefiningClass3046 ObjPtr<mirror::Class> Finish(nullptr_t np ATTRIBUTE_UNUSED)
3047 REQUIRES_SHARED(Locks::mutator_lock_) {
3048 ScopedNullHandle<mirror::Class> snh;
3049 return Finish(snh);
3050 }
3051
3052 private:
3053 Thread* self_;
3054 bool returned_;
3055 };
3056
DefineClass(Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader,const DexFile & dex_file,const dex::ClassDef & dex_class_def)3057 ObjPtr<mirror::Class> ClassLinker::DefineClass(Thread* self,
3058 const char* descriptor,
3059 size_t hash,
3060 Handle<mirror::ClassLoader> class_loader,
3061 const DexFile& dex_file,
3062 const dex::ClassDef& dex_class_def) {
3063 ScopedDefiningClass sdc(self);
3064 StackHandleScope<3> hs(self);
3065 metrics::AutoTimer timer{GetMetrics()->ClassLoadingTotalTime()};
3066 auto klass = hs.NewHandle<mirror::Class>(nullptr);
3067
3068 // Load the class from the dex file.
3069 if (UNLIKELY(!init_done_)) {
3070 // finish up init of hand crafted class_roots_
3071 if (strcmp(descriptor, "Ljava/lang/Object;") == 0) {
3072 klass.Assign(GetClassRoot<mirror::Object>(this));
3073 } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
3074 klass.Assign(GetClassRoot<mirror::Class>(this));
3075 } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
3076 klass.Assign(GetClassRoot<mirror::String>(this));
3077 } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) {
3078 klass.Assign(GetClassRoot<mirror::Reference>(this));
3079 } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) {
3080 klass.Assign(GetClassRoot<mirror::DexCache>(this));
3081 } else if (strcmp(descriptor, "Ldalvik/system/ClassExt;") == 0) {
3082 klass.Assign(GetClassRoot<mirror::ClassExt>(this));
3083 }
3084 }
3085
3086 // For AOT-compilation of an app, we may use a shortened boot class path that excludes
3087 // some runtime modules. Prevent definition of classes in app class loader that could clash
3088 // with these modules as these classes could be resolved differently during execution.
3089 if (class_loader != nullptr &&
3090 Runtime::Current()->IsAotCompiler() &&
3091 IsUpdatableBootClassPathDescriptor(descriptor)) {
3092 ObjPtr<mirror::Throwable> pre_allocated =
3093 Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
3094 self->SetException(pre_allocated);
3095 return sdc.Finish(nullptr);
3096 }
3097
3098 // For AOT-compilation of an app, we may use only a public SDK to resolve symbols. If the SDK
3099 // checks are configured (a non null SdkChecker) and the descriptor is not in the provided
3100 // public class path then we prevent the definition of the class.
3101 //
3102 // NOTE that we only do the checks for the boot classpath APIs. Anything else, like the app
3103 // classpath is not checked.
3104 if (class_loader == nullptr &&
3105 Runtime::Current()->IsAotCompiler() &&
3106 DenyAccessBasedOnPublicSdk(descriptor)) {
3107 ObjPtr<mirror::Throwable> pre_allocated =
3108 Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
3109 self->SetException(pre_allocated);
3110 return sdc.Finish(nullptr);
3111 }
3112
3113 // This is to prevent the calls to ClassLoad and ClassPrepare which can cause java/user-supplied
3114 // code to be executed. We put it up here so we can avoid all the allocations associated with
3115 // creating the class. This can happen with (eg) jit threads.
3116 if (!self->CanLoadClasses()) {
3117 // Make sure we don't try to load anything, potentially causing an infinite loop.
3118 ObjPtr<mirror::Throwable> pre_allocated =
3119 Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
3120 self->SetException(pre_allocated);
3121 return sdc.Finish(nullptr);
3122 }
3123
3124 if (klass == nullptr) {
3125 // Allocate a class with the status of not ready.
3126 // Interface object should get the right size here. Regular class will
3127 // figure out the right size later and be replaced with one of the right
3128 // size when the class becomes resolved.
3129 if (CanAllocClass()) {
3130 klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def)));
3131 } else {
3132 return sdc.Finish(nullptr);
3133 }
3134 }
3135 if (UNLIKELY(klass == nullptr)) {
3136 self->AssertPendingOOMException();
3137 return sdc.Finish(nullptr);
3138 }
3139 // Get the real dex file. This will return the input if there aren't any callbacks or they do
3140 // nothing.
3141 DexFile const* new_dex_file = nullptr;
3142 dex::ClassDef const* new_class_def = nullptr;
3143 // TODO We should ideally figure out some way to move this after we get a lock on the klass so it
3144 // will only be called once.
3145 Runtime::Current()->GetRuntimeCallbacks()->ClassPreDefine(descriptor,
3146 klass,
3147 class_loader,
3148 dex_file,
3149 dex_class_def,
3150 &new_dex_file,
3151 &new_class_def);
3152 // Check to see if an exception happened during runtime callbacks. Return if so.
3153 if (self->IsExceptionPending()) {
3154 return sdc.Finish(nullptr);
3155 }
3156 ObjPtr<mirror::DexCache> dex_cache = RegisterDexFile(*new_dex_file, class_loader.Get());
3157 if (dex_cache == nullptr) {
3158 self->AssertPendingException();
3159 return sdc.Finish(nullptr);
3160 }
3161 klass->SetDexCache(dex_cache);
3162 SetupClass(*new_dex_file, *new_class_def, klass, class_loader.Get());
3163
3164 // Mark the string class by setting its access flag.
3165 if (UNLIKELY(!init_done_)) {
3166 if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
3167 klass->SetStringClass();
3168 }
3169 }
3170
3171 ObjectLock<mirror::Class> lock(self, klass);
3172 klass->SetClinitThreadId(self->GetTid());
3173 // Make sure we have a valid empty iftable even if there are errors.
3174 klass->SetIfTable(GetClassRoot<mirror::Object>(this)->GetIfTable());
3175
3176 // Add the newly loaded class to the loaded classes table.
3177 ObjPtr<mirror::Class> existing = InsertClass(descriptor, klass.Get(), hash);
3178 if (existing != nullptr) {
3179 // We failed to insert because we raced with another thread. Calling EnsureResolved may cause
3180 // this thread to block.
3181 return sdc.Finish(EnsureResolved(self, descriptor, existing));
3182 }
3183
3184 // Load the fields and other things after we are inserted in the table. This is so that we don't
3185 // end up allocating unfree-able linear alloc resources and then lose the race condition. The
3186 // other reason is that the field roots are only visited from the class table. So we need to be
3187 // inserted before we allocate / fill in these fields.
3188 LoadClass(self, *new_dex_file, *new_class_def, klass);
3189 if (self->IsExceptionPending()) {
3190 VLOG(class_linker) << self->GetException()->Dump();
3191 // An exception occured during load, set status to erroneous while holding klass' lock in case
3192 // notification is necessary.
3193 if (!klass->IsErroneous()) {
3194 mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self);
3195 }
3196 return sdc.Finish(nullptr);
3197 }
3198
3199 // Finish loading (if necessary) by finding parents
3200 CHECK(!klass->IsLoaded());
3201 if (!LoadSuperAndInterfaces(klass, *new_dex_file)) {
3202 // Loading failed.
3203 if (!klass->IsErroneous()) {
3204 mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self);
3205 }
3206 return sdc.Finish(nullptr);
3207 }
3208 CHECK(klass->IsLoaded());
3209
3210 // At this point the class is loaded. Publish a ClassLoad event.
3211 // Note: this may be a temporary class. It is a listener's responsibility to handle this.
3212 Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(klass);
3213
3214 // Link the class (if necessary)
3215 CHECK(!klass->IsResolved());
3216 // TODO: Use fast jobjects?
3217 auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
3218
3219 MutableHandle<mirror::Class> h_new_class = hs.NewHandle<mirror::Class>(nullptr);
3220 if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) {
3221 // Linking failed.
3222 if (!klass->IsErroneous()) {
3223 mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self);
3224 }
3225 return sdc.Finish(nullptr);
3226 }
3227 self->AssertNoPendingException();
3228 CHECK(h_new_class != nullptr) << descriptor;
3229 CHECK(h_new_class->IsResolved() && !h_new_class->IsErroneousResolved()) << descriptor;
3230
3231 // Instrumentation may have updated entrypoints for all methods of all
3232 // classes. However it could not update methods of this class while we
3233 // were loading it. Now the class is resolved, we can update entrypoints
3234 // as required by instrumentation.
3235 if (Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()) {
3236 // We must be in the kRunnable state to prevent instrumentation from
3237 // suspending all threads to update entrypoints while we are doing it
3238 // for this class.
3239 DCHECK_EQ(self->GetState(), kRunnable);
3240 Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get());
3241 }
3242
3243 /*
3244 * We send CLASS_PREPARE events to the debugger from here. The
3245 * definition of "preparation" is creating the static fields for a
3246 * class and initializing them to the standard default values, but not
3247 * executing any code (that comes later, during "initialization").
3248 *
3249 * We did the static preparation in LinkClass.
3250 *
3251 * The class has been prepared and resolved but possibly not yet verified
3252 * at this point.
3253 */
3254 Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(klass, h_new_class);
3255
3256 // Notify native debugger of the new class and its layout.
3257 jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get());
3258
3259 return sdc.Finish(h_new_class);
3260 }
3261
SizeOfClassWithoutEmbeddedTables(const DexFile & dex_file,const dex::ClassDef & dex_class_def)3262 uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file,
3263 const dex::ClassDef& dex_class_def) {
3264 size_t num_ref = 0;
3265 size_t num_8 = 0;
3266 size_t num_16 = 0;
3267 size_t num_32 = 0;
3268 size_t num_64 = 0;
3269 ClassAccessor accessor(dex_file, dex_class_def);
3270 // We allow duplicate definitions of the same field in a class_data_item
3271 // but ignore the repeated indexes here, b/21868015.
3272 uint32_t last_field_idx = dex::kDexNoIndex;
3273 for (const ClassAccessor::Field& field : accessor.GetStaticFields()) {
3274 uint32_t field_idx = field.GetIndex();
3275 // Ordering enforced by DexFileVerifier.
3276 DCHECK(last_field_idx == dex::kDexNoIndex || last_field_idx <= field_idx);
3277 if (UNLIKELY(field_idx == last_field_idx)) {
3278 continue;
3279 }
3280 last_field_idx = field_idx;
3281 const dex::FieldId& field_id = dex_file.GetFieldId(field_idx);
3282 const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id);
3283 char c = descriptor[0];
3284 switch (c) {
3285 case 'L':
3286 case '[':
3287 num_ref++;
3288 break;
3289 case 'J':
3290 case 'D':
3291 num_64++;
3292 break;
3293 case 'I':
3294 case 'F':
3295 num_32++;
3296 break;
3297 case 'S':
3298 case 'C':
3299 num_16++;
3300 break;
3301 case 'B':
3302 case 'Z':
3303 num_8++;
3304 break;
3305 default:
3306 LOG(FATAL) << "Unknown descriptor: " << c;
3307 UNREACHABLE();
3308 }
3309 }
3310 return mirror::Class::ComputeClassSize(false,
3311 0,
3312 num_8,
3313 num_16,
3314 num_32,
3315 num_64,
3316 num_ref,
3317 image_pointer_size_);
3318 }
3319
3320 // Special case to get oat code without overwriting a trampoline.
GetQuickOatCodeFor(ArtMethod * method)3321 const void* ClassLinker::GetQuickOatCodeFor(ArtMethod* method) {
3322 CHECK(method->IsInvokable()) << method->PrettyMethod();
3323 if (method->IsProxyMethod()) {
3324 return GetQuickProxyInvokeHandler();
3325 }
3326 const void* code = method->GetOatMethodQuickCode(GetImagePointerSize());
3327 if (code != nullptr) {
3328 return code;
3329 }
3330
3331 jit::Jit* jit = Runtime::Current()->GetJit();
3332 if (jit != nullptr) {
3333 code = jit->GetCodeCache()->GetSavedEntryPointOfPreCompiledMethod(method);
3334 if (code != nullptr) {
3335 return code;
3336 }
3337 }
3338
3339 if (method->IsNative()) {
3340 // No code and native? Use generic trampoline.
3341 return GetQuickGenericJniStub();
3342 }
3343
3344 if (interpreter::CanRuntimeUseNterp() && CanMethodUseNterp(method)) {
3345 return interpreter::GetNterpEntryPoint();
3346 }
3347
3348 return GetQuickToInterpreterBridge();
3349 }
3350
ShouldUseInterpreterEntrypoint(ArtMethod * method,const void * quick_code)3351 bool ClassLinker::ShouldUseInterpreterEntrypoint(ArtMethod* method, const void* quick_code) {
3352 ScopedAssertNoThreadSuspension sants(__FUNCTION__);
3353 if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) {
3354 return false;
3355 }
3356
3357 if (quick_code == nullptr) {
3358 return true;
3359 }
3360
3361 Runtime* runtime = Runtime::Current();
3362 instrumentation::Instrumentation* instr = runtime->GetInstrumentation();
3363 if (instr->InterpretOnly()) {
3364 return true;
3365 }
3366
3367 if (runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) {
3368 // Doing this check avoids doing compiled/interpreter transitions.
3369 return true;
3370 }
3371
3372 if (Thread::Current()->IsForceInterpreter()) {
3373 // Force the use of interpreter when it is required by the debugger.
3374 return true;
3375 }
3376
3377 if (Thread::Current()->IsAsyncExceptionPending()) {
3378 // Force use of interpreter to handle async-exceptions
3379 return true;
3380 }
3381
3382 if (quick_code == GetQuickInstrumentationEntryPoint()) {
3383 const void* instr_target = instr->GetCodeForInvoke(method);
3384 DCHECK_NE(instr_target, GetQuickInstrumentationEntryPoint()) << method->PrettyMethod();
3385 return ShouldUseInterpreterEntrypoint(method, instr_target);
3386 }
3387
3388 if (runtime->IsJavaDebuggable()) {
3389 // For simplicity, we ignore precompiled code and go to the interpreter
3390 // assuming we don't already have jitted code.
3391 // We could look at the oat file where `quick_code` is being defined,
3392 // and check whether it's been compiled debuggable, but we decided to
3393 // only rely on the JIT for debuggable apps.
3394 jit::Jit* jit = Runtime::Current()->GetJit();
3395 return (jit == nullptr) || !jit->GetCodeCache()->ContainsPc(quick_code);
3396 }
3397
3398 if (runtime->IsNativeDebuggable()) {
3399 DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse());
3400 // If we are doing native debugging, ignore application's AOT code,
3401 // since we want to JIT it (at first use) with extra stackmaps for native
3402 // debugging. We keep however all AOT code from the boot image,
3403 // since the JIT-at-first-use is blocking and would result in non-negligible
3404 // startup performance impact.
3405 return !runtime->GetHeap()->IsInBootImageOatFile(quick_code);
3406 }
3407
3408 return false;
3409 }
3410
FixupStaticTrampolines(Thread * self,ObjPtr<mirror::Class> klass)3411 void ClassLinker::FixupStaticTrampolines(Thread* self, ObjPtr<mirror::Class> klass) {
3412 ScopedAssertNoThreadSuspension sants(__FUNCTION__);
3413 DCHECK(klass->IsVisiblyInitialized()) << klass->PrettyDescriptor();
3414 size_t num_direct_methods = klass->NumDirectMethods();
3415 if (num_direct_methods == 0) {
3416 return; // No direct methods => no static methods.
3417 }
3418 if (UNLIKELY(klass->IsProxyClass())) {
3419 return;
3420 }
3421 PointerSize pointer_size = image_pointer_size_;
3422 if (std::any_of(klass->GetDirectMethods(pointer_size).begin(),
3423 klass->GetDirectMethods(pointer_size).end(),
3424 [](const ArtMethod& m) { return m.IsCriticalNative(); })) {
3425 // Store registered @CriticalNative methods, if any, to JNI entrypoints.
3426 // Direct methods are a contiguous chunk of memory, so use the ordering of the map.
3427 ArtMethod* first_method = klass->GetDirectMethod(0u, pointer_size);
3428 ArtMethod* last_method = klass->GetDirectMethod(num_direct_methods - 1u, pointer_size);
3429 MutexLock lock(self, critical_native_code_with_clinit_check_lock_);
3430 auto lb = critical_native_code_with_clinit_check_.lower_bound(first_method);
3431 while (lb != critical_native_code_with_clinit_check_.end() && lb->first <= last_method) {
3432 lb->first->SetEntryPointFromJni(lb->second);
3433 lb = critical_native_code_with_clinit_check_.erase(lb);
3434 }
3435 }
3436 Runtime* runtime = Runtime::Current();
3437 if (!runtime->IsStarted()) {
3438 if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) {
3439 return; // OAT file unavailable.
3440 }
3441 }
3442
3443 const DexFile& dex_file = klass->GetDexFile();
3444 bool has_oat_class;
3445 OatFile::OatClass oat_class = OatFile::FindOatClass(dex_file,
3446 klass->GetDexClassDefIndex(),
3447 &has_oat_class);
3448 // Link the code of methods skipped by LinkCode.
3449 for (size_t method_index = 0; method_index < num_direct_methods; ++method_index) {
3450 ArtMethod* method = klass->GetDirectMethod(method_index, pointer_size);
3451 if (!method->IsStatic()) {
3452 // Only update static methods.
3453 continue;
3454 }
3455 const void* quick_code = nullptr;
3456
3457 // In order:
3458 // 1) Check if we have AOT Code.
3459 // 2) Check if we have JIT Code.
3460 // 3) Check if we can use Nterp.
3461 if (has_oat_class) {
3462 OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index);
3463 quick_code = oat_method.GetQuickCode();
3464 }
3465
3466 jit::Jit* jit = runtime->GetJit();
3467 if (quick_code == nullptr && jit != nullptr) {
3468 quick_code = jit->GetCodeCache()->GetSavedEntryPointOfPreCompiledMethod(method);
3469 }
3470
3471 if (quick_code == nullptr &&
3472 interpreter::CanRuntimeUseNterp() &&
3473 CanMethodUseNterp(method)) {
3474 quick_code = interpreter::GetNterpEntryPoint();
3475 }
3476
3477 // Check whether the method is native, in which case it's generic JNI.
3478 if (quick_code == nullptr && method->IsNative()) {
3479 quick_code = GetQuickGenericJniStub();
3480 } else if (ShouldUseInterpreterEntrypoint(method, quick_code)) {
3481 // Use interpreter entry point.
3482 if (IsQuickToInterpreterBridge(method->GetEntryPointFromQuickCompiledCode())) {
3483 // If we have the trampoline or the bridge already, no need to update.
3484 // This saves in not dirtying boot image memory.
3485 continue;
3486 }
3487 quick_code = GetQuickToInterpreterBridge();
3488 }
3489 CHECK(quick_code != nullptr);
3490 runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code);
3491 }
3492 // Ignore virtual methods on the iterator.
3493 }
3494
3495 // Does anything needed to make sure that the compiler will not generate a direct invoke to this
3496 // method. Should only be called on non-invokable methods.
EnsureThrowsInvocationError(ClassLinker * class_linker,ArtMethod * method)3497 inline void EnsureThrowsInvocationError(ClassLinker* class_linker, ArtMethod* method)
3498 REQUIRES_SHARED(Locks::mutator_lock_) {
3499 DCHECK(method != nullptr);
3500 DCHECK(!method->IsInvokable());
3501 method->SetEntryPointFromQuickCompiledCodePtrSize(
3502 class_linker->GetQuickToInterpreterBridgeTrampoline(),
3503 class_linker->GetImagePointerSize());
3504 }
3505
LinkCode(ClassLinker * class_linker,ArtMethod * method,const OatFile::OatClass * oat_class,uint32_t class_def_method_index)3506 static void LinkCode(ClassLinker* class_linker,
3507 ArtMethod* method,
3508 const OatFile::OatClass* oat_class,
3509 uint32_t class_def_method_index) REQUIRES_SHARED(Locks::mutator_lock_) {
3510 ScopedAssertNoThreadSuspension sants(__FUNCTION__);
3511 Runtime* const runtime = Runtime::Current();
3512 if (runtime->IsAotCompiler()) {
3513 // The following code only applies to a non-compiler runtime.
3514 return;
3515 }
3516
3517 // Method shouldn't have already been linked.
3518 DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
3519
3520 if (!method->IsInvokable()) {
3521 EnsureThrowsInvocationError(class_linker, method);
3522 return;
3523 }
3524
3525 const void* quick_code = nullptr;
3526 if (oat_class != nullptr) {
3527 // Every kind of method should at least get an invoke stub from the oat_method.
3528 // non-abstract methods also get their code pointers.
3529 const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index);
3530 quick_code = oat_method.GetQuickCode();
3531 }
3532
3533 bool enter_interpreter = class_linker->ShouldUseInterpreterEntrypoint(method, quick_code);
3534
3535 // Note: this mimics the logic in image_writer.cc that installs the resolution
3536 // stub only if we have compiled code and the method needs a class initialization
3537 // check.
3538 if (quick_code == nullptr) {
3539 method->SetEntryPointFromQuickCompiledCode(
3540 method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge());
3541 } else if (enter_interpreter) {
3542 method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
3543 } else if (NeedsClinitCheckBeforeCall(method)) {
3544 DCHECK(!method->GetDeclaringClass()->IsVisiblyInitialized()); // Actually ClassStatus::Idx.
3545 // If we do have code but the method needs a class initialization check before calling
3546 // that code, install the resolution stub that will perform the check.
3547 // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines
3548 // after initializing class (see ClassLinker::InitializeClass method).
3549 method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
3550 } else {
3551 method->SetEntryPointFromQuickCompiledCode(quick_code);
3552 }
3553
3554 if (method->IsNative()) {
3555 // Set up the dlsym lookup stub. Do not go through `UnregisterNative()`
3556 // as the extra processing for @CriticalNative is not needed yet.
3557 method->SetEntryPointFromJni(
3558 method->IsCriticalNative() ? GetJniDlsymLookupCriticalStub() : GetJniDlsymLookupStub());
3559
3560 if (enter_interpreter || quick_code == nullptr) {
3561 // We have a native method here without code. Then it should have the generic JNI
3562 // trampoline as entrypoint.
3563 // TODO: this doesn't handle all the cases where trampolines may be installed.
3564 DCHECK(class_linker->IsQuickGenericJniStub(method->GetEntryPointFromQuickCompiledCode()));
3565 }
3566 }
3567 }
3568
SetupClass(const DexFile & dex_file,const dex::ClassDef & dex_class_def,Handle<mirror::Class> klass,ObjPtr<mirror::ClassLoader> class_loader)3569 void ClassLinker::SetupClass(const DexFile& dex_file,
3570 const dex::ClassDef& dex_class_def,
3571 Handle<mirror::Class> klass,
3572 ObjPtr<mirror::ClassLoader> class_loader) {
3573 CHECK(klass != nullptr);
3574 CHECK(klass->GetDexCache() != nullptr);
3575 CHECK_EQ(ClassStatus::kNotReady, klass->GetStatus());
3576 const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
3577 CHECK(descriptor != nullptr);
3578
3579 klass->SetClass(GetClassRoot<mirror::Class>(this));
3580 uint32_t access_flags = dex_class_def.GetJavaAccessFlags();
3581 CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U);
3582 klass->SetAccessFlagsDuringLinking(access_flags);
3583 klass->SetClassLoader(class_loader);
3584 DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
3585 mirror::Class::SetStatus(klass, ClassStatus::kIdx, nullptr);
3586
3587 klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def));
3588 klass->SetDexTypeIndex(dex_class_def.class_idx_);
3589 }
3590
AllocArtFieldArray(Thread * self,LinearAlloc * allocator,size_t length)3591 LengthPrefixedArray<ArtField>* ClassLinker::AllocArtFieldArray(Thread* self,
3592 LinearAlloc* allocator,
3593 size_t length) {
3594 if (length == 0) {
3595 return nullptr;
3596 }
3597 // If the ArtField alignment changes, review all uses of LengthPrefixedArray<ArtField>.
3598 static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4.");
3599 size_t storage_size = LengthPrefixedArray<ArtField>::ComputeSize(length);
3600 void* array_storage = allocator->Alloc(self, storage_size);
3601 auto* ret = new(array_storage) LengthPrefixedArray<ArtField>(length);
3602 CHECK(ret != nullptr);
3603 std::uninitialized_fill_n(&ret->At(0), length, ArtField());
3604 return ret;
3605 }
3606
AllocArtMethodArray(Thread * self,LinearAlloc * allocator,size_t length)3607 LengthPrefixedArray<ArtMethod>* ClassLinker::AllocArtMethodArray(Thread* self,
3608 LinearAlloc* allocator,
3609 size_t length) {
3610 if (length == 0) {
3611 return nullptr;
3612 }
3613 const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
3614 const size_t method_size = ArtMethod::Size(image_pointer_size_);
3615 const size_t storage_size =
3616 LengthPrefixedArray<ArtMethod>::ComputeSize(length, method_size, method_alignment);
3617 void* array_storage = allocator->Alloc(self, storage_size);
3618 auto* ret = new (array_storage) LengthPrefixedArray<ArtMethod>(length);
3619 CHECK(ret != nullptr);
3620 for (size_t i = 0; i < length; ++i) {
3621 new(reinterpret_cast<void*>(&ret->At(i, method_size, method_alignment))) ArtMethod;
3622 }
3623 return ret;
3624 }
3625
GetAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader)3626 LinearAlloc* ClassLinker::GetAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
3627 if (class_loader == nullptr) {
3628 return Runtime::Current()->GetLinearAlloc();
3629 }
3630 LinearAlloc* allocator = class_loader->GetAllocator();
3631 DCHECK(allocator != nullptr);
3632 return allocator;
3633 }
3634
GetOrCreateAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader)3635 LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
3636 if (class_loader == nullptr) {
3637 return Runtime::Current()->GetLinearAlloc();
3638 }
3639 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3640 LinearAlloc* allocator = class_loader->GetAllocator();
3641 if (allocator == nullptr) {
3642 RegisterClassLoader(class_loader);
3643 allocator = class_loader->GetAllocator();
3644 CHECK(allocator != nullptr);
3645 }
3646 return allocator;
3647 }
3648
LoadClass(Thread * self,const DexFile & dex_file,const dex::ClassDef & dex_class_def,Handle<mirror::Class> klass)3649 void ClassLinker::LoadClass(Thread* self,
3650 const DexFile& dex_file,
3651 const dex::ClassDef& dex_class_def,
3652 Handle<mirror::Class> klass) {
3653 ClassAccessor accessor(dex_file,
3654 dex_class_def,
3655 /* parse_hiddenapi_class_data= */ klass->IsBootStrapClassLoaded());
3656 if (!accessor.HasClassData()) {
3657 return;
3658 }
3659 Runtime* const runtime = Runtime::Current();
3660 {
3661 // Note: We cannot have thread suspension until the field and method arrays are setup or else
3662 // Class::VisitFieldRoots may miss some fields or methods.
3663 ScopedAssertNoThreadSuspension nts(__FUNCTION__);
3664 // Load static fields.
3665 // We allow duplicate definitions of the same field in a class_data_item
3666 // but ignore the repeated indexes here, b/21868015.
3667 LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
3668 LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self,
3669 allocator,
3670 accessor.NumStaticFields());
3671 LengthPrefixedArray<ArtField>* ifields = AllocArtFieldArray(self,
3672 allocator,
3673 accessor.NumInstanceFields());
3674 size_t num_sfields = 0u;
3675 size_t num_ifields = 0u;
3676 uint32_t last_static_field_idx = 0u;
3677 uint32_t last_instance_field_idx = 0u;
3678
3679 // Methods
3680 bool has_oat_class = false;
3681 const OatFile::OatClass oat_class = (runtime->IsStarted() && !runtime->IsAotCompiler())
3682 ? OatFile::FindOatClass(dex_file, klass->GetDexClassDefIndex(), &has_oat_class)
3683 : OatFile::OatClass::Invalid();
3684 const OatFile::OatClass* oat_class_ptr = has_oat_class ? &oat_class : nullptr;
3685 klass->SetMethodsPtr(
3686 AllocArtMethodArray(self, allocator, accessor.NumMethods()),
3687 accessor.NumDirectMethods(),
3688 accessor.NumVirtualMethods());
3689 size_t class_def_method_index = 0;
3690 uint32_t last_dex_method_index = dex::kDexNoIndex;
3691 size_t last_class_def_method_index = 0;
3692
3693 // Use the visitor since the ranged based loops are bit slower from seeking. Seeking to the
3694 // methods needs to decode all of the fields.
3695 accessor.VisitFieldsAndMethods([&](
3696 const ClassAccessor::Field& field) REQUIRES_SHARED(Locks::mutator_lock_) {
3697 uint32_t field_idx = field.GetIndex();
3698 DCHECK_GE(field_idx, last_static_field_idx); // Ordering enforced by DexFileVerifier.
3699 if (num_sfields == 0 || LIKELY(field_idx > last_static_field_idx)) {
3700 LoadField(field, klass, &sfields->At(num_sfields));
3701 ++num_sfields;
3702 last_static_field_idx = field_idx;
3703 }
3704 }, [&](const ClassAccessor::Field& field) REQUIRES_SHARED(Locks::mutator_lock_) {
3705 uint32_t field_idx = field.GetIndex();
3706 DCHECK_GE(field_idx, last_instance_field_idx); // Ordering enforced by DexFileVerifier.
3707 if (num_ifields == 0 || LIKELY(field_idx > last_instance_field_idx)) {
3708 LoadField(field, klass, &ifields->At(num_ifields));
3709 ++num_ifields;
3710 last_instance_field_idx = field_idx;
3711 }
3712 }, [&](const ClassAccessor::Method& method) REQUIRES_SHARED(Locks::mutator_lock_) {
3713 ArtMethod* art_method = klass->GetDirectMethodUnchecked(class_def_method_index,
3714 image_pointer_size_);
3715 LoadMethod(dex_file, method, klass, art_method);
3716 LinkCode(this, art_method, oat_class_ptr, class_def_method_index);
3717 uint32_t it_method_index = method.GetIndex();
3718 if (last_dex_method_index == it_method_index) {
3719 // duplicate case
3720 art_method->SetMethodIndex(last_class_def_method_index);
3721 } else {
3722 art_method->SetMethodIndex(class_def_method_index);
3723 last_dex_method_index = it_method_index;
3724 last_class_def_method_index = class_def_method_index;
3725 }
3726 ++class_def_method_index;
3727 }, [&](const ClassAccessor::Method& method) REQUIRES_SHARED(Locks::mutator_lock_) {
3728 ArtMethod* art_method = klass->GetVirtualMethodUnchecked(
3729 class_def_method_index - accessor.NumDirectMethods(),
3730 image_pointer_size_);
3731 LoadMethod(dex_file, method, klass, art_method);
3732 LinkCode(this, art_method, oat_class_ptr, class_def_method_index);
3733 ++class_def_method_index;
3734 });
3735
3736 if (UNLIKELY(num_ifields + num_sfields != accessor.NumFields())) {
3737 LOG(WARNING) << "Duplicate fields in class " << klass->PrettyDescriptor()
3738 << " (unique static fields: " << num_sfields << "/" << accessor.NumStaticFields()
3739 << ", unique instance fields: " << num_ifields << "/" << accessor.NumInstanceFields()
3740 << ")";
3741 // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size.
3742 if (sfields != nullptr) {
3743 sfields->SetSize(num_sfields);
3744 }
3745 if (ifields != nullptr) {
3746 ifields->SetSize(num_ifields);
3747 }
3748 }
3749 // Set the field arrays.
3750 klass->SetSFieldsPtr(sfields);
3751 DCHECK_EQ(klass->NumStaticFields(), num_sfields);
3752 klass->SetIFieldsPtr(ifields);
3753 DCHECK_EQ(klass->NumInstanceFields(), num_ifields);
3754 }
3755 // Ensure that the card is marked so that remembered sets pick up native roots.
3756 WriteBarrier::ForEveryFieldWrite(klass.Get());
3757 self->AllowThreadSuspension();
3758 }
3759
LoadField(const ClassAccessor::Field & field,Handle<mirror::Class> klass,ArtField * dst)3760 void ClassLinker::LoadField(const ClassAccessor::Field& field,
3761 Handle<mirror::Class> klass,
3762 ArtField* dst) {
3763 const uint32_t field_idx = field.GetIndex();
3764 dst->SetDexFieldIndex(field_idx);
3765 dst->SetDeclaringClass(klass.Get());
3766
3767 // Get access flags from the DexFile and set hiddenapi runtime access flags.
3768 dst->SetAccessFlags(field.GetAccessFlags() | hiddenapi::CreateRuntimeFlags(field));
3769 }
3770
LoadMethod(const DexFile & dex_file,const ClassAccessor::Method & method,Handle<mirror::Class> klass,ArtMethod * dst)3771 void ClassLinker::LoadMethod(const DexFile& dex_file,
3772 const ClassAccessor::Method& method,
3773 Handle<mirror::Class> klass,
3774 ArtMethod* dst) {
3775 const uint32_t dex_method_idx = method.GetIndex();
3776 const dex::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
3777 const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_);
3778
3779 ScopedAssertNoThreadSuspension ants("LoadMethod");
3780 dst->SetDexMethodIndex(dex_method_idx);
3781 dst->SetDeclaringClass(klass.Get());
3782
3783 // Get access flags from the DexFile and set hiddenapi runtime access flags.
3784 uint32_t access_flags = method.GetAccessFlags() | hiddenapi::CreateRuntimeFlags(method);
3785
3786 if (UNLIKELY(strcmp("finalize", method_name) == 0)) {
3787 // Set finalizable flag on declaring class.
3788 if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) {
3789 // Void return type.
3790 if (klass->GetClassLoader() != nullptr) { // All non-boot finalizer methods are flagged.
3791 klass->SetFinalizable();
3792 } else {
3793 std::string temp;
3794 const char* klass_descriptor = klass->GetDescriptor(&temp);
3795 // The Enum class declares a "final" finalize() method to prevent subclasses from
3796 // introducing a finalizer. We don't want to set the finalizable flag for Enum or its
3797 // subclasses, so we exclude it here.
3798 // We also want to avoid setting the flag on Object, where we know that finalize() is
3799 // empty.
3800 if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 &&
3801 strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) {
3802 klass->SetFinalizable();
3803 }
3804 }
3805 }
3806 } else if (method_name[0] == '<') {
3807 // Fix broken access flags for initializers. Bug 11157540.
3808 bool is_init = (strcmp("<init>", method_name) == 0);
3809 bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0);
3810 if (UNLIKELY(!is_init && !is_clinit)) {
3811 LOG(WARNING) << "Unexpected '<' at start of method name " << method_name;
3812 } else {
3813 if (UNLIKELY((access_flags & kAccConstructor) == 0)) {
3814 LOG(WARNING) << method_name << " didn't have expected constructor access flag in class "
3815 << klass->PrettyDescriptor() << " in dex file " << dex_file.GetLocation();
3816 access_flags |= kAccConstructor;
3817 }
3818 }
3819 }
3820 if (UNLIKELY((access_flags & kAccNative) != 0u)) {
3821 // Check if the native method is annotated with @FastNative or @CriticalNative.
3822 access_flags |= annotations::GetNativeMethodAnnotationAccessFlags(
3823 dex_file, dst->GetClassDef(), dex_method_idx);
3824 }
3825 dst->SetAccessFlags(access_flags);
3826 // Must be done after SetAccessFlags since IsAbstract depends on it.
3827 if (klass->IsInterface() && dst->IsAbstract()) {
3828 dst->CalculateAndSetImtIndex();
3829 }
3830 if (dst->HasCodeItem()) {
3831 DCHECK_NE(method.GetCodeItemOffset(), 0u);
3832 if (Runtime::Current()->IsAotCompiler()) {
3833 dst->SetDataPtrSize(reinterpret_cast32<void*>(method.GetCodeItemOffset()), image_pointer_size_);
3834 } else {
3835 dst->SetCodeItem(dst->GetDexFile()->GetCodeItem(method.GetCodeItemOffset()));
3836 }
3837 } else {
3838 dst->SetDataPtrSize(nullptr, image_pointer_size_);
3839 DCHECK_EQ(method.GetCodeItemOffset(), 0u);
3840 }
3841
3842 // Set optimization flags related to the shorty.
3843 const char* shorty = dst->GetShorty();
3844 bool all_parameters_are_reference = true;
3845 bool all_parameters_are_reference_or_int = true;
3846 bool return_type_is_fp = (shorty[0] == 'F' || shorty[0] == 'D');
3847
3848 for (size_t i = 1, e = strlen(shorty); i < e; ++i) {
3849 if (shorty[i] != 'L') {
3850 all_parameters_are_reference = false;
3851 if (shorty[i] == 'F' || shorty[i] == 'D' || shorty[i] == 'J') {
3852 all_parameters_are_reference_or_int = false;
3853 break;
3854 }
3855 }
3856 }
3857
3858 if (!dst->IsNative() && all_parameters_are_reference) {
3859 dst->SetNterpEntryPointFastPathFlag();
3860 }
3861
3862 if (!return_type_is_fp && all_parameters_are_reference_or_int) {
3863 dst->SetNterpInvokeFastPathFlag();
3864 }
3865 }
3866
AppendToBootClassPath(Thread * self,const DexFile * dex_file)3867 void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile* dex_file) {
3868 ObjPtr<mirror::DexCache> dex_cache = AllocAndInitializeDexCache(
3869 self,
3870 *dex_file,
3871 Runtime::Current()->GetLinearAlloc());
3872 CHECK(dex_cache != nullptr) << "Failed to allocate dex cache for " << dex_file->GetLocation();
3873 AppendToBootClassPath(dex_file, dex_cache);
3874 }
3875
AppendToBootClassPath(const DexFile * dex_file,ObjPtr<mirror::DexCache> dex_cache)3876 void ClassLinker::AppendToBootClassPath(const DexFile* dex_file,
3877 ObjPtr<mirror::DexCache> dex_cache) {
3878 CHECK(dex_file != nullptr);
3879 CHECK(dex_cache != nullptr) << dex_file->GetLocation();
3880 boot_class_path_.push_back(dex_file);
3881 WriterMutexLock mu(Thread::Current(), *Locks::dex_lock_);
3882 RegisterDexFileLocked(*dex_file, dex_cache, /* class_loader= */ nullptr);
3883 }
3884
RegisterDexFileLocked(const DexFile & dex_file,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)3885 void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file,
3886 ObjPtr<mirror::DexCache> dex_cache,
3887 ObjPtr<mirror::ClassLoader> class_loader) {
3888 Thread* const self = Thread::Current();
3889 Locks::dex_lock_->AssertExclusiveHeld(self);
3890 CHECK(dex_cache != nullptr) << dex_file.GetLocation();
3891 CHECK_EQ(dex_cache->GetDexFile(), &dex_file) << dex_file.GetLocation();
3892 // For app images, the dex cache location may be a suffix of the dex file location since the
3893 // dex file location is an absolute path.
3894 const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8();
3895 const size_t dex_cache_length = dex_cache_location.length();
3896 CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation();
3897 std::string dex_file_location = dex_file.GetLocation();
3898 // The following paths checks don't work on preopt when using boot dex files, where the dex
3899 // cache location is the one on device, and the dex_file's location is the one on host.
3900 if (!(Runtime::Current()->IsAotCompiler() && class_loader == nullptr && !kIsTargetBuild)) {
3901 CHECK_GE(dex_file_location.length(), dex_cache_length)
3902 << dex_cache_location << " " << dex_file.GetLocation();
3903 const std::string dex_file_suffix = dex_file_location.substr(
3904 dex_file_location.length() - dex_cache_length,
3905 dex_cache_length);
3906 // Example dex_cache location is SettingsProvider.apk and
3907 // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk
3908 CHECK_EQ(dex_cache_location, dex_file_suffix);
3909 }
3910 const OatFile* oat_file =
3911 (dex_file.GetOatDexFile() != nullptr) ? dex_file.GetOatDexFile()->GetOatFile() : nullptr;
3912 // Clean up pass to remove null dex caches; null dex caches can occur due to class unloading
3913 // and we are lazily removing null entries. Also check if we need to initialize OatFile data
3914 // (.data.bimg.rel.ro and .bss sections) needed for code execution.
3915 bool initialize_oat_file_data = (oat_file != nullptr) && oat_file->IsExecutable();
3916 JavaVMExt* const vm = self->GetJniEnv()->GetVm();
3917 for (auto it = dex_caches_.begin(); it != dex_caches_.end(); ) {
3918 DexCacheData data = *it;
3919 if (self->IsJWeakCleared(data.weak_root)) {
3920 vm->DeleteWeakGlobalRef(self, data.weak_root);
3921 it = dex_caches_.erase(it);
3922 } else {
3923 if (initialize_oat_file_data &&
3924 it->dex_file->GetOatDexFile() != nullptr &&
3925 it->dex_file->GetOatDexFile()->GetOatFile() == oat_file) {
3926 initialize_oat_file_data = false; // Already initialized.
3927 }
3928 ++it;
3929 }
3930 }
3931 if (initialize_oat_file_data) {
3932 oat_file->InitializeRelocations();
3933 }
3934 // Let hiddenapi assign a domain to the newly registered dex file.
3935 hiddenapi::InitializeDexFileDomain(dex_file, class_loader);
3936
3937 jweak dex_cache_jweak = vm->AddWeakGlobalRef(self, dex_cache);
3938 DexCacheData data;
3939 data.weak_root = dex_cache_jweak;
3940 data.dex_file = dex_cache->GetDexFile();
3941 data.class_table = ClassTableForClassLoader(class_loader);
3942 AddNativeDebugInfoForDex(self, data.dex_file);
3943 DCHECK(data.class_table != nullptr);
3944 // Make sure to hold the dex cache live in the class table. This case happens for the boot class
3945 // path dex caches without an image.
3946 data.class_table->InsertStrongRoot(dex_cache);
3947 // Make sure that the dex cache holds the classloader live.
3948 dex_cache->SetClassLoader(class_loader);
3949 if (class_loader != nullptr) {
3950 // Since we added a strong root to the class table, do the write barrier as required for
3951 // remembered sets and generational GCs.
3952 WriteBarrier::ForEveryFieldWrite(class_loader);
3953 }
3954 dex_caches_.push_back(data);
3955 }
3956
DecodeDexCacheLocked(Thread * self,const DexCacheData * data)3957 ObjPtr<mirror::DexCache> ClassLinker::DecodeDexCacheLocked(Thread* self, const DexCacheData* data) {
3958 return data != nullptr
3959 ? ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data->weak_root))
3960 : nullptr;
3961 }
3962
IsSameClassLoader(ObjPtr<mirror::DexCache> dex_cache,const DexCacheData * data,ObjPtr<mirror::ClassLoader> class_loader)3963 bool ClassLinker::IsSameClassLoader(
3964 ObjPtr<mirror::DexCache> dex_cache,
3965 const DexCacheData* data,
3966 ObjPtr<mirror::ClassLoader> class_loader) {
3967 CHECK(data != nullptr);
3968 DCHECK_EQ(dex_cache->GetDexFile(), data->dex_file);
3969 return data->class_table == ClassTableForClassLoader(class_loader);
3970 }
3971
RegisterExistingDexCache(ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)3972 void ClassLinker::RegisterExistingDexCache(ObjPtr<mirror::DexCache> dex_cache,
3973 ObjPtr<mirror::ClassLoader> class_loader) {
3974 SCOPED_TRACE << __FUNCTION__ << " " << dex_cache->GetDexFile()->GetLocation();
3975 Thread* self = Thread::Current();
3976 StackHandleScope<2> hs(self);
3977 Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(dex_cache));
3978 Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader));
3979 const DexFile* dex_file = dex_cache->GetDexFile();
3980 DCHECK(dex_file != nullptr) << "Attempt to register uninitialized dex_cache object!";
3981 if (kIsDebugBuild) {
3982 ReaderMutexLock mu(self, *Locks::dex_lock_);
3983 const DexCacheData* old_data = FindDexCacheDataLocked(*dex_file);
3984 ObjPtr<mirror::DexCache> old_dex_cache = DecodeDexCacheLocked(self, old_data);
3985 DCHECK(old_dex_cache.IsNull()) << "Attempt to manually register a dex cache thats already "
3986 << "been registered on dex file " << dex_file->GetLocation();
3987 }
3988 ClassTable* table;
3989 {
3990 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
3991 table = InsertClassTableForClassLoader(h_class_loader.Get());
3992 }
3993 // Avoid a deadlock between a garbage collecting thread running a checkpoint,
3994 // a thread holding the dex lock and blocking on a condition variable regarding
3995 // weak references access, and a thread blocking on the dex lock.
3996 gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseClassLinker, gc::kCollectorTypeClassLinker);
3997 WriterMutexLock mu(self, *Locks::dex_lock_);
3998 RegisterDexFileLocked(*dex_file, h_dex_cache.Get(), h_class_loader.Get());
3999 table->InsertStrongRoot(h_dex_cache.Get());
4000 if (h_class_loader.Get() != nullptr) {
4001 // Since we added a strong root to the class table, do the write barrier as required for
4002 // remembered sets and generational GCs.
4003 WriteBarrier::ForEveryFieldWrite(h_class_loader.Get());
4004 }
4005 }
4006
ThrowDexFileAlreadyRegisteredError(Thread * self,const DexFile & dex_file)4007 static void ThrowDexFileAlreadyRegisteredError(Thread* self, const DexFile& dex_file)
4008 REQUIRES_SHARED(Locks::mutator_lock_) {
4009 self->ThrowNewExceptionF("Ljava/lang/InternalError;",
4010 "Attempt to register dex file %s with multiple class loaders",
4011 dex_file.GetLocation().c_str());
4012 }
4013
RegisterDexFile(const DexFile & dex_file,ObjPtr<mirror::ClassLoader> class_loader)4014 ObjPtr<mirror::DexCache> ClassLinker::RegisterDexFile(const DexFile& dex_file,
4015 ObjPtr<mirror::ClassLoader> class_loader) {
4016 Thread* self = Thread::Current();
4017 ObjPtr<mirror::DexCache> old_dex_cache;
4018 bool registered_with_another_class_loader = false;
4019 {
4020 ReaderMutexLock mu(self, *Locks::dex_lock_);
4021 const DexCacheData* old_data = FindDexCacheDataLocked(dex_file);
4022 old_dex_cache = DecodeDexCacheLocked(self, old_data);
4023 if (old_dex_cache != nullptr) {
4024 if (IsSameClassLoader(old_dex_cache, old_data, class_loader)) {
4025 return old_dex_cache;
4026 } else {
4027 // TODO This is not very clean looking. Should maybe try to make a way to request exceptions
4028 // be thrown when it's safe to do so to simplify this.
4029 registered_with_another_class_loader = true;
4030 }
4031 }
4032 }
4033 // We need to have released the dex_lock_ to allocate safely.
4034 if (registered_with_another_class_loader) {
4035 ThrowDexFileAlreadyRegisteredError(self, dex_file);
4036 return nullptr;
4037 }
4038 SCOPED_TRACE << __FUNCTION__ << " " << dex_file.GetLocation();
4039 LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader);
4040 DCHECK(linear_alloc != nullptr);
4041 ClassTable* table;
4042 {
4043 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
4044 table = InsertClassTableForClassLoader(class_loader);
4045 }
4046 // Don't alloc while holding the lock, since allocation may need to
4047 // suspend all threads and another thread may need the dex_lock_ to
4048 // get to a suspend point.
4049 StackHandleScope<3> hs(self);
4050 Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader));
4051 Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(AllocDexCache(self, dex_file)));
4052 {
4053 // Avoid a deadlock between a garbage collecting thread running a checkpoint,
4054 // a thread holding the dex lock and blocking on a condition variable regarding
4055 // weak references access, and a thread blocking on the dex lock.
4056 gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseClassLinker, gc::kCollectorTypeClassLinker);
4057 WriterMutexLock mu(self, *Locks::dex_lock_);
4058 const DexCacheData* old_data = FindDexCacheDataLocked(dex_file);
4059 old_dex_cache = DecodeDexCacheLocked(self, old_data);
4060 if (old_dex_cache == nullptr && h_dex_cache != nullptr) {
4061 // Do InitializeNativeFields while holding dex lock to make sure two threads don't call it
4062 // at the same time with the same dex cache. Since the .bss is shared this can cause failing
4063 // DCHECK that the arrays are null.
4064 h_dex_cache->InitializeNativeFields(&dex_file, linear_alloc);
4065 RegisterDexFileLocked(dex_file, h_dex_cache.Get(), h_class_loader.Get());
4066 }
4067 if (old_dex_cache != nullptr) {
4068 // Another thread managed to initialize the dex cache faster, so use that DexCache.
4069 // If this thread encountered OOME, ignore it.
4070 DCHECK_EQ(h_dex_cache == nullptr, self->IsExceptionPending());
4071 self->ClearException();
4072 // We cannot call EnsureSameClassLoader() or allocate an exception while holding the
4073 // dex_lock_.
4074 if (IsSameClassLoader(old_dex_cache, old_data, h_class_loader.Get())) {
4075 return old_dex_cache;
4076 } else {
4077 registered_with_another_class_loader = true;
4078 }
4079 }
4080 }
4081 if (registered_with_another_class_loader) {
4082 ThrowDexFileAlreadyRegisteredError(self, dex_file);
4083 return nullptr;
4084 }
4085 if (h_dex_cache == nullptr) {
4086 self->AssertPendingOOMException();
4087 return nullptr;
4088 }
4089 table->InsertStrongRoot(h_dex_cache.Get());
4090 if (h_class_loader.Get() != nullptr) {
4091 // Since we added a strong root to the class table, do the write barrier as required for
4092 // remembered sets and generational GCs.
4093 WriteBarrier::ForEveryFieldWrite(h_class_loader.Get());
4094 }
4095 VLOG(class_linker) << "Registered dex file " << dex_file.GetLocation();
4096 PaletteNotifyDexFileLoaded(dex_file.GetLocation().c_str());
4097 return h_dex_cache.Get();
4098 }
4099
IsDexFileRegistered(Thread * self,const DexFile & dex_file)4100 bool ClassLinker::IsDexFileRegistered(Thread* self, const DexFile& dex_file) {
4101 ReaderMutexLock mu(self, *Locks::dex_lock_);
4102 return DecodeDexCacheLocked(self, FindDexCacheDataLocked(dex_file)) != nullptr;
4103 }
4104
FindDexCache(Thread * self,const DexFile & dex_file)4105 ObjPtr<mirror::DexCache> ClassLinker::FindDexCache(Thread* self, const DexFile& dex_file) {
4106 ReaderMutexLock mu(self, *Locks::dex_lock_);
4107 const DexCacheData* dex_cache_data = FindDexCacheDataLocked(dex_file);
4108 ObjPtr<mirror::DexCache> dex_cache = DecodeDexCacheLocked(self, dex_cache_data);
4109 if (dex_cache != nullptr) {
4110 return dex_cache;
4111 }
4112 // Failure, dump diagnostic and abort.
4113 for (const DexCacheData& data : dex_caches_) {
4114 if (DecodeDexCacheLocked(self, &data) != nullptr) {
4115 LOG(FATAL_WITHOUT_ABORT) << "Registered dex file " << data.dex_file->GetLocation();
4116 }
4117 }
4118 LOG(FATAL) << "Failed to find DexCache for DexFile " << dex_file.GetLocation()
4119 << " " << &dex_file << " " << dex_cache_data->dex_file;
4120 UNREACHABLE();
4121 }
4122
FindClassTable(Thread * self,ObjPtr<mirror::DexCache> dex_cache)4123 ClassTable* ClassLinker::FindClassTable(Thread* self, ObjPtr<mirror::DexCache> dex_cache) {
4124 const DexFile* dex_file = dex_cache->GetDexFile();
4125 DCHECK(dex_file != nullptr);
4126 ReaderMutexLock mu(self, *Locks::dex_lock_);
4127 // Search assuming unique-ness of dex file.
4128 for (const DexCacheData& data : dex_caches_) {
4129 // Avoid decoding (and read barriers) other unrelated dex caches.
4130 if (data.dex_file == dex_file) {
4131 ObjPtr<mirror::DexCache> registered_dex_cache = DecodeDexCacheLocked(self, &data);
4132 if (registered_dex_cache != nullptr) {
4133 CHECK_EQ(registered_dex_cache, dex_cache) << dex_file->GetLocation();
4134 return data.class_table;
4135 }
4136 }
4137 }
4138 return nullptr;
4139 }
4140
FindDexCacheDataLocked(const DexFile & dex_file)4141 const ClassLinker::DexCacheData* ClassLinker::FindDexCacheDataLocked(const DexFile& dex_file) {
4142 // Search assuming unique-ness of dex file.
4143 for (const DexCacheData& data : dex_caches_) {
4144 // Avoid decoding (and read barriers) other unrelated dex caches.
4145 if (data.dex_file == &dex_file) {
4146 return &data;
4147 }
4148 }
4149 return nullptr;
4150 }
4151
CreatePrimitiveClass(Thread * self,Primitive::Type type,ClassRoot primitive_root)4152 void ClassLinker::CreatePrimitiveClass(Thread* self,
4153 Primitive::Type type,
4154 ClassRoot primitive_root) {
4155 ObjPtr<mirror::Class> primitive_class =
4156 AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_));
4157 CHECK(primitive_class != nullptr) << "OOM for primitive class " << type;
4158 // Do not hold lock on the primitive class object, the initialization of
4159 // primitive classes is done while the process is still single threaded.
4160 primitive_class->SetAccessFlagsDuringLinking(
4161 kAccPublic | kAccFinal | kAccAbstract | kAccVerificationAttempted);
4162 primitive_class->SetPrimitiveType(type);
4163 primitive_class->SetIfTable(GetClassRoot<mirror::Object>(this)->GetIfTable());
4164 // Skip EnsureSkipAccessChecksMethods(). We can skip the verified status,
4165 // the kAccVerificationAttempted flag was added above, and there are no
4166 // methods that need the kAccSkipAccessChecks flag.
4167 DCHECK_EQ(primitive_class->NumMethods(), 0u);
4168 // Primitive classes are initialized during single threaded startup, so visibly initialized.
4169 primitive_class->SetStatusForPrimitiveOrArray(ClassStatus::kVisiblyInitialized);
4170 const char* descriptor = Primitive::Descriptor(type);
4171 ObjPtr<mirror::Class> existing = InsertClass(descriptor,
4172 primitive_class,
4173 ComputeModifiedUtf8Hash(descriptor));
4174 CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed";
4175 SetClassRoot(primitive_root, primitive_class);
4176 }
4177
GetArrayIfTable()4178 inline ObjPtr<mirror::IfTable> ClassLinker::GetArrayIfTable() {
4179 return GetClassRoot<mirror::ObjectArray<mirror::Object>>(this)->GetIfTable();
4180 }
4181
4182 // Create an array class (i.e. the class object for the array, not the
4183 // array itself). "descriptor" looks like "[C" or "[[[[B" or
4184 // "[Ljava/lang/String;".
4185 //
4186 // If "descriptor" refers to an array of primitives, look up the
4187 // primitive type's internally-generated class object.
4188 //
4189 // "class_loader" is the class loader of the class that's referring to
4190 // us. It's used to ensure that we're looking for the element type in
4191 // the right context. It does NOT become the class loader for the
4192 // array class; that always comes from the base element class.
4193 //
4194 // Returns null with an exception raised on failure.
CreateArrayClass(Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader)4195 ObjPtr<mirror::Class> ClassLinker::CreateArrayClass(Thread* self,
4196 const char* descriptor,
4197 size_t hash,
4198 Handle<mirror::ClassLoader> class_loader) {
4199 // Identify the underlying component type
4200 CHECK_EQ('[', descriptor[0]);
4201 StackHandleScope<2> hs(self);
4202
4203 // This is to prevent the calls to ClassLoad and ClassPrepare which can cause java/user-supplied
4204 // code to be executed. We put it up here so we can avoid all the allocations associated with
4205 // creating the class. This can happen with (eg) jit threads.
4206 if (!self->CanLoadClasses()) {
4207 // Make sure we don't try to load anything, potentially causing an infinite loop.
4208 ObjPtr<mirror::Throwable> pre_allocated =
4209 Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
4210 self->SetException(pre_allocated);
4211 return nullptr;
4212 }
4213
4214 MutableHandle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1,
4215 class_loader)));
4216 if (component_type == nullptr) {
4217 DCHECK(self->IsExceptionPending());
4218 // We need to accept erroneous classes as component types.
4219 const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1);
4220 component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get()));
4221 if (component_type == nullptr) {
4222 DCHECK(self->IsExceptionPending());
4223 return nullptr;
4224 } else {
4225 self->ClearException();
4226 }
4227 }
4228 if (UNLIKELY(component_type->IsPrimitiveVoid())) {
4229 ThrowNoClassDefFoundError("Attempt to create array of void primitive type");
4230 return nullptr;
4231 }
4232 // See if the component type is already loaded. Array classes are
4233 // always associated with the class loader of their underlying
4234 // element type -- an array of Strings goes with the loader for
4235 // java/lang/String -- so we need to look for it there. (The
4236 // caller should have checked for the existence of the class
4237 // before calling here, but they did so with *their* class loader,
4238 // not the component type's loader.)
4239 //
4240 // If we find it, the caller adds "loader" to the class' initiating
4241 // loader list, which should prevent us from going through this again.
4242 //
4243 // This call is unnecessary if "loader" and "component_type->GetClassLoader()"
4244 // are the same, because our caller (FindClass) just did the
4245 // lookup. (Even if we get this wrong we still have correct behavior,
4246 // because we effectively do this lookup again when we add the new
4247 // class to the hash table --- necessary because of possible races with
4248 // other threads.)
4249 if (class_loader.Get() != component_type->GetClassLoader()) {
4250 ObjPtr<mirror::Class> new_class =
4251 LookupClass(self, descriptor, hash, component_type->GetClassLoader());
4252 if (new_class != nullptr) {
4253 return new_class;
4254 }
4255 }
4256 // Core array classes, i.e. Object[], Class[], String[] and primitive
4257 // arrays, have special initialization and they should be found above.
4258 DCHECK(!component_type->IsObjectClass() ||
4259 // Guard from false positives for errors before setting superclass.
4260 component_type->IsErroneousUnresolved());
4261 DCHECK(!component_type->IsStringClass());
4262 DCHECK(!component_type->IsClassClass());
4263 DCHECK(!component_type->IsPrimitive());
4264
4265 // Fill out the fields in the Class.
4266 //
4267 // It is possible to execute some methods against arrays, because
4268 // all arrays are subclasses of java_lang_Object_, so we need to set
4269 // up a vtable. We can just point at the one in java_lang_Object_.
4270 //
4271 // Array classes are simple enough that we don't need to do a full
4272 // link step.
4273 size_t array_class_size = mirror::Array::ClassSize(image_pointer_size_);
4274 auto visitor = [this, array_class_size, component_type](ObjPtr<mirror::Object> obj,
4275 size_t usable_size)
4276 REQUIRES_SHARED(Locks::mutator_lock_) {
4277 ScopedAssertNoNewTransactionRecords sanntr("CreateArrayClass");
4278 mirror::Class::InitializeClassVisitor init_class(array_class_size);
4279 init_class(obj, usable_size);
4280 ObjPtr<mirror::Class> klass = ObjPtr<mirror::Class>::DownCast(obj);
4281 klass->SetComponentType(component_type.Get());
4282 // Do not hold lock for initialization, the fence issued after the visitor
4283 // returns ensures memory visibility together with the implicit consume
4284 // semantics (for all supported architectures) for any thread that loads
4285 // the array class reference from any memory locations afterwards.
4286 FinishArrayClassSetup(klass);
4287 };
4288 auto new_class = hs.NewHandle<mirror::Class>(
4289 AllocClass(self, GetClassRoot<mirror::Class>(this), array_class_size, visitor));
4290 if (new_class == nullptr) {
4291 self->AssertPendingOOMException();
4292 return nullptr;
4293 }
4294
4295 ObjPtr<mirror::Class> existing = InsertClass(descriptor, new_class.Get(), hash);
4296 if (existing == nullptr) {
4297 // We postpone ClassLoad and ClassPrepare events to this point in time to avoid
4298 // duplicate events in case of races. Array classes don't really follow dedicated
4299 // load and prepare, anyways.
4300 Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(new_class);
4301 Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(new_class, new_class);
4302
4303 jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get());
4304 return new_class.Get();
4305 }
4306 // Another thread must have loaded the class after we
4307 // started but before we finished. Abandon what we've
4308 // done.
4309 //
4310 // (Yes, this happens.)
4311
4312 return existing;
4313 }
4314
LookupPrimitiveClass(char type)4315 ObjPtr<mirror::Class> ClassLinker::LookupPrimitiveClass(char type) {
4316 ClassRoot class_root;
4317 switch (type) {
4318 case 'B': class_root = ClassRoot::kPrimitiveByte; break;
4319 case 'C': class_root = ClassRoot::kPrimitiveChar; break;
4320 case 'D': class_root = ClassRoot::kPrimitiveDouble; break;
4321 case 'F': class_root = ClassRoot::kPrimitiveFloat; break;
4322 case 'I': class_root = ClassRoot::kPrimitiveInt; break;
4323 case 'J': class_root = ClassRoot::kPrimitiveLong; break;
4324 case 'S': class_root = ClassRoot::kPrimitiveShort; break;
4325 case 'Z': class_root = ClassRoot::kPrimitiveBoolean; break;
4326 case 'V': class_root = ClassRoot::kPrimitiveVoid; break;
4327 default:
4328 return nullptr;
4329 }
4330 return GetClassRoot(class_root, this);
4331 }
4332
FindPrimitiveClass(char type)4333 ObjPtr<mirror::Class> ClassLinker::FindPrimitiveClass(char type) {
4334 ObjPtr<mirror::Class> result = LookupPrimitiveClass(type);
4335 if (UNLIKELY(result == nullptr)) {
4336 std::string printable_type(PrintableChar(type));
4337 ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str());
4338 }
4339 return result;
4340 }
4341
InsertClass(const char * descriptor,ObjPtr<mirror::Class> klass,size_t hash)4342 ObjPtr<mirror::Class> ClassLinker::InsertClass(const char* descriptor,
4343 ObjPtr<mirror::Class> klass,
4344 size_t hash) {
4345 DCHECK(Thread::Current()->CanLoadClasses());
4346 if (VLOG_IS_ON(class_linker)) {
4347 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
4348 std::string source;
4349 if (dex_cache != nullptr) {
4350 source += " from ";
4351 source += dex_cache->GetLocation()->ToModifiedUtf8();
4352 }
4353 LOG(INFO) << "Loaded class " << descriptor << source;
4354 }
4355 {
4356 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
4357 const ObjPtr<mirror::ClassLoader> class_loader = klass->GetClassLoader();
4358 ClassTable* const class_table = InsertClassTableForClassLoader(class_loader);
4359 ObjPtr<mirror::Class> existing = class_table->Lookup(descriptor, hash);
4360 if (existing != nullptr) {
4361 return existing;
4362 }
4363 VerifyObject(klass);
4364 class_table->InsertWithHash(klass, hash);
4365 if (class_loader != nullptr) {
4366 // This is necessary because we need to have the card dirtied for remembered sets.
4367 WriteBarrier::ForEveryFieldWrite(class_loader);
4368 }
4369 if (log_new_roots_) {
4370 new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
4371 }
4372 }
4373 if (kIsDebugBuild) {
4374 // Test that copied methods correctly can find their holder.
4375 for (ArtMethod& method : klass->GetCopiedMethods(image_pointer_size_)) {
4376 CHECK_EQ(GetHoldingClassOfCopiedMethod(&method), klass);
4377 }
4378 }
4379 return nullptr;
4380 }
4381
WriteBarrierForBootOatFileBssRoots(const OatFile * oat_file)4382 void ClassLinker::WriteBarrierForBootOatFileBssRoots(const OatFile* oat_file) {
4383 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
4384 DCHECK(!oat_file->GetBssGcRoots().empty()) << oat_file->GetLocation();
4385 if (log_new_roots_ && !ContainsElement(new_bss_roots_boot_oat_files_, oat_file)) {
4386 new_bss_roots_boot_oat_files_.push_back(oat_file);
4387 }
4388 }
4389
4390 // TODO This should really be in mirror::Class.
UpdateClassMethods(ObjPtr<mirror::Class> klass,LengthPrefixedArray<ArtMethod> * new_methods)4391 void ClassLinker::UpdateClassMethods(ObjPtr<mirror::Class> klass,
4392 LengthPrefixedArray<ArtMethod>* new_methods) {
4393 klass->SetMethodsPtrUnchecked(new_methods,
4394 klass->NumDirectMethods(),
4395 klass->NumDeclaredVirtualMethods());
4396 // Need to mark the card so that the remembered sets and mod union tables get updated.
4397 WriteBarrier::ForEveryFieldWrite(klass);
4398 }
4399
LookupClass(Thread * self,const char * descriptor,ObjPtr<mirror::ClassLoader> class_loader)4400 ObjPtr<mirror::Class> ClassLinker::LookupClass(Thread* self,
4401 const char* descriptor,
4402 ObjPtr<mirror::ClassLoader> class_loader) {
4403 return LookupClass(self, descriptor, ComputeModifiedUtf8Hash(descriptor), class_loader);
4404 }
4405
LookupClass(Thread * self,const char * descriptor,size_t hash,ObjPtr<mirror::ClassLoader> class_loader)4406 ObjPtr<mirror::Class> ClassLinker::LookupClass(Thread* self,
4407 const char* descriptor,
4408 size_t hash,
4409 ObjPtr<mirror::ClassLoader> class_loader) {
4410 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
4411 ClassTable* const class_table = ClassTableForClassLoader(class_loader);
4412 if (class_table != nullptr) {
4413 ObjPtr<mirror::Class> result = class_table->Lookup(descriptor, hash);
4414 if (result != nullptr) {
4415 return result;
4416 }
4417 }
4418 return nullptr;
4419 }
4420
4421 class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor {
4422 public:
MoveClassTableToPreZygoteVisitor()4423 MoveClassTableToPreZygoteVisitor() {}
4424
Visit(ObjPtr<mirror::ClassLoader> class_loader)4425 void Visit(ObjPtr<mirror::ClassLoader> class_loader)
4426 REQUIRES(Locks::classlinker_classes_lock_)
4427 REQUIRES_SHARED(Locks::mutator_lock_) override {
4428 ClassTable* const class_table = class_loader->GetClassTable();
4429 if (class_table != nullptr) {
4430 class_table->FreezeSnapshot();
4431 }
4432 }
4433 };
4434
MoveClassTableToPreZygote()4435 void ClassLinker::MoveClassTableToPreZygote() {
4436 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
4437 boot_class_table_->FreezeSnapshot();
4438 MoveClassTableToPreZygoteVisitor visitor;
4439 VisitClassLoaders(&visitor);
4440 }
4441
4442 // Look up classes by hash and descriptor and put all matching ones in the result array.
4443 class LookupClassesVisitor : public ClassLoaderVisitor {
4444 public:
LookupClassesVisitor(const char * descriptor,size_t hash,std::vector<ObjPtr<mirror::Class>> * result)4445 LookupClassesVisitor(const char* descriptor,
4446 size_t hash,
4447 std::vector<ObjPtr<mirror::Class>>* result)
4448 : descriptor_(descriptor),
4449 hash_(hash),
4450 result_(result) {}
4451
Visit(ObjPtr<mirror::ClassLoader> class_loader)4452 void Visit(ObjPtr<mirror::ClassLoader> class_loader)
4453 REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override {
4454 ClassTable* const class_table = class_loader->GetClassTable();
4455 ObjPtr<mirror::Class> klass = class_table->Lookup(descriptor_, hash_);
4456 // Add `klass` only if `class_loader` is its defining (not just initiating) class loader.
4457 if (klass != nullptr && klass->GetClassLoader() == class_loader) {
4458 result_->push_back(klass);
4459 }
4460 }
4461
4462 private:
4463 const char* const descriptor_;
4464 const size_t hash_;
4465 std::vector<ObjPtr<mirror::Class>>* const result_;
4466 };
4467
LookupClasses(const char * descriptor,std::vector<ObjPtr<mirror::Class>> & result)4468 void ClassLinker::LookupClasses(const char* descriptor,
4469 std::vector<ObjPtr<mirror::Class>>& result) {
4470 result.clear();
4471 Thread* const self = Thread::Current();
4472 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
4473 const size_t hash = ComputeModifiedUtf8Hash(descriptor);
4474 ObjPtr<mirror::Class> klass = boot_class_table_->Lookup(descriptor, hash);
4475 if (klass != nullptr) {
4476 DCHECK(klass->GetClassLoader() == nullptr);
4477 result.push_back(klass);
4478 }
4479 LookupClassesVisitor visitor(descriptor, hash, &result);
4480 VisitClassLoaders(&visitor);
4481 }
4482
AttemptSupertypeVerification(Thread * self,verifier::VerifierDeps * verifier_deps,Handle<mirror::Class> klass,Handle<mirror::Class> supertype)4483 bool ClassLinker::AttemptSupertypeVerification(Thread* self,
4484 verifier::VerifierDeps* verifier_deps,
4485 Handle<mirror::Class> klass,
4486 Handle<mirror::Class> supertype) {
4487 DCHECK(self != nullptr);
4488 DCHECK(klass != nullptr);
4489 DCHECK(supertype != nullptr);
4490
4491 if (!supertype->IsVerified() && !supertype->IsErroneous()) {
4492 VerifyClass(self, verifier_deps, supertype);
4493 }
4494
4495 if (supertype->IsVerified()
4496 || supertype->ShouldVerifyAtRuntime()
4497 || supertype->IsVerifiedNeedsAccessChecks()) {
4498 // The supertype is either verified, or we soft failed at AOT time.
4499 DCHECK(supertype->IsVerified() || Runtime::Current()->IsAotCompiler());
4500 return true;
4501 }
4502 // If we got this far then we have a hard failure.
4503 std::string error_msg =
4504 StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s",
4505 klass->PrettyDescriptor().c_str(),
4506 supertype->PrettyDescriptor().c_str());
4507 LOG(WARNING) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
4508 StackHandleScope<1> hs(self);
4509 Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
4510 if (cause != nullptr) {
4511 // Set during VerifyClass call (if at all).
4512 self->ClearException();
4513 }
4514 // Change into a verify error.
4515 ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
4516 if (cause != nullptr) {
4517 self->GetException()->SetCause(cause.Get());
4518 }
4519 ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex());
4520 if (Runtime::Current()->IsAotCompiler()) {
4521 Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
4522 }
4523 // Need to grab the lock to change status.
4524 ObjectLock<mirror::Class> super_lock(self, klass);
4525 mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self);
4526 return false;
4527 }
4528
VerifyClass(Thread * self,verifier::VerifierDeps * verifier_deps,Handle<mirror::Class> klass,verifier::HardFailLogMode log_level)4529 verifier::FailureKind ClassLinker::VerifyClass(Thread* self,
4530 verifier::VerifierDeps* verifier_deps,
4531 Handle<mirror::Class> klass,
4532 verifier::HardFailLogMode log_level) {
4533 {
4534 // TODO: assert that the monitor on the Class is held
4535 ObjectLock<mirror::Class> lock(self, klass);
4536
4537 // Is somebody verifying this now?
4538 ClassStatus old_status = klass->GetStatus();
4539 while (old_status == ClassStatus::kVerifying) {
4540 lock.WaitIgnoringInterrupts();
4541 // WaitIgnoringInterrupts can still receive an interrupt and return early, in this
4542 // case we may see the same status again. b/62912904. This is why the check is
4543 // greater or equal.
4544 CHECK(klass->IsErroneous() || (klass->GetStatus() >= old_status))
4545 << "Class '" << klass->PrettyClass()
4546 << "' performed an illegal verification state transition from " << old_status
4547 << " to " << klass->GetStatus();
4548 old_status = klass->GetStatus();
4549 }
4550
4551 // The class might already be erroneous, for example at compile time if we attempted to verify
4552 // this class as a parent to another.
4553 if (klass->IsErroneous()) {
4554 ThrowEarlierClassFailure(klass.Get());
4555 return verifier::FailureKind::kHardFailure;
4556 }
4557
4558 // Don't attempt to re-verify if already verified.
4559 if (klass->IsVerified()) {
4560 EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
4561 if (verifier_deps != nullptr &&
4562 verifier_deps->ContainsDexFile(klass->GetDexFile()) &&
4563 !verifier_deps->HasRecordedVerifiedStatus(klass->GetDexFile(), *klass->GetClassDef()) &&
4564 !Runtime::Current()->IsAotCompiler()) {
4565 // If the klass is verified, but `verifier_deps` did not record it, this
4566 // means we are running background verification of a secondary dex file.
4567 // Re-run the verifier to populate `verifier_deps`.
4568 // No need to run the verification when running on the AOT Compiler, as
4569 // the driver handles those multithreaded cases already.
4570 std::string error_msg;
4571 verifier::FailureKind failure =
4572 PerformClassVerification(self, verifier_deps, klass, log_level, &error_msg);
4573 // We could have soft failures, so just check that we don't have a hard
4574 // failure.
4575 DCHECK_NE(failure, verifier::FailureKind::kHardFailure) << error_msg;
4576 }
4577 return verifier::FailureKind::kNoFailure;
4578 }
4579
4580 if (klass->IsVerifiedNeedsAccessChecks()) {
4581 if (!Runtime::Current()->IsAotCompiler()) {
4582 // Mark the class as having a verification attempt to avoid re-running
4583 // the verifier and avoid calling EnsureSkipAccessChecksMethods.
4584 klass->SetVerificationAttempted();
4585 mirror::Class::SetStatus(klass, ClassStatus::kVerified, self);
4586 }
4587 return verifier::FailureKind::kAccessChecksFailure;
4588 }
4589
4590 // For AOT, don't attempt to re-verify if we have already found we should
4591 // verify at runtime.
4592 if (klass->ShouldVerifyAtRuntime()) {
4593 CHECK(Runtime::Current()->IsAotCompiler());
4594 return verifier::FailureKind::kSoftFailure;
4595 }
4596
4597 DCHECK_EQ(klass->GetStatus(), ClassStatus::kResolved);
4598 mirror::Class::SetStatus(klass, ClassStatus::kVerifying, self);
4599
4600 // Skip verification if disabled.
4601 if (!Runtime::Current()->IsVerificationEnabled()) {
4602 mirror::Class::SetStatus(klass, ClassStatus::kVerified, self);
4603 EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
4604 return verifier::FailureKind::kNoFailure;
4605 }
4606 }
4607
4608 VLOG(class_linker) << "Beginning verification for class: "
4609 << klass->PrettyDescriptor()
4610 << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
4611
4612 // Verify super class.
4613 StackHandleScope<2> hs(self);
4614 MutableHandle<mirror::Class> supertype(hs.NewHandle(klass->GetSuperClass()));
4615 // If we have a superclass and we get a hard verification failure we can return immediately.
4616 if (supertype != nullptr &&
4617 !AttemptSupertypeVerification(self, verifier_deps, klass, supertype)) {
4618 CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
4619 return verifier::FailureKind::kHardFailure;
4620 }
4621
4622 // Verify all default super-interfaces.
4623 //
4624 // (1) Don't bother if the superclass has already had a soft verification failure.
4625 //
4626 // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause
4627 // recursive initialization by themselves. This is because when an interface is initialized
4628 // directly it must not initialize its superinterfaces. We are allowed to verify regardless
4629 // but choose not to for an optimization. If the interfaces is being verified due to a class
4630 // initialization (which would need all the default interfaces to be verified) the class code
4631 // will trigger the recursive verification anyway.
4632 if ((supertype == nullptr || supertype->IsVerified()) // See (1)
4633 && !klass->IsInterface()) { // See (2)
4634 int32_t iftable_count = klass->GetIfTableCount();
4635 MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
4636 // Loop through all interfaces this class has defined. It doesn't matter the order.
4637 for (int32_t i = 0; i < iftable_count; i++) {
4638 iface.Assign(klass->GetIfTable()->GetInterface(i));
4639 DCHECK(iface != nullptr);
4640 // We only care if we have default interfaces and can skip if we are already verified...
4641 if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) {
4642 continue;
4643 } else if (UNLIKELY(!AttemptSupertypeVerification(self, verifier_deps, klass, iface))) {
4644 // We had a hard failure while verifying this interface. Just return immediately.
4645 CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
4646 return verifier::FailureKind::kHardFailure;
4647 } else if (UNLIKELY(!iface->IsVerified())) {
4648 // We softly failed to verify the iface. Stop checking and clean up.
4649 // Put the iface into the supertype handle so we know what caused us to fail.
4650 supertype.Assign(iface.Get());
4651 break;
4652 }
4653 }
4654 }
4655
4656 // At this point if verification failed, then supertype is the "first" supertype that failed
4657 // verification (without a specific order). If verification succeeded, then supertype is either
4658 // null or the original superclass of klass and is verified.
4659 DCHECK(supertype == nullptr ||
4660 supertype.Get() == klass->GetSuperClass() ||
4661 !supertype->IsVerified());
4662
4663 // Try to use verification information from the oat file, otherwise do runtime verification.
4664 const DexFile& dex_file = *klass->GetDexCache()->GetDexFile();
4665 ClassStatus oat_file_class_status(ClassStatus::kNotReady);
4666 bool preverified = VerifyClassUsingOatFile(self, dex_file, klass, oat_file_class_status);
4667
4668 VLOG(class_linker) << "Class preverified status for class "
4669 << klass->PrettyDescriptor()
4670 << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
4671 << ": "
4672 << preverified
4673 << "( " << oat_file_class_status << ")";
4674
4675 // If the oat file says the class had an error, re-run the verifier. That way we will get a
4676 // precise error message. To ensure a rerun, test:
4677 // mirror::Class::IsErroneous(oat_file_class_status) => !preverified
4678 DCHECK(!mirror::Class::IsErroneous(oat_file_class_status) || !preverified);
4679
4680 std::string error_msg;
4681 verifier::FailureKind verifier_failure = verifier::FailureKind::kNoFailure;
4682 if (!preverified) {
4683 verifier_failure = PerformClassVerification(self, verifier_deps, klass, log_level, &error_msg);
4684 }
4685
4686 // Verification is done, grab the lock again.
4687 ObjectLock<mirror::Class> lock(self, klass);
4688
4689 if (preverified || verifier_failure != verifier::FailureKind::kHardFailure) {
4690 if (!preverified && verifier_failure != verifier::FailureKind::kNoFailure) {
4691 VLOG(class_linker) << "Soft verification failure in class "
4692 << klass->PrettyDescriptor()
4693 << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
4694 << " because: " << error_msg;
4695 }
4696 self->AssertNoPendingException();
4697 // Make sure all classes referenced by catch blocks are resolved.
4698 ResolveClassExceptionHandlerTypes(klass);
4699 if (verifier_failure == verifier::FailureKind::kNoFailure) {
4700 // Even though there were no verifier failures we need to respect whether the super-class and
4701 // super-default-interfaces were verified or requiring runtime reverification.
4702 if (supertype == nullptr
4703 || supertype->IsVerified()
4704 || supertype->IsVerifiedNeedsAccessChecks()) {
4705 mirror::Class::SetStatus(klass, ClassStatus::kVerified, self);
4706 } else {
4707 CHECK(Runtime::Current()->IsAotCompiler());
4708 CHECK_EQ(supertype->GetStatus(), ClassStatus::kRetryVerificationAtRuntime);
4709 mirror::Class::SetStatus(klass, ClassStatus::kRetryVerificationAtRuntime, self);
4710 // Pretend a soft failure occurred so that we don't consider the class verified below.
4711 verifier_failure = verifier::FailureKind::kSoftFailure;
4712 }
4713 } else {
4714 CHECK(verifier_failure == verifier::FailureKind::kSoftFailure ||
4715 verifier_failure == verifier::FailureKind::kTypeChecksFailure ||
4716 verifier_failure == verifier::FailureKind::kAccessChecksFailure);
4717 // Soft failures at compile time should be retried at runtime. Soft
4718 // failures at runtime will be handled by slow paths in the generated
4719 // code. Set status accordingly.
4720 if (Runtime::Current()->IsAotCompiler()) {
4721 if (verifier_failure == verifier::FailureKind::kSoftFailure ||
4722 verifier_failure == verifier::FailureKind::kTypeChecksFailure) {
4723 mirror::Class::SetStatus(klass, ClassStatus::kRetryVerificationAtRuntime, self);
4724 } else {
4725 mirror::Class::SetStatus(klass, ClassStatus::kVerifiedNeedsAccessChecks, self);
4726 }
4727 } else {
4728 mirror::Class::SetStatus(klass, ClassStatus::kVerified, self);
4729 // As this is a fake verified status, make sure the methods are _not_ marked
4730 // kAccSkipAccessChecks later.
4731 klass->SetVerificationAttempted();
4732 }
4733 }
4734 } else {
4735 VLOG(verifier) << "Verification failed on class " << klass->PrettyDescriptor()
4736 << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
4737 << " because: " << error_msg;
4738 self->AssertNoPendingException();
4739 ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
4740 mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self);
4741 }
4742 if (preverified || verifier_failure == verifier::FailureKind::kNoFailure) {
4743 if (oat_file_class_status == ClassStatus::kVerifiedNeedsAccessChecks ||
4744 UNLIKELY(Runtime::Current()->IsVerificationSoftFail())) {
4745 // Never skip access checks if the verification soft fail is forced.
4746 // Mark the class as having a verification attempt to avoid re-running the verifier.
4747 klass->SetVerificationAttempted();
4748 } else {
4749 // Class is verified so we don't need to do any access check on its methods.
4750 // Let the interpreter know it by setting the kAccSkipAccessChecks flag onto each
4751 // method.
4752 // Note: we're going here during compilation and at runtime. When we set the
4753 // kAccSkipAccessChecks flag when compiling image classes, the flag is recorded
4754 // in the image and is set when loading the image.
4755 EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
4756 }
4757 }
4758 // Done verifying. Notify the compiler about the verification status, in case the class
4759 // was verified implicitly (eg super class of a compiled class).
4760 if (Runtime::Current()->IsAotCompiler()) {
4761 Runtime::Current()->GetCompilerCallbacks()->UpdateClassState(
4762 ClassReference(&klass->GetDexFile(), klass->GetDexClassDefIndex()), klass->GetStatus());
4763 }
4764 return verifier_failure;
4765 }
4766
PerformClassVerification(Thread * self,verifier::VerifierDeps * verifier_deps,Handle<mirror::Class> klass,verifier::HardFailLogMode log_level,std::string * error_msg)4767 verifier::FailureKind ClassLinker::PerformClassVerification(Thread* self,
4768 verifier::VerifierDeps* verifier_deps,
4769 Handle<mirror::Class> klass,
4770 verifier::HardFailLogMode log_level,
4771 std::string* error_msg) {
4772 Runtime* const runtime = Runtime::Current();
4773 return verifier::ClassVerifier::VerifyClass(self,
4774 verifier_deps,
4775 klass.Get(),
4776 runtime->GetCompilerCallbacks(),
4777 runtime->IsAotCompiler(),
4778 log_level,
4779 Runtime::Current()->GetTargetSdkVersion(),
4780 error_msg);
4781 }
4782
VerifyClassUsingOatFile(Thread * self,const DexFile & dex_file,Handle<mirror::Class> klass,ClassStatus & oat_file_class_status)4783 bool ClassLinker::VerifyClassUsingOatFile(Thread* self,
4784 const DexFile& dex_file,
4785 Handle<mirror::Class> klass,
4786 ClassStatus& oat_file_class_status) {
4787 // If we're compiling, we can only verify the class using the oat file if
4788 // we are not compiling the image or if the class we're verifying is not part of
4789 // the compilation unit (app - dependencies). We will let the compiler callback
4790 // tell us about the latter.
4791 if (Runtime::Current()->IsAotCompiler()) {
4792 CompilerCallbacks* callbacks = Runtime::Current()->GetCompilerCallbacks();
4793 // We are compiling an app (not the image).
4794 if (!callbacks->CanUseOatStatusForVerification(klass.Get())) {
4795 return false;
4796 }
4797 }
4798
4799 const OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
4800 // In case we run without an image there won't be a backing oat file.
4801 if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) {
4802 return false;
4803 }
4804
4805 uint16_t class_def_index = klass->GetDexClassDefIndex();
4806 oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
4807 if (oat_file_class_status >= ClassStatus::kVerified) {
4808 return true;
4809 }
4810 if (oat_file_class_status >= ClassStatus::kVerifiedNeedsAccessChecks) {
4811 // We return that the clas has already been verified, and the caller should
4812 // check the class status to ensure we run with access checks.
4813 return true;
4814 }
4815
4816 // Check the class status with the vdex file.
4817 const OatFile* oat_file = oat_dex_file->GetOatFile();
4818 if (oat_file != nullptr) {
4819 oat_file_class_status = oat_file->GetVdexFile()->ComputeClassStatus(self, klass);
4820 if (oat_file_class_status >= ClassStatus::kVerifiedNeedsAccessChecks) {
4821 return true;
4822 }
4823 }
4824
4825 // If we only verified a subset of the classes at compile time, we can end up with classes that
4826 // were resolved by the verifier.
4827 if (oat_file_class_status == ClassStatus::kResolved) {
4828 return false;
4829 }
4830 // We never expect a .oat file to have kRetryVerificationAtRuntime statuses.
4831 CHECK_NE(oat_file_class_status, ClassStatus::kRetryVerificationAtRuntime)
4832 << klass->PrettyClass() << " " << dex_file.GetLocation();
4833
4834 if (mirror::Class::IsErroneous(oat_file_class_status)) {
4835 // Compile time verification failed with a hard error. This is caused by invalid instructions
4836 // in the class. These errors are unrecoverable.
4837 return false;
4838 }
4839 if (oat_file_class_status == ClassStatus::kNotReady) {
4840 // Status is uninitialized if we couldn't determine the status at compile time, for example,
4841 // not loading the class.
4842 // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy
4843 // isn't a problem and this case shouldn't occur
4844 return false;
4845 }
4846 std::string temp;
4847 LOG(FATAL) << "Unexpected class status: " << oat_file_class_status
4848 << " " << dex_file.GetLocation() << " " << klass->PrettyClass() << " "
4849 << klass->GetDescriptor(&temp);
4850 UNREACHABLE();
4851 }
4852
ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass)4853 void ClassLinker::ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass) {
4854 for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) {
4855 ResolveMethodExceptionHandlerTypes(&method);
4856 }
4857 }
4858
ResolveMethodExceptionHandlerTypes(ArtMethod * method)4859 void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) {
4860 // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod.
4861 CodeItemDataAccessor accessor(method->DexInstructionData());
4862 if (!accessor.HasCodeItem()) {
4863 return; // native or abstract method
4864 }
4865 if (accessor.TriesSize() == 0) {
4866 return; // nothing to process
4867 }
4868 const uint8_t* handlers_ptr = accessor.GetCatchHandlerData(0);
4869 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
4870 for (uint32_t idx = 0; idx < handlers_size; idx++) {
4871 CatchHandlerIterator iterator(handlers_ptr);
4872 for (; iterator.HasNext(); iterator.Next()) {
4873 // Ensure exception types are resolved so that they don't need resolution to be delivered,
4874 // unresolved exception types will be ignored by exception delivery
4875 if (iterator.GetHandlerTypeIndex().IsValid()) {
4876 ObjPtr<mirror::Class> exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method);
4877 if (exception_type == nullptr) {
4878 DCHECK(Thread::Current()->IsExceptionPending());
4879 Thread::Current()->ClearException();
4880 }
4881 }
4882 }
4883 handlers_ptr = iterator.EndDataPointer();
4884 }
4885 }
4886
CreateProxyClass(ScopedObjectAccessAlreadyRunnable & soa,jstring name,jobjectArray interfaces,jobject loader,jobjectArray methods,jobjectArray throws)4887 ObjPtr<mirror::Class> ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa,
4888 jstring name,
4889 jobjectArray interfaces,
4890 jobject loader,
4891 jobjectArray methods,
4892 jobjectArray throws) {
4893 Thread* self = soa.Self();
4894
4895 // This is to prevent the calls to ClassLoad and ClassPrepare which can cause java/user-supplied
4896 // code to be executed. We put it up here so we can avoid all the allocations associated with
4897 // creating the class. This can happen with (eg) jit-threads.
4898 if (!self->CanLoadClasses()) {
4899 // Make sure we don't try to load anything, potentially causing an infinite loop.
4900 ObjPtr<mirror::Throwable> pre_allocated =
4901 Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
4902 self->SetException(pre_allocated);
4903 return nullptr;
4904 }
4905
4906 StackHandleScope<12> hs(self);
4907 MutableHandle<mirror::Class> temp_klass(hs.NewHandle(
4908 AllocClass(self, GetClassRoot<mirror::Class>(this), sizeof(mirror::Class))));
4909 if (temp_klass == nullptr) {
4910 CHECK(self->IsExceptionPending()); // OOME.
4911 return nullptr;
4912 }
4913 DCHECK(temp_klass->GetClass() != nullptr);
4914 temp_klass->SetObjectSize(sizeof(mirror::Proxy));
4915 // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on
4916 // the methods.
4917 temp_klass->SetAccessFlagsDuringLinking(
4918 kAccClassIsProxy | kAccPublic | kAccFinal | kAccVerificationAttempted);
4919 temp_klass->SetClassLoader(soa.Decode<mirror::ClassLoader>(loader));
4920 DCHECK_EQ(temp_klass->GetPrimitiveType(), Primitive::kPrimNot);
4921 temp_klass->SetName(soa.Decode<mirror::String>(name));
4922 temp_klass->SetDexCache(GetClassRoot<mirror::Proxy>(this)->GetDexCache());
4923 // Object has an empty iftable, copy it for that reason.
4924 temp_klass->SetIfTable(GetClassRoot<mirror::Object>(this)->GetIfTable());
4925 mirror::Class::SetStatus(temp_klass, ClassStatus::kIdx, self);
4926 std::string storage;
4927 const char* descriptor = temp_klass->GetDescriptor(&storage);
4928 const size_t hash = ComputeModifiedUtf8Hash(descriptor);
4929
4930 // Needs to be before we insert the class so that the allocator field is set.
4931 LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(temp_klass->GetClassLoader());
4932
4933 // Insert the class before loading the fields as the field roots
4934 // (ArtField::declaring_class_) are only visited from the class
4935 // table. There can't be any suspend points between inserting the
4936 // class and setting the field arrays below.
4937 ObjPtr<mirror::Class> existing = InsertClass(descriptor, temp_klass.Get(), hash);
4938 CHECK(existing == nullptr);
4939
4940 // Instance fields are inherited, but we add a couple of static fields...
4941 const size_t num_fields = 2;
4942 LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, allocator, num_fields);
4943 temp_klass->SetSFieldsPtr(sfields);
4944
4945 // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by
4946 // our proxy, so Class.getInterfaces doesn't return the flattened set.
4947 ArtField& interfaces_sfield = sfields->At(0);
4948 interfaces_sfield.SetDexFieldIndex(0);
4949 interfaces_sfield.SetDeclaringClass(temp_klass.Get());
4950 interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4951
4952 // 2. Create a static field 'throws' that holds exceptions thrown by our methods.
4953 ArtField& throws_sfield = sfields->At(1);
4954 throws_sfield.SetDexFieldIndex(1);
4955 throws_sfield.SetDeclaringClass(temp_klass.Get());
4956 throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4957
4958 // Proxies have 1 direct method, the constructor
4959 const size_t num_direct_methods = 1;
4960
4961 // The array we get passed contains all methods, including private and static
4962 // ones that aren't proxied. We need to filter those out since only interface
4963 // methods (non-private & virtual) are actually proxied.
4964 Handle<mirror::ObjectArray<mirror::Method>> h_methods =
4965 hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Method>>(methods));
4966 DCHECK_EQ(h_methods->GetClass(), GetClassRoot<mirror::ObjectArray<mirror::Method>>())
4967 << mirror::Class::PrettyClass(h_methods->GetClass());
4968 // List of the actual virtual methods this class will have.
4969 std::vector<ArtMethod*> proxied_methods;
4970 std::vector<size_t> proxied_throws_idx;
4971 proxied_methods.reserve(h_methods->GetLength());
4972 proxied_throws_idx.reserve(h_methods->GetLength());
4973 // Filter out to only the non-private virtual methods.
4974 for (auto [mirror, idx] : ZipCount(h_methods.Iterate<mirror::Method>())) {
4975 ArtMethod* m = mirror->GetArtMethod();
4976 if (!m->IsPrivate() && !m->IsStatic()) {
4977 proxied_methods.push_back(m);
4978 proxied_throws_idx.push_back(idx);
4979 }
4980 }
4981 const size_t num_virtual_methods = proxied_methods.size();
4982 // We also need to filter out the 'throws'. The 'throws' are a Class[][] that
4983 // contains an array of all the classes each function is declared to throw.
4984 // This is used to wrap unexpected exceptions in a
4985 // UndeclaredThrowableException exception. This array is in the same order as
4986 // the methods array and like the methods array must be filtered to remove any
4987 // non-proxied methods.
4988 const bool has_filtered_methods =
4989 static_cast<int32_t>(num_virtual_methods) != h_methods->GetLength();
4990 MutableHandle<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>> original_proxied_throws(
4991 hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>>(throws)));
4992 MutableHandle<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>> proxied_throws(
4993 hs.NewHandle<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>>(
4994 (has_filtered_methods)
4995 ? mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>::Alloc(
4996 self, original_proxied_throws->GetClass(), num_virtual_methods)
4997 : original_proxied_throws.Get()));
4998 if (proxied_throws.IsNull() && !original_proxied_throws.IsNull()) {
4999 self->AssertPendingOOMException();
5000 return nullptr;
5001 }
5002 if (has_filtered_methods) {
5003 for (auto [orig_idx, new_idx] : ZipCount(MakeIterationRange(proxied_throws_idx))) {
5004 DCHECK_LE(new_idx, orig_idx);
5005 proxied_throws->Set(new_idx, original_proxied_throws->Get(orig_idx));
5006 }
5007 }
5008
5009 // Create the methods array.
5010 LengthPrefixedArray<ArtMethod>* proxy_class_methods = AllocArtMethodArray(
5011 self, allocator, num_direct_methods + num_virtual_methods);
5012 // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we
5013 // want to throw OOM in the future.
5014 if (UNLIKELY(proxy_class_methods == nullptr)) {
5015 self->AssertPendingOOMException();
5016 return nullptr;
5017 }
5018 temp_klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods);
5019
5020 // Create the single direct method.
5021 CreateProxyConstructor(temp_klass, temp_klass->GetDirectMethodUnchecked(0, image_pointer_size_));
5022
5023 // Create virtual method using specified prototypes.
5024 // TODO These should really use the iterators.
5025 for (size_t i = 0; i < num_virtual_methods; ++i) {
5026 auto* virtual_method = temp_klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
5027 auto* prototype = proxied_methods[i];
5028 CreateProxyMethod(temp_klass, prototype, virtual_method);
5029 DCHECK(virtual_method->GetDeclaringClass() != nullptr);
5030 DCHECK(prototype->GetDeclaringClass() != nullptr);
5031 }
5032
5033 // The super class is java.lang.reflect.Proxy
5034 temp_klass->SetSuperClass(GetClassRoot<mirror::Proxy>(this));
5035 // Now effectively in the loaded state.
5036 mirror::Class::SetStatus(temp_klass, ClassStatus::kLoaded, self);
5037 self->AssertNoPendingException();
5038
5039 // At this point the class is loaded. Publish a ClassLoad event.
5040 // Note: this may be a temporary class. It is a listener's responsibility to handle this.
5041 Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(temp_klass);
5042
5043 MutableHandle<mirror::Class> klass = hs.NewHandle<mirror::Class>(nullptr);
5044 {
5045 // Must hold lock on object when resolved.
5046 ObjectLock<mirror::Class> resolution_lock(self, temp_klass);
5047 // Link the fields and virtual methods, creating vtable and iftables.
5048 // The new class will replace the old one in the class table.
5049 Handle<mirror::ObjectArray<mirror::Class>> h_interfaces(
5050 hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces)));
5051 if (!LinkClass(self, descriptor, temp_klass, h_interfaces, &klass)) {
5052 if (!temp_klass->IsErroneous()) {
5053 mirror::Class::SetStatus(temp_klass, ClassStatus::kErrorUnresolved, self);
5054 }
5055 return nullptr;
5056 }
5057 }
5058 CHECK(temp_klass->IsRetired());
5059 CHECK_NE(temp_klass.Get(), klass.Get());
5060
5061 CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get());
5062 interfaces_sfield.SetObject<false>(
5063 klass.Get(),
5064 soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces));
5065 CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get());
5066 throws_sfield.SetObject<false>(
5067 klass.Get(),
5068 proxied_throws.Get());
5069
5070 Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(temp_klass, klass);
5071
5072 // SubtypeCheckInfo::Initialized must happen-before any new-instance for that type.
5073 // See also ClassLinker::EnsureInitialized().
5074 if (kBitstringSubtypeCheckEnabled) {
5075 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
5076 SubtypeCheck<ObjPtr<mirror::Class>>::EnsureInitialized(klass.Get());
5077 // TODO: Avoid taking subtype_check_lock_ if SubtypeCheck for j.l.r.Proxy is already assigned.
5078 }
5079
5080 VisiblyInitializedCallback* callback = nullptr;
5081 {
5082 // Lock on klass is released. Lock new class object.
5083 ObjectLock<mirror::Class> initialization_lock(self, klass);
5084 EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
5085 // Conservatively go through the ClassStatus::kInitialized state.
5086 callback = MarkClassInitialized(self, klass);
5087 }
5088 if (callback != nullptr) {
5089 callback->MakeVisible(self);
5090 }
5091
5092 // Consistency checks.
5093 if (kIsDebugBuild) {
5094 CHECK(klass->GetIFieldsPtr() == nullptr);
5095 CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_));
5096
5097 for (size_t i = 0; i < num_virtual_methods; ++i) {
5098 auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
5099 CheckProxyMethod(virtual_method, proxied_methods[i]);
5100 }
5101
5102 StackHandleScope<1> hs2(self);
5103 Handle<mirror::String> decoded_name = hs2.NewHandle(soa.Decode<mirror::String>(name));
5104 std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces",
5105 decoded_name->ToModifiedUtf8().c_str()));
5106 CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(0)), interfaces_field_name);
5107
5108 std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws",
5109 decoded_name->ToModifiedUtf8().c_str()));
5110 CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(1)), throws_field_name);
5111
5112 CHECK_EQ(klass.Get()->GetProxyInterfaces(),
5113 soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces));
5114 CHECK_EQ(klass.Get()->GetProxyThrows(),
5115 proxied_throws.Get());
5116 }
5117 return klass.Get();
5118 }
5119
CreateProxyConstructor(Handle<mirror::Class> klass,ArtMethod * out)5120 void ClassLinker::CreateProxyConstructor(Handle<mirror::Class> klass, ArtMethod* out) {
5121 // Create constructor for Proxy that must initialize the method.
5122 ObjPtr<mirror::Class> proxy_class = GetClassRoot<mirror::Proxy>(this);
5123 CHECK_EQ(proxy_class->NumDirectMethods(), 21u);
5124
5125 // Find the <init>(InvocationHandler)V method. The exact method offset varies depending
5126 // on which front-end compiler was used to build the libcore DEX files.
5127 ArtMethod* proxy_constructor =
5128 jni::DecodeArtMethod(WellKnownClasses::java_lang_reflect_Proxy_init);
5129 DCHECK(proxy_constructor != nullptr)
5130 << "Could not find <init> method in java.lang.reflect.Proxy";
5131
5132 // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its
5133 // code_ too)
5134 DCHECK(out != nullptr);
5135 out->CopyFrom(proxy_constructor, image_pointer_size_);
5136 // Make this constructor public and fix the class to be our Proxy version.
5137 // Mark kAccCompileDontBother so that we don't take JIT samples for the method. b/62349349
5138 // Note that the compiler calls a ResolveMethod() overload that does not handle a Proxy referrer.
5139 out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) |
5140 kAccPublic |
5141 kAccCompileDontBother);
5142 out->SetDeclaringClass(klass.Get());
5143
5144 // Set the original constructor method.
5145 out->SetDataPtrSize(proxy_constructor, image_pointer_size_);
5146 }
5147
CheckProxyConstructor(ArtMethod * constructor) const5148 void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const {
5149 CHECK(constructor->IsConstructor());
5150 auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_);
5151 CHECK_STREQ(np->GetName(), "<init>");
5152 CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V");
5153 DCHECK(constructor->IsPublic());
5154 }
5155
CreateProxyMethod(Handle<mirror::Class> klass,ArtMethod * prototype,ArtMethod * out)5156 void ClassLinker::CreateProxyMethod(Handle<mirror::Class> klass, ArtMethod* prototype,
5157 ArtMethod* out) {
5158 // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize
5159 // as necessary
5160 DCHECK(out != nullptr);
5161 out->CopyFrom(prototype, image_pointer_size_);
5162
5163 // Set class to be the concrete proxy class.
5164 out->SetDeclaringClass(klass.Get());
5165 // Clear the abstract and default flags to ensure that defaults aren't picked in
5166 // preference to the invocation handler.
5167 const uint32_t kRemoveFlags = kAccAbstract | kAccDefault;
5168 // Make the method final.
5169 // Mark kAccCompileDontBother so that we don't take JIT samples for the method. b/62349349
5170 const uint32_t kAddFlags = kAccFinal | kAccCompileDontBother;
5171 out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags);
5172
5173 // Set the original interface method.
5174 out->SetDataPtrSize(prototype, image_pointer_size_);
5175
5176 // At runtime the method looks like a reference and argument saving method, clone the code
5177 // related parameters from this method.
5178 out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler());
5179 }
5180
CheckProxyMethod(ArtMethod * method,ArtMethod * prototype) const5181 void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const {
5182 // Basic consistency checks.
5183 CHECK(!prototype->IsFinal());
5184 CHECK(method->IsFinal());
5185 CHECK(method->IsInvokable());
5186
5187 // The proxy method doesn't have its own dex cache or dex file and so it steals those of its
5188 // interface prototype. The exception to this are Constructors and the Class of the Proxy itself.
5189 CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex());
5190 CHECK_EQ(prototype, method->GetInterfaceMethodIfProxy(image_pointer_size_));
5191 }
5192
CanWeInitializeClass(ObjPtr<mirror::Class> klass,bool can_init_statics,bool can_init_parents)5193 bool ClassLinker::CanWeInitializeClass(ObjPtr<mirror::Class> klass, bool can_init_statics,
5194 bool can_init_parents) {
5195 if (can_init_statics && can_init_parents) {
5196 return true;
5197 }
5198 if (!can_init_statics) {
5199 // Check if there's a class initializer.
5200 ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
5201 if (clinit != nullptr) {
5202 return false;
5203 }
5204 // Check if there are encoded static values needing initialization.
5205 if (klass->NumStaticFields() != 0) {
5206 const dex::ClassDef* dex_class_def = klass->GetClassDef();
5207 DCHECK(dex_class_def != nullptr);
5208 if (dex_class_def->static_values_off_ != 0) {
5209 return false;
5210 }
5211 }
5212 }
5213 // If we are a class we need to initialize all interfaces with default methods when we are
5214 // initialized. Check all of them.
5215 if (!klass->IsInterface()) {
5216 size_t num_interfaces = klass->GetIfTableCount();
5217 for (size_t i = 0; i < num_interfaces; i++) {
5218 ObjPtr<mirror::Class> iface = klass->GetIfTable()->GetInterface(i);
5219 if (iface->HasDefaultMethods() && !iface->IsInitialized()) {
5220 if (!can_init_parents || !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) {
5221 return false;
5222 }
5223 }
5224 }
5225 }
5226 if (klass->IsInterface() || !klass->HasSuperClass()) {
5227 return true;
5228 }
5229 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
5230 if (super_class->IsInitialized()) {
5231 return true;
5232 }
5233 return can_init_parents && CanWeInitializeClass(super_class, can_init_statics, can_init_parents);
5234 }
5235
InitializeClass(Thread * self,Handle<mirror::Class> klass,bool can_init_statics,bool can_init_parents)5236 bool ClassLinker::InitializeClass(Thread* self,
5237 Handle<mirror::Class> klass,
5238 bool can_init_statics,
5239 bool can_init_parents) {
5240 // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol
5241
5242 // Are we already initialized and therefore done?
5243 // Note: we differ from the JLS here as we don't do this under the lock, this is benign as
5244 // an initialized class will never change its state.
5245 if (klass->IsInitialized()) {
5246 return true;
5247 }
5248
5249 // Fast fail if initialization requires a full runtime. Not part of the JLS.
5250 if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) {
5251 return false;
5252 }
5253
5254 self->AllowThreadSuspension();
5255 Runtime* const runtime = Runtime::Current();
5256 const bool stats_enabled = runtime->HasStatsEnabled();
5257 uint64_t t0;
5258 {
5259 ObjectLock<mirror::Class> lock(self, klass);
5260
5261 // Re-check under the lock in case another thread initialized ahead of us.
5262 if (klass->IsInitialized()) {
5263 return true;
5264 }
5265
5266 // Was the class already found to be erroneous? Done under the lock to match the JLS.
5267 if (klass->IsErroneous()) {
5268 ThrowEarlierClassFailure(klass.Get(), true, /* log= */ true);
5269 VlogClassInitializationFailure(klass);
5270 return false;
5271 }
5272
5273 CHECK(klass->IsResolved() && !klass->IsErroneousResolved())
5274 << klass->PrettyClass() << ": state=" << klass->GetStatus();
5275
5276 if (!klass->IsVerified()) {
5277 VerifyClass(self, /*verifier_deps= */ nullptr, klass);
5278 if (!klass->IsVerified()) {
5279 // We failed to verify, expect either the klass to be erroneous or verification failed at
5280 // compile time.
5281 if (klass->IsErroneous()) {
5282 // The class is erroneous. This may be a verifier error, or another thread attempted
5283 // verification and/or initialization and failed. We can distinguish those cases by
5284 // whether an exception is already pending.
5285 if (self->IsExceptionPending()) {
5286 // Check that it's a VerifyError.
5287 DCHECK_EQ("java.lang.Class<java.lang.VerifyError>",
5288 mirror::Class::PrettyClass(self->GetException()->GetClass()));
5289 } else {
5290 // Check that another thread attempted initialization.
5291 DCHECK_NE(0, klass->GetClinitThreadId());
5292 DCHECK_NE(self->GetTid(), klass->GetClinitThreadId());
5293 // Need to rethrow the previous failure now.
5294 ThrowEarlierClassFailure(klass.Get(), true);
5295 }
5296 VlogClassInitializationFailure(klass);
5297 } else {
5298 CHECK(Runtime::Current()->IsAotCompiler());
5299 CHECK(klass->ShouldVerifyAtRuntime() || klass->IsVerifiedNeedsAccessChecks());
5300 self->AssertNoPendingException();
5301 self->SetException(Runtime::Current()->GetPreAllocatedNoClassDefFoundError());
5302 }
5303 self->AssertPendingException();
5304 return false;
5305 } else {
5306 self->AssertNoPendingException();
5307 }
5308
5309 // A separate thread could have moved us all the way to initialized. A "simple" example
5310 // involves a subclass of the current class being initialized at the same time (which
5311 // will implicitly initialize the superclass, if scheduled that way). b/28254258
5312 DCHECK(!klass->IsErroneous()) << klass->GetStatus();
5313 if (klass->IsInitialized()) {
5314 return true;
5315 }
5316 }
5317
5318 // If the class is ClassStatus::kInitializing, either this thread is
5319 // initializing higher up the stack or another thread has beat us
5320 // to initializing and we need to wait. Either way, this
5321 // invocation of InitializeClass will not be responsible for
5322 // running <clinit> and will return.
5323 if (klass->GetStatus() == ClassStatus::kInitializing) {
5324 // Could have got an exception during verification.
5325 if (self->IsExceptionPending()) {
5326 VlogClassInitializationFailure(klass);
5327 return false;
5328 }
5329 // We caught somebody else in the act; was it us?
5330 if (klass->GetClinitThreadId() == self->GetTid()) {
5331 // Yes. That's fine. Return so we can continue initializing.
5332 return true;
5333 }
5334 // No. That's fine. Wait for another thread to finish initializing.
5335 return WaitForInitializeClass(klass, self, lock);
5336 }
5337
5338 // Try to get the oat class's status for this class if the oat file is present. The compiler
5339 // tries to validate superclass descriptors, and writes the result into the oat file.
5340 // Runtime correctness is guaranteed by classpath checks done on loading. If the classpath
5341 // is different at runtime than it was at compile time, the oat file is rejected. So if the
5342 // oat file is present, the classpaths must match, and the runtime time check can be skipped.
5343 bool has_oat_class = false;
5344 const OatFile::OatClass oat_class = (runtime->IsStarted() && !runtime->IsAotCompiler())
5345 ? OatFile::FindOatClass(klass->GetDexFile(), klass->GetDexClassDefIndex(), &has_oat_class)
5346 : OatFile::OatClass::Invalid();
5347 if (oat_class.GetStatus() < ClassStatus::kSuperclassValidated &&
5348 !ValidateSuperClassDescriptors(klass)) {
5349 mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self);
5350 return false;
5351 }
5352 self->AllowThreadSuspension();
5353
5354 CHECK_EQ(klass->GetStatus(), ClassStatus::kVerified) << klass->PrettyClass()
5355 << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId();
5356
5357 // From here out other threads may observe that we're initializing and so changes of state
5358 // require the a notification.
5359 klass->SetClinitThreadId(self->GetTid());
5360 mirror::Class::SetStatus(klass, ClassStatus::kInitializing, self);
5361
5362 t0 = stats_enabled ? NanoTime() : 0u;
5363 }
5364
5365 uint64_t t_sub = 0;
5366
5367 // Initialize super classes, must be done while initializing for the JLS.
5368 if (!klass->IsInterface() && klass->HasSuperClass()) {
5369 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
5370 if (!super_class->IsInitialized()) {
5371 CHECK(!super_class->IsInterface());
5372 CHECK(can_init_parents);
5373 StackHandleScope<1> hs(self);
5374 Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
5375 uint64_t super_t0 = stats_enabled ? NanoTime() : 0u;
5376 bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true);
5377 uint64_t super_t1 = stats_enabled ? NanoTime() : 0u;
5378 if (!super_initialized) {
5379 // The super class was verified ahead of entering initializing, we should only be here if
5380 // the super class became erroneous due to initialization.
5381 // For the case of aot compiler, the super class might also be initializing but we don't
5382 // want to process circular dependencies in pre-compile.
5383 CHECK(self->IsExceptionPending())
5384 << "Super class initialization failed for "
5385 << handle_scope_super->PrettyDescriptor()
5386 << " that has unexpected status " << handle_scope_super->GetStatus()
5387 << "\nPending exception:\n"
5388 << (self->GetException() != nullptr ? self->GetException()->Dump() : "");
5389 ObjectLock<mirror::Class> lock(self, klass);
5390 // Initialization failed because the super-class is erroneous.
5391 mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self);
5392 return false;
5393 }
5394 t_sub = super_t1 - super_t0;
5395 }
5396 }
5397
5398 if (!klass->IsInterface()) {
5399 // Initialize interfaces with default methods for the JLS.
5400 size_t num_direct_interfaces = klass->NumDirectInterfaces();
5401 // Only setup the (expensive) handle scope if we actually need to.
5402 if (UNLIKELY(num_direct_interfaces > 0)) {
5403 StackHandleScope<1> hs_iface(self);
5404 MutableHandle<mirror::Class> handle_scope_iface(hs_iface.NewHandle<mirror::Class>(nullptr));
5405 for (size_t i = 0; i < num_direct_interfaces; i++) {
5406 handle_scope_iface.Assign(mirror::Class::GetDirectInterface(self, klass.Get(), i));
5407 CHECK(handle_scope_iface != nullptr) << klass->PrettyDescriptor() << " iface #" << i;
5408 CHECK(handle_scope_iface->IsInterface());
5409 if (handle_scope_iface->HasBeenRecursivelyInitialized()) {
5410 // We have already done this for this interface. Skip it.
5411 continue;
5412 }
5413 // We cannot just call initialize class directly because we need to ensure that ALL
5414 // interfaces with default methods are initialized. Non-default interface initialization
5415 // will not affect other non-default super-interfaces.
5416 // This is not very precise, misses all walking.
5417 uint64_t inf_t0 = stats_enabled ? NanoTime() : 0u;
5418 bool iface_initialized = InitializeDefaultInterfaceRecursive(self,
5419 handle_scope_iface,
5420 can_init_statics,
5421 can_init_parents);
5422 uint64_t inf_t1 = stats_enabled ? NanoTime() : 0u;
5423 if (!iface_initialized) {
5424 ObjectLock<mirror::Class> lock(self, klass);
5425 // Initialization failed because one of our interfaces with default methods is erroneous.
5426 mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self);
5427 return false;
5428 }
5429 t_sub += inf_t1 - inf_t0;
5430 }
5431 }
5432 }
5433
5434 const size_t num_static_fields = klass->NumStaticFields();
5435 if (num_static_fields > 0) {
5436 const dex::ClassDef* dex_class_def = klass->GetClassDef();
5437 CHECK(dex_class_def != nullptr);
5438 StackHandleScope<3> hs(self);
5439 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
5440 Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
5441
5442 // Eagerly fill in static fields so that the we don't have to do as many expensive
5443 // Class::FindStaticField in ResolveField.
5444 for (size_t i = 0; i < num_static_fields; ++i) {
5445 ArtField* field = klass->GetStaticField(i);
5446 const uint32_t field_idx = field->GetDexFieldIndex();
5447 ArtField* resolved_field = dex_cache->GetResolvedField(field_idx);
5448 if (resolved_field == nullptr) {
5449 // Populating cache of a dex file which defines `klass` should always be allowed.
5450 DCHECK(!hiddenapi::ShouldDenyAccessToMember(
5451 field,
5452 hiddenapi::AccessContext(class_loader.Get(), dex_cache.Get()),
5453 hiddenapi::AccessMethod::kNone));
5454 dex_cache->SetResolvedField(field_idx, field);
5455 } else {
5456 DCHECK_EQ(field, resolved_field);
5457 }
5458 }
5459
5460 annotations::RuntimeEncodedStaticFieldValueIterator value_it(dex_cache,
5461 class_loader,
5462 this,
5463 *dex_class_def);
5464 const DexFile& dex_file = *dex_cache->GetDexFile();
5465
5466 if (value_it.HasNext()) {
5467 ClassAccessor accessor(dex_file, *dex_class_def);
5468 CHECK(can_init_statics);
5469 for (const ClassAccessor::Field& field : accessor.GetStaticFields()) {
5470 if (!value_it.HasNext()) {
5471 break;
5472 }
5473 ArtField* art_field = ResolveField(field.GetIndex(),
5474 dex_cache,
5475 class_loader,
5476 /* is_static= */ true);
5477 if (Runtime::Current()->IsActiveTransaction()) {
5478 value_it.ReadValueToField<true>(art_field);
5479 } else {
5480 value_it.ReadValueToField<false>(art_field);
5481 }
5482 if (self->IsExceptionPending()) {
5483 break;
5484 }
5485 value_it.Next();
5486 }
5487 DCHECK(self->IsExceptionPending() || !value_it.HasNext());
5488 }
5489 }
5490
5491
5492 if (!self->IsExceptionPending()) {
5493 ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
5494 if (clinit != nullptr) {
5495 CHECK(can_init_statics);
5496 JValue result;
5497 clinit->Invoke(self, nullptr, 0, &result, "V");
5498 }
5499 }
5500 self->AllowThreadSuspension();
5501 uint64_t t1 = stats_enabled ? NanoTime() : 0u;
5502
5503 VisiblyInitializedCallback* callback = nullptr;
5504 bool success = true;
5505 {
5506 ObjectLock<mirror::Class> lock(self, klass);
5507
5508 if (self->IsExceptionPending()) {
5509 WrapExceptionInInitializer(klass);
5510 mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self);
5511 success = false;
5512 } else if (Runtime::Current()->IsTransactionAborted()) {
5513 // The exception thrown when the transaction aborted has been caught and cleared
5514 // so we need to throw it again now.
5515 VLOG(compiler) << "Return from class initializer of "
5516 << mirror::Class::PrettyDescriptor(klass.Get())
5517 << " without exception while transaction was aborted: re-throw it now.";
5518 runtime->ThrowTransactionAbortError(self);
5519 mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self);
5520 success = false;
5521 } else {
5522 if (stats_enabled) {
5523 RuntimeStats* global_stats = runtime->GetStats();
5524 RuntimeStats* thread_stats = self->GetStats();
5525 ++global_stats->class_init_count;
5526 ++thread_stats->class_init_count;
5527 global_stats->class_init_time_ns += (t1 - t0 - t_sub);
5528 thread_stats->class_init_time_ns += (t1 - t0 - t_sub);
5529 }
5530 // Set the class as initialized except if failed to initialize static fields.
5531 callback = MarkClassInitialized(self, klass);
5532 if (VLOG_IS_ON(class_linker)) {
5533 std::string temp;
5534 LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " <<
5535 klass->GetLocation();
5536 }
5537 }
5538 }
5539 if (callback != nullptr) {
5540 callback->MakeVisible(self);
5541 }
5542 return success;
5543 }
5544
5545 // We recursively run down the tree of interfaces. We need to do this in the order they are declared
5546 // and perform the initialization only on those interfaces that contain default methods.
InitializeDefaultInterfaceRecursive(Thread * self,Handle<mirror::Class> iface,bool can_init_statics,bool can_init_parents)5547 bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self,
5548 Handle<mirror::Class> iface,
5549 bool can_init_statics,
5550 bool can_init_parents) {
5551 CHECK(iface->IsInterface());
5552 size_t num_direct_ifaces = iface->NumDirectInterfaces();
5553 // Only create the (expensive) handle scope if we need it.
5554 if (UNLIKELY(num_direct_ifaces > 0)) {
5555 StackHandleScope<1> hs(self);
5556 MutableHandle<mirror::Class> handle_super_iface(hs.NewHandle<mirror::Class>(nullptr));
5557 // First we initialize all of iface's super-interfaces recursively.
5558 for (size_t i = 0; i < num_direct_ifaces; i++) {
5559 ObjPtr<mirror::Class> super_iface = mirror::Class::GetDirectInterface(self, iface.Get(), i);
5560 CHECK(super_iface != nullptr) << iface->PrettyDescriptor() << " iface #" << i;
5561 if (!super_iface->HasBeenRecursivelyInitialized()) {
5562 // Recursive step
5563 handle_super_iface.Assign(super_iface);
5564 if (!InitializeDefaultInterfaceRecursive(self,
5565 handle_super_iface,
5566 can_init_statics,
5567 can_init_parents)) {
5568 return false;
5569 }
5570 }
5571 }
5572 }
5573
5574 bool result = true;
5575 // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not)
5576 // initialize if we don't have default methods.
5577 if (iface->HasDefaultMethods()) {
5578 result = EnsureInitialized(self, iface, can_init_statics, can_init_parents);
5579 }
5580
5581 // Mark that this interface has undergone recursive default interface initialization so we know we
5582 // can skip it on any later class initializations. We do this even if we are not a default
5583 // interface since we can still avoid the traversal. This is purely a performance optimization.
5584 if (result) {
5585 // TODO This should be done in a better way
5586 // Note: Use a try-lock to avoid blocking when someone else is holding the lock on this
5587 // interface. It is bad (Java) style, but not impossible. Marking the recursive
5588 // initialization is a performance optimization (to avoid another idempotent visit
5589 // for other implementing classes/interfaces), and can be revisited later.
5590 ObjectTryLock<mirror::Class> lock(self, iface);
5591 if (lock.Acquired()) {
5592 iface->SetRecursivelyInitialized();
5593 }
5594 }
5595 return result;
5596 }
5597
WaitForInitializeClass(Handle<mirror::Class> klass,Thread * self,ObjectLock<mirror::Class> & lock)5598 bool ClassLinker::WaitForInitializeClass(Handle<mirror::Class> klass,
5599 Thread* self,
5600 ObjectLock<mirror::Class>& lock)
5601 REQUIRES_SHARED(Locks::mutator_lock_) {
5602 while (true) {
5603 self->AssertNoPendingException();
5604 CHECK(!klass->IsInitialized());
5605 lock.WaitIgnoringInterrupts();
5606
5607 // When we wake up, repeat the test for init-in-progress. If
5608 // there's an exception pending (only possible if
5609 // we were not using WaitIgnoringInterrupts), bail out.
5610 if (self->IsExceptionPending()) {
5611 WrapExceptionInInitializer(klass);
5612 mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self);
5613 return false;
5614 }
5615 // Spurious wakeup? Go back to waiting.
5616 if (klass->GetStatus() == ClassStatus::kInitializing) {
5617 continue;
5618 }
5619 if (klass->GetStatus() == ClassStatus::kVerified &&
5620 Runtime::Current()->IsAotCompiler()) {
5621 // Compile time initialization failed.
5622 return false;
5623 }
5624 if (klass->IsErroneous()) {
5625 // The caller wants an exception, but it was thrown in a
5626 // different thread. Synthesize one here.
5627 ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread",
5628 klass->PrettyDescriptor().c_str());
5629 VlogClassInitializationFailure(klass);
5630 return false;
5631 }
5632 if (klass->IsInitialized()) {
5633 return true;
5634 }
5635 LOG(FATAL) << "Unexpected class status. " << klass->PrettyClass() << " is "
5636 << klass->GetStatus();
5637 }
5638 UNREACHABLE();
5639 }
5640
ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,ArtMethod * m)5641 static void ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,
5642 Handle<mirror::Class> super_klass,
5643 ArtMethod* method,
5644 ArtMethod* m)
5645 REQUIRES_SHARED(Locks::mutator_lock_) {
5646 DCHECK(Thread::Current()->IsExceptionPending());
5647 DCHECK(!m->IsProxyMethod());
5648 const DexFile* dex_file = m->GetDexFile();
5649 const dex::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex());
5650 const dex::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id);
5651 dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
5652 std::string return_type = dex_file->PrettyType(return_type_idx);
5653 std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
5654 ThrowWrappedLinkageError(klass.Get(),
5655 "While checking class %s method %s signature against %s %s: "
5656 "Failed to resolve return type %s with %s",
5657 mirror::Class::PrettyDescriptor(klass.Get()).c_str(),
5658 ArtMethod::PrettyMethod(method).c_str(),
5659 super_klass->IsInterface() ? "interface" : "superclass",
5660 mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(),
5661 return_type.c_str(), class_loader.c_str());
5662 }
5663
ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,ArtMethod * m,uint32_t index,dex::TypeIndex arg_type_idx)5664 static void ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,
5665 Handle<mirror::Class> super_klass,
5666 ArtMethod* method,
5667 ArtMethod* m,
5668 uint32_t index,
5669 dex::TypeIndex arg_type_idx)
5670 REQUIRES_SHARED(Locks::mutator_lock_) {
5671 DCHECK(Thread::Current()->IsExceptionPending());
5672 DCHECK(!m->IsProxyMethod());
5673 const DexFile* dex_file = m->GetDexFile();
5674 std::string arg_type = dex_file->PrettyType(arg_type_idx);
5675 std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
5676 ThrowWrappedLinkageError(klass.Get(),
5677 "While checking class %s method %s signature against %s %s: "
5678 "Failed to resolve arg %u type %s with %s",
5679 mirror::Class::PrettyDescriptor(klass.Get()).c_str(),
5680 ArtMethod::PrettyMethod(method).c_str(),
5681 super_klass->IsInterface() ? "interface" : "superclass",
5682 mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(),
5683 index, arg_type.c_str(), class_loader.c_str());
5684 }
5685
ThrowSignatureMismatch(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,const std::string & error_msg)5686 static void ThrowSignatureMismatch(Handle<mirror::Class> klass,
5687 Handle<mirror::Class> super_klass,
5688 ArtMethod* method,
5689 const std::string& error_msg)
5690 REQUIRES_SHARED(Locks::mutator_lock_) {
5691 ThrowLinkageError(klass.Get(),
5692 "Class %s method %s resolves differently in %s %s: %s",
5693 mirror::Class::PrettyDescriptor(klass.Get()).c_str(),
5694 ArtMethod::PrettyMethod(method).c_str(),
5695 super_klass->IsInterface() ? "interface" : "superclass",
5696 mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(),
5697 error_msg.c_str());
5698 }
5699
HasSameSignatureWithDifferentClassLoaders(Thread * self,Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method1,ArtMethod * method2)5700 static bool HasSameSignatureWithDifferentClassLoaders(Thread* self,
5701 Handle<mirror::Class> klass,
5702 Handle<mirror::Class> super_klass,
5703 ArtMethod* method1,
5704 ArtMethod* method2)
5705 REQUIRES_SHARED(Locks::mutator_lock_) {
5706 {
5707 StackHandleScope<1> hs(self);
5708 Handle<mirror::Class> return_type(hs.NewHandle(method1->ResolveReturnType()));
5709 if (UNLIKELY(return_type == nullptr)) {
5710 ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1);
5711 return false;
5712 }
5713 ObjPtr<mirror::Class> other_return_type = method2->ResolveReturnType();
5714 if (UNLIKELY(other_return_type == nullptr)) {
5715 ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2);
5716 return false;
5717 }
5718 if (UNLIKELY(other_return_type != return_type.Get())) {
5719 ThrowSignatureMismatch(klass, super_klass, method1,
5720 StringPrintf("Return types mismatch: %s(%p) vs %s(%p)",
5721 return_type->PrettyClassAndClassLoader().c_str(),
5722 return_type.Get(),
5723 other_return_type->PrettyClassAndClassLoader().c_str(),
5724 other_return_type.Ptr()));
5725 return false;
5726 }
5727 }
5728 const dex::TypeList* types1 = method1->GetParameterTypeList();
5729 const dex::TypeList* types2 = method2->GetParameterTypeList();
5730 if (types1 == nullptr) {
5731 if (types2 != nullptr && types2->Size() != 0) {
5732 ThrowSignatureMismatch(klass, super_klass, method1,
5733 StringPrintf("Type list mismatch with %s",
5734 method2->PrettyMethod(true).c_str()));
5735 return false;
5736 }
5737 return true;
5738 } else if (UNLIKELY(types2 == nullptr)) {
5739 if (types1->Size() != 0) {
5740 ThrowSignatureMismatch(klass, super_klass, method1,
5741 StringPrintf("Type list mismatch with %s",
5742 method2->PrettyMethod(true).c_str()));
5743 return false;
5744 }
5745 return true;
5746 }
5747 uint32_t num_types = types1->Size();
5748 if (UNLIKELY(num_types != types2->Size())) {
5749 ThrowSignatureMismatch(klass, super_klass, method1,
5750 StringPrintf("Type list mismatch with %s",
5751 method2->PrettyMethod(true).c_str()));
5752 return false;
5753 }
5754 for (uint32_t i = 0; i < num_types; ++i) {
5755 StackHandleScope<1> hs(self);
5756 dex::TypeIndex param_type_idx = types1->GetTypeItem(i).type_idx_;
5757 Handle<mirror::Class> param_type(hs.NewHandle(
5758 method1->ResolveClassFromTypeIndex(param_type_idx)));
5759 if (UNLIKELY(param_type == nullptr)) {
5760 ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
5761 method1, i, param_type_idx);
5762 return false;
5763 }
5764 dex::TypeIndex other_param_type_idx = types2->GetTypeItem(i).type_idx_;
5765 ObjPtr<mirror::Class> other_param_type =
5766 method2->ResolveClassFromTypeIndex(other_param_type_idx);
5767 if (UNLIKELY(other_param_type == nullptr)) {
5768 ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
5769 method2, i, other_param_type_idx);
5770 return false;
5771 }
5772 if (UNLIKELY(param_type.Get() != other_param_type)) {
5773 ThrowSignatureMismatch(klass, super_klass, method1,
5774 StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)",
5775 i,
5776 param_type->PrettyClassAndClassLoader().c_str(),
5777 param_type.Get(),
5778 other_param_type->PrettyClassAndClassLoader().c_str(),
5779 other_param_type.Ptr()));
5780 return false;
5781 }
5782 }
5783 return true;
5784 }
5785
5786
ValidateSuperClassDescriptors(Handle<mirror::Class> klass)5787 bool ClassLinker::ValidateSuperClassDescriptors(Handle<mirror::Class> klass) {
5788 if (klass->IsInterface()) {
5789 return true;
5790 }
5791 // Begin with the methods local to the superclass.
5792 Thread* self = Thread::Current();
5793 StackHandleScope<1> hs(self);
5794 MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(nullptr));
5795 if (klass->HasSuperClass() &&
5796 klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
5797 super_klass.Assign(klass->GetSuperClass());
5798 for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) {
5799 auto* m = klass->GetVTableEntry(i, image_pointer_size_);
5800 auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_);
5801 if (m != super_m) {
5802 if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self,
5803 klass,
5804 super_klass,
5805 m,
5806 super_m))) {
5807 self->AssertPendingException();
5808 return false;
5809 }
5810 }
5811 }
5812 }
5813 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
5814 super_klass.Assign(klass->GetIfTable()->GetInterface(i));
5815 if (klass->GetClassLoader() != super_klass->GetClassLoader()) {
5816 uint32_t num_methods = super_klass->NumVirtualMethods();
5817 for (uint32_t j = 0; j < num_methods; ++j) {
5818 auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>(
5819 j, image_pointer_size_);
5820 auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_);
5821 if (m != super_m) {
5822 if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self,
5823 klass,
5824 super_klass,
5825 m,
5826 super_m))) {
5827 self->AssertPendingException();
5828 return false;
5829 }
5830 }
5831 }
5832 }
5833 }
5834 return true;
5835 }
5836
EnsureInitialized(Thread * self,Handle<mirror::Class> c,bool can_init_fields,bool can_init_parents)5837 bool ClassLinker::EnsureInitialized(Thread* self,
5838 Handle<mirror::Class> c,
5839 bool can_init_fields,
5840 bool can_init_parents) {
5841 DCHECK(c != nullptr);
5842
5843 if (c->IsInitialized()) {
5844 // If we've seen an initialized but not visibly initialized class
5845 // many times, request visible initialization.
5846 if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) {
5847 // Thanks to the x86 memory model classes skip the initialized status.
5848 DCHECK(c->IsVisiblyInitialized());
5849 } else if (UNLIKELY(!c->IsVisiblyInitialized())) {
5850 if (self->IncrementMakeVisiblyInitializedCounter()) {
5851 MakeInitializedClassesVisiblyInitialized(self, /*wait=*/ false);
5852 }
5853 }
5854 DCHECK(c->WasVerificationAttempted()) << c->PrettyClassAndClassLoader();
5855 return true;
5856 }
5857 // SubtypeCheckInfo::Initialized must happen-before any new-instance for that type.
5858 //
5859 // Ensure the bitstring is initialized before any of the class initialization
5860 // logic occurs. Once a class initializer starts running, objects can
5861 // escape into the heap and use the subtype checking code.
5862 //
5863 // Note: A class whose SubtypeCheckInfo is at least Initialized means it
5864 // can be used as a source for the IsSubClass check, and that all ancestors
5865 // of the class are Assigned (can be used as a target for IsSubClass check)
5866 // or Overflowed (can be used as a source for IsSubClass check).
5867 if (kBitstringSubtypeCheckEnabled) {
5868 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
5869 SubtypeCheck<ObjPtr<mirror::Class>>::EnsureInitialized(c.Get());
5870 // TODO: Avoid taking subtype_check_lock_ if SubtypeCheck is already initialized.
5871 }
5872 const bool success = InitializeClass(self, c, can_init_fields, can_init_parents);
5873 if (!success) {
5874 if (can_init_fields && can_init_parents) {
5875 CHECK(self->IsExceptionPending()) << c->PrettyClass();
5876 } else {
5877 // There may or may not be an exception pending. If there is, clear it.
5878 // We propagate the exception only if we can initialize fields and parents.
5879 self->ClearException();
5880 }
5881 } else {
5882 self->AssertNoPendingException();
5883 }
5884 return success;
5885 }
5886
FixupTemporaryDeclaringClass(ObjPtr<mirror::Class> temp_class,ObjPtr<mirror::Class> new_class)5887 void ClassLinker::FixupTemporaryDeclaringClass(ObjPtr<mirror::Class> temp_class,
5888 ObjPtr<mirror::Class> new_class) {
5889 DCHECK_EQ(temp_class->NumInstanceFields(), 0u);
5890 for (ArtField& field : new_class->GetIFields()) {
5891 if (field.GetDeclaringClass() == temp_class) {
5892 field.SetDeclaringClass(new_class);
5893 }
5894 }
5895
5896 DCHECK_EQ(temp_class->NumStaticFields(), 0u);
5897 for (ArtField& field : new_class->GetSFields()) {
5898 if (field.GetDeclaringClass() == temp_class) {
5899 field.SetDeclaringClass(new_class);
5900 }
5901 }
5902
5903 DCHECK_EQ(temp_class->NumDirectMethods(), 0u);
5904 DCHECK_EQ(temp_class->NumVirtualMethods(), 0u);
5905 for (auto& method : new_class->GetMethods(image_pointer_size_)) {
5906 if (method.GetDeclaringClass() == temp_class) {
5907 method.SetDeclaringClass(new_class);
5908 }
5909 }
5910
5911 // Make sure the remembered set and mod-union tables know that we updated some of the native
5912 // roots.
5913 WriteBarrier::ForEveryFieldWrite(new_class);
5914 }
5915
RegisterClassLoader(ObjPtr<mirror::ClassLoader> class_loader)5916 void ClassLinker::RegisterClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
5917 CHECK(class_loader->GetAllocator() == nullptr);
5918 CHECK(class_loader->GetClassTable() == nullptr);
5919 Thread* const self = Thread::Current();
5920 ClassLoaderData data;
5921 data.weak_root = self->GetJniEnv()->GetVm()->AddWeakGlobalRef(self, class_loader);
5922 // Create and set the class table.
5923 data.class_table = new ClassTable;
5924 class_loader->SetClassTable(data.class_table);
5925 // Create and set the linear allocator.
5926 data.allocator = Runtime::Current()->CreateLinearAlloc();
5927 class_loader->SetAllocator(data.allocator);
5928 // Add to the list so that we know to free the data later.
5929 class_loaders_.push_back(data);
5930 }
5931
InsertClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader)5932 ClassTable* ClassLinker::InsertClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
5933 if (class_loader == nullptr) {
5934 return boot_class_table_.get();
5935 }
5936 ClassTable* class_table = class_loader->GetClassTable();
5937 if (class_table == nullptr) {
5938 RegisterClassLoader(class_loader);
5939 class_table = class_loader->GetClassTable();
5940 DCHECK(class_table != nullptr);
5941 }
5942 return class_table;
5943 }
5944
ClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader)5945 ClassTable* ClassLinker::ClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
5946 return class_loader == nullptr ? boot_class_table_.get() : class_loader->GetClassTable();
5947 }
5948
FindSuperImt(ObjPtr<mirror::Class> klass,PointerSize pointer_size)5949 static ImTable* FindSuperImt(ObjPtr<mirror::Class> klass, PointerSize pointer_size)
5950 REQUIRES_SHARED(Locks::mutator_lock_) {
5951 while (klass->HasSuperClass()) {
5952 klass = klass->GetSuperClass();
5953 if (klass->ShouldHaveImt()) {
5954 return klass->GetImt(pointer_size);
5955 }
5956 }
5957 return nullptr;
5958 }
5959
LinkClass(Thread * self,const char * descriptor,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces,MutableHandle<mirror::Class> * h_new_class_out)5960 bool ClassLinker::LinkClass(Thread* self,
5961 const char* descriptor,
5962 Handle<mirror::Class> klass,
5963 Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5964 MutableHandle<mirror::Class>* h_new_class_out) {
5965 CHECK_EQ(ClassStatus::kLoaded, klass->GetStatus());
5966
5967 if (!LinkSuperClass(klass)) {
5968 return false;
5969 }
5970 ArtMethod* imt_data[ImTable::kSize];
5971 // If there are any new conflicts compared to super class.
5972 bool new_conflict = false;
5973 std::fill_n(imt_data, arraysize(imt_data), Runtime::Current()->GetImtUnimplementedMethod());
5974 if (!LinkMethods(self, klass, interfaces, &new_conflict, imt_data)) {
5975 return false;
5976 }
5977 if (!LinkInstanceFields(self, klass)) {
5978 return false;
5979 }
5980 size_t class_size;
5981 if (!LinkStaticFields(self, klass, &class_size)) {
5982 return false;
5983 }
5984 CreateReferenceInstanceOffsets(klass);
5985 CHECK_EQ(ClassStatus::kLoaded, klass->GetStatus());
5986
5987 ImTable* imt = nullptr;
5988 if (klass->ShouldHaveImt()) {
5989 // If there are any new conflicts compared to the super class we can not make a copy. There
5990 // can be cases where both will have a conflict method at the same slot without having the same
5991 // set of conflicts. In this case, we can not share the IMT since the conflict table slow path
5992 // will possibly create a table that is incorrect for either of the classes.
5993 // Same IMT with new_conflict does not happen very often.
5994 if (!new_conflict) {
5995 ImTable* super_imt = FindSuperImt(klass.Get(), image_pointer_size_);
5996 if (super_imt != nullptr) {
5997 bool imt_equals = true;
5998 for (size_t i = 0; i < ImTable::kSize && imt_equals; ++i) {
5999 imt_equals = imt_equals && (super_imt->Get(i, image_pointer_size_) == imt_data[i]);
6000 }
6001 if (imt_equals) {
6002 imt = super_imt;
6003 }
6004 }
6005 }
6006 if (imt == nullptr) {
6007 LinearAlloc* allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
6008 imt = reinterpret_cast<ImTable*>(
6009 allocator->Alloc(self, ImTable::SizeInBytes(image_pointer_size_)));
6010 if (imt == nullptr) {
6011 return false;
6012 }
6013 imt->Populate(imt_data, image_pointer_size_);
6014 }
6015 }
6016
6017 if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) {
6018 // We don't need to retire this class as it has no embedded tables or it was created the
6019 // correct size during class linker initialization.
6020 CHECK_EQ(klass->GetClassSize(), class_size) << klass->PrettyDescriptor();
6021
6022 if (klass->ShouldHaveEmbeddedVTable()) {
6023 klass->PopulateEmbeddedVTable(image_pointer_size_);
6024 }
6025 if (klass->ShouldHaveImt()) {
6026 klass->SetImt(imt, image_pointer_size_);
6027 }
6028
6029 // Update CHA info based on whether we override methods.
6030 // Have to do this before setting the class as resolved which allows
6031 // instantiation of klass.
6032 if (LIKELY(descriptor != nullptr) && cha_ != nullptr) {
6033 cha_->UpdateAfterLoadingOf(klass);
6034 }
6035
6036 // This will notify waiters on klass that saw the not yet resolved
6037 // class in the class_table_ during EnsureResolved.
6038 mirror::Class::SetStatus(klass, ClassStatus::kResolved, self);
6039 h_new_class_out->Assign(klass.Get());
6040 } else {
6041 CHECK(!klass->IsResolved());
6042 // Retire the temporary class and create the correctly sized resolved class.
6043 StackHandleScope<1> hs(self);
6044 Handle<mirror::Class> h_new_class =
6045 hs.NewHandle(mirror::Class::CopyOf(klass, self, class_size, imt, image_pointer_size_));
6046 // Set arrays to null since we don't want to have multiple classes with the same ArtField or
6047 // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC
6048 // may not see any references to the target space and clean the card for a class if another
6049 // class had the same array pointer.
6050 klass->SetMethodsPtrUnchecked(nullptr, 0, 0);
6051 klass->SetSFieldsPtrUnchecked(nullptr);
6052 klass->SetIFieldsPtrUnchecked(nullptr);
6053 if (UNLIKELY(h_new_class == nullptr)) {
6054 self->AssertPendingOOMException();
6055 mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self);
6056 return false;
6057 }
6058
6059 CHECK_EQ(h_new_class->GetClassSize(), class_size);
6060 ObjectLock<mirror::Class> lock(self, h_new_class);
6061 FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get());
6062
6063 if (LIKELY(descriptor != nullptr)) {
6064 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
6065 const ObjPtr<mirror::ClassLoader> class_loader = h_new_class.Get()->GetClassLoader();
6066 ClassTable* const table = InsertClassTableForClassLoader(class_loader);
6067 const ObjPtr<mirror::Class> existing =
6068 table->UpdateClass(descriptor, h_new_class.Get(), ComputeModifiedUtf8Hash(descriptor));
6069 if (class_loader != nullptr) {
6070 // We updated the class in the class table, perform the write barrier so that the GC knows
6071 // about the change.
6072 WriteBarrier::ForEveryFieldWrite(class_loader);
6073 }
6074 CHECK_EQ(existing, klass.Get());
6075 if (log_new_roots_) {
6076 new_class_roots_.push_back(GcRoot<mirror::Class>(h_new_class.Get()));
6077 }
6078 }
6079
6080 // Update CHA info based on whether we override methods.
6081 // Have to do this before setting the class as resolved which allows
6082 // instantiation of klass.
6083 if (LIKELY(descriptor != nullptr) && cha_ != nullptr) {
6084 cha_->UpdateAfterLoadingOf(h_new_class);
6085 }
6086
6087 // This will notify waiters on temp class that saw the not yet resolved class in the
6088 // class_table_ during EnsureResolved.
6089 mirror::Class::SetStatus(klass, ClassStatus::kRetired, self);
6090
6091 CHECK_EQ(h_new_class->GetStatus(), ClassStatus::kResolving);
6092 // This will notify waiters on new_class that saw the not yet resolved
6093 // class in the class_table_ during EnsureResolved.
6094 mirror::Class::SetStatus(h_new_class, ClassStatus::kResolved, self);
6095 // Return the new class.
6096 h_new_class_out->Assign(h_new_class.Get());
6097 }
6098 return true;
6099 }
6100
LoadSuperAndInterfaces(Handle<mirror::Class> klass,const DexFile & dex_file)6101 bool ClassLinker::LoadSuperAndInterfaces(Handle<mirror::Class> klass, const DexFile& dex_file) {
6102 CHECK_EQ(ClassStatus::kIdx, klass->GetStatus());
6103 const dex::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex());
6104 dex::TypeIndex super_class_idx = class_def.superclass_idx_;
6105 if (super_class_idx.IsValid()) {
6106 // Check that a class does not inherit from itself directly.
6107 //
6108 // TODO: This is a cheap check to detect the straightforward case
6109 // of a class extending itself (b/28685551), but we should do a
6110 // proper cycle detection on loaded classes, to detect all cases
6111 // of class circularity errors (b/28830038).
6112 if (super_class_idx == class_def.class_idx_) {
6113 ThrowClassCircularityError(klass.Get(),
6114 "Class %s extends itself",
6115 klass->PrettyDescriptor().c_str());
6116 return false;
6117 }
6118
6119 ObjPtr<mirror::Class> super_class = ResolveType(super_class_idx, klass.Get());
6120 if (super_class == nullptr) {
6121 DCHECK(Thread::Current()->IsExceptionPending());
6122 return false;
6123 }
6124 // Verify
6125 if (!klass->CanAccess(super_class)) {
6126 ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible",
6127 super_class->PrettyDescriptor().c_str(),
6128 klass->PrettyDescriptor().c_str());
6129 return false;
6130 }
6131 CHECK(super_class->IsResolved());
6132 klass->SetSuperClass(super_class);
6133 }
6134 const dex::TypeList* interfaces = dex_file.GetInterfacesList(class_def);
6135 if (interfaces != nullptr) {
6136 for (size_t i = 0; i < interfaces->Size(); i++) {
6137 dex::TypeIndex idx = interfaces->GetTypeItem(i).type_idx_;
6138 ObjPtr<mirror::Class> interface = ResolveType(idx, klass.Get());
6139 if (interface == nullptr) {
6140 DCHECK(Thread::Current()->IsExceptionPending());
6141 return false;
6142 }
6143 // Verify
6144 if (!klass->CanAccess(interface)) {
6145 // TODO: the RI seemed to ignore this in my testing.
6146 ThrowIllegalAccessError(klass.Get(),
6147 "Interface %s implemented by class %s is inaccessible",
6148 interface->PrettyDescriptor().c_str(),
6149 klass->PrettyDescriptor().c_str());
6150 return false;
6151 }
6152 }
6153 }
6154 // Mark the class as loaded.
6155 mirror::Class::SetStatus(klass, ClassStatus::kLoaded, nullptr);
6156 return true;
6157 }
6158
LinkSuperClass(Handle<mirror::Class> klass)6159 bool ClassLinker::LinkSuperClass(Handle<mirror::Class> klass) {
6160 CHECK(!klass->IsPrimitive());
6161 ObjPtr<mirror::Class> super = klass->GetSuperClass();
6162 ObjPtr<mirror::Class> object_class = GetClassRoot<mirror::Object>(this);
6163 if (klass.Get() == object_class) {
6164 if (super != nullptr) {
6165 ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass");
6166 return false;
6167 }
6168 return true;
6169 }
6170 if (super == nullptr) {
6171 ThrowLinkageError(klass.Get(), "No superclass defined for class %s",
6172 klass->PrettyDescriptor().c_str());
6173 return false;
6174 }
6175 // Verify
6176 if (klass->IsInterface() && super != object_class) {
6177 ThrowClassFormatError(klass.Get(), "Interfaces must have java.lang.Object as superclass");
6178 return false;
6179 }
6180 if (super->IsFinal()) {
6181 ThrowVerifyError(klass.Get(),
6182 "Superclass %s of %s is declared final",
6183 super->PrettyDescriptor().c_str(),
6184 klass->PrettyDescriptor().c_str());
6185 return false;
6186 }
6187 if (super->IsInterface()) {
6188 ThrowIncompatibleClassChangeError(klass.Get(),
6189 "Superclass %s of %s is an interface",
6190 super->PrettyDescriptor().c_str(),
6191 klass->PrettyDescriptor().c_str());
6192 return false;
6193 }
6194 if (!klass->CanAccess(super)) {
6195 ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s",
6196 super->PrettyDescriptor().c_str(),
6197 klass->PrettyDescriptor().c_str());
6198 return false;
6199 }
6200
6201 // Inherit kAccClassIsFinalizable from the superclass in case this
6202 // class doesn't override finalize.
6203 if (super->IsFinalizable()) {
6204 klass->SetFinalizable();
6205 }
6206
6207 // Inherit class loader flag form super class.
6208 if (super->IsClassLoaderClass()) {
6209 klass->SetClassLoaderClass();
6210 }
6211
6212 // Inherit reference flags (if any) from the superclass.
6213 uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference);
6214 if (reference_flags != 0) {
6215 CHECK_EQ(klass->GetClassFlags(), 0u);
6216 klass->SetClassFlags(klass->GetClassFlags() | reference_flags);
6217 }
6218 // Disallow custom direct subclasses of java.lang.ref.Reference.
6219 if (init_done_ && super == GetClassRoot<mirror::Reference>(this)) {
6220 ThrowLinkageError(klass.Get(),
6221 "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed",
6222 klass->PrettyDescriptor().c_str());
6223 return false;
6224 }
6225
6226 if (kIsDebugBuild) {
6227 // Ensure super classes are fully resolved prior to resolving fields..
6228 while (super != nullptr) {
6229 CHECK(super->IsResolved());
6230 super = super->GetSuperClass();
6231 }
6232 }
6233 return true;
6234 }
6235
6236 // A wrapper class representing the result of a method translation used for linking methods and
6237 // updating superclass default methods. For each method in a classes vtable there are 4 states it
6238 // could be in:
6239 // 1) No translation is necessary. In this case there is no MethodTranslation object for it. This
6240 // is the standard case and is true when the method is not overridable by a default method,
6241 // the class defines a concrete implementation of the method, the default method implementation
6242 // remains the same, or an abstract method stayed abstract.
6243 // 2) The method must be translated to a different default method. We note this with
6244 // CreateTranslatedMethod.
6245 // 3) The method must be replaced with a conflict method. This happens when a superclass
6246 // implements an interface with a default method and this class implements an unrelated
6247 // interface that also defines that default method. We note this with CreateConflictingMethod.
6248 // 4) The method must be replaced with an abstract miranda method. This happens when a superclass
6249 // implements an interface with a default method and this class implements a subinterface of
6250 // the superclass's interface which declares the default method abstract. We note this with
6251 // CreateAbstractMethod.
6252 //
6253 // When a method translation is unnecessary (case #1), we don't put it into the
6254 // default_translation maps. So an instance of MethodTranslation must be in one of #2-#4.
6255 class ClassLinker::MethodTranslation {
6256 public:
MethodTranslation()6257 MethodTranslation() : translation_(nullptr), type_(Type::kInvalid) {}
6258
6259 // This slot must become a default conflict method.
CreateConflictingMethod()6260 static MethodTranslation CreateConflictingMethod() {
6261 return MethodTranslation(Type::kConflict, /*translation=*/nullptr);
6262 }
6263
6264 // This slot must become an abstract method.
CreateAbstractMethod()6265 static MethodTranslation CreateAbstractMethod() {
6266 return MethodTranslation(Type::kAbstract, /*translation=*/nullptr);
6267 }
6268
6269 // Use the given method as the current value for this vtable slot during translation.
CreateTranslatedMethod(ArtMethod * new_method)6270 static MethodTranslation CreateTranslatedMethod(ArtMethod* new_method) {
6271 return MethodTranslation(Type::kTranslation, new_method);
6272 }
6273
6274 // Returns true if this is a method that must become a conflict method.
IsInConflict() const6275 bool IsInConflict() const {
6276 return type_ == Type::kConflict;
6277 }
6278
6279 // Returns true if this is a method that must become an abstract method.
IsAbstract() const6280 bool IsAbstract() const {
6281 return type_ == Type::kAbstract;
6282 }
6283
6284 // Returns true if this is a method that must become a different method.
IsTranslation() const6285 bool IsTranslation() const {
6286 return type_ == Type::kTranslation;
6287 }
6288
6289 // Get the translated version of this method.
GetTranslation() const6290 ArtMethod* GetTranslation() const {
6291 DCHECK(IsTranslation());
6292 DCHECK(translation_ != nullptr);
6293 return translation_;
6294 }
6295
6296 private:
6297 enum class Type {
6298 kInvalid,
6299 kTranslation,
6300 kConflict,
6301 kAbstract,
6302 };
6303
MethodTranslation(Type type,ArtMethod * translation)6304 MethodTranslation(Type type, ArtMethod* translation)
6305 : translation_(translation), type_(type) {}
6306
6307 ArtMethod* translation_;
6308 Type type_;
6309 };
6310
6311 // Populate the class vtable and itable. Compute return type indices.
LinkMethods(Thread * self,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces,bool * out_new_conflict,ArtMethod ** out_imt)6312 bool ClassLinker::LinkMethods(Thread* self,
6313 Handle<mirror::Class> klass,
6314 Handle<mirror::ObjectArray<mirror::Class>> interfaces,
6315 bool* out_new_conflict,
6316 ArtMethod** out_imt) {
6317 self->AllowThreadSuspension();
6318 // A map from vtable indexes to the method they need to be updated to point to. Used because we
6319 // need to have default methods be in the virtuals array of each class but we don't set that up
6320 // until LinkInterfaceMethods.
6321 constexpr size_t kBufferSize = 8; // Avoid malloc/free for a few translations.
6322 std::pair<size_t, ClassLinker::MethodTranslation> buffer[kBufferSize];
6323 HashMap<size_t, ClassLinker::MethodTranslation> default_translations(buffer, kBufferSize);
6324 // Link virtual methods then interface methods.
6325 // We set up the interface lookup table first because we need it to determine if we need to update
6326 // any vtable entries with new default method implementations.
6327 return SetupInterfaceLookupTable(self, klass, interfaces)
6328 && LinkVirtualMethods(self, klass, /*out*/ &default_translations)
6329 && LinkInterfaceMethods(self, klass, default_translations, out_new_conflict, out_imt);
6330 }
6331
6332 // Comparator for name and signature of a method, used in finding overriding methods. Implementation
6333 // avoids the use of handles, if it didn't then rather than compare dex files we could compare dex
6334 // caches in the implementation below.
6335 class MethodNameAndSignatureComparator final : public ValueObject {
6336 public:
6337 explicit MethodNameAndSignatureComparator(ArtMethod* method)
REQUIRES_SHARED(Locks::mutator_lock_)6338 REQUIRES_SHARED(Locks::mutator_lock_) :
6339 dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())),
6340 name_(nullptr), name_len_(0) {
6341 DCHECK(!method->IsProxyMethod()) << method->PrettyMethod();
6342 }
6343
GetName()6344 const char* GetName() {
6345 if (name_ == nullptr) {
6346 name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_);
6347 }
6348 return name_;
6349 }
6350
HasSameNameAndSignature(ArtMethod * other)6351 bool HasSameNameAndSignature(ArtMethod* other)
6352 REQUIRES_SHARED(Locks::mutator_lock_) {
6353 DCHECK(!other->IsProxyMethod()) << other->PrettyMethod();
6354 const DexFile* other_dex_file = other->GetDexFile();
6355 const dex::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex());
6356 if (dex_file_ == other_dex_file) {
6357 return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_;
6358 }
6359 GetName(); // Only used to make sure its calculated.
6360 uint32_t other_name_len;
6361 const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_,
6362 &other_name_len);
6363 if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) {
6364 return false;
6365 }
6366 return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid);
6367 }
6368
6369 private:
6370 // Dex file for the method to compare against.
6371 const DexFile* const dex_file_;
6372 // MethodId for the method to compare against.
6373 const dex::MethodId* const mid_;
6374 // Lazily computed name from the dex file's strings.
6375 const char* name_;
6376 // Lazily computed name length.
6377 uint32_t name_len_;
6378 };
6379
6380 class LinkVirtualHashTable {
6381 public:
LinkVirtualHashTable(Handle<mirror::Class> klass,size_t hash_size,uint32_t * hash_table,PointerSize image_pointer_size)6382 LinkVirtualHashTable(Handle<mirror::Class> klass,
6383 size_t hash_size,
6384 uint32_t* hash_table,
6385 PointerSize image_pointer_size)
6386 : klass_(klass),
6387 hash_size_(hash_size),
6388 hash_table_(hash_table),
6389 image_pointer_size_(image_pointer_size) {
6390 std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_);
6391 }
6392
Add(uint32_t virtual_method_index)6393 void Add(uint32_t virtual_method_index) REQUIRES_SHARED(Locks::mutator_lock_) {
6394 ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking(
6395 virtual_method_index, image_pointer_size_);
6396 const char* name = local_method->GetInterfaceMethodIfProxy(image_pointer_size_)->GetName();
6397 uint32_t hash = ComputeModifiedUtf8Hash(name);
6398 uint32_t index = hash % hash_size_;
6399 // Linear probe until we have an empty slot.
6400 while (hash_table_[index] != invalid_index_) {
6401 if (++index == hash_size_) {
6402 index = 0;
6403 }
6404 }
6405 hash_table_[index] = virtual_method_index;
6406 }
6407
FindAndRemove(MethodNameAndSignatureComparator * comparator,uint32_t hash)6408 uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator, uint32_t hash)
6409 REQUIRES_SHARED(Locks::mutator_lock_) {
6410 DCHECK_EQ(hash, ComputeModifiedUtf8Hash(comparator->GetName()));
6411 size_t index = hash % hash_size_;
6412 while (true) {
6413 const uint32_t value = hash_table_[index];
6414 // Since linear probe makes continuous blocks, hitting an invalid index means we are done
6415 // the block and can safely assume not found.
6416 if (value == invalid_index_) {
6417 break;
6418 }
6419 if (value != removed_index_) { // This signifies not already overriden.
6420 ArtMethod* virtual_method =
6421 klass_->GetVirtualMethodDuringLinking(value, image_pointer_size_);
6422 if (comparator->HasSameNameAndSignature(
6423 virtual_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6424 hash_table_[index] = removed_index_;
6425 return value;
6426 }
6427 }
6428 if (++index == hash_size_) {
6429 index = 0;
6430 }
6431 }
6432 return GetNotFoundIndex();
6433 }
6434
GetNotFoundIndex()6435 static uint32_t GetNotFoundIndex() {
6436 return invalid_index_;
6437 }
6438
6439 private:
6440 static const uint32_t invalid_index_;
6441 static const uint32_t removed_index_;
6442
6443 Handle<mirror::Class> klass_;
6444 const size_t hash_size_;
6445 uint32_t* const hash_table_;
6446 const PointerSize image_pointer_size_;
6447 };
6448
6449 const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits<uint32_t>::max();
6450 const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits<uint32_t>::max() - 1;
6451
LinkVirtualMethods(Thread * self,Handle<mirror::Class> klass,HashMap<size_t,ClassLinker::MethodTranslation> * default_translations)6452 bool ClassLinker::LinkVirtualMethods(
6453 Thread* self,
6454 Handle<mirror::Class> klass,
6455 /*out*/HashMap<size_t, ClassLinker::MethodTranslation>* default_translations) {
6456 const size_t num_virtual_methods = klass->NumVirtualMethods();
6457 if (klass->IsInterface()) {
6458 // No vtable.
6459 if (!IsUint<16>(num_virtual_methods)) {
6460 ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods);
6461 return false;
6462 }
6463 bool has_defaults = false;
6464 // Assign each method an IMT index and set the default flag.
6465 for (size_t i = 0; i < num_virtual_methods; ++i) {
6466 ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
6467 m->SetMethodIndex(i);
6468 if (!m->IsAbstract()) {
6469 // If the dex file does not support default methods, throw ClassFormatError.
6470 // This check is necessary to protect from odd cases, such as native default
6471 // methods, that the dex file verifier permits for old dex file versions. b/157170505
6472 // FIXME: This should be `if (!m->GetDexFile()->SupportsDefaultMethods())` but we're
6473 // currently running CTS tests for default methods with dex file version 035 which
6474 // does not support default methods. So, we limit this to native methods. b/157718952
6475 if (m->IsNative()) {
6476 DCHECK(!m->GetDexFile()->SupportsDefaultMethods());
6477 ThrowClassFormatError(klass.Get(),
6478 "Dex file does not support default method '%s'",
6479 m->PrettyMethod().c_str());
6480 return false;
6481 }
6482 m->SetAccessFlags(m->GetAccessFlags() | kAccDefault);
6483 has_defaults = true;
6484 }
6485 }
6486 // Mark that we have default methods so that we won't need to scan the virtual_methods_ array
6487 // during initialization. This is a performance optimization. We could simply traverse the
6488 // virtual_methods_ array again during initialization.
6489 if (has_defaults) {
6490 klass->SetHasDefaultMethods();
6491 }
6492 return true;
6493 } else if (klass->HasSuperClass()) {
6494 const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength();
6495 const size_t max_count = num_virtual_methods + super_vtable_length;
6496 StackHandleScope<3> hs(self);
6497 Handle<mirror::Class> super_class(hs.NewHandle(klass->GetSuperClass()));
6498 MutableHandle<mirror::PointerArray> vtable;
6499 if (super_class->ShouldHaveEmbeddedVTable()) {
6500 vtable = hs.NewHandle(AllocPointerArray(self, max_count));
6501 if (UNLIKELY(vtable == nullptr)) {
6502 self->AssertPendingOOMException();
6503 return false;
6504 }
6505 for (size_t i = 0; i < super_vtable_length; i++) {
6506 vtable->SetElementPtrSize(
6507 i, super_class->GetEmbeddedVTableEntry(i, image_pointer_size_), image_pointer_size_);
6508 }
6509 // We might need to change vtable if we have new virtual methods or new interfaces (since that
6510 // might give us new default methods). If no new interfaces then we can skip the rest since
6511 // the class cannot override any of the super-class's methods. This is required for
6512 // correctness since without it we might not update overridden default method vtable entries
6513 // correctly.
6514 if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
6515 klass->SetVTable(vtable.Get());
6516 return true;
6517 }
6518 } else {
6519 DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass());
6520 Handle<mirror::PointerArray> super_vtable = hs.NewHandle(super_class->GetVTable());
6521 CHECK(super_vtable != nullptr) << super_class->PrettyClass();
6522 // We might need to change vtable if we have new virtual methods or new interfaces (since that
6523 // might give us new default methods). See comment above.
6524 if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
6525 klass->SetVTable(super_vtable.Get());
6526 return true;
6527 }
6528 vtable = hs.NewHandle(ObjPtr<mirror::PointerArray>::DownCast(
6529 mirror::Array::CopyOf(super_vtable, self, max_count)));
6530 if (UNLIKELY(vtable == nullptr)) {
6531 self->AssertPendingOOMException();
6532 return false;
6533 }
6534 }
6535 // How the algorithm works:
6536 // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash
6537 // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual
6538 // method which has not been matched to a vtable method, and j if the virtual method at the
6539 // index overrode the super virtual method at index j.
6540 // 2. Loop through super virtual methods, if they overwrite, update hash table to j
6541 // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing
6542 // the need for the initial vtable which we later shrink back down).
6543 // 3. Add non overridden methods to the end of the vtable.
6544 static constexpr size_t kMaxStackHash = 250;
6545 // + 1 so that even if we only have new default methods we will still be able to use this hash
6546 // table (i.e. it will never have 0 size).
6547 const size_t hash_table_size = num_virtual_methods * 3 + 1;
6548 uint32_t* hash_table_ptr;
6549 std::unique_ptr<uint32_t[]> hash_heap_storage;
6550 if (hash_table_size <= kMaxStackHash) {
6551 hash_table_ptr = reinterpret_cast<uint32_t*>(
6552 alloca(hash_table_size * sizeof(*hash_table_ptr)));
6553 } else {
6554 hash_heap_storage.reset(new uint32_t[hash_table_size]);
6555 hash_table_ptr = hash_heap_storage.get();
6556 }
6557 LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr, image_pointer_size_);
6558 // Add virtual methods to the hash table.
6559 for (size_t i = 0; i < num_virtual_methods; ++i) {
6560 DCHECK(klass->GetVirtualMethodDuringLinking(
6561 i, image_pointer_size_)->GetDeclaringClass() != nullptr);
6562 hash_table.Add(i);
6563 }
6564 // Loop through each super vtable method and see if they are overridden by a method we added to
6565 // the hash table.
6566 for (size_t j = 0; j < super_vtable_length; ++j) {
6567 // Search the hash table to see if we are overridden by any method.
6568 ArtMethod* super_method = vtable->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6569 if (!klass->CanAccessMember(super_method->GetDeclaringClass(),
6570 super_method->GetAccessFlags())) {
6571 // Continue on to the next method since this one is package private and canot be overridden.
6572 // Before Android 4.1, the package-private method super_method might have been incorrectly
6573 // overridden.
6574 continue;
6575 }
6576 MethodNameAndSignatureComparator super_method_name_comparator(
6577 super_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6578 // We remove the method so that subsequent lookups will be faster by making the hash-map
6579 // smaller as we go on.
6580 uint32_t hash = (j < mirror::Object::kVTableLength)
6581 ? object_virtual_method_hashes_[j]
6582 : ComputeModifiedUtf8Hash(super_method_name_comparator.GetName());
6583 uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator, hash);
6584 if (hash_index != hash_table.GetNotFoundIndex()) {
6585 ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(
6586 hash_index, image_pointer_size_);
6587 if (super_method->IsFinal()) {
6588 ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s",
6589 virtual_method->PrettyMethod().c_str(),
6590 super_method->GetDeclaringClassDescriptor());
6591 return false;
6592 }
6593 vtable->SetElementPtrSize(j, virtual_method, image_pointer_size_);
6594 virtual_method->SetMethodIndex(j);
6595 } else if (super_method->IsOverridableByDefaultMethod()) {
6596 // We didn't directly override this method but we might through default methods...
6597 // Check for default method update.
6598 ArtMethod* default_method = nullptr;
6599 switch (FindDefaultMethodImplementation(self,
6600 super_method,
6601 klass,
6602 /*out*/&default_method)) {
6603 case DefaultMethodSearchResult::kDefaultConflict: {
6604 // A conflict was found looking for default methods. Note this (assuming it wasn't
6605 // pre-existing) in the translations map.
6606 if (UNLIKELY(!super_method->IsDefaultConflicting())) {
6607 // Don't generate another conflict method to reduce memory use as an optimization.
6608 default_translations->insert(
6609 {j, ClassLinker::MethodTranslation::CreateConflictingMethod()});
6610 }
6611 break;
6612 }
6613 case DefaultMethodSearchResult::kAbstractFound: {
6614 // No conflict but method is abstract.
6615 // We note that this vtable entry must be made abstract.
6616 if (UNLIKELY(!super_method->IsAbstract())) {
6617 default_translations->insert(
6618 {j, ClassLinker::MethodTranslation::CreateAbstractMethod()});
6619 }
6620 break;
6621 }
6622 case DefaultMethodSearchResult::kDefaultFound: {
6623 if (UNLIKELY(super_method->IsDefaultConflicting() ||
6624 default_method->GetDeclaringClass() != super_method->GetDeclaringClass())) {
6625 // Found a default method implementation that is new.
6626 // TODO Refactor this add default methods to virtuals here and not in
6627 // LinkInterfaceMethods maybe.
6628 // The problem is default methods might override previously present
6629 // default-method or miranda-method vtable entries from the superclass.
6630 // Unfortunately we need these to be entries in this class's virtuals. We do not
6631 // give these entries there until LinkInterfaceMethods so we pass this map around
6632 // to let it know which vtable entries need to be updated.
6633 // Make a note that vtable entry j must be updated, store what it needs to be updated
6634 // to. We will allocate a virtual method slot in LinkInterfaceMethods and fix it up
6635 // then.
6636 default_translations->insert(
6637 {j, ClassLinker::MethodTranslation::CreateTranslatedMethod(default_method)});
6638 VLOG(class_linker) << "Method " << super_method->PrettyMethod()
6639 << " overridden by default "
6640 << default_method->PrettyMethod()
6641 << " in " << mirror::Class::PrettyClass(klass.Get());
6642 }
6643 break;
6644 }
6645 }
6646 }
6647 }
6648 size_t actual_count = super_vtable_length;
6649 // Add the non-overridden methods at the end.
6650 for (size_t i = 0; i < num_virtual_methods; ++i) {
6651 ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
6652 size_t method_idx = local_method->GetMethodIndexDuringLinking();
6653 if (method_idx < super_vtable_length &&
6654 local_method == vtable->GetElementPtrSize<ArtMethod*>(method_idx, image_pointer_size_)) {
6655 continue;
6656 }
6657 vtable->SetElementPtrSize(actual_count, local_method, image_pointer_size_);
6658 local_method->SetMethodIndex(actual_count);
6659 ++actual_count;
6660 }
6661 if (!IsUint<16>(actual_count)) {
6662 ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count);
6663 return false;
6664 }
6665 // Shrink vtable if possible
6666 CHECK_LE(actual_count, max_count);
6667 if (actual_count < max_count) {
6668 vtable.Assign(ObjPtr<mirror::PointerArray>::DownCast(
6669 mirror::Array::CopyOf(vtable, self, actual_count)));
6670 if (UNLIKELY(vtable == nullptr)) {
6671 self->AssertPendingOOMException();
6672 return false;
6673 }
6674 }
6675 klass->SetVTable(vtable.Get());
6676 } else {
6677 CHECK_EQ(klass.Get(), GetClassRoot<mirror::Object>(this));
6678 if (!IsUint<16>(num_virtual_methods)) {
6679 ThrowClassFormatError(klass.Get(), "Too many methods: %d",
6680 static_cast<int>(num_virtual_methods));
6681 return false;
6682 }
6683 ObjPtr<mirror::PointerArray> vtable = AllocPointerArray(self, num_virtual_methods);
6684 if (UNLIKELY(vtable == nullptr)) {
6685 self->AssertPendingOOMException();
6686 return false;
6687 }
6688 for (size_t i = 0; i < num_virtual_methods; ++i) {
6689 ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
6690 vtable->SetElementPtrSize(i, virtual_method, image_pointer_size_);
6691 virtual_method->SetMethodIndex(i & 0xFFFF);
6692 }
6693 klass->SetVTable(vtable);
6694 InitializeObjectVirtualMethodHashes(klass.Get(),
6695 image_pointer_size_,
6696 ArrayRef<uint32_t>(object_virtual_method_hashes_));
6697 }
6698 return true;
6699 }
6700
6701 // Determine if the given iface has any subinterface in the given list that declares the method
6702 // specified by 'target'.
6703 //
6704 // Arguments
6705 // - self: The thread we are running on
6706 // - target: A comparator that will match any method that overrides the method we are checking for
6707 // - iftable: The iftable we are searching for an overriding method on.
6708 // - ifstart: The index of the interface we are checking to see if anything overrides
6709 // - iface: The interface we are checking to see if anything overrides.
6710 // - image_pointer_size:
6711 // The image pointer size.
6712 //
6713 // Returns
6714 // - True: There is some method that matches the target comparator defined in an interface that
6715 // is a subtype of iface.
6716 // - False: There is no method that matches the target comparator in any interface that is a subtype
6717 // of iface.
ContainsOverridingMethodOf(Thread * self,MethodNameAndSignatureComparator & target,Handle<mirror::IfTable> iftable,size_t ifstart,Handle<mirror::Class> iface,PointerSize image_pointer_size)6718 static bool ContainsOverridingMethodOf(Thread* self,
6719 MethodNameAndSignatureComparator& target,
6720 Handle<mirror::IfTable> iftable,
6721 size_t ifstart,
6722 Handle<mirror::Class> iface,
6723 PointerSize image_pointer_size)
6724 REQUIRES_SHARED(Locks::mutator_lock_) {
6725 DCHECK(self != nullptr);
6726 DCHECK(iface != nullptr);
6727 DCHECK(iftable != nullptr);
6728 DCHECK_GE(ifstart, 0u);
6729 DCHECK_LT(ifstart, iftable->Count());
6730 DCHECK_EQ(iface.Get(), iftable->GetInterface(ifstart));
6731 DCHECK(iface->IsInterface());
6732
6733 size_t iftable_count = iftable->Count();
6734 StackHandleScope<1> hs(self);
6735 MutableHandle<mirror::Class> current_iface(hs.NewHandle<mirror::Class>(nullptr));
6736 for (size_t k = ifstart + 1; k < iftable_count; k++) {
6737 // Skip ifstart since our current interface obviously cannot override itself.
6738 current_iface.Assign(iftable->GetInterface(k));
6739 // Iterate through every method on this interface. The order does not matter.
6740 for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(image_pointer_size)) {
6741 if (UNLIKELY(target.HasSameNameAndSignature(
6742 current_method.GetInterfaceMethodIfProxy(image_pointer_size)))) {
6743 // Check if the i'th interface is a subtype of this one.
6744 if (iface->IsAssignableFrom(current_iface.Get())) {
6745 return true;
6746 }
6747 break;
6748 }
6749 }
6750 }
6751 return false;
6752 }
6753
6754 // Find the default method implementation for 'interface_method' in 'klass'. Stores it into
6755 // out_default_method and returns kDefaultFound on success. If no default method was found return
6756 // kAbstractFound and store nullptr into out_default_method. If an error occurs (such as a
6757 // default_method conflict) it will return kDefaultConflict.
FindDefaultMethodImplementation(Thread * self,ArtMethod * target_method,Handle<mirror::Class> klass,ArtMethod ** out_default_method) const6758 ClassLinker::DefaultMethodSearchResult ClassLinker::FindDefaultMethodImplementation(
6759 Thread* self,
6760 ArtMethod* target_method,
6761 Handle<mirror::Class> klass,
6762 /*out*/ArtMethod** out_default_method) const {
6763 DCHECK(self != nullptr);
6764 DCHECK(target_method != nullptr);
6765 DCHECK(out_default_method != nullptr);
6766
6767 *out_default_method = nullptr;
6768
6769 // We organize the interface table so that, for interface I any subinterfaces J follow it in the
6770 // table. This lets us walk the table backwards when searching for default methods. The first one
6771 // we encounter is the best candidate since it is the most specific. Once we have found it we keep
6772 // track of it and then continue checking all other interfaces, since we need to throw an error if
6773 // we encounter conflicting default method implementations (one is not a subtype of the other).
6774 //
6775 // The order of unrelated interfaces does not matter and is not defined.
6776 size_t iftable_count = klass->GetIfTableCount();
6777 if (iftable_count == 0) {
6778 // No interfaces. We have already reset out to null so just return kAbstractFound.
6779 return DefaultMethodSearchResult::kAbstractFound;
6780 }
6781
6782 StackHandleScope<3> hs(self);
6783 MutableHandle<mirror::Class> chosen_iface(hs.NewHandle<mirror::Class>(nullptr));
6784 MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
6785 MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
6786 MethodNameAndSignatureComparator target_name_comparator(
6787 target_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6788 // Iterates over the klass's iftable in reverse
6789 for (size_t k = iftable_count; k != 0; ) {
6790 --k;
6791
6792 DCHECK_LT(k, iftable->Count());
6793
6794 iface.Assign(iftable->GetInterface(k));
6795 // Iterate through every declared method on this interface. The order does not matter.
6796 for (auto& method_iter : iface->GetDeclaredVirtualMethods(image_pointer_size_)) {
6797 ArtMethod* current_method = &method_iter;
6798 // Skip abstract methods and methods with different names.
6799 if (current_method->IsAbstract() ||
6800 !target_name_comparator.HasSameNameAndSignature(
6801 current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6802 continue;
6803 } else if (!current_method->IsPublic()) {
6804 // The verifier should have caught the non-public method for dex version 37. Just warn and
6805 // skip it since this is from before default-methods so we don't really need to care that it
6806 // has code.
6807 LOG(WARNING) << "Interface method " << current_method->PrettyMethod()
6808 << " is not public! "
6809 << "This will be a fatal error in subsequent versions of android. "
6810 << "Continuing anyway.";
6811 }
6812 if (UNLIKELY(chosen_iface != nullptr)) {
6813 // We have multiple default impls of the same method. This is a potential default conflict.
6814 // We need to check if this possibly conflicting method is either a superclass of the chosen
6815 // default implementation or is overridden by a non-default interface method. In either case
6816 // there is no conflict.
6817 if (!iface->IsAssignableFrom(chosen_iface.Get()) &&
6818 !ContainsOverridingMethodOf(self,
6819 target_name_comparator,
6820 iftable,
6821 k,
6822 iface,
6823 image_pointer_size_)) {
6824 VLOG(class_linker) << "Conflicting default method implementations found: "
6825 << current_method->PrettyMethod() << " and "
6826 << ArtMethod::PrettyMethod(*out_default_method) << " in class "
6827 << klass->PrettyClass() << " conflict.";
6828 *out_default_method = nullptr;
6829 return DefaultMethodSearchResult::kDefaultConflict;
6830 } else {
6831 break; // Continue checking at the next interface.
6832 }
6833 } else {
6834 // chosen_iface == null
6835 if (!ContainsOverridingMethodOf(self,
6836 target_name_comparator,
6837 iftable,
6838 k,
6839 iface,
6840 image_pointer_size_)) {
6841 // Don't set this as the chosen interface if something else is overriding it (because that
6842 // other interface would be potentially chosen instead if it was default). If the other
6843 // interface was abstract then we wouldn't select this interface as chosen anyway since
6844 // the abstract method masks it.
6845 *out_default_method = current_method;
6846 chosen_iface.Assign(iface.Get());
6847 // We should now finish traversing the graph to find if we have default methods that
6848 // conflict.
6849 } else {
6850 VLOG(class_linker) << "A default method '" << current_method->PrettyMethod()
6851 << "' was "
6852 << "skipped because it was overridden by an abstract method in a "
6853 << "subinterface on class '" << klass->PrettyClass() << "'";
6854 }
6855 }
6856 break;
6857 }
6858 }
6859 if (*out_default_method != nullptr) {
6860 VLOG(class_linker) << "Default method '" << (*out_default_method)->PrettyMethod()
6861 << "' selected "
6862 << "as the implementation for '" << target_method->PrettyMethod()
6863 << "' in '" << klass->PrettyClass() << "'";
6864 return DefaultMethodSearchResult::kDefaultFound;
6865 } else {
6866 return DefaultMethodSearchResult::kAbstractFound;
6867 }
6868 }
6869
AddMethodToConflictTable(ObjPtr<mirror::Class> klass,ArtMethod * conflict_method,ArtMethod * interface_method,ArtMethod * method)6870 ArtMethod* ClassLinker::AddMethodToConflictTable(ObjPtr<mirror::Class> klass,
6871 ArtMethod* conflict_method,
6872 ArtMethod* interface_method,
6873 ArtMethod* method) {
6874 ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
6875 Runtime* const runtime = Runtime::Current();
6876 LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6877
6878 // Create a new entry if the existing one is the shared conflict method.
6879 ArtMethod* new_conflict_method = (conflict_method == runtime->GetImtConflictMethod())
6880 ? runtime->CreateImtConflictMethod(linear_alloc)
6881 : conflict_method;
6882
6883 // Allocate a new table. Note that we will leak this table at the next conflict,
6884 // but that's a tradeoff compared to making the table fixed size.
6885 void* data = linear_alloc->Alloc(
6886 Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table,
6887 image_pointer_size_));
6888 if (data == nullptr) {
6889 LOG(ERROR) << "Failed to allocate conflict table";
6890 return conflict_method;
6891 }
6892 ImtConflictTable* new_table = new (data) ImtConflictTable(current_table,
6893 interface_method,
6894 method,
6895 image_pointer_size_);
6896
6897 // Do a fence to ensure threads see the data in the table before it is assigned
6898 // to the conflict method.
6899 // Note that there is a race in the presence of multiple threads and we may leak
6900 // memory from the LinearAlloc, but that's a tradeoff compared to using
6901 // atomic operations.
6902 std::atomic_thread_fence(std::memory_order_release);
6903 new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6904 return new_conflict_method;
6905 }
6906
AllocateIfTableMethodArrays(Thread * self,Handle<mirror::Class> klass,Handle<mirror::IfTable> iftable)6907 bool ClassLinker::AllocateIfTableMethodArrays(Thread* self,
6908 Handle<mirror::Class> klass,
6909 Handle<mirror::IfTable> iftable) {
6910 DCHECK(!klass->IsInterface());
6911 const bool has_superclass = klass->HasSuperClass();
6912 const bool extend_super_iftable = has_superclass;
6913 const size_t ifcount = klass->GetIfTableCount();
6914 const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6915 for (size_t i = 0; i < ifcount; ++i) {
6916 size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
6917 if (num_methods > 0) {
6918 const bool is_super = i < super_ifcount;
6919 // This is an interface implemented by a super-class. Therefore we can just copy the method
6920 // array from the superclass.
6921 const bool super_interface = is_super && extend_super_iftable;
6922 ObjPtr<mirror::PointerArray> method_array;
6923 if (super_interface) {
6924 ObjPtr<mirror::IfTable> if_table = klass->GetSuperClass()->GetIfTable();
6925 DCHECK(if_table != nullptr);
6926 DCHECK(if_table->GetMethodArray(i) != nullptr);
6927 // If we are working on a super interface, try extending the existing method array.
6928 StackHandleScope<1u> hs(self);
6929 Handle<mirror::PointerArray> old_array = hs.NewHandle(if_table->GetMethodArray(i));
6930 method_array =
6931 ObjPtr<mirror::PointerArray>::DownCast(mirror::Object::Clone(old_array, self));
6932 } else {
6933 method_array = AllocPointerArray(self, num_methods);
6934 }
6935 if (UNLIKELY(method_array == nullptr)) {
6936 self->AssertPendingOOMException();
6937 return false;
6938 }
6939 iftable->SetMethodArray(i, method_array);
6940 }
6941 }
6942 return true;
6943 }
6944
SetIMTRef(ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,ArtMethod * current_method,bool * new_conflict,ArtMethod ** imt_ref)6945 void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method,
6946 ArtMethod* imt_conflict_method,
6947 ArtMethod* current_method,
6948 /*out*/bool* new_conflict,
6949 /*out*/ArtMethod** imt_ref) {
6950 // Place method in imt if entry is empty, place conflict otherwise.
6951 if (*imt_ref == unimplemented_method) {
6952 *imt_ref = current_method;
6953 } else if (!(*imt_ref)->IsRuntimeMethod()) {
6954 // If we are not a conflict and we have the same signature and name as the imt
6955 // entry, it must be that we overwrote a superclass vtable entry.
6956 // Note that we have checked IsRuntimeMethod, as there may be multiple different
6957 // conflict methods.
6958 MethodNameAndSignatureComparator imt_comparator(
6959 (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_));
6960 if (imt_comparator.HasSameNameAndSignature(
6961 current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6962 *imt_ref = current_method;
6963 } else {
6964 *imt_ref = imt_conflict_method;
6965 *new_conflict = true;
6966 }
6967 } else {
6968 // Place the default conflict method. Note that there may be an existing conflict
6969 // method in the IMT, but it could be one tailored to the super class, with a
6970 // specific ImtConflictTable.
6971 *imt_ref = imt_conflict_method;
6972 *new_conflict = true;
6973 }
6974 }
6975
FillIMTAndConflictTables(ObjPtr<mirror::Class> klass)6976 void ClassLinker::FillIMTAndConflictTables(ObjPtr<mirror::Class> klass) {
6977 DCHECK(klass->ShouldHaveImt()) << klass->PrettyClass();
6978 DCHECK(!klass->IsTemp()) << klass->PrettyClass();
6979 ArtMethod* imt_data[ImTable::kSize];
6980 Runtime* const runtime = Runtime::Current();
6981 ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
6982 ArtMethod* const conflict_method = runtime->GetImtConflictMethod();
6983 std::fill_n(imt_data, arraysize(imt_data), unimplemented_method);
6984 if (klass->GetIfTable() != nullptr) {
6985 bool new_conflict = false;
6986 FillIMTFromIfTable(klass->GetIfTable(),
6987 unimplemented_method,
6988 conflict_method,
6989 klass,
6990 /*create_conflict_tables=*/true,
6991 /*ignore_copied_methods=*/false,
6992 &new_conflict,
6993 &imt_data[0]);
6994 }
6995 // Compare the IMT with the super class including the conflict methods. If they are equivalent,
6996 // we can just use the same pointer.
6997 ImTable* imt = nullptr;
6998 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
6999 if (super_class != nullptr && super_class->ShouldHaveImt()) {
7000 ImTable* super_imt = super_class->GetImt(image_pointer_size_);
7001 bool same = true;
7002 for (size_t i = 0; same && i < ImTable::kSize; ++i) {
7003 ArtMethod* method = imt_data[i];
7004 ArtMethod* super_method = super_imt->Get(i, image_pointer_size_);
7005 if (method != super_method) {
7006 bool is_conflict_table = method->IsRuntimeMethod() &&
7007 method != unimplemented_method &&
7008 method != conflict_method;
7009 // Verify conflict contents.
7010 bool super_conflict_table = super_method->IsRuntimeMethod() &&
7011 super_method != unimplemented_method &&
7012 super_method != conflict_method;
7013 if (!is_conflict_table || !super_conflict_table) {
7014 same = false;
7015 } else {
7016 ImtConflictTable* table1 = method->GetImtConflictTable(image_pointer_size_);
7017 ImtConflictTable* table2 = super_method->GetImtConflictTable(image_pointer_size_);
7018 same = same && table1->Equals(table2, image_pointer_size_);
7019 }
7020 }
7021 }
7022 if (same) {
7023 imt = super_imt;
7024 }
7025 }
7026 if (imt == nullptr) {
7027 imt = klass->GetImt(image_pointer_size_);
7028 DCHECK(imt != nullptr);
7029 imt->Populate(imt_data, image_pointer_size_);
7030 } else {
7031 klass->SetImt(imt, image_pointer_size_);
7032 }
7033 }
7034
CreateImtConflictTable(size_t count,LinearAlloc * linear_alloc,PointerSize image_pointer_size)7035 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count,
7036 LinearAlloc* linear_alloc,
7037 PointerSize image_pointer_size) {
7038 void* data = linear_alloc->Alloc(Thread::Current(),
7039 ImtConflictTable::ComputeSize(count,
7040 image_pointer_size));
7041 return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr;
7042 }
7043
CreateImtConflictTable(size_t count,LinearAlloc * linear_alloc)7044 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) {
7045 return CreateImtConflictTable(count, linear_alloc, image_pointer_size_);
7046 }
7047
FillIMTFromIfTable(ObjPtr<mirror::IfTable> if_table,ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,ObjPtr<mirror::Class> klass,bool create_conflict_tables,bool ignore_copied_methods,bool * new_conflict,ArtMethod ** imt)7048 void ClassLinker::FillIMTFromIfTable(ObjPtr<mirror::IfTable> if_table,
7049 ArtMethod* unimplemented_method,
7050 ArtMethod* imt_conflict_method,
7051 ObjPtr<mirror::Class> klass,
7052 bool create_conflict_tables,
7053 bool ignore_copied_methods,
7054 /*out*/bool* new_conflict,
7055 /*out*/ArtMethod** imt) {
7056 uint32_t conflict_counts[ImTable::kSize] = {};
7057 for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
7058 ObjPtr<mirror::Class> interface = if_table->GetInterface(i);
7059 const size_t num_virtuals = interface->NumVirtualMethods();
7060 const size_t method_array_count = if_table->GetMethodArrayCount(i);
7061 // Virtual methods can be larger than the if table methods if there are default methods.
7062 DCHECK_GE(num_virtuals, method_array_count);
7063 if (kIsDebugBuild) {
7064 if (klass->IsInterface()) {
7065 DCHECK_EQ(method_array_count, 0u);
7066 } else {
7067 DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count);
7068 }
7069 }
7070 if (method_array_count == 0) {
7071 continue;
7072 }
7073 ObjPtr<mirror::PointerArray> method_array = if_table->GetMethodArray(i);
7074 for (size_t j = 0; j < method_array_count; ++j) {
7075 ArtMethod* implementation_method =
7076 method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
7077 if (ignore_copied_methods && implementation_method->IsCopied()) {
7078 continue;
7079 }
7080 DCHECK(implementation_method != nullptr);
7081 // Miranda methods cannot be used to implement an interface method, but they are safe to put
7082 // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods
7083 // or interface methods in the IMT here they will not create extra conflicts since we compare
7084 // names and signatures in SetIMTRef.
7085 ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
7086 const uint32_t imt_index = interface_method->GetImtIndex();
7087
7088 // There is only any conflicts if all of the interface methods for an IMT slot don't have
7089 // the same implementation method, keep track of this to avoid creating a conflict table in
7090 // this case.
7091
7092 // Conflict table size for each IMT slot.
7093 ++conflict_counts[imt_index];
7094
7095 SetIMTRef(unimplemented_method,
7096 imt_conflict_method,
7097 implementation_method,
7098 /*out*/new_conflict,
7099 /*out*/&imt[imt_index]);
7100 }
7101 }
7102
7103 if (create_conflict_tables) {
7104 // Create the conflict tables.
7105 LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
7106 for (size_t i = 0; i < ImTable::kSize; ++i) {
7107 size_t conflicts = conflict_counts[i];
7108 if (imt[i] == imt_conflict_method) {
7109 ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc);
7110 if (new_table != nullptr) {
7111 ArtMethod* new_conflict_method =
7112 Runtime::Current()->CreateImtConflictMethod(linear_alloc);
7113 new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
7114 imt[i] = new_conflict_method;
7115 } else {
7116 LOG(ERROR) << "Failed to allocate conflict table";
7117 imt[i] = imt_conflict_method;
7118 }
7119 } else {
7120 DCHECK_NE(imt[i], imt_conflict_method);
7121 }
7122 }
7123
7124 for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
7125 ObjPtr<mirror::Class> interface = if_table->GetInterface(i);
7126 const size_t method_array_count = if_table->GetMethodArrayCount(i);
7127 // Virtual methods can be larger than the if table methods if there are default methods.
7128 if (method_array_count == 0) {
7129 continue;
7130 }
7131 ObjPtr<mirror::PointerArray> method_array = if_table->GetMethodArray(i);
7132 for (size_t j = 0; j < method_array_count; ++j) {
7133 ArtMethod* implementation_method =
7134 method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
7135 if (ignore_copied_methods && implementation_method->IsCopied()) {
7136 continue;
7137 }
7138 DCHECK(implementation_method != nullptr);
7139 ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
7140 const uint32_t imt_index = interface_method->GetImtIndex();
7141 if (!imt[imt_index]->IsRuntimeMethod() ||
7142 imt[imt_index] == unimplemented_method ||
7143 imt[imt_index] == imt_conflict_method) {
7144 continue;
7145 }
7146 ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_);
7147 const size_t num_entries = table->NumEntries(image_pointer_size_);
7148 table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method);
7149 table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method);
7150 }
7151 }
7152 }
7153 }
7154
7155 // Simple helper function that checks that no subtypes of 'val' are contained within the 'classes'
7156 // set.
NotSubinterfaceOfAny(const HashSet<mirror::Class * > & classes,ObjPtr<mirror::Class> val)7157 static bool NotSubinterfaceOfAny(
7158 const HashSet<mirror::Class*>& classes,
7159 ObjPtr<mirror::Class> val)
7160 REQUIRES(Roles::uninterruptible_)
7161 REQUIRES_SHARED(Locks::mutator_lock_) {
7162 DCHECK(val != nullptr);
7163 for (ObjPtr<mirror::Class> c : classes) {
7164 if (val->IsAssignableFrom(c)) {
7165 return false;
7166 }
7167 }
7168 return true;
7169 }
7170
7171 // Fills in and flattens the interface inheritance hierarchy.
7172 //
7173 // By the end of this function all interfaces in the transitive closure of to_process are added to
7174 // the iftable and every interface precedes all of its sub-interfaces in this list.
7175 //
7176 // all I, J: Interface | I <: J implies J precedes I
7177 //
7178 // (note A <: B means that A is a subtype of B)
7179 //
7180 // This returns the total number of items in the iftable. The iftable might be resized down after
7181 // this call.
7182 //
7183 // We order this backwards so that we do not need to reorder superclass interfaces when new
7184 // interfaces are added in subclass's interface tables.
7185 //
7186 // Upon entry into this function iftable is a copy of the superclass's iftable with the first
7187 // super_ifcount entries filled in with the transitive closure of the interfaces of the superclass.
7188 // The other entries are uninitialized. We will fill in the remaining entries in this function. The
7189 // iftable must be large enough to hold all interfaces without changing its size.
FillIfTable(Thread * self,ObjPtr<mirror::Class> klass,ObjPtr<mirror::ObjectArray<mirror::Class>> interfaces,ObjPtr<mirror::IfTable> iftable,size_t super_ifcount,size_t num_interfaces)7190 static size_t FillIfTable(Thread* self,
7191 ObjPtr<mirror::Class> klass,
7192 ObjPtr<mirror::ObjectArray<mirror::Class>> interfaces,
7193 ObjPtr<mirror::IfTable> iftable,
7194 size_t super_ifcount,
7195 size_t num_interfaces)
7196 REQUIRES_SHARED(Locks::mutator_lock_) {
7197 ScopedAssertNoThreadSuspension nts(__FUNCTION__);
7198 // This is the set of all classes already in the iftable. Used to make checking
7199 // if a class has already been added quicker.
7200 constexpr size_t kBufferSize = 32; // 256 bytes on 64-bit architectures.
7201 mirror::Class* buffer[kBufferSize];
7202 HashSet<mirror::Class*> classes_in_iftable(buffer, kBufferSize);
7203 // The first super_ifcount elements are from the superclass. We note that they are already added.
7204 for (size_t i = 0; i < super_ifcount; i++) {
7205 ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
7206 DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering.";
7207 classes_in_iftable.insert(iface.Ptr());
7208 }
7209 size_t filled_ifcount = super_ifcount;
7210 const bool have_interfaces = interfaces != nullptr;
7211 for (size_t i = 0; i != num_interfaces; ++i) {
7212 ObjPtr<mirror::Class> interface = have_interfaces
7213 ? interfaces->Get(i)
7214 : mirror::Class::GetDirectInterface(self, klass, i);
7215
7216 // Let us call the first filled_ifcount elements of iftable the current-iface-list.
7217 // At this point in the loop current-iface-list has the invariant that:
7218 // for every pair of interfaces I,J within it:
7219 // if index_of(I) < index_of(J) then I is not a subtype of J
7220
7221 // If we have already seen this element then all of its super-interfaces must already be in the
7222 // current-iface-list so we can skip adding it.
7223 if (classes_in_iftable.find(interface.Ptr()) == classes_in_iftable.end()) {
7224 // We haven't seen this interface so add all of its super-interfaces onto the
7225 // current-iface-list, skipping those already on it.
7226 int32_t ifcount = interface->GetIfTableCount();
7227 for (int32_t j = 0; j < ifcount; j++) {
7228 ObjPtr<mirror::Class> super_interface = interface->GetIfTable()->GetInterface(j);
7229 if (!ContainsElement(classes_in_iftable, super_interface)) {
7230 DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering.";
7231 classes_in_iftable.insert(super_interface.Ptr());
7232 iftable->SetInterface(filled_ifcount, super_interface);
7233 filled_ifcount++;
7234 }
7235 }
7236 DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering";
7237 // Place this interface onto the current-iface-list after all of its super-interfaces.
7238 classes_in_iftable.insert(interface.Ptr());
7239 iftable->SetInterface(filled_ifcount, interface);
7240 filled_ifcount++;
7241 } else if (kIsDebugBuild) {
7242 // Check all super-interfaces are already in the list.
7243 int32_t ifcount = interface->GetIfTableCount();
7244 for (int32_t j = 0; j < ifcount; j++) {
7245 ObjPtr<mirror::Class> super_interface = interface->GetIfTable()->GetInterface(j);
7246 DCHECK(ContainsElement(classes_in_iftable, super_interface))
7247 << "Iftable does not contain " << mirror::Class::PrettyClass(super_interface)
7248 << ", a superinterface of " << interface->PrettyClass();
7249 }
7250 }
7251 }
7252 if (kIsDebugBuild) {
7253 // Check that the iftable is ordered correctly.
7254 for (size_t i = 0; i < filled_ifcount; i++) {
7255 ObjPtr<mirror::Class> if_a = iftable->GetInterface(i);
7256 for (size_t j = i + 1; j < filled_ifcount; j++) {
7257 ObjPtr<mirror::Class> if_b = iftable->GetInterface(j);
7258 // !(if_a <: if_b)
7259 CHECK(!if_b->IsAssignableFrom(if_a))
7260 << "Bad interface order: " << mirror::Class::PrettyClass(if_a) << " (index " << i
7261 << ") extends "
7262 << if_b->PrettyClass() << " (index " << j << ") and so should be after it in the "
7263 << "interface list.";
7264 }
7265 }
7266 }
7267 return filled_ifcount;
7268 }
7269
SetupInterfaceLookupTable(Thread * self,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces)7270 bool ClassLinker::SetupInterfaceLookupTable(Thread* self,
7271 Handle<mirror::Class> klass,
7272 Handle<mirror::ObjectArray<mirror::Class>> interfaces) {
7273 StackHandleScope<1> hs(self);
7274 const bool has_superclass = klass->HasSuperClass();
7275 const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
7276 const bool have_interfaces = interfaces != nullptr;
7277 const size_t num_interfaces =
7278 have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces();
7279 if (num_interfaces == 0) {
7280 if (super_ifcount == 0) {
7281 if (LIKELY(has_superclass)) {
7282 klass->SetIfTable(klass->GetSuperClass()->GetIfTable());
7283 }
7284 // Class implements no interfaces.
7285 DCHECK_EQ(klass->GetIfTableCount(), 0);
7286 return true;
7287 }
7288 // Class implements same interfaces as parent, are any of these not marker interfaces?
7289 bool has_non_marker_interface = false;
7290 ObjPtr<mirror::IfTable> super_iftable = klass->GetSuperClass()->GetIfTable();
7291 for (size_t i = 0; i < super_ifcount; ++i) {
7292 if (super_iftable->GetMethodArrayCount(i) > 0) {
7293 has_non_marker_interface = true;
7294 break;
7295 }
7296 }
7297 // Class just inherits marker interfaces from parent so recycle parent's iftable.
7298 if (!has_non_marker_interface) {
7299 klass->SetIfTable(super_iftable);
7300 return true;
7301 }
7302 }
7303 size_t ifcount = super_ifcount + num_interfaces;
7304 // Check that every class being implemented is an interface.
7305 for (size_t i = 0; i < num_interfaces; i++) {
7306 ObjPtr<mirror::Class> interface = have_interfaces
7307 ? interfaces->GetWithoutChecks(i)
7308 : mirror::Class::GetDirectInterface(self, klass.Get(), i);
7309 DCHECK(interface != nullptr);
7310 if (UNLIKELY(!interface->IsInterface())) {
7311 std::string temp;
7312 ThrowIncompatibleClassChangeError(klass.Get(),
7313 "Class %s implements non-interface class %s",
7314 klass->PrettyDescriptor().c_str(),
7315 PrettyDescriptor(interface->GetDescriptor(&temp)).c_str());
7316 return false;
7317 }
7318 ifcount += interface->GetIfTableCount();
7319 }
7320 // Create the interface function table.
7321 MutableHandle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount)));
7322 if (UNLIKELY(iftable == nullptr)) {
7323 self->AssertPendingOOMException();
7324 return false;
7325 }
7326 // Fill in table with superclass's iftable.
7327 if (super_ifcount != 0) {
7328 ObjPtr<mirror::IfTable> super_iftable = klass->GetSuperClass()->GetIfTable();
7329 for (size_t i = 0; i < super_ifcount; i++) {
7330 ObjPtr<mirror::Class> super_interface = super_iftable->GetInterface(i);
7331 iftable->SetInterface(i, super_interface);
7332 }
7333 }
7334
7335 // Note that AllowThreadSuspension is to thread suspension as pthread_testcancel is to pthread
7336 // cancellation. That is it will suspend if one has a pending suspend request but otherwise
7337 // doesn't really do anything.
7338 self->AllowThreadSuspension();
7339
7340 const size_t new_ifcount = FillIfTable(
7341 self, klass.Get(), interfaces.Get(), iftable.Get(), super_ifcount, num_interfaces);
7342
7343 self->AllowThreadSuspension();
7344
7345 // Shrink iftable in case duplicates were found
7346 if (new_ifcount < ifcount) {
7347 DCHECK_NE(num_interfaces, 0U);
7348 iftable.Assign(ObjPtr<mirror::IfTable>::DownCast(
7349 mirror::IfTable::CopyOf(iftable, self, new_ifcount * mirror::IfTable::kMax)));
7350 if (UNLIKELY(iftable == nullptr)) {
7351 self->AssertPendingOOMException();
7352 return false;
7353 }
7354 ifcount = new_ifcount;
7355 } else {
7356 DCHECK_EQ(new_ifcount, ifcount);
7357 }
7358 klass->SetIfTable(iftable.Get());
7359 return true;
7360 }
7361
7362 // Finds the method with a name/signature that matches cmp in the given lists of methods. The list
7363 // of methods must be unique.
FindSameNameAndSignature(MethodNameAndSignatureComparator & cmp ATTRIBUTE_UNUSED)7364 static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp ATTRIBUTE_UNUSED) {
7365 return nullptr;
7366 }
7367
7368 template <typename ... Types>
FindSameNameAndSignature(MethodNameAndSignatureComparator & cmp,const ScopedArenaVector<ArtMethod * > & list,const Types &...rest)7369 static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp,
7370 const ScopedArenaVector<ArtMethod*>& list,
7371 const Types& ... rest)
7372 REQUIRES_SHARED(Locks::mutator_lock_) {
7373 for (ArtMethod* method : list) {
7374 if (cmp.HasSameNameAndSignature(method)) {
7375 return method;
7376 }
7377 }
7378 return FindSameNameAndSignature(cmp, rest...);
7379 }
7380
7381 namespace {
7382
7383 // Check that all vtable entries are present in this class's virtuals or are the same as a
7384 // superclasses vtable entry.
CheckClassOwnsVTableEntries(Thread * self,Handle<mirror::Class> klass,PointerSize pointer_size)7385 void CheckClassOwnsVTableEntries(Thread* self,
7386 Handle<mirror::Class> klass,
7387 PointerSize pointer_size)
7388 REQUIRES_SHARED(Locks::mutator_lock_) {
7389 StackHandleScope<2> hs(self);
7390 Handle<mirror::PointerArray> check_vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
7391 ObjPtr<mirror::Class> super_temp = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr;
7392 Handle<mirror::Class> superclass(hs.NewHandle(super_temp));
7393 int32_t super_vtable_length = (superclass != nullptr) ? superclass->GetVTableLength() : 0;
7394 for (int32_t i = 0; i < check_vtable->GetLength(); ++i) {
7395 ArtMethod* m = check_vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
7396 CHECK(m != nullptr);
7397
7398 if (m->GetMethodIndexDuringLinking() != i) {
7399 LOG(WARNING) << m->PrettyMethod()
7400 << " has an unexpected method index for its spot in the vtable for class"
7401 << klass->PrettyClass();
7402 }
7403 ArraySlice<ArtMethod> virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size);
7404 auto is_same_method = [m] (const ArtMethod& meth) {
7405 return &meth == m;
7406 };
7407 if (!((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) ||
7408 std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end())) {
7409 LOG(WARNING) << m->PrettyMethod() << " does not seem to be owned by current class "
7410 << klass->PrettyClass() << " or any of its superclasses!";
7411 }
7412 }
7413 }
7414
7415 // Check to make sure the vtable does not have duplicates. Duplicates could cause problems when a
7416 // method is overridden in a subclass.
7417 template <PointerSize kPointerSize>
CheckVTableHasNoDuplicates(Thread * self,Handle<mirror::Class> klass)7418 void CheckVTableHasNoDuplicates(Thread* self, Handle<mirror::Class> klass)
7419 REQUIRES_SHARED(Locks::mutator_lock_) {
7420 StackHandleScope<1> hs(self);
7421 Handle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
7422 int32_t num_entries = vtable->GetLength();
7423
7424 // Observations:
7425 // * The older implementation was O(n^2) and got too expensive for apps with larger classes.
7426 // * Many classes do not override Object functions (e.g., equals/hashCode/toString). Thus,
7427 // for many classes outside of libcore a cross-dexfile check has to be run anyways.
7428 // * In the cross-dexfile case, with the O(n^2), in the best case O(n) cross checks would have
7429 // to be done. It is thus OK in a single-pass algorithm to read all data, anyways.
7430 // * The single-pass algorithm will trade memory for speed, but that is OK.
7431
7432 CHECK_GT(num_entries, 0);
7433
7434 auto log_fn = [&vtable, &klass](int32_t i, int32_t j) REQUIRES_SHARED(Locks::mutator_lock_) {
7435 ArtMethod* m1 = vtable->GetElementPtrSize<ArtMethod*, kPointerSize>(i);
7436 ArtMethod* m2 = vtable->GetElementPtrSize<ArtMethod*, kPointerSize>(j);
7437 LOG(WARNING) << "vtable entries " << i << " and " << j << " are identical for "
7438 << klass->PrettyClass() << " in method " << m1->PrettyMethod()
7439 << " (0x" << std::hex << reinterpret_cast<uintptr_t>(m2) << ") and "
7440 << m2->PrettyMethod() << " (0x" << std::hex
7441 << reinterpret_cast<uintptr_t>(m2) << ")";
7442 };
7443 struct BaseHashType {
7444 static size_t HashCombine(size_t seed, size_t val) {
7445 return seed ^ (val + 0x9e3779b9 + (seed << 6) + (seed >> 2));
7446 }
7447 };
7448
7449 // Check assuming all entries come from the same dex file.
7450 {
7451 // Find the first interesting method and its dex file.
7452 int32_t start = 0;
7453 for (; start < num_entries; ++start) {
7454 ArtMethod* vtable_entry = vtable->GetElementPtrSize<ArtMethod*, kPointerSize>(start);
7455 // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member
7456 // maybe).
7457 if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(),
7458 vtable_entry->GetAccessFlags())) {
7459 continue;
7460 }
7461 break;
7462 }
7463 if (start == num_entries) {
7464 return;
7465 }
7466 const DexFile* dex_file =
7467 vtable->GetElementPtrSize<ArtMethod*, kPointerSize>(start)->
7468 GetInterfaceMethodIfProxy(kPointerSize)->GetDexFile();
7469
7470 // Helper function to avoid logging if we have to run the cross-file checks.
7471 auto check_fn = [&](bool log_warn) REQUIRES_SHARED(Locks::mutator_lock_) {
7472 // Use a map to store seen entries, as the storage space is too large for a bitvector.
7473 using PairType = std::pair<uint32_t, uint16_t>;
7474 struct PairHash : BaseHashType {
7475 size_t operator()(const PairType& key) const {
7476 return BaseHashType::HashCombine(BaseHashType::HashCombine(0, key.first), key.second);
7477 }
7478 };
7479 HashMap<PairType, int32_t, DefaultMapEmptyFn<PairType, int32_t>, PairHash> seen;
7480 seen.reserve(2 * num_entries);
7481 bool need_slow_path = false;
7482 bool found_dup = false;
7483 for (int i = start; i < num_entries; ++i) {
7484 // Can use Unchecked here as the start loop already ensured that the arrays are correct
7485 // wrt/ kPointerSize.
7486 ArtMethod* vtable_entry = vtable->GetElementPtrSizeUnchecked<ArtMethod*, kPointerSize>(i);
7487 if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(),
7488 vtable_entry->GetAccessFlags())) {
7489 continue;
7490 }
7491 ArtMethod* m = vtable_entry->GetInterfaceMethodIfProxy(kPointerSize);
7492 if (dex_file != m->GetDexFile()) {
7493 need_slow_path = true;
7494 break;
7495 }
7496 const dex::MethodId* m_mid = &dex_file->GetMethodId(m->GetDexMethodIndex());
7497 PairType pair = std::make_pair(m_mid->name_idx_.index_, m_mid->proto_idx_.index_);
7498 auto it = seen.find(pair);
7499 if (it != seen.end()) {
7500 found_dup = true;
7501 if (log_warn) {
7502 log_fn(it->second, i);
7503 }
7504 } else {
7505 seen.insert(std::make_pair(pair, i));
7506 }
7507 }
7508 return std::make_pair(need_slow_path, found_dup);
7509 };
7510 std::pair<bool, bool> result = check_fn(/* log_warn= */ false);
7511 if (!result.first) {
7512 if (result.second) {
7513 check_fn(/* log_warn= */ true);
7514 }
7515 return;
7516 }
7517 }
7518
7519 // Need to check across dex files.
7520 struct Entry {
7521 size_t cached_hash = 0;
7522 uint32_t name_len = 0;
7523 const char* name = nullptr;
7524 Signature signature = Signature::NoSignature();
7525
7526 Entry() = default;
7527 Entry(const Entry& other) = default;
7528 Entry& operator=(const Entry& other) = default;
7529
7530 Entry(const DexFile* dex_file, const dex::MethodId& mid)
7531 : name_len(0), // Explicit to enforce ordering with -Werror,-Wreorder-ctor.
7532 // This call writes `name_len` and it is therefore necessary that the
7533 // initializer for `name_len` comes before it, otherwise the value
7534 // from the call would be overwritten by that initializer.
7535 name(dex_file->StringDataAndUtf16LengthByIdx(mid.name_idx_, &name_len)),
7536 signature(dex_file->GetMethodSignature(mid)) {
7537 // The `name_len` has been initialized to the UTF16 length. Calculate length in bytes.
7538 if (name[name_len] != 0) {
7539 name_len += strlen(name + name_len);
7540 }
7541 }
7542
7543 bool operator==(const Entry& other) const {
7544 return name_len == other.name_len &&
7545 memcmp(name, other.name, name_len) == 0 &&
7546 signature == other.signature;
7547 }
7548 };
7549 struct EntryHash {
7550 size_t operator()(const Entry& key) const {
7551 return key.cached_hash;
7552 }
7553 };
7554 HashMap<Entry, int32_t, DefaultMapEmptyFn<Entry, int32_t>, EntryHash> map;
7555 for (int32_t i = 0; i < num_entries; ++i) {
7556 // Can use Unchecked here as the first loop already ensured that the arrays are correct
7557 // wrt/ kPointerSize.
7558 ArtMethod* vtable_entry = vtable->GetElementPtrSizeUnchecked<ArtMethod*, kPointerSize>(i);
7559 // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member
7560 // maybe).
7561 if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(),
7562 vtable_entry->GetAccessFlags())) {
7563 continue;
7564 }
7565 ArtMethod* m = vtable_entry->GetInterfaceMethodIfProxy(kPointerSize);
7566 const DexFile* dex_file = m->GetDexFile();
7567 const dex::MethodId& mid = dex_file->GetMethodId(m->GetDexMethodIndex());
7568
7569 Entry e(dex_file, mid);
7570
7571 size_t string_hash = std::hash<std::string_view>()(std::string_view(e.name, e.name_len));
7572 size_t sig_hash = std::hash<std::string>()(e.signature.ToString());
7573 e.cached_hash = BaseHashType::HashCombine(BaseHashType::HashCombine(0u, string_hash),
7574 sig_hash);
7575
7576 auto it = map.find(e);
7577 if (it != map.end()) {
7578 log_fn(it->second, i);
7579 } else {
7580 map.insert(std::make_pair(e, i));
7581 }
7582 }
7583 }
7584
CheckVTableHasNoDuplicates(Thread * self,Handle<mirror::Class> klass,PointerSize pointer_size)7585 void CheckVTableHasNoDuplicates(Thread* self,
7586 Handle<mirror::Class> klass,
7587 PointerSize pointer_size)
7588 REQUIRES_SHARED(Locks::mutator_lock_) {
7589 switch (pointer_size) {
7590 case PointerSize::k64:
7591 CheckVTableHasNoDuplicates<PointerSize::k64>(self, klass);
7592 break;
7593 case PointerSize::k32:
7594 CheckVTableHasNoDuplicates<PointerSize::k32>(self, klass);
7595 break;
7596 }
7597 }
7598
CheckVTable(Thread * self,Handle<mirror::Class> klass,PointerSize pointer_size)7599 static void CheckVTable(Thread* self, Handle<mirror::Class> klass, PointerSize pointer_size)
7600 REQUIRES_SHARED(Locks::mutator_lock_) {
7601 CheckClassOwnsVTableEntries(self, klass, pointer_size);
7602 CheckVTableHasNoDuplicates(self, klass, pointer_size);
7603 }
7604
7605 } // namespace
7606
FillImtFromSuperClass(Handle<mirror::Class> klass,ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,bool * new_conflict,ArtMethod ** imt)7607 void ClassLinker::FillImtFromSuperClass(Handle<mirror::Class> klass,
7608 ArtMethod* unimplemented_method,
7609 ArtMethod* imt_conflict_method,
7610 bool* new_conflict,
7611 ArtMethod** imt) {
7612 DCHECK(klass->HasSuperClass());
7613 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
7614 if (super_class->ShouldHaveImt()) {
7615 ImTable* super_imt = super_class->GetImt(image_pointer_size_);
7616 for (size_t i = 0; i < ImTable::kSize; ++i) {
7617 imt[i] = super_imt->Get(i, image_pointer_size_);
7618 }
7619 } else {
7620 // No imt in the super class, need to reconstruct from the iftable.
7621 ObjPtr<mirror::IfTable> if_table = super_class->GetIfTable();
7622 if (if_table->Count() != 0) {
7623 // Ignore copied methods since we will handle these in LinkInterfaceMethods.
7624 FillIMTFromIfTable(if_table,
7625 unimplemented_method,
7626 imt_conflict_method,
7627 klass.Get(),
7628 /*create_conflict_tables=*/false,
7629 /*ignore_copied_methods=*/true,
7630 /*out*/new_conflict,
7631 /*out*/imt);
7632 }
7633 }
7634 }
7635
7636 class ClassLinker::LinkInterfaceMethodsHelper {
7637 public:
LinkInterfaceMethodsHelper(ClassLinker * class_linker,Handle<mirror::Class> klass,Thread * self,Runtime * runtime)7638 LinkInterfaceMethodsHelper(ClassLinker* class_linker,
7639 Handle<mirror::Class> klass,
7640 Thread* self,
7641 Runtime* runtime)
7642 : class_linker_(class_linker),
7643 klass_(klass),
7644 method_alignment_(ArtMethod::Alignment(class_linker->GetImagePointerSize())),
7645 method_size_(ArtMethod::Size(class_linker->GetImagePointerSize())),
7646 self_(self),
7647 stack_(runtime->GetLinearAlloc()->GetArenaPool()),
7648 allocator_(&stack_),
7649 default_conflict_methods_(allocator_.Adapter()),
7650 overriding_default_conflict_methods_(allocator_.Adapter()),
7651 miranda_methods_(allocator_.Adapter()),
7652 default_methods_(allocator_.Adapter()),
7653 overriding_default_methods_(allocator_.Adapter()),
7654 move_table_(allocator_.Adapter()) {
7655 }
7656
7657 ArtMethod* FindMethod(ArtMethod* interface_method,
7658 MethodNameAndSignatureComparator& interface_name_comparator,
7659 ArtMethod* vtable_impl)
7660 REQUIRES_SHARED(Locks::mutator_lock_);
7661
7662 ArtMethod* GetOrCreateMirandaMethod(ArtMethod* interface_method,
7663 MethodNameAndSignatureComparator& interface_name_comparator)
7664 REQUIRES_SHARED(Locks::mutator_lock_);
7665
HasNewVirtuals() const7666 bool HasNewVirtuals() const {
7667 return !(miranda_methods_.empty() &&
7668 default_methods_.empty() &&
7669 overriding_default_methods_.empty() &&
7670 overriding_default_conflict_methods_.empty() &&
7671 default_conflict_methods_.empty());
7672 }
7673
7674 void ReallocMethods() REQUIRES_SHARED(Locks::mutator_lock_);
7675
7676 ObjPtr<mirror::PointerArray> UpdateVtable(
7677 const HashMap<size_t, ClassLinker::MethodTranslation>& default_translations,
7678 Handle<mirror::PointerArray> old_vtable) REQUIRES_SHARED(Locks::mutator_lock_);
7679
7680 void UpdateIfTable(Handle<mirror::IfTable> iftable) REQUIRES_SHARED(Locks::mutator_lock_);
7681
7682 void UpdateIMT(ArtMethod** out_imt);
7683
CheckNoStaleMethodsInDexCache()7684 void CheckNoStaleMethodsInDexCache() REQUIRES_SHARED(Locks::mutator_lock_) {
7685 if (kIsDebugBuild) {
7686 PointerSize pointer_size = class_linker_->GetImagePointerSize();
7687 // Check that there are no stale methods are in the dex cache array.
7688 auto* resolved_methods = klass_->GetDexCache()->GetResolvedMethods();
7689 for (size_t i = 0, count = klass_->GetDexCache()->NumResolvedMethods(); i < count; ++i) {
7690 auto pair = mirror::DexCache::GetNativePair(resolved_methods, i);
7691 ArtMethod* m = pair.object;
7692 CHECK(move_table_.find(m) == move_table_.end() ||
7693 // The original versions of copied methods will still be present so allow those too.
7694 // Note that if the first check passes this might fail to GetDeclaringClass().
7695 std::find_if(m->GetDeclaringClass()->GetMethods(pointer_size).begin(),
7696 m->GetDeclaringClass()->GetMethods(pointer_size).end(),
7697 [m] (ArtMethod& meth) {
7698 return &meth == m;
7699 }) != m->GetDeclaringClass()->GetMethods(pointer_size).end())
7700 << "Obsolete method " << m->PrettyMethod() << " is in dex cache!";
7701 }
7702 }
7703 }
7704
ClobberOldMethods(LengthPrefixedArray<ArtMethod> * old_methods,LengthPrefixedArray<ArtMethod> * methods)7705 void ClobberOldMethods(LengthPrefixedArray<ArtMethod>* old_methods,
7706 LengthPrefixedArray<ArtMethod>* methods) {
7707 if (kIsDebugBuild) {
7708 CHECK(methods != nullptr);
7709 // Put some random garbage in old methods to help find stale pointers.
7710 if (methods != old_methods && old_methods != nullptr) {
7711 // Need to make sure the GC is not running since it could be scanning the methods we are
7712 // about to overwrite.
7713 ScopedThreadStateChange tsc(self_, kSuspended);
7714 gc::ScopedGCCriticalSection gcs(self_,
7715 gc::kGcCauseClassLinker,
7716 gc::kCollectorTypeClassLinker);
7717 const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_methods->size(),
7718 method_size_,
7719 method_alignment_);
7720 memset(old_methods, 0xFEu, old_size);
7721 }
7722 }
7723 }
7724
7725 private:
NumberOfNewVirtuals() const7726 size_t NumberOfNewVirtuals() const {
7727 return miranda_methods_.size() +
7728 default_methods_.size() +
7729 overriding_default_conflict_methods_.size() +
7730 overriding_default_methods_.size() +
7731 default_conflict_methods_.size();
7732 }
7733
FillTables()7734 bool FillTables() REQUIRES_SHARED(Locks::mutator_lock_) {
7735 return !klass_->IsInterface();
7736 }
7737
LogNewVirtuals() const7738 void LogNewVirtuals() const REQUIRES_SHARED(Locks::mutator_lock_) {
7739 DCHECK(!klass_->IsInterface() || (default_methods_.empty() && miranda_methods_.empty()))
7740 << "Interfaces should only have default-conflict methods appended to them.";
7741 VLOG(class_linker) << mirror::Class::PrettyClass(klass_.Get()) << ": miranda_methods="
7742 << miranda_methods_.size()
7743 << " default_methods=" << default_methods_.size()
7744 << " overriding_default_methods=" << overriding_default_methods_.size()
7745 << " default_conflict_methods=" << default_conflict_methods_.size()
7746 << " overriding_default_conflict_methods="
7747 << overriding_default_conflict_methods_.size();
7748 }
7749
7750 ClassLinker* class_linker_;
7751 Handle<mirror::Class> klass_;
7752 size_t method_alignment_;
7753 size_t method_size_;
7754 Thread* const self_;
7755
7756 // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create
7757 // the virtual methods array.
7758 // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array
7759 // during cross compilation.
7760 // Use the linear alloc pool since this one is in the low 4gb for the compiler.
7761 ArenaStack stack_;
7762 ScopedArenaAllocator allocator_;
7763
7764 ScopedArenaVector<ArtMethod*> default_conflict_methods_;
7765 ScopedArenaVector<ArtMethod*> overriding_default_conflict_methods_;
7766 ScopedArenaVector<ArtMethod*> miranda_methods_;
7767 ScopedArenaVector<ArtMethod*> default_methods_;
7768 ScopedArenaVector<ArtMethod*> overriding_default_methods_;
7769
7770 ScopedArenaUnorderedMap<ArtMethod*, ArtMethod*> move_table_;
7771 };
7772
FindMethod(ArtMethod * interface_method,MethodNameAndSignatureComparator & interface_name_comparator,ArtMethod * vtable_impl)7773 ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::FindMethod(
7774 ArtMethod* interface_method,
7775 MethodNameAndSignatureComparator& interface_name_comparator,
7776 ArtMethod* vtable_impl) {
7777 ArtMethod* current_method = nullptr;
7778 switch (class_linker_->FindDefaultMethodImplementation(self_,
7779 interface_method,
7780 klass_,
7781 /*out*/¤t_method)) {
7782 case DefaultMethodSearchResult::kDefaultConflict: {
7783 // Default method conflict.
7784 DCHECK(current_method == nullptr);
7785 ArtMethod* default_conflict_method = nullptr;
7786 if (vtable_impl != nullptr && vtable_impl->IsDefaultConflicting()) {
7787 // We can reuse the method from the superclass, don't bother adding it to virtuals.
7788 default_conflict_method = vtable_impl;
7789 } else {
7790 // See if we already have a conflict method for this method.
7791 ArtMethod* preexisting_conflict = FindSameNameAndSignature(
7792 interface_name_comparator,
7793 default_conflict_methods_,
7794 overriding_default_conflict_methods_);
7795 if (LIKELY(preexisting_conflict != nullptr)) {
7796 // We already have another conflict we can reuse.
7797 default_conflict_method = preexisting_conflict;
7798 } else {
7799 // Note that we do this even if we are an interface since we need to create this and
7800 // cannot reuse another classes.
7801 // Create a new conflict method for this to use.
7802 default_conflict_method = reinterpret_cast<ArtMethod*>(allocator_.Alloc(method_size_));
7803 new(default_conflict_method) ArtMethod(interface_method,
7804 class_linker_->GetImagePointerSize());
7805 if (vtable_impl == nullptr) {
7806 // Save the conflict method. We need to add it to the vtable.
7807 default_conflict_methods_.push_back(default_conflict_method);
7808 } else {
7809 // Save the conflict method but it is already in the vtable.
7810 overriding_default_conflict_methods_.push_back(default_conflict_method);
7811 }
7812 }
7813 }
7814 current_method = default_conflict_method;
7815 break;
7816 } // case kDefaultConflict
7817 case DefaultMethodSearchResult::kDefaultFound: {
7818 DCHECK(current_method != nullptr);
7819 // Found a default method.
7820 if (vtable_impl != nullptr &&
7821 current_method->GetDeclaringClass() == vtable_impl->GetDeclaringClass()) {
7822 // We found a default method but it was the same one we already have from our
7823 // superclass. Don't bother adding it to our vtable again.
7824 current_method = vtable_impl;
7825 } else if (LIKELY(FillTables())) {
7826 // Interfaces don't need to copy default methods since they don't have vtables.
7827 // Only record this default method if it is new to save space.
7828 // TODO It might be worthwhile to copy default methods on interfaces anyway since it
7829 // would make lookup for interface super much faster. (We would only need to scan
7830 // the iftable to find if there is a NSME or AME.)
7831 ArtMethod* old = FindSameNameAndSignature(interface_name_comparator,
7832 default_methods_,
7833 overriding_default_methods_);
7834 if (old == nullptr) {
7835 // We found a default method implementation and there were no conflicts.
7836 if (vtable_impl == nullptr) {
7837 // Save the default method. We need to add it to the vtable.
7838 default_methods_.push_back(current_method);
7839 } else {
7840 // Save the default method but it is already in the vtable.
7841 overriding_default_methods_.push_back(current_method);
7842 }
7843 } else {
7844 CHECK(old == current_method) << "Multiple default implementations selected!";
7845 }
7846 }
7847 break;
7848 } // case kDefaultFound
7849 case DefaultMethodSearchResult::kAbstractFound: {
7850 DCHECK(current_method == nullptr);
7851 // Abstract method masks all defaults.
7852 if (vtable_impl != nullptr &&
7853 vtable_impl->IsAbstract() &&
7854 !vtable_impl->IsDefaultConflicting()) {
7855 // We need to make this an abstract method but the version in the vtable already is so
7856 // don't do anything.
7857 current_method = vtable_impl;
7858 }
7859 break;
7860 } // case kAbstractFound
7861 }
7862 return current_method;
7863 }
7864
GetOrCreateMirandaMethod(ArtMethod * interface_method,MethodNameAndSignatureComparator & interface_name_comparator)7865 ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::GetOrCreateMirandaMethod(
7866 ArtMethod* interface_method,
7867 MethodNameAndSignatureComparator& interface_name_comparator) {
7868 // Find out if there is already a miranda method we can use.
7869 ArtMethod* miranda_method = FindSameNameAndSignature(interface_name_comparator,
7870 miranda_methods_);
7871 if (miranda_method == nullptr) {
7872 DCHECK(interface_method->IsAbstract()) << interface_method->PrettyMethod();
7873 miranda_method = reinterpret_cast<ArtMethod*>(allocator_.Alloc(method_size_));
7874 CHECK(miranda_method != nullptr);
7875 // Point the interface table at a phantom slot.
7876 new(miranda_method) ArtMethod(interface_method, class_linker_->GetImagePointerSize());
7877 miranda_methods_.push_back(miranda_method);
7878 }
7879 return miranda_method;
7880 }
7881
ReallocMethods()7882 void ClassLinker::LinkInterfaceMethodsHelper::ReallocMethods() {
7883 LogNewVirtuals();
7884
7885 const size_t old_method_count = klass_->NumMethods();
7886 const size_t new_method_count = old_method_count + NumberOfNewVirtuals();
7887 DCHECK_NE(old_method_count, new_method_count);
7888
7889 // Attempt to realloc to save RAM if possible.
7890 LengthPrefixedArray<ArtMethod>* old_methods = klass_->GetMethodsPtr();
7891 // The Realloced virtual methods aren't visible from the class roots, so there is no issue
7892 // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the
7893 // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since
7894 // CopyFrom has internal read barriers.
7895 //
7896 // TODO We should maybe move some of this into mirror::Class or at least into another method.
7897 const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_method_count,
7898 method_size_,
7899 method_alignment_);
7900 const size_t new_size = LengthPrefixedArray<ArtMethod>::ComputeSize(new_method_count,
7901 method_size_,
7902 method_alignment_);
7903 const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0;
7904 auto* methods = reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(
7905 class_linker_->GetAllocatorForClassLoader(klass_->GetClassLoader())->Realloc(
7906 self_, old_methods, old_methods_ptr_size, new_size));
7907 CHECK(methods != nullptr); // Native allocation failure aborts.
7908
7909 PointerSize pointer_size = class_linker_->GetImagePointerSize();
7910 if (methods != old_methods) {
7911 // Maps from heap allocated miranda method to linear alloc miranda method.
7912 StrideIterator<ArtMethod> out = methods->begin(method_size_, method_alignment_);
7913 // Copy over the old methods.
7914 for (auto& m : klass_->GetMethods(pointer_size)) {
7915 move_table_.emplace(&m, &*out);
7916 // The CopyFrom is only necessary to not miss read barriers since Realloc won't do read
7917 // barriers when it copies.
7918 out->CopyFrom(&m, pointer_size);
7919 ++out;
7920 }
7921 }
7922 StrideIterator<ArtMethod> out(methods->begin(method_size_, method_alignment_) + old_method_count);
7923 // Copy over miranda methods before copying vtable since CopyOf may cause thread suspension and
7924 // we want the roots of the miranda methods to get visited.
7925 for (size_t i = 0; i < miranda_methods_.size(); ++i) {
7926 ArtMethod* mir_method = miranda_methods_[i];
7927 ArtMethod& new_method = *out;
7928 new_method.CopyFrom(mir_method, pointer_size);
7929 uint32_t access_flags = new_method.GetAccessFlags();
7930 DCHECK_EQ(access_flags & kAccIntrinsic, 0u) << "Miranda method should not be an intrinsic!";
7931 DCHECK_EQ(access_flags & kAccDefault, 0u) << "Miranda method should not be a default method!";
7932 DCHECK_NE(access_flags & kAccAbstract, 0u) << "Miranda method should be abstract!";
7933 new_method.SetAccessFlags(access_flags | kAccCopied);
7934 move_table_.emplace(mir_method, &new_method);
7935 // Update the entry in the method array, as the array will be used for future lookups,
7936 // where thread suspension is allowed.
7937 // As such, the array should not contain locally allocated ArtMethod, otherwise the GC
7938 // would not see them.
7939 miranda_methods_[i] = &new_method;
7940 ++out;
7941 }
7942 // We need to copy the default methods into our own method table since the runtime requires that
7943 // every method on a class's vtable be in that respective class's virtual method table.
7944 // NOTE This means that two classes might have the same implementation of a method from the same
7945 // interface but will have different ArtMethod*s for them. This also means we cannot compare a
7946 // default method found on a class with one found on the declaring interface directly and must
7947 // look at the declaring class to determine if they are the same.
7948 for (ScopedArenaVector<ArtMethod*>* methods_vec : {&default_methods_,
7949 &overriding_default_methods_}) {
7950 for (size_t i = 0; i < methods_vec->size(); ++i) {
7951 ArtMethod* def_method = (*methods_vec)[i];
7952 ArtMethod& new_method = *out;
7953 new_method.CopyFrom(def_method, pointer_size);
7954 // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been
7955 // verified yet it shouldn't have methods that are skipping access checks.
7956 // TODO This is rather arbitrary. We should maybe support classes where only some of its
7957 // methods are skip_access_checks.
7958 DCHECK_EQ(new_method.GetAccessFlags() & kAccNative, 0u);
7959 constexpr uint32_t kSetFlags = kAccDefault | kAccCopied;
7960 constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks;
7961 new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
7962 move_table_.emplace(def_method, &new_method);
7963 // Update the entry in the method array, as the array will be used for future lookups,
7964 // where thread suspension is allowed.
7965 // As such, the array should not contain locally allocated ArtMethod, otherwise the GC
7966 // would not see them.
7967 (*methods_vec)[i] = &new_method;
7968 ++out;
7969 }
7970 }
7971 for (ScopedArenaVector<ArtMethod*>* methods_vec : {&default_conflict_methods_,
7972 &overriding_default_conflict_methods_}) {
7973 for (size_t i = 0; i < methods_vec->size(); ++i) {
7974 ArtMethod* conf_method = (*methods_vec)[i];
7975 ArtMethod& new_method = *out;
7976 new_method.CopyFrom(conf_method, pointer_size);
7977 // This is a type of default method (there are default method impls, just a conflict) so
7978 // mark this as a default. We use the `kAccAbstract` flag to distinguish it from invokable
7979 // copied default method without using a separate access flag but the default conflicting
7980 // method is technically not abstract and ArtMethod::IsAbstract() shall return false.
7981 // Also clear the kAccSkipAccessChecks bit since this class hasn't been verified yet it
7982 // shouldn't have methods that are skipping access checks. Also clear potential
7983 // kAccSingleImplementation to avoid CHA trying to inline the default method.
7984 uint32_t access_flags = new_method.GetAccessFlags();
7985 DCHECK_EQ(access_flags & kAccNative, 0u);
7986 DCHECK_EQ(access_flags & kAccIntrinsic, 0u);
7987 constexpr uint32_t kSetFlags = kAccDefault | kAccAbstract | kAccCopied;
7988 constexpr uint32_t kMaskFlags = ~(kAccSkipAccessChecks | kAccSingleImplementation);
7989 new_method.SetAccessFlags((access_flags | kSetFlags) & kMaskFlags);
7990 DCHECK(new_method.IsDefaultConflicting());
7991 DCHECK(!new_method.IsAbstract());
7992 // The actual method might or might not be marked abstract since we just copied it from a
7993 // (possibly default) interface method. We need to set it entry point to be the bridge so
7994 // that the compiler will not invoke the implementation of whatever method we copied from.
7995 EnsureThrowsInvocationError(class_linker_, &new_method);
7996 move_table_.emplace(conf_method, &new_method);
7997 // Update the entry in the method array, as the array will be used for future lookups,
7998 // where thread suspension is allowed.
7999 // As such, the array should not contain locally allocated ArtMethod, otherwise the GC
8000 // would not see them.
8001 (*methods_vec)[i] = &new_method;
8002 ++out;
8003 }
8004 }
8005 methods->SetSize(new_method_count);
8006 class_linker_->UpdateClassMethods(klass_.Get(), methods);
8007 }
8008
UpdateVtable(const HashMap<size_t,ClassLinker::MethodTranslation> & default_translations,Handle<mirror::PointerArray> old_vtable)8009 ObjPtr<mirror::PointerArray> ClassLinker::LinkInterfaceMethodsHelper::UpdateVtable(
8010 const HashMap<size_t, ClassLinker::MethodTranslation>& default_translations,
8011 Handle<mirror::PointerArray> old_vtable) {
8012 // Update the vtable to the new method structures. We can skip this for interfaces since they
8013 // do not have vtables.
8014 const size_t old_vtable_count = old_vtable->GetLength();
8015 const size_t new_vtable_count = old_vtable_count +
8016 miranda_methods_.size() +
8017 default_methods_.size() +
8018 default_conflict_methods_.size();
8019
8020 ObjPtr<mirror::PointerArray> vtable = ObjPtr<mirror::PointerArray>::DownCast(
8021 mirror::Array::CopyOf(old_vtable, self_, new_vtable_count));
8022 if (UNLIKELY(vtable == nullptr)) {
8023 self_->AssertPendingOOMException();
8024 return nullptr;
8025 }
8026
8027 size_t vtable_pos = old_vtable_count;
8028 PointerSize pointer_size = class_linker_->GetImagePointerSize();
8029 // Update all the newly copied method's indexes so they denote their placement in the vtable.
8030 for (const ScopedArenaVector<ArtMethod*>& methods_vec : {default_methods_,
8031 default_conflict_methods_,
8032 miranda_methods_}) {
8033 // These are the functions that are not already in the vtable!
8034 for (ArtMethod* new_vtable_method : methods_vec) {
8035 // Leave the declaring class alone the method's dex_code_item_offset_ and dex_method_index_
8036 // fields are references into the dex file the method was defined in. Since the ArtMethod
8037 // does not store that information it uses declaring_class_->dex_cache_.
8038 new_vtable_method->SetMethodIndex(0xFFFF & vtable_pos);
8039 vtable->SetElementPtrSize(vtable_pos, new_vtable_method, pointer_size);
8040 ++vtable_pos;
8041 }
8042 }
8043 DCHECK_EQ(vtable_pos, new_vtable_count);
8044
8045 // Update old vtable methods. We use the default_translations map to figure out what each
8046 // vtable entry should be updated to, if they need to be at all.
8047 for (size_t i = 0; i < old_vtable_count; ++i) {
8048 ArtMethod* translated_method = vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
8049 // Try and find what we need to change this method to.
8050 auto translation_it = default_translations.find(i);
8051 if (translation_it != default_translations.end()) {
8052 if (translation_it->second.IsInConflict()) {
8053 // Find which conflict method we are to use for this method.
8054 MethodNameAndSignatureComparator old_method_comparator(
8055 translated_method->GetInterfaceMethodIfProxy(pointer_size));
8056 // We only need to look through overriding_default_conflict_methods since this is an
8057 // overridden method we are fixing up here.
8058 ArtMethod* new_conflict_method = FindSameNameAndSignature(
8059 old_method_comparator, overriding_default_conflict_methods_);
8060 CHECK(new_conflict_method != nullptr) << "Expected a conflict method!";
8061 translated_method = new_conflict_method;
8062 } else if (translation_it->second.IsAbstract()) {
8063 // Find which miranda method we are to use for this method.
8064 MethodNameAndSignatureComparator old_method_comparator(
8065 translated_method->GetInterfaceMethodIfProxy(pointer_size));
8066 ArtMethod* miranda_method = FindSameNameAndSignature(old_method_comparator,
8067 miranda_methods_);
8068 DCHECK(miranda_method != nullptr);
8069 translated_method = miranda_method;
8070 } else {
8071 // Normal default method (changed from an older default or abstract interface method).
8072 DCHECK(translation_it->second.IsTranslation());
8073 translated_method = translation_it->second.GetTranslation();
8074 auto it = move_table_.find(translated_method);
8075 DCHECK(it != move_table_.end());
8076 translated_method = it->second;
8077 }
8078 } else {
8079 auto it = move_table_.find(translated_method);
8080 translated_method = (it != move_table_.end()) ? it->second : nullptr;
8081 }
8082
8083 if (translated_method != nullptr) {
8084 // Make sure the new_methods index is set.
8085 if (translated_method->GetMethodIndexDuringLinking() != i) {
8086 if (kIsDebugBuild) {
8087 auto* methods = klass_->GetMethodsPtr();
8088 CHECK_LE(reinterpret_cast<uintptr_t>(&*methods->begin(method_size_, method_alignment_)),
8089 reinterpret_cast<uintptr_t>(translated_method));
8090 CHECK_LT(reinterpret_cast<uintptr_t>(translated_method),
8091 reinterpret_cast<uintptr_t>(&*methods->end(method_size_, method_alignment_)));
8092 }
8093 translated_method->SetMethodIndex(0xFFFF & i);
8094 }
8095 vtable->SetElementPtrSize(i, translated_method, pointer_size);
8096 }
8097 }
8098 klass_->SetVTable(vtable);
8099 return vtable;
8100 }
8101
UpdateIfTable(Handle<mirror::IfTable> iftable)8102 void ClassLinker::LinkInterfaceMethodsHelper::UpdateIfTable(Handle<mirror::IfTable> iftable) {
8103 PointerSize pointer_size = class_linker_->GetImagePointerSize();
8104 const size_t ifcount = klass_->GetIfTableCount();
8105 // Go fix up all the stale iftable pointers.
8106 for (size_t i = 0; i < ifcount; ++i) {
8107 for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) {
8108 ObjPtr<mirror::PointerArray> method_array = iftable->GetMethodArray(i);
8109 ArtMethod* m = method_array->GetElementPtrSize<ArtMethod*>(j, pointer_size);
8110 DCHECK(m != nullptr) << klass_->PrettyClass();
8111 auto it = move_table_.find(m);
8112 if (it != move_table_.end()) {
8113 auto* new_m = it->second;
8114 DCHECK(new_m != nullptr) << klass_->PrettyClass();
8115 method_array->SetElementPtrSize(j, new_m, pointer_size);
8116 }
8117 }
8118 }
8119 }
8120
UpdateIMT(ArtMethod ** out_imt)8121 void ClassLinker::LinkInterfaceMethodsHelper::UpdateIMT(ArtMethod** out_imt) {
8122 // Fix up IMT next.
8123 for (size_t i = 0; i < ImTable::kSize; ++i) {
8124 auto it = move_table_.find(out_imt[i]);
8125 if (it != move_table_.end()) {
8126 out_imt[i] = it->second;
8127 }
8128 }
8129 }
8130
8131 // TODO This method needs to be split up into several smaller methods.
LinkInterfaceMethods(Thread * self,Handle<mirror::Class> klass,const HashMap<size_t,ClassLinker::MethodTranslation> & default_translations,bool * out_new_conflict,ArtMethod ** out_imt)8132 bool ClassLinker::LinkInterfaceMethods(
8133 Thread* self,
8134 Handle<mirror::Class> klass,
8135 const HashMap<size_t, ClassLinker::MethodTranslation>& default_translations,
8136 bool* out_new_conflict,
8137 ArtMethod** out_imt) {
8138 StackHandleScope<3> hs(self);
8139 Runtime* const runtime = Runtime::Current();
8140
8141 const bool is_interface = klass->IsInterface();
8142 const bool has_superclass = klass->HasSuperClass();
8143 const bool fill_tables = !is_interface;
8144 const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
8145 const size_t ifcount = klass->GetIfTableCount();
8146
8147 Handle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
8148
8149 MutableHandle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
8150 ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
8151 ArtMethod* const imt_conflict_method = runtime->GetImtConflictMethod();
8152 // Copy the IMT from the super class if possible.
8153 const bool extend_super_iftable = has_superclass;
8154 if (has_superclass && fill_tables) {
8155 FillImtFromSuperClass(klass,
8156 unimplemented_method,
8157 imt_conflict_method,
8158 out_new_conflict,
8159 out_imt);
8160 }
8161 // Allocate method arrays before since we don't want miss visiting miranda method roots due to
8162 // thread suspension.
8163 if (fill_tables) {
8164 if (!AllocateIfTableMethodArrays(self, klass, iftable)) {
8165 return false;
8166 }
8167 }
8168
8169 LinkInterfaceMethodsHelper helper(this, klass, self, runtime);
8170
8171 auto* old_cause = self->StartAssertNoThreadSuspension(
8172 "Copying ArtMethods for LinkInterfaceMethods");
8173 // Going in reverse to ensure that we will hit abstract methods that override defaults before the
8174 // defaults. This means we don't need to do any trickery when creating the Miranda methods, since
8175 // they will already be null. This has the additional benefit that the declarer of a miranda
8176 // method will actually declare an abstract method.
8177 for (size_t i = ifcount; i != 0u; ) {
8178 --i;
8179 DCHECK_LT(i, ifcount);
8180
8181 size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
8182 if (num_methods > 0) {
8183 StackHandleScope<2> hs2(self);
8184 const bool is_super = i < super_ifcount;
8185 const bool super_interface = is_super && extend_super_iftable;
8186 // We don't actually create or fill these tables for interfaces, we just copy some methods for
8187 // conflict methods. Just set this as nullptr in those cases.
8188 Handle<mirror::PointerArray> method_array(fill_tables
8189 ? hs2.NewHandle(iftable->GetMethodArray(i))
8190 : hs2.NewHandle<mirror::PointerArray>(nullptr));
8191
8192 ArraySlice<ArtMethod> input_virtual_methods;
8193 ScopedNullHandle<mirror::PointerArray> null_handle;
8194 Handle<mirror::PointerArray> input_vtable_array(null_handle);
8195 int32_t input_array_length = 0;
8196
8197 // TODO Cleanup Needed: In the presence of default methods this optimization is rather dirty
8198 // and confusing. Default methods should always look through all the superclasses
8199 // because they are the last choice of an implementation. We get around this by looking
8200 // at the super-classes iftable methods (copied into method_array previously) when we are
8201 // looking for the implementation of a super-interface method but that is rather dirty.
8202 bool using_virtuals;
8203 if (super_interface || is_interface) {
8204 // If we are overwriting a super class interface, try to only virtual methods instead of the
8205 // whole vtable.
8206 using_virtuals = true;
8207 input_virtual_methods = klass->GetDeclaredVirtualMethodsSlice(image_pointer_size_);
8208 input_array_length = input_virtual_methods.size();
8209 } else {
8210 // For a new interface, however, we need the whole vtable in case a new
8211 // interface method is implemented in the whole superclass.
8212 using_virtuals = false;
8213 DCHECK(vtable != nullptr);
8214 input_vtable_array = vtable;
8215 input_array_length = input_vtable_array->GetLength();
8216 }
8217
8218 // For each method in interface
8219 for (size_t j = 0; j < num_methods; ++j) {
8220 auto* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j, image_pointer_size_);
8221 MethodNameAndSignatureComparator interface_name_comparator(
8222 interface_method->GetInterfaceMethodIfProxy(image_pointer_size_));
8223 uint32_t imt_index = interface_method->GetImtIndex();
8224 ArtMethod** imt_ptr = &out_imt[imt_index];
8225 // For each method listed in the interface's method list, find the
8226 // matching method in our class's method list. We want to favor the
8227 // subclass over the superclass, which just requires walking
8228 // back from the end of the vtable. (This only matters if the
8229 // superclass defines a private method and this class redefines
8230 // it -- otherwise it would use the same vtable slot. In .dex files
8231 // those don't end up in the virtual method table, so it shouldn't
8232 // matter which direction we go. We walk it backward anyway.)
8233 //
8234 // To find defaults we need to do the same but also go over interfaces.
8235 bool found_impl = false;
8236 ArtMethod* vtable_impl = nullptr;
8237 for (int32_t k = input_array_length - 1; k >= 0; --k) {
8238 ArtMethod* vtable_method = using_virtuals ?
8239 &input_virtual_methods[k] :
8240 input_vtable_array->GetElementPtrSize<ArtMethod*>(k, image_pointer_size_);
8241 ArtMethod* vtable_method_for_name_comparison =
8242 vtable_method->GetInterfaceMethodIfProxy(image_pointer_size_);
8243 DCHECK(!vtable_method->IsStatic()) << vtable_method->PrettyMethod();
8244 if (interface_name_comparator.HasSameNameAndSignature(
8245 vtable_method_for_name_comparison)) {
8246 if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) {
8247 // Must do EndAssertNoThreadSuspension before throw since the throw can cause
8248 // allocations.
8249 self->EndAssertNoThreadSuspension(old_cause);
8250 ThrowIllegalAccessError(klass.Get(),
8251 "Method '%s' implementing interface method '%s' is not public",
8252 vtable_method->PrettyMethod().c_str(),
8253 interface_method->PrettyMethod().c_str());
8254 return false;
8255 } else if (UNLIKELY(vtable_method->IsOverridableByDefaultMethod())) {
8256 // We might have a newer, better, default method for this, so we just skip it. If we
8257 // are still using this we will select it again when scanning for default methods. To
8258 // obviate the need to copy the method again we will make a note that we already found
8259 // a default here.
8260 // TODO This should be much cleaner.
8261 vtable_impl = vtable_method;
8262 break;
8263 } else {
8264 found_impl = true;
8265 if (LIKELY(fill_tables)) {
8266 method_array->SetElementPtrSize(j, vtable_method, image_pointer_size_);
8267 // Place method in imt if entry is empty, place conflict otherwise.
8268 SetIMTRef(unimplemented_method,
8269 imt_conflict_method,
8270 vtable_method,
8271 /*out*/out_new_conflict,
8272 /*out*/imt_ptr);
8273 }
8274 break;
8275 }
8276 }
8277 }
8278 // Continue on to the next method if we are done.
8279 if (LIKELY(found_impl)) {
8280 continue;
8281 } else if (LIKELY(super_interface)) {
8282 // Don't look for a default implementation when the super-method is implemented directly
8283 // by the class.
8284 //
8285 // See if we can use the superclasses method and skip searching everything else.
8286 // Note: !found_impl && super_interface
8287 CHECK(extend_super_iftable);
8288 // If this is a super_interface method it is possible we shouldn't override it because a
8289 // superclass could have implemented it directly. We get the method the superclass used
8290 // to implement this to know if we can override it with a default method. Doing this is
8291 // safe since we know that the super_iftable is filled in so we can simply pull it from
8292 // there. We don't bother if this is not a super-classes interface since in that case we
8293 // have scanned the entire vtable anyway and would have found it.
8294 // TODO This is rather dirty but it is faster than searching through the entire vtable
8295 // every time.
8296 ArtMethod* supers_method =
8297 method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
8298 DCHECK(supers_method != nullptr);
8299 DCHECK(interface_name_comparator.HasSameNameAndSignature(supers_method));
8300 if (LIKELY(!supers_method->IsOverridableByDefaultMethod())) {
8301 // The method is not overridable by a default method (i.e. it is directly implemented
8302 // in some class). Therefore move onto the next interface method.
8303 continue;
8304 } else {
8305 // If the super-classes method is override-able by a default method we need to keep
8306 // track of it since though it is override-able it is not guaranteed to be 'overridden'.
8307 // If it turns out not to be overridden and we did not keep track of it we might add it
8308 // to the vtable twice, causing corruption (vtable entries having inconsistent and
8309 // illegal states, incorrect vtable size, and incorrect or inconsistent iftable entries)
8310 // in this class and any subclasses.
8311 DCHECK(vtable_impl == nullptr || vtable_impl == supers_method)
8312 << "vtable_impl was " << ArtMethod::PrettyMethod(vtable_impl)
8313 << " and not 'nullptr' or "
8314 << supers_method->PrettyMethod()
8315 << " as expected. IFTable appears to be corrupt!";
8316 vtable_impl = supers_method;
8317 }
8318 }
8319 // If we haven't found it yet we should search through the interfaces for default methods.
8320 ArtMethod* current_method = helper.FindMethod(interface_method,
8321 interface_name_comparator,
8322 vtable_impl);
8323 if (LIKELY(fill_tables)) {
8324 if (current_method == nullptr && !super_interface) {
8325 // We could not find an implementation for this method and since it is a brand new
8326 // interface we searched the entire vtable (and all default methods) for an
8327 // implementation but couldn't find one. We therefore need to make a miranda method.
8328 current_method = helper.GetOrCreateMirandaMethod(interface_method,
8329 interface_name_comparator);
8330 }
8331
8332 if (current_method != nullptr) {
8333 // We found a default method implementation. Record it in the iftable and IMT.
8334 method_array->SetElementPtrSize(j, current_method, image_pointer_size_);
8335 SetIMTRef(unimplemented_method,
8336 imt_conflict_method,
8337 current_method,
8338 /*out*/out_new_conflict,
8339 /*out*/imt_ptr);
8340 }
8341 }
8342 } // For each method in interface end.
8343 } // if (num_methods > 0)
8344 } // For each interface.
8345 // TODO don't extend virtuals of interface unless necessary (when is it?).
8346 if (helper.HasNewVirtuals()) {
8347 LengthPrefixedArray<ArtMethod>* old_methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr;
8348 helper.ReallocMethods(); // No return value to check. Native allocation failure aborts.
8349 LengthPrefixedArray<ArtMethod>* methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr;
8350
8351 // Done copying methods, they are all roots in the class now, so we can end the no thread
8352 // suspension assert.
8353 self->EndAssertNoThreadSuspension(old_cause);
8354
8355 if (fill_tables) {
8356 vtable.Assign(helper.UpdateVtable(default_translations, vtable));
8357 if (UNLIKELY(vtable == nullptr)) {
8358 // The helper has already called self->AssertPendingOOMException();
8359 return false;
8360 }
8361 helper.UpdateIfTable(iftable);
8362 helper.UpdateIMT(out_imt);
8363 }
8364
8365 helper.CheckNoStaleMethodsInDexCache();
8366 helper.ClobberOldMethods(old_methods, methods);
8367 } else {
8368 self->EndAssertNoThreadSuspension(old_cause);
8369 }
8370 if (kIsDebugBuild && !is_interface) {
8371 CheckVTable(self, klass, image_pointer_size_);
8372 }
8373 return true;
8374 }
8375
8376 class ClassLinker::LinkFieldsHelper {
8377 public:
8378 static bool LinkFields(ClassLinker* class_linker,
8379 Thread* self,
8380 Handle<mirror::Class> klass,
8381 bool is_static,
8382 size_t* class_size)
8383 REQUIRES_SHARED(Locks::mutator_lock_);
8384
8385 private:
8386 enum class FieldTypeOrder : uint16_t;
8387 class FieldGaps;
8388
8389 struct FieldTypeOrderAndIndex {
8390 FieldTypeOrder field_type_order;
8391 uint16_t field_index;
8392 };
8393
8394 static FieldTypeOrder FieldTypeOrderFromFirstDescriptorCharacter(char first_char);
8395
8396 template <size_t kSize>
8397 static MemberOffset AssignFieldOffset(ArtField* field, MemberOffset field_offset)
8398 REQUIRES_SHARED(Locks::mutator_lock_);
8399 };
8400
8401 // We use the following order of field types for assigning offsets.
8402 // Some fields can be shuffled forward to fill gaps, see `ClassLinker::LinkFields()`.
8403 enum class ClassLinker::LinkFieldsHelper::FieldTypeOrder : uint16_t {
8404 kReference = 0u,
8405 kLong,
8406 kDouble,
8407 kInt,
8408 kFloat,
8409 kChar,
8410 kShort,
8411 kBoolean,
8412 kByte,
8413
8414 kLast64BitType = kDouble,
8415 kLast32BitType = kFloat,
8416 kLast16BitType = kShort,
8417 };
8418
8419 ALWAYS_INLINE
8420 ClassLinker::LinkFieldsHelper::FieldTypeOrder
FieldTypeOrderFromFirstDescriptorCharacter(char first_char)8421 ClassLinker::LinkFieldsHelper::FieldTypeOrderFromFirstDescriptorCharacter(char first_char) {
8422 switch (first_char) {
8423 case 'J':
8424 return FieldTypeOrder::kLong;
8425 case 'D':
8426 return FieldTypeOrder::kDouble;
8427 case 'I':
8428 return FieldTypeOrder::kInt;
8429 case 'F':
8430 return FieldTypeOrder::kFloat;
8431 case 'C':
8432 return FieldTypeOrder::kChar;
8433 case 'S':
8434 return FieldTypeOrder::kShort;
8435 case 'Z':
8436 return FieldTypeOrder::kBoolean;
8437 case 'B':
8438 return FieldTypeOrder::kByte;
8439 default:
8440 DCHECK(first_char == 'L' || first_char == '[') << first_char;
8441 return FieldTypeOrder::kReference;
8442 }
8443 }
8444
8445 // Gaps where we can insert fields in object layout.
8446 class ClassLinker::LinkFieldsHelper::FieldGaps {
8447 public:
8448 template <uint32_t kSize>
AlignFieldOffset(MemberOffset field_offset)8449 ALWAYS_INLINE MemberOffset AlignFieldOffset(MemberOffset field_offset) {
8450 static_assert(kSize == 2u || kSize == 4u || kSize == 8u);
8451 if (!IsAligned<kSize>(field_offset.Uint32Value())) {
8452 uint32_t gap_start = field_offset.Uint32Value();
8453 field_offset = MemberOffset(RoundUp(gap_start, kSize));
8454 AddGaps<kSize - 1u>(gap_start, field_offset.Uint32Value());
8455 }
8456 return field_offset;
8457 }
8458
8459 template <uint32_t kSize>
HasGap() const8460 bool HasGap() const {
8461 static_assert(kSize == 1u || kSize == 2u || kSize == 4u);
8462 return (kSize == 1u && gap1_offset_ != kNoOffset) ||
8463 (kSize <= 2u && gap2_offset_ != kNoOffset) ||
8464 gap4_offset_ != kNoOffset;
8465 }
8466
8467 template <uint32_t kSize>
ReleaseGap()8468 MemberOffset ReleaseGap() {
8469 static_assert(kSize == 1u || kSize == 2u || kSize == 4u);
8470 uint32_t result;
8471 if (kSize == 1u && gap1_offset_ != kNoOffset) {
8472 DCHECK(gap2_offset_ == kNoOffset || gap2_offset_ > gap1_offset_);
8473 DCHECK(gap4_offset_ == kNoOffset || gap4_offset_ > gap1_offset_);
8474 result = gap1_offset_;
8475 gap1_offset_ = kNoOffset;
8476 } else if (kSize <= 2u && gap2_offset_ != kNoOffset) {
8477 DCHECK(gap4_offset_ == kNoOffset || gap4_offset_ > gap2_offset_);
8478 result = gap2_offset_;
8479 gap2_offset_ = kNoOffset;
8480 if (kSize < 2u) {
8481 AddGaps<1u>(result + kSize, result + 2u);
8482 }
8483 } else {
8484 DCHECK_NE(gap4_offset_, kNoOffset);
8485 result = gap4_offset_;
8486 gap4_offset_ = kNoOffset;
8487 if (kSize < 4u) {
8488 AddGaps<kSize | 2u>(result + kSize, result + 4u);
8489 }
8490 }
8491 return MemberOffset(result);
8492 }
8493
8494 private:
8495 template <uint32_t kGapsToCheck>
AddGaps(uint32_t gap_start,uint32_t gap_end)8496 void AddGaps(uint32_t gap_start, uint32_t gap_end) {
8497 if ((kGapsToCheck & 1u) != 0u) {
8498 DCHECK_LT(gap_start, gap_end);
8499 DCHECK_ALIGNED(gap_end, 2u);
8500 if ((gap_start & 1u) != 0u) {
8501 DCHECK_EQ(gap1_offset_, kNoOffset);
8502 gap1_offset_ = gap_start;
8503 gap_start += 1u;
8504 if (kGapsToCheck == 1u || gap_start == gap_end) {
8505 DCHECK_EQ(gap_start, gap_end);
8506 return;
8507 }
8508 }
8509 }
8510
8511 if ((kGapsToCheck & 2u) != 0u) {
8512 DCHECK_LT(gap_start, gap_end);
8513 DCHECK_ALIGNED(gap_start, 2u);
8514 DCHECK_ALIGNED(gap_end, 4u);
8515 if ((gap_start & 2u) != 0u) {
8516 DCHECK_EQ(gap2_offset_, kNoOffset);
8517 gap2_offset_ = gap_start;
8518 gap_start += 2u;
8519 if (kGapsToCheck <= 3u || gap_start == gap_end) {
8520 DCHECK_EQ(gap_start, gap_end);
8521 return;
8522 }
8523 }
8524 }
8525
8526 if ((kGapsToCheck & 4u) != 0u) {
8527 DCHECK_LT(gap_start, gap_end);
8528 DCHECK_ALIGNED(gap_start, 4u);
8529 DCHECK_ALIGNED(gap_end, 8u);
8530 DCHECK_EQ(gap_start + 4u, gap_end);
8531 DCHECK_EQ(gap4_offset_, kNoOffset);
8532 gap4_offset_ = gap_start;
8533 return;
8534 }
8535
8536 DCHECK(false) << "Remaining gap: " << gap_start << " to " << gap_end
8537 << " after checking " << kGapsToCheck;
8538 }
8539
8540 static constexpr uint32_t kNoOffset = static_cast<uint32_t>(-1);
8541
8542 uint32_t gap4_offset_ = kNoOffset;
8543 uint32_t gap2_offset_ = kNoOffset;
8544 uint32_t gap1_offset_ = kNoOffset;
8545 };
8546
8547 template <size_t kSize>
8548 ALWAYS_INLINE
AssignFieldOffset(ArtField * field,MemberOffset field_offset)8549 MemberOffset ClassLinker::LinkFieldsHelper::AssignFieldOffset(ArtField* field,
8550 MemberOffset field_offset) {
8551 DCHECK_ALIGNED(field_offset.Uint32Value(), kSize);
8552 DCHECK_EQ(Primitive::ComponentSize(field->GetTypeAsPrimitiveType()), kSize);
8553 field->SetOffset(field_offset);
8554 return MemberOffset(field_offset.Uint32Value() + kSize);
8555 }
8556
LinkFields(ClassLinker * class_linker,Thread * self,Handle<mirror::Class> klass,bool is_static,size_t * class_size)8557 bool ClassLinker::LinkFieldsHelper::LinkFields(ClassLinker* class_linker,
8558 Thread* self,
8559 Handle<mirror::Class> klass,
8560 bool is_static,
8561 size_t* class_size) {
8562 self->AllowThreadSuspension();
8563 const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
8564 LengthPrefixedArray<ArtField>* const fields = is_static ? klass->GetSFieldsPtr() :
8565 klass->GetIFieldsPtr();
8566
8567 // Initialize field_offset
8568 MemberOffset field_offset(0);
8569 if (is_static) {
8570 field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking(
8571 class_linker->GetImagePointerSize());
8572 } else {
8573 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
8574 if (super_class != nullptr) {
8575 CHECK(super_class->IsResolved())
8576 << klass->PrettyClass() << " " << super_class->PrettyClass();
8577 field_offset = MemberOffset(super_class->GetObjectSize());
8578 }
8579 }
8580
8581 CHECK_EQ(num_fields == 0, fields == nullptr) << klass->PrettyClass();
8582
8583 // we want a relatively stable order so that adding new fields
8584 // minimizes disruption of C++ version such as Class and Method.
8585 //
8586 // The overall sort order order is:
8587 // 1) All object reference fields, sorted alphabetically.
8588 // 2) All java long (64-bit) integer fields, sorted alphabetically.
8589 // 3) All java double (64-bit) floating point fields, sorted alphabetically.
8590 // 4) All java int (32-bit) integer fields, sorted alphabetically.
8591 // 5) All java float (32-bit) floating point fields, sorted alphabetically.
8592 // 6) All java char (16-bit) integer fields, sorted alphabetically.
8593 // 7) All java short (16-bit) integer fields, sorted alphabetically.
8594 // 8) All java boolean (8-bit) integer fields, sorted alphabetically.
8595 // 9) All java byte (8-bit) integer fields, sorted alphabetically.
8596 //
8597 // (References are first to increase the chance of reference visiting
8598 // being able to take a fast path using a bitmap of references at the
8599 // start of the object, see `Class::reference_instance_offsets_`.)
8600 //
8601 // Once the fields are sorted in this order we will attempt to fill any gaps
8602 // that might be present in the memory layout of the structure.
8603 // Note that we shall not fill gaps between the superclass fields.
8604
8605 // Collect fields and their "type order index" (see numbered points above).
8606 const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension(
8607 "Using plain ArtField references");
8608 constexpr size_t kStackBufferEntries = 64; // Avoid allocations for small number of fields.
8609 FieldTypeOrderAndIndex stack_buffer[kStackBufferEntries];
8610 std::vector<FieldTypeOrderAndIndex> heap_buffer;
8611 ArrayRef<FieldTypeOrderAndIndex> sorted_fields;
8612 if (num_fields <= kStackBufferEntries) {
8613 sorted_fields = ArrayRef<FieldTypeOrderAndIndex>(stack_buffer, num_fields);
8614 } else {
8615 heap_buffer.resize(num_fields);
8616 sorted_fields = ArrayRef<FieldTypeOrderAndIndex>(heap_buffer);
8617 }
8618 size_t num_reference_fields = 0;
8619 size_t primitive_fields_start = num_fields;
8620 DCHECK_LE(num_fields, 1u << 16);
8621 for (size_t i = 0; i != num_fields; ++i) {
8622 ArtField* field = &fields->At(i);
8623 const char* descriptor = field->GetTypeDescriptor();
8624 FieldTypeOrder field_type_order = FieldTypeOrderFromFirstDescriptorCharacter(descriptor[0]);
8625 uint16_t field_index = dchecked_integral_cast<uint16_t>(i);
8626 // Insert references to the start, other fields to the end.
8627 DCHECK_LT(num_reference_fields, primitive_fields_start);
8628 if (field_type_order == FieldTypeOrder::kReference) {
8629 sorted_fields[num_reference_fields] = { field_type_order, field_index };
8630 ++num_reference_fields;
8631 } else {
8632 --primitive_fields_start;
8633 sorted_fields[primitive_fields_start] = { field_type_order, field_index };
8634 }
8635 }
8636 DCHECK_EQ(num_reference_fields, primitive_fields_start);
8637
8638 // Reference fields are already sorted by field index (and dex field index).
8639 DCHECK(std::is_sorted(
8640 sorted_fields.begin(),
8641 sorted_fields.begin() + num_reference_fields,
8642 [fields](const auto& lhs, const auto& rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
8643 ArtField* lhs_field = &fields->At(lhs.field_index);
8644 ArtField* rhs_field = &fields->At(rhs.field_index);
8645 CHECK_EQ(lhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot);
8646 CHECK_EQ(rhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot);
8647 CHECK_EQ(lhs_field->GetDexFieldIndex() < rhs_field->GetDexFieldIndex(),
8648 lhs.field_index < rhs.field_index);
8649 return lhs_field->GetDexFieldIndex() < rhs_field->GetDexFieldIndex();
8650 }));
8651 // Primitive fields were stored in reverse order of their field index (and dex field index).
8652 DCHECK(std::is_sorted(
8653 sorted_fields.begin() + primitive_fields_start,
8654 sorted_fields.end(),
8655 [fields](const auto& lhs, const auto& rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
8656 ArtField* lhs_field = &fields->At(lhs.field_index);
8657 ArtField* rhs_field = &fields->At(rhs.field_index);
8658 CHECK_NE(lhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot);
8659 CHECK_NE(rhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot);
8660 CHECK_EQ(lhs_field->GetDexFieldIndex() > rhs_field->GetDexFieldIndex(),
8661 lhs.field_index > rhs.field_index);
8662 return lhs.field_index > rhs.field_index;
8663 }));
8664 // Sort the primitive fields by the field type order, then field index.
8665 std::sort(sorted_fields.begin() + primitive_fields_start,
8666 sorted_fields.end(),
8667 [](const auto& lhs, const auto& rhs) {
8668 if (lhs.field_type_order != rhs.field_type_order) {
8669 return lhs.field_type_order < rhs.field_type_order;
8670 } else {
8671 return lhs.field_index < rhs.field_index;
8672 }
8673 });
8674 // Primitive fields are now sorted by field size (descending), then type, then field index.
8675 DCHECK(std::is_sorted(
8676 sorted_fields.begin() + primitive_fields_start,
8677 sorted_fields.end(),
8678 [fields](const auto& lhs, const auto& rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
8679 ArtField* lhs_field = &fields->At(lhs.field_index);
8680 ArtField* rhs_field = &fields->At(rhs.field_index);
8681 Primitive::Type lhs_type = lhs_field->GetTypeAsPrimitiveType();
8682 CHECK_NE(lhs_type, Primitive::kPrimNot);
8683 Primitive::Type rhs_type = rhs_field->GetTypeAsPrimitiveType();
8684 CHECK_NE(rhs_type, Primitive::kPrimNot);
8685 if (lhs_type != rhs_type) {
8686 size_t lhs_size = Primitive::ComponentSize(lhs_type);
8687 size_t rhs_size = Primitive::ComponentSize(rhs_type);
8688 return (lhs_size != rhs_size) ? (lhs_size > rhs_size) : (lhs_type < rhs_type);
8689 } else {
8690 return lhs_field->GetDexFieldIndex() < rhs_field->GetDexFieldIndex();
8691 }
8692 }));
8693
8694 // Process reference fields.
8695 FieldGaps field_gaps;
8696 size_t index = 0u;
8697 if (num_reference_fields != 0u) {
8698 constexpr size_t kReferenceSize = sizeof(mirror::HeapReference<mirror::Object>);
8699 field_offset = field_gaps.AlignFieldOffset<kReferenceSize>(field_offset);
8700 for (; index != num_reference_fields; ++index) {
8701 ArtField* field = &fields->At(sorted_fields[index].field_index);
8702 field_offset = AssignFieldOffset<kReferenceSize>(field, field_offset);
8703 }
8704 }
8705 // Process 64-bit fields.
8706 if (index != num_fields &&
8707 sorted_fields[index].field_type_order <= FieldTypeOrder::kLast64BitType) {
8708 field_offset = field_gaps.AlignFieldOffset<8u>(field_offset);
8709 while (index != num_fields &&
8710 sorted_fields[index].field_type_order <= FieldTypeOrder::kLast64BitType) {
8711 ArtField* field = &fields->At(sorted_fields[index].field_index);
8712 field_offset = AssignFieldOffset<8u>(field, field_offset);
8713 ++index;
8714 }
8715 }
8716 // Process 32-bit fields.
8717 if (index != num_fields &&
8718 sorted_fields[index].field_type_order <= FieldTypeOrder::kLast32BitType) {
8719 field_offset = field_gaps.AlignFieldOffset<4u>(field_offset);
8720 if (field_gaps.HasGap<4u>()) {
8721 ArtField* field = &fields->At(sorted_fields[index].field_index);
8722 AssignFieldOffset<4u>(field, field_gaps.ReleaseGap<4u>()); // Ignore return value.
8723 ++index;
8724 DCHECK(!field_gaps.HasGap<4u>()); // There can be only one gap for a 32-bit field.
8725 }
8726 while (index != num_fields &&
8727 sorted_fields[index].field_type_order <= FieldTypeOrder::kLast32BitType) {
8728 ArtField* field = &fields->At(sorted_fields[index].field_index);
8729 field_offset = AssignFieldOffset<4u>(field, field_offset);
8730 ++index;
8731 }
8732 }
8733 // Process 16-bit fields.
8734 if (index != num_fields &&
8735 sorted_fields[index].field_type_order <= FieldTypeOrder::kLast16BitType) {
8736 field_offset = field_gaps.AlignFieldOffset<2u>(field_offset);
8737 while (index != num_fields &&
8738 sorted_fields[index].field_type_order <= FieldTypeOrder::kLast16BitType &&
8739 field_gaps.HasGap<2u>()) {
8740 ArtField* field = &fields->At(sorted_fields[index].field_index);
8741 AssignFieldOffset<2u>(field, field_gaps.ReleaseGap<2u>()); // Ignore return value.
8742 ++index;
8743 }
8744 while (index != num_fields &&
8745 sorted_fields[index].field_type_order <= FieldTypeOrder::kLast16BitType) {
8746 ArtField* field = &fields->At(sorted_fields[index].field_index);
8747 field_offset = AssignFieldOffset<2u>(field, field_offset);
8748 ++index;
8749 }
8750 }
8751 // Process 8-bit fields.
8752 for (; index != num_fields && field_gaps.HasGap<1u>(); ++index) {
8753 ArtField* field = &fields->At(sorted_fields[index].field_index);
8754 AssignFieldOffset<1u>(field, field_gaps.ReleaseGap<1u>()); // Ignore return value.
8755 }
8756 for (; index != num_fields; ++index) {
8757 ArtField* field = &fields->At(sorted_fields[index].field_index);
8758 field_offset = AssignFieldOffset<1u>(field, field_offset);
8759 }
8760
8761 self->EndAssertNoThreadSuspension(old_no_suspend_cause);
8762
8763 // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it.
8764 DCHECK(!class_linker->init_done_ || !klass->DescriptorEquals("Ljava/lang/ref/Reference;"));
8765 if (!is_static &&
8766 UNLIKELY(!class_linker->init_done_) &&
8767 klass->DescriptorEquals("Ljava/lang/ref/Reference;")) {
8768 // We know there are no non-reference fields in the Reference classes, and we know
8769 // that 'referent' is alphabetically last, so this is easy...
8770 CHECK_EQ(num_reference_fields, num_fields) << klass->PrettyClass();
8771 CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent")
8772 << klass->PrettyClass();
8773 --num_reference_fields;
8774 }
8775
8776 size_t size = field_offset.Uint32Value();
8777 // Update klass
8778 if (is_static) {
8779 klass->SetNumReferenceStaticFields(num_reference_fields);
8780 *class_size = size;
8781 } else {
8782 klass->SetNumReferenceInstanceFields(num_reference_fields);
8783 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
8784 if (num_reference_fields == 0 || super_class == nullptr) {
8785 // object has one reference field, klass, but we ignore it since we always visit the class.
8786 // super_class is null iff the class is java.lang.Object.
8787 if (super_class == nullptr ||
8788 (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) {
8789 klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields);
8790 }
8791 }
8792 if (kIsDebugBuild) {
8793 DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;"));
8794 size_t total_reference_instance_fields = 0;
8795 ObjPtr<mirror::Class> cur_super = klass.Get();
8796 while (cur_super != nullptr) {
8797 total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking();
8798 cur_super = cur_super->GetSuperClass();
8799 }
8800 if (super_class == nullptr) {
8801 CHECK_EQ(total_reference_instance_fields, 1u) << klass->PrettyDescriptor();
8802 } else {
8803 // Check that there is at least num_reference_fields other than Object.class.
8804 CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields)
8805 << klass->PrettyClass();
8806 }
8807 }
8808 if (!klass->IsVariableSize()) {
8809 std::string temp;
8810 DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp);
8811 size_t previous_size = klass->GetObjectSize();
8812 if (previous_size != 0) {
8813 // Make sure that we didn't originally have an incorrect size.
8814 CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp);
8815 }
8816 klass->SetObjectSize(size);
8817 }
8818 }
8819
8820 if (kIsDebugBuild) {
8821 // Make sure that the fields array is ordered by name but all reference
8822 // offsets are at the beginning as far as alignment allows.
8823 MemberOffset start_ref_offset = is_static
8824 ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(class_linker->image_pointer_size_)
8825 : klass->GetFirstReferenceInstanceFieldOffset();
8826 MemberOffset end_ref_offset(start_ref_offset.Uint32Value() +
8827 num_reference_fields *
8828 sizeof(mirror::HeapReference<mirror::Object>));
8829 MemberOffset current_ref_offset = start_ref_offset;
8830 for (size_t i = 0; i < num_fields; i++) {
8831 ArtField* field = &fields->At(i);
8832 VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance")
8833 << " class=" << klass->PrettyClass() << " field=" << field->PrettyField()
8834 << " offset=" << field->GetOffsetDuringLinking();
8835 if (i != 0) {
8836 ArtField* const prev_field = &fields->At(i - 1);
8837 // NOTE: The field names can be the same. This is not possible in the Java language
8838 // but it's valid Java/dex bytecode and for example proguard can generate such bytecode.
8839 DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0);
8840 }
8841 Primitive::Type type = field->GetTypeAsPrimitiveType();
8842 bool is_primitive = type != Primitive::kPrimNot;
8843 if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") &&
8844 strcmp("referent", field->GetName()) == 0) {
8845 is_primitive = true; // We lied above, so we have to expect a lie here.
8846 }
8847 MemberOffset offset = field->GetOffsetDuringLinking();
8848 if (is_primitive) {
8849 if (offset.Uint32Value() < end_ref_offset.Uint32Value()) {
8850 // Shuffled before references.
8851 size_t type_size = Primitive::ComponentSize(type);
8852 CHECK_LT(type_size, sizeof(mirror::HeapReference<mirror::Object>));
8853 CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value());
8854 CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value());
8855 CHECK(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(offset.Uint32Value()));
8856 }
8857 } else {
8858 CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value());
8859 current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() +
8860 sizeof(mirror::HeapReference<mirror::Object>));
8861 }
8862 }
8863 CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value());
8864 }
8865 return true;
8866 }
8867
LinkInstanceFields(Thread * self,Handle<mirror::Class> klass)8868 bool ClassLinker::LinkInstanceFields(Thread* self, Handle<mirror::Class> klass) {
8869 CHECK(klass != nullptr);
8870 return LinkFieldsHelper::LinkFields(this, self, klass, false, nullptr);
8871 }
8872
LinkStaticFields(Thread * self,Handle<mirror::Class> klass,size_t * class_size)8873 bool ClassLinker::LinkStaticFields(Thread* self, Handle<mirror::Class> klass, size_t* class_size) {
8874 CHECK(klass != nullptr);
8875 return LinkFieldsHelper::LinkFields(this, self, klass, true, class_size);
8876 }
8877
8878 // Set the bitmap of reference instance field offsets.
CreateReferenceInstanceOffsets(Handle<mirror::Class> klass)8879 void ClassLinker::CreateReferenceInstanceOffsets(Handle<mirror::Class> klass) {
8880 uint32_t reference_offsets = 0;
8881 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
8882 // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially).
8883 if (super_class != nullptr) {
8884 reference_offsets = super_class->GetReferenceInstanceOffsets();
8885 // Compute reference offsets unless our superclass overflowed.
8886 if (reference_offsets != mirror::Class::kClassWalkSuper) {
8887 size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking();
8888 if (num_reference_fields != 0u) {
8889 // All of the fields that contain object references are guaranteed be grouped in memory
8890 // starting at an appropriately aligned address after super class object data.
8891 uint32_t start_offset = RoundUp(super_class->GetObjectSize(),
8892 sizeof(mirror::HeapReference<mirror::Object>));
8893 uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) /
8894 sizeof(mirror::HeapReference<mirror::Object>);
8895 if (start_bit + num_reference_fields > 32) {
8896 reference_offsets = mirror::Class::kClassWalkSuper;
8897 } else {
8898 reference_offsets |= (0xffffffffu << start_bit) &
8899 (0xffffffffu >> (32 - (start_bit + num_reference_fields)));
8900 }
8901 }
8902 }
8903 }
8904 klass->SetReferenceInstanceOffsets(reference_offsets);
8905 }
8906
DoResolveString(dex::StringIndex string_idx,ObjPtr<mirror::DexCache> dex_cache)8907 ObjPtr<mirror::String> ClassLinker::DoResolveString(dex::StringIndex string_idx,
8908 ObjPtr<mirror::DexCache> dex_cache) {
8909 StackHandleScope<1> hs(Thread::Current());
8910 Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(dex_cache));
8911 return DoResolveString(string_idx, h_dex_cache);
8912 }
8913
DoResolveString(dex::StringIndex string_idx,Handle<mirror::DexCache> dex_cache)8914 ObjPtr<mirror::String> ClassLinker::DoResolveString(dex::StringIndex string_idx,
8915 Handle<mirror::DexCache> dex_cache) {
8916 const DexFile& dex_file = *dex_cache->GetDexFile();
8917 uint32_t utf16_length;
8918 const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
8919 ObjPtr<mirror::String> string = intern_table_->InternStrong(utf16_length, utf8_data);
8920 if (string != nullptr) {
8921 dex_cache->SetResolvedString(string_idx, string);
8922 }
8923 return string;
8924 }
8925
DoLookupString(dex::StringIndex string_idx,ObjPtr<mirror::DexCache> dex_cache)8926 ObjPtr<mirror::String> ClassLinker::DoLookupString(dex::StringIndex string_idx,
8927 ObjPtr<mirror::DexCache> dex_cache) {
8928 DCHECK(dex_cache != nullptr);
8929 const DexFile& dex_file = *dex_cache->GetDexFile();
8930 uint32_t utf16_length;
8931 const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
8932 ObjPtr<mirror::String> string =
8933 intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data);
8934 if (string != nullptr) {
8935 dex_cache->SetResolvedString(string_idx, string);
8936 }
8937 return string;
8938 }
8939
DoLookupResolvedType(dex::TypeIndex type_idx,ObjPtr<mirror::Class> referrer)8940 ObjPtr<mirror::Class> ClassLinker::DoLookupResolvedType(dex::TypeIndex type_idx,
8941 ObjPtr<mirror::Class> referrer) {
8942 return DoLookupResolvedType(type_idx, referrer->GetDexCache(), referrer->GetClassLoader());
8943 }
8944
DoLookupResolvedType(dex::TypeIndex type_idx,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)8945 ObjPtr<mirror::Class> ClassLinker::DoLookupResolvedType(dex::TypeIndex type_idx,
8946 ObjPtr<mirror::DexCache> dex_cache,
8947 ObjPtr<mirror::ClassLoader> class_loader) {
8948 const DexFile& dex_file = *dex_cache->GetDexFile();
8949 const char* descriptor = dex_file.StringByTypeIdx(type_idx);
8950 ObjPtr<mirror::Class> type = LookupResolvedType(descriptor, class_loader);
8951 if (type != nullptr) {
8952 DCHECK(type->IsResolved());
8953 dex_cache->SetResolvedType(type_idx, type);
8954 }
8955 return type;
8956 }
8957
LookupResolvedType(const char * descriptor,ObjPtr<mirror::ClassLoader> class_loader)8958 ObjPtr<mirror::Class> ClassLinker::LookupResolvedType(const char* descriptor,
8959 ObjPtr<mirror::ClassLoader> class_loader) {
8960 DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
8961 ObjPtr<mirror::Class> type = nullptr;
8962 if (descriptor[1] == '\0') {
8963 // only the descriptors of primitive types should be 1 character long, also avoid class lookup
8964 // for primitive classes that aren't backed by dex files.
8965 type = LookupPrimitiveClass(descriptor[0]);
8966 } else {
8967 Thread* const self = Thread::Current();
8968 DCHECK(self != nullptr);
8969 const size_t hash = ComputeModifiedUtf8Hash(descriptor);
8970 // Find the class in the loaded classes table.
8971 type = LookupClass(self, descriptor, hash, class_loader);
8972 }
8973 return (type != nullptr && type->IsResolved()) ? type : nullptr;
8974 }
8975
8976 template <typename RefType>
DoResolveType(dex::TypeIndex type_idx,RefType referrer)8977 ObjPtr<mirror::Class> ClassLinker::DoResolveType(dex::TypeIndex type_idx, RefType referrer) {
8978 StackHandleScope<2> hs(Thread::Current());
8979 Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
8980 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
8981 return DoResolveType(type_idx, dex_cache, class_loader);
8982 }
8983
8984 // Instantiate the above.
8985 template ObjPtr<mirror::Class> ClassLinker::DoResolveType(dex::TypeIndex type_idx,
8986 ArtField* referrer);
8987 template ObjPtr<mirror::Class> ClassLinker::DoResolveType(dex::TypeIndex type_idx,
8988 ArtMethod* referrer);
8989 template ObjPtr<mirror::Class> ClassLinker::DoResolveType(dex::TypeIndex type_idx,
8990 ObjPtr<mirror::Class> referrer);
8991
DoResolveType(dex::TypeIndex type_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)8992 ObjPtr<mirror::Class> ClassLinker::DoResolveType(dex::TypeIndex type_idx,
8993 Handle<mirror::DexCache> dex_cache,
8994 Handle<mirror::ClassLoader> class_loader) {
8995 Thread* self = Thread::Current();
8996 const char* descriptor = dex_cache->GetDexFile()->StringByTypeIdx(type_idx);
8997 ObjPtr<mirror::Class> resolved = FindClass(self, descriptor, class_loader);
8998 if (resolved != nullptr) {
8999 // TODO: we used to throw here if resolved's class loader was not the
9000 // boot class loader. This was to permit different classes with the
9001 // same name to be loaded simultaneously by different loaders
9002 dex_cache->SetResolvedType(type_idx, resolved);
9003 } else {
9004 CHECK(self->IsExceptionPending())
9005 << "Expected pending exception for failed resolution of: " << descriptor;
9006 // Convert a ClassNotFoundException to a NoClassDefFoundError.
9007 StackHandleScope<1> hs(self);
9008 Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
9009 if (cause->InstanceOf(GetClassRoot(ClassRoot::kJavaLangClassNotFoundException, this))) {
9010 DCHECK(resolved == nullptr); // No Handle needed to preserve resolved.
9011 self->ClearException();
9012 ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor);
9013 self->GetException()->SetCause(cause.Get());
9014 }
9015 }
9016 DCHECK((resolved == nullptr) || resolved->IsResolved())
9017 << resolved->PrettyDescriptor() << " " << resolved->GetStatus();
9018 return resolved;
9019 }
9020
FindResolvedMethod(ObjPtr<mirror::Class> klass,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader,uint32_t method_idx)9021 ArtMethod* ClassLinker::FindResolvedMethod(ObjPtr<mirror::Class> klass,
9022 ObjPtr<mirror::DexCache> dex_cache,
9023 ObjPtr<mirror::ClassLoader> class_loader,
9024 uint32_t method_idx) {
9025 // Search for the method using dex_cache and method_idx. The Class::Find*Method()
9026 // functions can optimize the search if the dex_cache is the same as the DexCache
9027 // of the class, with fall-back to name and signature search otherwise.
9028 ArtMethod* resolved = nullptr;
9029 if (klass->IsInterface()) {
9030 resolved = klass->FindInterfaceMethod(dex_cache, method_idx, image_pointer_size_);
9031 } else {
9032 resolved = klass->FindClassMethod(dex_cache, method_idx, image_pointer_size_);
9033 }
9034 DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
9035 if (resolved != nullptr &&
9036 // We pass AccessMethod::kNone instead of kLinking to not warn yet on the
9037 // access, as we'll be looking if the method can be accessed through an
9038 // interface.
9039 hiddenapi::ShouldDenyAccessToMember(resolved,
9040 hiddenapi::AccessContext(class_loader, dex_cache),
9041 hiddenapi::AccessMethod::kNone)) {
9042 // The resolved method that we have found cannot be accessed due to
9043 // hiddenapi (typically it is declared up the hierarchy and is not an SDK
9044 // method). Try to find an interface method from the implemented interfaces which is
9045 // part of the SDK.
9046 ArtMethod* itf_method = klass->FindAccessibleInterfaceMethod(resolved, image_pointer_size_);
9047 if (itf_method == nullptr) {
9048 // No interface method. Call ShouldDenyAccessToMember again but this time
9049 // with AccessMethod::kLinking to ensure that an appropriate warning is
9050 // logged.
9051 hiddenapi::ShouldDenyAccessToMember(resolved,
9052 hiddenapi::AccessContext(class_loader, dex_cache),
9053 hiddenapi::AccessMethod::kLinking);
9054 resolved = nullptr;
9055 } else {
9056 // We found an interface method that is accessible, continue with the resolved method.
9057 }
9058 }
9059 if (resolved != nullptr) {
9060 // In case of jmvti, the dex file gets verified before being registered, so first
9061 // check if it's registered before checking class tables.
9062 const DexFile& dex_file = *dex_cache->GetDexFile();
9063 DCHECK(!IsDexFileRegistered(Thread::Current(), dex_file) ||
9064 FindClassTable(Thread::Current(), dex_cache) == ClassTableForClassLoader(class_loader))
9065 << "DexFile referrer: " << dex_file.GetLocation()
9066 << " ClassLoader: " << DescribeLoaders(class_loader, "");
9067 // Be a good citizen and update the dex cache to speed subsequent calls.
9068 dex_cache->SetResolvedMethod(method_idx, resolved);
9069 // Disable the following invariant check as the verifier breaks it. b/73760543
9070 // const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
9071 // DCHECK(LookupResolvedType(method_id.class_idx_, dex_cache, class_loader) != nullptr)
9072 // << "Method: " << resolved->PrettyMethod() << ", "
9073 // << "Class: " << klass->PrettyClass() << " (" << klass->GetStatus() << "), "
9074 // << "DexFile referrer: " << dex_file.GetLocation();
9075 }
9076 return resolved;
9077 }
9078
9079 // Returns true if `method` is either null or hidden.
9080 // Does not print any warnings if it is hidden.
CheckNoSuchMethod(ArtMethod * method,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)9081 static bool CheckNoSuchMethod(ArtMethod* method,
9082 ObjPtr<mirror::DexCache> dex_cache,
9083 ObjPtr<mirror::ClassLoader> class_loader)
9084 REQUIRES_SHARED(Locks::mutator_lock_) {
9085 return method == nullptr ||
9086 hiddenapi::ShouldDenyAccessToMember(method,
9087 hiddenapi::AccessContext(class_loader, dex_cache),
9088 hiddenapi::AccessMethod::kNone); // no warnings
9089 }
9090
FindIncompatibleMethod(ObjPtr<mirror::Class> klass,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader,uint32_t method_idx)9091 ArtMethod* ClassLinker::FindIncompatibleMethod(ObjPtr<mirror::Class> klass,
9092 ObjPtr<mirror::DexCache> dex_cache,
9093 ObjPtr<mirror::ClassLoader> class_loader,
9094 uint32_t method_idx) {
9095 if (klass->IsInterface()) {
9096 ArtMethod* method = klass->FindClassMethod(dex_cache, method_idx, image_pointer_size_);
9097 return CheckNoSuchMethod(method, dex_cache, class_loader) ? nullptr : method;
9098 } else {
9099 // If there was an interface method with the same signature, we would have
9100 // found it in the "copied" methods. Only DCHECK that the interface method
9101 // really does not exist.
9102 if (kIsDebugBuild) {
9103 ArtMethod* method =
9104 klass->FindInterfaceMethod(dex_cache, method_idx, image_pointer_size_);
9105 DCHECK(CheckNoSuchMethod(method, dex_cache, class_loader));
9106 }
9107 return nullptr;
9108 }
9109 }
9110
9111 template <ClassLinker::ResolveMode kResolveMode>
ResolveMethod(uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,ArtMethod * referrer,InvokeType type)9112 ArtMethod* ClassLinker::ResolveMethod(uint32_t method_idx,
9113 Handle<mirror::DexCache> dex_cache,
9114 Handle<mirror::ClassLoader> class_loader,
9115 ArtMethod* referrer,
9116 InvokeType type) {
9117 DCHECK(!Thread::Current()->IsExceptionPending()) << Thread::Current()->GetException()->Dump();
9118 DCHECK(dex_cache != nullptr);
9119 DCHECK(referrer == nullptr || !referrer->IsProxyMethod());
9120 // Check for hit in the dex cache.
9121 ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx);
9122 Thread::PoisonObjectPointersIfDebug();
9123 DCHECK(resolved == nullptr || !resolved->IsRuntimeMethod());
9124 bool valid_dex_cache_method = resolved != nullptr;
9125 if (kResolveMode == ResolveMode::kNoChecks && valid_dex_cache_method) {
9126 // We have a valid method from the DexCache and no checks to perform.
9127 DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
9128 return resolved;
9129 }
9130 const DexFile& dex_file = *dex_cache->GetDexFile();
9131 const dex::MethodId& method_id = dex_file.GetMethodId(method_idx);
9132 ObjPtr<mirror::Class> klass = nullptr;
9133 if (valid_dex_cache_method) {
9134 // We have a valid method from the DexCache but we need to perform ICCE and IAE checks.
9135 DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
9136 klass = LookupResolvedType(method_id.class_idx_, dex_cache.Get(), class_loader.Get());
9137 if (UNLIKELY(klass == nullptr)) {
9138 // We normaly should not end up here. However the verifier currently doesn't guarantee
9139 // the invariant of having the klass in the class table. b/73760543
9140 klass = ResolveType(method_id.class_idx_, dex_cache, class_loader);
9141 if (klass == nullptr) {
9142 // This can only happen if the current thread is not allowed to load
9143 // classes.
9144 DCHECK(!Thread::Current()->CanLoadClasses());
9145 DCHECK(Thread::Current()->IsExceptionPending());
9146 return nullptr;
9147 }
9148 }
9149 } else {
9150 // The method was not in the DexCache, resolve the declaring class.
9151 klass = ResolveType(method_id.class_idx_, dex_cache, class_loader);
9152 if (klass == nullptr) {
9153 DCHECK(Thread::Current()->IsExceptionPending());
9154 return nullptr;
9155 }
9156 }
9157
9158 // Check if the invoke type matches the class type.
9159 if (kResolveMode == ResolveMode::kCheckICCEAndIAE &&
9160 CheckInvokeClassMismatch</* kThrow= */ true>(
9161 dex_cache.Get(), type, [klass]() { return klass; })) {
9162 DCHECK(Thread::Current()->IsExceptionPending());
9163 return nullptr;
9164 }
9165
9166 if (!valid_dex_cache_method) {
9167 resolved = FindResolvedMethod(klass, dex_cache.Get(), class_loader.Get(), method_idx);
9168 }
9169
9170 // Note: We can check for IllegalAccessError only if we have a referrer.
9171 if (kResolveMode == ResolveMode::kCheckICCEAndIAE && resolved != nullptr && referrer != nullptr) {
9172 ObjPtr<mirror::Class> methods_class = resolved->GetDeclaringClass();
9173 ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
9174 if (!referring_class->CheckResolvedMethodAccess(methods_class,
9175 resolved,
9176 dex_cache.Get(),
9177 method_idx,
9178 type)) {
9179 DCHECK(Thread::Current()->IsExceptionPending());
9180 return nullptr;
9181 }
9182 }
9183
9184 // If we found a method, check for incompatible class changes.
9185 if (LIKELY(resolved != nullptr) &&
9186 LIKELY(kResolveMode == ResolveMode::kNoChecks ||
9187 !resolved->CheckIncompatibleClassChange(type))) {
9188 return resolved;
9189 } else {
9190 // If we had a method, or if we can find one with another lookup type,
9191 // it's an incompatible-class-change error.
9192 if (resolved == nullptr) {
9193 resolved = FindIncompatibleMethod(klass, dex_cache.Get(), class_loader.Get(), method_idx);
9194 }
9195 if (resolved != nullptr) {
9196 ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
9197 } else {
9198 // We failed to find the method (using all lookup types), so throw a NoSuchMethodError.
9199 const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
9200 const Signature signature = dex_file.GetMethodSignature(method_id);
9201 ThrowNoSuchMethodError(type, klass, name, signature);
9202 }
9203 Thread::Current()->AssertPendingException();
9204 return nullptr;
9205 }
9206 }
9207
ResolveMethodWithoutInvokeType(uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)9208 ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(uint32_t method_idx,
9209 Handle<mirror::DexCache> dex_cache,
9210 Handle<mirror::ClassLoader> class_loader) {
9211 ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx);
9212 Thread::PoisonObjectPointersIfDebug();
9213 if (resolved != nullptr) {
9214 DCHECK(!resolved->IsRuntimeMethod());
9215 DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
9216 return resolved;
9217 }
9218 // Fail, get the declaring class.
9219 const dex::MethodId& method_id = dex_cache->GetDexFile()->GetMethodId(method_idx);
9220 ObjPtr<mirror::Class> klass = ResolveType(method_id.class_idx_, dex_cache, class_loader);
9221 if (klass == nullptr) {
9222 Thread::Current()->AssertPendingException();
9223 return nullptr;
9224 }
9225 if (klass->IsInterface()) {
9226 resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
9227 } else {
9228 resolved = klass->FindClassMethod(dex_cache.Get(), method_idx, image_pointer_size_);
9229 }
9230 if (resolved != nullptr &&
9231 hiddenapi::ShouldDenyAccessToMember(
9232 resolved,
9233 hiddenapi::AccessContext(class_loader.Get(), dex_cache.Get()),
9234 hiddenapi::AccessMethod::kLinking)) {
9235 resolved = nullptr;
9236 }
9237 return resolved;
9238 }
9239
LookupResolvedField(uint32_t field_idx,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader,bool is_static)9240 ArtField* ClassLinker::LookupResolvedField(uint32_t field_idx,
9241 ObjPtr<mirror::DexCache> dex_cache,
9242 ObjPtr<mirror::ClassLoader> class_loader,
9243 bool is_static) {
9244 const DexFile& dex_file = *dex_cache->GetDexFile();
9245 const dex::FieldId& field_id = dex_file.GetFieldId(field_idx);
9246 ObjPtr<mirror::Class> klass = dex_cache->GetResolvedType(field_id.class_idx_);
9247 if (klass == nullptr) {
9248 klass = LookupResolvedType(field_id.class_idx_, dex_cache, class_loader);
9249 }
9250 if (klass == nullptr) {
9251 // The class has not been resolved yet, so the field is also unresolved.
9252 return nullptr;
9253 }
9254 DCHECK(klass->IsResolved());
9255
9256 return FindResolvedField(klass, dex_cache, class_loader, field_idx, is_static);
9257 }
9258
ResolveField(uint32_t field_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,bool is_static)9259 ArtField* ClassLinker::ResolveField(uint32_t field_idx,
9260 Handle<mirror::DexCache> dex_cache,
9261 Handle<mirror::ClassLoader> class_loader,
9262 bool is_static) {
9263 DCHECK(dex_cache != nullptr);
9264 DCHECK(!Thread::Current()->IsExceptionPending()) << Thread::Current()->GetException()->Dump();
9265 ArtField* resolved = dex_cache->GetResolvedField(field_idx);
9266 Thread::PoisonObjectPointersIfDebug();
9267 if (resolved != nullptr) {
9268 return resolved;
9269 }
9270 const DexFile& dex_file = *dex_cache->GetDexFile();
9271 const dex::FieldId& field_id = dex_file.GetFieldId(field_idx);
9272 ObjPtr<mirror::Class> klass = ResolveType(field_id.class_idx_, dex_cache, class_loader);
9273 if (klass == nullptr) {
9274 DCHECK(Thread::Current()->IsExceptionPending());
9275 return nullptr;
9276 }
9277
9278 resolved = FindResolvedField(klass, dex_cache.Get(), class_loader.Get(), field_idx, is_static);
9279 if (resolved == nullptr) {
9280 const char* name = dex_file.GetFieldName(field_id);
9281 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
9282 ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass, type, name);
9283 }
9284 return resolved;
9285 }
9286
ResolveFieldJLS(uint32_t field_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)9287 ArtField* ClassLinker::ResolveFieldJLS(uint32_t field_idx,
9288 Handle<mirror::DexCache> dex_cache,
9289 Handle<mirror::ClassLoader> class_loader) {
9290 DCHECK(dex_cache != nullptr);
9291 ArtField* resolved = dex_cache->GetResolvedField(field_idx);
9292 Thread::PoisonObjectPointersIfDebug();
9293 if (resolved != nullptr) {
9294 return resolved;
9295 }
9296 const DexFile& dex_file = *dex_cache->GetDexFile();
9297 const dex::FieldId& field_id = dex_file.GetFieldId(field_idx);
9298 ObjPtr<mirror::Class> klass = ResolveType(field_id.class_idx_, dex_cache, class_loader);
9299 if (klass == nullptr) {
9300 DCHECK(Thread::Current()->IsExceptionPending());
9301 return nullptr;
9302 }
9303
9304 resolved = FindResolvedFieldJLS(klass, dex_cache.Get(), class_loader.Get(), field_idx);
9305 if (resolved == nullptr) {
9306 const char* name = dex_file.GetFieldName(field_id);
9307 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
9308 ThrowNoSuchFieldError("", klass, type, name);
9309 }
9310 return resolved;
9311 }
9312
FindResolvedField(ObjPtr<mirror::Class> klass,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader,uint32_t field_idx,bool is_static)9313 ArtField* ClassLinker::FindResolvedField(ObjPtr<mirror::Class> klass,
9314 ObjPtr<mirror::DexCache> dex_cache,
9315 ObjPtr<mirror::ClassLoader> class_loader,
9316 uint32_t field_idx,
9317 bool is_static) {
9318 ArtField* resolved = nullptr;
9319 Thread* self = is_static ? Thread::Current() : nullptr;
9320 const DexFile& dex_file = *dex_cache->GetDexFile();
9321
9322 resolved = is_static ? mirror::Class::FindStaticField(self, klass, dex_cache, field_idx)
9323 : klass->FindInstanceField(dex_cache, field_idx);
9324
9325 if (resolved == nullptr) {
9326 const dex::FieldId& field_id = dex_file.GetFieldId(field_idx);
9327 const char* name = dex_file.GetFieldName(field_id);
9328 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
9329 resolved = is_static ? mirror::Class::FindStaticField(self, klass, name, type)
9330 : klass->FindInstanceField(name, type);
9331 }
9332
9333 if (resolved != nullptr &&
9334 hiddenapi::ShouldDenyAccessToMember(resolved,
9335 hiddenapi::AccessContext(class_loader, dex_cache),
9336 hiddenapi::AccessMethod::kLinking)) {
9337 resolved = nullptr;
9338 }
9339
9340 if (resolved != nullptr) {
9341 dex_cache->SetResolvedField(field_idx, resolved);
9342 }
9343
9344 return resolved;
9345 }
9346
FindResolvedFieldJLS(ObjPtr<mirror::Class> klass,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader,uint32_t field_idx)9347 ArtField* ClassLinker::FindResolvedFieldJLS(ObjPtr<mirror::Class> klass,
9348 ObjPtr<mirror::DexCache> dex_cache,
9349 ObjPtr<mirror::ClassLoader> class_loader,
9350 uint32_t field_idx) {
9351 ArtField* resolved = nullptr;
9352 Thread* self = Thread::Current();
9353 const DexFile& dex_file = *dex_cache->GetDexFile();
9354 const dex::FieldId& field_id = dex_file.GetFieldId(field_idx);
9355
9356 const char* name = dex_file.GetFieldName(field_id);
9357 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
9358 resolved = mirror::Class::FindField(self, klass, name, type);
9359
9360 if (resolved != nullptr &&
9361 hiddenapi::ShouldDenyAccessToMember(resolved,
9362 hiddenapi::AccessContext(class_loader, dex_cache),
9363 hiddenapi::AccessMethod::kLinking)) {
9364 resolved = nullptr;
9365 }
9366
9367 if (resolved != nullptr) {
9368 dex_cache->SetResolvedField(field_idx, resolved);
9369 }
9370
9371 return resolved;
9372 }
9373
ResolveMethodType(Thread * self,dex::ProtoIndex proto_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)9374 ObjPtr<mirror::MethodType> ClassLinker::ResolveMethodType(
9375 Thread* self,
9376 dex::ProtoIndex proto_idx,
9377 Handle<mirror::DexCache> dex_cache,
9378 Handle<mirror::ClassLoader> class_loader) {
9379 DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
9380 DCHECK(dex_cache != nullptr);
9381
9382 ObjPtr<mirror::MethodType> resolved = dex_cache->GetResolvedMethodType(proto_idx);
9383 if (resolved != nullptr) {
9384 return resolved;
9385 }
9386
9387 StackHandleScope<4> hs(self);
9388
9389 // First resolve the return type.
9390 const DexFile& dex_file = *dex_cache->GetDexFile();
9391 const dex::ProtoId& proto_id = dex_file.GetProtoId(proto_idx);
9392 Handle<mirror::Class> return_type(hs.NewHandle(
9393 ResolveType(proto_id.return_type_idx_, dex_cache, class_loader)));
9394 if (return_type == nullptr) {
9395 DCHECK(self->IsExceptionPending());
9396 return nullptr;
9397 }
9398
9399 // Then resolve the argument types.
9400 //
9401 // TODO: Is there a better way to figure out the number of method arguments
9402 // other than by looking at the shorty ?
9403 const size_t num_method_args = strlen(dex_file.StringDataByIdx(proto_id.shorty_idx_)) - 1;
9404
9405 ObjPtr<mirror::Class> array_of_class = GetClassRoot<mirror::ObjectArray<mirror::Class>>(this);
9406 Handle<mirror::ObjectArray<mirror::Class>> method_params(hs.NewHandle(
9407 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, num_method_args)));
9408 if (method_params == nullptr) {
9409 DCHECK(self->IsExceptionPending());
9410 return nullptr;
9411 }
9412
9413 DexFileParameterIterator it(dex_file, proto_id);
9414 int32_t i = 0;
9415 MutableHandle<mirror::Class> param_class = hs.NewHandle<mirror::Class>(nullptr);
9416 for (; it.HasNext(); it.Next()) {
9417 const dex::TypeIndex type_idx = it.GetTypeIdx();
9418 param_class.Assign(ResolveType(type_idx, dex_cache, class_loader));
9419 if (param_class == nullptr) {
9420 DCHECK(self->IsExceptionPending());
9421 return nullptr;
9422 }
9423
9424 method_params->Set(i++, param_class.Get());
9425 }
9426
9427 DCHECK(!it.HasNext());
9428
9429 Handle<mirror::MethodType> type = hs.NewHandle(
9430 mirror::MethodType::Create(self, return_type, method_params));
9431 dex_cache->SetResolvedMethodType(proto_idx, type.Get());
9432
9433 return type.Get();
9434 }
9435
ResolveMethodType(Thread * self,dex::ProtoIndex proto_idx,ArtMethod * referrer)9436 ObjPtr<mirror::MethodType> ClassLinker::ResolveMethodType(Thread* self,
9437 dex::ProtoIndex proto_idx,
9438 ArtMethod* referrer) {
9439 StackHandleScope<2> hs(self);
9440 Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
9441 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
9442 return ResolveMethodType(self, proto_idx, dex_cache, class_loader);
9443 }
9444
ResolveMethodHandleForField(Thread * self,const dex::MethodHandleItem & method_handle,ArtMethod * referrer)9445 ObjPtr<mirror::MethodHandle> ClassLinker::ResolveMethodHandleForField(
9446 Thread* self,
9447 const dex::MethodHandleItem& method_handle,
9448 ArtMethod* referrer) {
9449 DexFile::MethodHandleType handle_type =
9450 static_cast<DexFile::MethodHandleType>(method_handle.method_handle_type_);
9451 mirror::MethodHandle::Kind kind;
9452 bool is_put;
9453 bool is_static;
9454 int32_t num_params;
9455 switch (handle_type) {
9456 case DexFile::MethodHandleType::kStaticPut: {
9457 kind = mirror::MethodHandle::Kind::kStaticPut;
9458 is_put = true;
9459 is_static = true;
9460 num_params = 1;
9461 break;
9462 }
9463 case DexFile::MethodHandleType::kStaticGet: {
9464 kind = mirror::MethodHandle::Kind::kStaticGet;
9465 is_put = false;
9466 is_static = true;
9467 num_params = 0;
9468 break;
9469 }
9470 case DexFile::MethodHandleType::kInstancePut: {
9471 kind = mirror::MethodHandle::Kind::kInstancePut;
9472 is_put = true;
9473 is_static = false;
9474 num_params = 2;
9475 break;
9476 }
9477 case DexFile::MethodHandleType::kInstanceGet: {
9478 kind = mirror::MethodHandle::Kind::kInstanceGet;
9479 is_put = false;
9480 is_static = false;
9481 num_params = 1;
9482 break;
9483 }
9484 case DexFile::MethodHandleType::kInvokeStatic:
9485 case DexFile::MethodHandleType::kInvokeInstance:
9486 case DexFile::MethodHandleType::kInvokeConstructor:
9487 case DexFile::MethodHandleType::kInvokeDirect:
9488 case DexFile::MethodHandleType::kInvokeInterface:
9489 UNREACHABLE();
9490 }
9491
9492 ArtField* target_field =
9493 ResolveField(method_handle.field_or_method_idx_, referrer, is_static);
9494 if (LIKELY(target_field != nullptr)) {
9495 ObjPtr<mirror::Class> target_class = target_field->GetDeclaringClass();
9496 ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
9497 if (UNLIKELY(!referring_class->CanAccessMember(target_class, target_field->GetAccessFlags()))) {
9498 ThrowIllegalAccessErrorField(referring_class, target_field);
9499 return nullptr;
9500 }
9501 if (UNLIKELY(is_put && target_field->IsFinal())) {
9502 ThrowIllegalAccessErrorField(referring_class, target_field);
9503 return nullptr;
9504 }
9505 } else {
9506 DCHECK(Thread::Current()->IsExceptionPending());
9507 return nullptr;
9508 }
9509
9510 StackHandleScope<4> hs(self);
9511 ObjPtr<mirror::Class> array_of_class = GetClassRoot<mirror::ObjectArray<mirror::Class>>(this);
9512 Handle<mirror::ObjectArray<mirror::Class>> method_params(hs.NewHandle(
9513 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, num_params)));
9514 if (UNLIKELY(method_params == nullptr)) {
9515 DCHECK(self->IsExceptionPending());
9516 return nullptr;
9517 }
9518
9519 Handle<mirror::Class> constructor_class;
9520 Handle<mirror::Class> return_type;
9521 switch (handle_type) {
9522 case DexFile::MethodHandleType::kStaticPut: {
9523 method_params->Set(0, target_field->ResolveType());
9524 return_type = hs.NewHandle(GetClassRoot(ClassRoot::kPrimitiveVoid, this));
9525 break;
9526 }
9527 case DexFile::MethodHandleType::kStaticGet: {
9528 return_type = hs.NewHandle(target_field->ResolveType());
9529 break;
9530 }
9531 case DexFile::MethodHandleType::kInstancePut: {
9532 method_params->Set(0, target_field->GetDeclaringClass());
9533 method_params->Set(1, target_field->ResolveType());
9534 return_type = hs.NewHandle(GetClassRoot(ClassRoot::kPrimitiveVoid, this));
9535 break;
9536 }
9537 case DexFile::MethodHandleType::kInstanceGet: {
9538 method_params->Set(0, target_field->GetDeclaringClass());
9539 return_type = hs.NewHandle(target_field->ResolveType());
9540 break;
9541 }
9542 case DexFile::MethodHandleType::kInvokeStatic:
9543 case DexFile::MethodHandleType::kInvokeInstance:
9544 case DexFile::MethodHandleType::kInvokeConstructor:
9545 case DexFile::MethodHandleType::kInvokeDirect:
9546 case DexFile::MethodHandleType::kInvokeInterface:
9547 UNREACHABLE();
9548 }
9549
9550 for (int32_t i = 0; i < num_params; ++i) {
9551 if (UNLIKELY(method_params->Get(i) == nullptr)) {
9552 DCHECK(self->IsExceptionPending());
9553 return nullptr;
9554 }
9555 }
9556
9557 if (UNLIKELY(return_type.IsNull())) {
9558 DCHECK(self->IsExceptionPending());
9559 return nullptr;
9560 }
9561
9562 Handle<mirror::MethodType>
9563 method_type(hs.NewHandle(mirror::MethodType::Create(self, return_type, method_params)));
9564 if (UNLIKELY(method_type.IsNull())) {
9565 DCHECK(self->IsExceptionPending());
9566 return nullptr;
9567 }
9568
9569 uintptr_t target = reinterpret_cast<uintptr_t>(target_field);
9570 return mirror::MethodHandleImpl::Create(self, target, kind, method_type);
9571 }
9572
ResolveMethodHandleForMethod(Thread * self,const dex::MethodHandleItem & method_handle,ArtMethod * referrer)9573 ObjPtr<mirror::MethodHandle> ClassLinker::ResolveMethodHandleForMethod(
9574 Thread* self,
9575 const dex::MethodHandleItem& method_handle,
9576 ArtMethod* referrer) {
9577 DexFile::MethodHandleType handle_type =
9578 static_cast<DexFile::MethodHandleType>(method_handle.method_handle_type_);
9579 mirror::MethodHandle::Kind kind;
9580 uint32_t receiver_count = 0;
9581 ArtMethod* target_method = nullptr;
9582 switch (handle_type) {
9583 case DexFile::MethodHandleType::kStaticPut:
9584 case DexFile::MethodHandleType::kStaticGet:
9585 case DexFile::MethodHandleType::kInstancePut:
9586 case DexFile::MethodHandleType::kInstanceGet:
9587 UNREACHABLE();
9588 case DexFile::MethodHandleType::kInvokeStatic: {
9589 kind = mirror::MethodHandle::Kind::kInvokeStatic;
9590 receiver_count = 0;
9591 target_method = ResolveMethod<ResolveMode::kNoChecks>(self,
9592 method_handle.field_or_method_idx_,
9593 referrer,
9594 InvokeType::kStatic);
9595 break;
9596 }
9597 case DexFile::MethodHandleType::kInvokeInstance: {
9598 kind = mirror::MethodHandle::Kind::kInvokeVirtual;
9599 receiver_count = 1;
9600 target_method = ResolveMethod<ResolveMode::kNoChecks>(self,
9601 method_handle.field_or_method_idx_,
9602 referrer,
9603 InvokeType::kVirtual);
9604 break;
9605 }
9606 case DexFile::MethodHandleType::kInvokeConstructor: {
9607 // Constructors are currently implemented as a transform. They
9608 // are special cased later in this method.
9609 kind = mirror::MethodHandle::Kind::kInvokeTransform;
9610 receiver_count = 0;
9611 target_method = ResolveMethod<ResolveMode::kNoChecks>(self,
9612 method_handle.field_or_method_idx_,
9613 referrer,
9614 InvokeType::kDirect);
9615 break;
9616 }
9617 case DexFile::MethodHandleType::kInvokeDirect: {
9618 kind = mirror::MethodHandle::Kind::kInvokeDirect;
9619 receiver_count = 1;
9620 StackHandleScope<2> hs(self);
9621 // A constant method handle with type kInvokeDirect can refer to
9622 // a method that is private or to a method in a super class. To
9623 // disambiguate the two options, we resolve the method ignoring
9624 // the invocation type to determine if the method is private. We
9625 // then resolve again specifying the intended invocation type to
9626 // force the appropriate checks.
9627 target_method = ResolveMethodWithoutInvokeType(method_handle.field_or_method_idx_,
9628 hs.NewHandle(referrer->GetDexCache()),
9629 hs.NewHandle(referrer->GetClassLoader()));
9630 if (UNLIKELY(target_method == nullptr)) {
9631 break;
9632 }
9633
9634 if (target_method->IsPrivate()) {
9635 kind = mirror::MethodHandle::Kind::kInvokeDirect;
9636 target_method = ResolveMethod<ResolveMode::kNoChecks>(self,
9637 method_handle.field_or_method_idx_,
9638 referrer,
9639 InvokeType::kDirect);
9640 } else {
9641 kind = mirror::MethodHandle::Kind::kInvokeSuper;
9642 target_method = ResolveMethod<ResolveMode::kNoChecks>(self,
9643 method_handle.field_or_method_idx_,
9644 referrer,
9645 InvokeType::kSuper);
9646 if (UNLIKELY(target_method == nullptr)) {
9647 break;
9648 }
9649 // Find the method specified in the parent in referring class
9650 // so invoke-super invokes the method in the parent of the
9651 // referrer.
9652 target_method =
9653 referrer->GetDeclaringClass()->FindVirtualMethodForVirtual(target_method,
9654 kRuntimePointerSize);
9655 }
9656 break;
9657 }
9658 case DexFile::MethodHandleType::kInvokeInterface: {
9659 kind = mirror::MethodHandle::Kind::kInvokeInterface;
9660 receiver_count = 1;
9661 target_method = ResolveMethod<ResolveMode::kNoChecks>(self,
9662 method_handle.field_or_method_idx_,
9663 referrer,
9664 InvokeType::kInterface);
9665 break;
9666 }
9667 }
9668
9669 if (UNLIKELY(target_method == nullptr)) {
9670 DCHECK(Thread::Current()->IsExceptionPending());
9671 return nullptr;
9672 }
9673
9674 ObjPtr<mirror::Class> target_class = target_method->GetDeclaringClass();
9675 ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
9676 uint32_t access_flags = target_method->GetAccessFlags();
9677 if (UNLIKELY(!referring_class->CanAccessMember(target_class, access_flags))) {
9678 ThrowIllegalAccessErrorMethod(referring_class, target_method);
9679 return nullptr;
9680 }
9681
9682 // Calculate the number of parameters from the method shorty. We add the
9683 // receiver count (0 or 1) and deduct one for the return value.
9684 uint32_t shorty_length;
9685 target_method->GetShorty(&shorty_length);
9686 int32_t num_params = static_cast<int32_t>(shorty_length + receiver_count - 1);
9687
9688 StackHandleScope<5> hs(self);
9689 ObjPtr<mirror::Class> array_of_class = GetClassRoot<mirror::ObjectArray<mirror::Class>>(this);
9690 Handle<mirror::ObjectArray<mirror::Class>> method_params(hs.NewHandle(
9691 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, num_params)));
9692 if (method_params.Get() == nullptr) {
9693 DCHECK(self->IsExceptionPending());
9694 return nullptr;
9695 }
9696
9697 const DexFile* dex_file = referrer->GetDexFile();
9698 const dex::MethodId& method_id = dex_file->GetMethodId(method_handle.field_or_method_idx_);
9699 int32_t index = 0;
9700 if (receiver_count != 0) {
9701 // Insert receiver. Use the class identified in the method handle rather than the declaring
9702 // class of the resolved method which may be super class or default interface method
9703 // (b/115964401).
9704 ObjPtr<mirror::Class> receiver_class = LookupResolvedType(method_id.class_idx_, referrer);
9705 // receiver_class should have been resolved when resolving the target method.
9706 DCHECK(receiver_class != nullptr);
9707 method_params->Set(index++, receiver_class);
9708 }
9709
9710 const dex::ProtoId& proto_id = dex_file->GetProtoId(method_id.proto_idx_);
9711 DexFileParameterIterator it(*dex_file, proto_id);
9712 while (it.HasNext()) {
9713 DCHECK_LT(index, num_params);
9714 const dex::TypeIndex type_idx = it.GetTypeIdx();
9715 ObjPtr<mirror::Class> klass = ResolveType(type_idx, referrer);
9716 if (nullptr == klass) {
9717 DCHECK(self->IsExceptionPending());
9718 return nullptr;
9719 }
9720 method_params->Set(index++, klass);
9721 it.Next();
9722 }
9723
9724 Handle<mirror::Class> return_type =
9725 hs.NewHandle(ResolveType(proto_id.return_type_idx_, referrer));
9726 if (UNLIKELY(return_type.IsNull())) {
9727 DCHECK(self->IsExceptionPending());
9728 return nullptr;
9729 }
9730
9731 Handle<mirror::MethodType>
9732 method_type(hs.NewHandle(mirror::MethodType::Create(self, return_type, method_params)));
9733 if (UNLIKELY(method_type.IsNull())) {
9734 DCHECK(self->IsExceptionPending());
9735 return nullptr;
9736 }
9737
9738 if (UNLIKELY(handle_type == DexFile::MethodHandleType::kInvokeConstructor)) {
9739 Handle<mirror::Class> constructor_class = hs.NewHandle(target_method->GetDeclaringClass());
9740 Handle<mirror::MethodHandlesLookup> lookup =
9741 hs.NewHandle(mirror::MethodHandlesLookup::GetDefault(self));
9742 return lookup->FindConstructor(self, constructor_class, method_type);
9743 }
9744
9745 uintptr_t target = reinterpret_cast<uintptr_t>(target_method);
9746 return mirror::MethodHandleImpl::Create(self, target, kind, method_type);
9747 }
9748
ResolveMethodHandle(Thread * self,uint32_t method_handle_idx,ArtMethod * referrer)9749 ObjPtr<mirror::MethodHandle> ClassLinker::ResolveMethodHandle(Thread* self,
9750 uint32_t method_handle_idx,
9751 ArtMethod* referrer)
9752 REQUIRES_SHARED(Locks::mutator_lock_) {
9753 const DexFile* const dex_file = referrer->GetDexFile();
9754 const dex::MethodHandleItem& method_handle = dex_file->GetMethodHandle(method_handle_idx);
9755 switch (static_cast<DexFile::MethodHandleType>(method_handle.method_handle_type_)) {
9756 case DexFile::MethodHandleType::kStaticPut:
9757 case DexFile::MethodHandleType::kStaticGet:
9758 case DexFile::MethodHandleType::kInstancePut:
9759 case DexFile::MethodHandleType::kInstanceGet:
9760 return ResolveMethodHandleForField(self, method_handle, referrer);
9761 case DexFile::MethodHandleType::kInvokeStatic:
9762 case DexFile::MethodHandleType::kInvokeInstance:
9763 case DexFile::MethodHandleType::kInvokeConstructor:
9764 case DexFile::MethodHandleType::kInvokeDirect:
9765 case DexFile::MethodHandleType::kInvokeInterface:
9766 return ResolveMethodHandleForMethod(self, method_handle, referrer);
9767 }
9768 }
9769
IsQuickResolutionStub(const void * entry_point) const9770 bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const {
9771 return (entry_point == GetQuickResolutionStub()) ||
9772 (quick_resolution_trampoline_ == entry_point);
9773 }
9774
IsQuickToInterpreterBridge(const void * entry_point) const9775 bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const {
9776 return (entry_point == GetQuickToInterpreterBridge()) ||
9777 (quick_to_interpreter_bridge_trampoline_ == entry_point);
9778 }
9779
IsQuickGenericJniStub(const void * entry_point) const9780 bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const {
9781 return (entry_point == GetQuickGenericJniStub()) ||
9782 (quick_generic_jni_trampoline_ == entry_point);
9783 }
9784
IsJniDlsymLookupStub(const void * entry_point) const9785 bool ClassLinker::IsJniDlsymLookupStub(const void* entry_point) const {
9786 return entry_point == GetJniDlsymLookupStub() ||
9787 (jni_dlsym_lookup_trampoline_ == entry_point);
9788 }
9789
IsJniDlsymLookupCriticalStub(const void * entry_point) const9790 bool ClassLinker::IsJniDlsymLookupCriticalStub(const void* entry_point) const {
9791 return entry_point == GetJniDlsymLookupCriticalStub() ||
9792 (jni_dlsym_lookup_critical_trampoline_ == entry_point);
9793 }
9794
GetRuntimeQuickGenericJniStub() const9795 const void* ClassLinker::GetRuntimeQuickGenericJniStub() const {
9796 return GetQuickGenericJniStub();
9797 }
9798
SetEntryPointsToInterpreter(ArtMethod * method) const9799 void ClassLinker::SetEntryPointsToInterpreter(ArtMethod* method) const {
9800 if (!method->IsNative()) {
9801 method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
9802 } else {
9803 method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub());
9804 }
9805 }
9806
SetEntryPointsForObsoleteMethod(ArtMethod * method) const9807 void ClassLinker::SetEntryPointsForObsoleteMethod(ArtMethod* method) const {
9808 DCHECK(method->IsObsolete());
9809 // We cannot mess with the entrypoints of native methods because they are used to determine how
9810 // large the method's quick stack frame is. Without this information we cannot walk the stacks.
9811 if (!method->IsNative()) {
9812 method->SetEntryPointFromQuickCompiledCode(GetInvokeObsoleteMethodStub());
9813 }
9814 }
9815
DumpForSigQuit(std::ostream & os)9816 void ClassLinker::DumpForSigQuit(std::ostream& os) {
9817 ScopedObjectAccess soa(Thread::Current());
9818 ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_);
9819 os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes="
9820 << NumNonZygoteClasses() << "\n";
9821 ReaderMutexLock mu2(soa.Self(), *Locks::dex_lock_);
9822 os << "Dumping registered class loaders\n";
9823 size_t class_loader_index = 0;
9824 for (const ClassLoaderData& class_loader : class_loaders_) {
9825 ObjPtr<mirror::ClassLoader> loader =
9826 ObjPtr<mirror::ClassLoader>::DownCast(soa.Self()->DecodeJObject(class_loader.weak_root));
9827 if (loader != nullptr) {
9828 os << "#" << class_loader_index++ << " " << loader->GetClass()->PrettyDescriptor() << ": [";
9829 bool saw_one_dex_file = false;
9830 for (const DexCacheData& dex_cache : dex_caches_) {
9831 if (dex_cache.IsValid() && dex_cache.class_table == class_loader.class_table) {
9832 if (saw_one_dex_file) {
9833 os << ":";
9834 }
9835 saw_one_dex_file = true;
9836 os << dex_cache.dex_file->GetLocation();
9837 }
9838 }
9839 os << "]";
9840 bool found_parent = false;
9841 if (loader->GetParent() != nullptr) {
9842 size_t parent_index = 0;
9843 for (const ClassLoaderData& class_loader2 : class_loaders_) {
9844 ObjPtr<mirror::ClassLoader> loader2 = ObjPtr<mirror::ClassLoader>::DownCast(
9845 soa.Self()->DecodeJObject(class_loader2.weak_root));
9846 if (loader2 == loader->GetParent()) {
9847 os << ", parent #" << parent_index;
9848 found_parent = true;
9849 break;
9850 }
9851 parent_index++;
9852 }
9853 if (!found_parent) {
9854 os << ", unregistered parent of type "
9855 << loader->GetParent()->GetClass()->PrettyDescriptor();
9856 }
9857 } else {
9858 os << ", no parent";
9859 }
9860 os << "\n";
9861 }
9862 }
9863 os << "Done dumping class loaders\n";
9864 Runtime* runtime = Runtime::Current();
9865 os << "Classes initialized: " << runtime->GetStat(KIND_GLOBAL_CLASS_INIT_COUNT) << " in "
9866 << PrettyDuration(runtime->GetStat(KIND_GLOBAL_CLASS_INIT_TIME)) << "\n";
9867 }
9868
9869 class CountClassesVisitor : public ClassLoaderVisitor {
9870 public:
CountClassesVisitor()9871 CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {}
9872
Visit(ObjPtr<mirror::ClassLoader> class_loader)9873 void Visit(ObjPtr<mirror::ClassLoader> class_loader)
9874 REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override {
9875 ClassTable* const class_table = class_loader->GetClassTable();
9876 if (class_table != nullptr) {
9877 num_zygote_classes += class_table->NumZygoteClasses(class_loader);
9878 num_non_zygote_classes += class_table->NumNonZygoteClasses(class_loader);
9879 }
9880 }
9881
9882 size_t num_zygote_classes;
9883 size_t num_non_zygote_classes;
9884 };
9885
NumZygoteClasses() const9886 size_t ClassLinker::NumZygoteClasses() const {
9887 CountClassesVisitor visitor;
9888 VisitClassLoaders(&visitor);
9889 return visitor.num_zygote_classes + boot_class_table_->NumZygoteClasses(nullptr);
9890 }
9891
NumNonZygoteClasses() const9892 size_t ClassLinker::NumNonZygoteClasses() const {
9893 CountClassesVisitor visitor;
9894 VisitClassLoaders(&visitor);
9895 return visitor.num_non_zygote_classes + boot_class_table_->NumNonZygoteClasses(nullptr);
9896 }
9897
NumLoadedClasses()9898 size_t ClassLinker::NumLoadedClasses() {
9899 ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
9900 // Only return non zygote classes since these are the ones which apps which care about.
9901 return NumNonZygoteClasses();
9902 }
9903
GetClassesLockOwner()9904 pid_t ClassLinker::GetClassesLockOwner() {
9905 return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid();
9906 }
9907
GetDexLockOwner()9908 pid_t ClassLinker::GetDexLockOwner() {
9909 return Locks::dex_lock_->GetExclusiveOwnerTid();
9910 }
9911
SetClassRoot(ClassRoot class_root,ObjPtr<mirror::Class> klass)9912 void ClassLinker::SetClassRoot(ClassRoot class_root, ObjPtr<mirror::Class> klass) {
9913 DCHECK(!init_done_);
9914
9915 DCHECK(klass != nullptr);
9916 DCHECK(klass->GetClassLoader() == nullptr);
9917
9918 mirror::ObjectArray<mirror::Class>* class_roots = class_roots_.Read();
9919 DCHECK(class_roots != nullptr);
9920 DCHECK_LT(static_cast<uint32_t>(class_root), static_cast<uint32_t>(ClassRoot::kMax));
9921 int32_t index = static_cast<int32_t>(class_root);
9922 DCHECK(class_roots->Get(index) == nullptr);
9923 class_roots->Set<false>(index, klass);
9924 }
9925
CreateWellKnownClassLoader(Thread * self,const std::vector<const DexFile * > & dex_files,Handle<mirror::Class> loader_class,Handle<mirror::ClassLoader> parent_loader,Handle<mirror::ObjectArray<mirror::ClassLoader>> shared_libraries)9926 ObjPtr<mirror::ClassLoader> ClassLinker::CreateWellKnownClassLoader(
9927 Thread* self,
9928 const std::vector<const DexFile*>& dex_files,
9929 Handle<mirror::Class> loader_class,
9930 Handle<mirror::ClassLoader> parent_loader,
9931 Handle<mirror::ObjectArray<mirror::ClassLoader>> shared_libraries) {
9932
9933 StackHandleScope<5> hs(self);
9934
9935 ArtField* dex_elements_field =
9936 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
9937
9938 Handle<mirror::Class> dex_elements_class(hs.NewHandle(dex_elements_field->ResolveType()));
9939 DCHECK(dex_elements_class != nullptr);
9940 DCHECK(dex_elements_class->IsArrayClass());
9941 Handle<mirror::ObjectArray<mirror::Object>> h_dex_elements(hs.NewHandle(
9942 mirror::ObjectArray<mirror::Object>::Alloc(self,
9943 dex_elements_class.Get(),
9944 dex_files.size())));
9945 Handle<mirror::Class> h_dex_element_class =
9946 hs.NewHandle(dex_elements_class->GetComponentType());
9947
9948 ArtField* element_file_field =
9949 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
9950 DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass());
9951
9952 ArtField* cookie_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
9953 DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->LookupResolvedType());
9954
9955 ArtField* file_name_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_fileName);
9956 DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->LookupResolvedType());
9957
9958 // Fill the elements array.
9959 int32_t index = 0;
9960 for (const DexFile* dex_file : dex_files) {
9961 StackHandleScope<4> hs2(self);
9962
9963 // CreateWellKnownClassLoader is only used by gtests and compiler.
9964 // Index 0 of h_long_array is supposed to be the oat file but we can leave it null.
9965 Handle<mirror::LongArray> h_long_array = hs2.NewHandle(mirror::LongArray::Alloc(
9966 self,
9967 kDexFileIndexStart + 1));
9968 DCHECK(h_long_array != nullptr);
9969 h_long_array->Set(kDexFileIndexStart, reinterpret_cast64<int64_t>(dex_file));
9970
9971 // Note that this creates a finalizable dalvik.system.DexFile object and a corresponding
9972 // FinalizerReference which will never get cleaned up without a started runtime.
9973 Handle<mirror::Object> h_dex_file = hs2.NewHandle(
9974 cookie_field->GetDeclaringClass()->AllocObject(self));
9975 DCHECK(h_dex_file != nullptr);
9976 cookie_field->SetObject<false>(h_dex_file.Get(), h_long_array.Get());
9977
9978 Handle<mirror::String> h_file_name = hs2.NewHandle(
9979 mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str()));
9980 DCHECK(h_file_name != nullptr);
9981 file_name_field->SetObject<false>(h_dex_file.Get(), h_file_name.Get());
9982
9983 Handle<mirror::Object> h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self));
9984 DCHECK(h_element != nullptr);
9985 element_file_field->SetObject<false>(h_element.Get(), h_dex_file.Get());
9986
9987 h_dex_elements->Set(index, h_element.Get());
9988 index++;
9989 }
9990 DCHECK_EQ(index, h_dex_elements->GetLength());
9991
9992 // Create DexPathList.
9993 Handle<mirror::Object> h_dex_path_list = hs.NewHandle(
9994 dex_elements_field->GetDeclaringClass()->AllocObject(self));
9995 DCHECK(h_dex_path_list != nullptr);
9996 // Set elements.
9997 dex_elements_field->SetObject<false>(h_dex_path_list.Get(), h_dex_elements.Get());
9998 // Create an empty List for the "nativeLibraryDirectories," required for native tests.
9999 // Note: this code is uncommon(oatdump)/testing-only, so don't add further WellKnownClasses
10000 // elements.
10001 {
10002 ArtField* native_lib_dirs = dex_elements_field->GetDeclaringClass()->
10003 FindDeclaredInstanceField("nativeLibraryDirectories", "Ljava/util/List;");
10004 DCHECK(native_lib_dirs != nullptr);
10005 ObjPtr<mirror::Class> list_class = FindSystemClass(self, "Ljava/util/ArrayList;");
10006 DCHECK(list_class != nullptr);
10007 {
10008 StackHandleScope<1> h_list_scope(self);
10009 Handle<mirror::Class> h_list_class(h_list_scope.NewHandle<mirror::Class>(list_class));
10010 bool list_init = EnsureInitialized(self, h_list_class, true, true);
10011 DCHECK(list_init);
10012 list_class = h_list_class.Get();
10013 }
10014 ObjPtr<mirror::Object> list_object = list_class->AllocObject(self);
10015 // Note: we leave the object uninitialized. This must never leak into any non-testing code, but
10016 // is fine for testing. While it violates a Java-code invariant (the elementData field is
10017 // normally never null), as long as one does not try to add elements, this will still
10018 // work.
10019 native_lib_dirs->SetObject<false>(h_dex_path_list.Get(), list_object);
10020 }
10021
10022 // Create the class loader..
10023 Handle<mirror::ClassLoader> h_class_loader = hs.NewHandle<mirror::ClassLoader>(
10024 ObjPtr<mirror::ClassLoader>::DownCast(loader_class->AllocObject(self)));
10025 DCHECK(h_class_loader != nullptr);
10026 // Set DexPathList.
10027 ArtField* path_list_field =
10028 jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList);
10029 DCHECK(path_list_field != nullptr);
10030 path_list_field->SetObject<false>(h_class_loader.Get(), h_dex_path_list.Get());
10031
10032 // Make a pretend boot-classpath.
10033 // TODO: Should we scan the image?
10034 ArtField* const parent_field =
10035 mirror::Class::FindField(self,
10036 h_class_loader->GetClass(),
10037 "parent",
10038 "Ljava/lang/ClassLoader;");
10039 DCHECK(parent_field != nullptr);
10040 if (parent_loader.Get() == nullptr) {
10041 ScopedObjectAccessUnchecked soa(self);
10042 ObjPtr<mirror::Object> boot_loader(soa.Decode<mirror::Class>(
10043 WellKnownClasses::java_lang_BootClassLoader)->AllocObject(self));
10044 parent_field->SetObject<false>(h_class_loader.Get(), boot_loader);
10045 } else {
10046 parent_field->SetObject<false>(h_class_loader.Get(), parent_loader.Get());
10047 }
10048
10049 ArtField* shared_libraries_field =
10050 jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders);
10051 DCHECK(shared_libraries_field != nullptr);
10052 shared_libraries_field->SetObject<false>(h_class_loader.Get(), shared_libraries.Get());
10053
10054 return h_class_loader.Get();
10055 }
10056
CreateWellKnownClassLoader(Thread * self,const std::vector<const DexFile * > & dex_files,jclass loader_class,jobject parent_loader,jobject shared_libraries)10057 jobject ClassLinker::CreateWellKnownClassLoader(Thread* self,
10058 const std::vector<const DexFile*>& dex_files,
10059 jclass loader_class,
10060 jobject parent_loader,
10061 jobject shared_libraries) {
10062 CHECK(self->GetJniEnv()->IsSameObject(loader_class,
10063 WellKnownClasses::dalvik_system_PathClassLoader) ||
10064 self->GetJniEnv()->IsSameObject(loader_class,
10065 WellKnownClasses::dalvik_system_DelegateLastClassLoader) ||
10066 self->GetJniEnv()->IsSameObject(loader_class,
10067 WellKnownClasses::dalvik_system_InMemoryDexClassLoader));
10068
10069 // SOAAlreadyRunnable is protected, and we need something to add a global reference.
10070 // We could move the jobject to the callers, but all call-sites do this...
10071 ScopedObjectAccessUnchecked soa(self);
10072
10073 // For now, create a libcore-level DexFile for each ART DexFile. This "explodes" multidex.
10074 StackHandleScope<4> hs(self);
10075
10076 Handle<mirror::Class> h_loader_class =
10077 hs.NewHandle<mirror::Class>(soa.Decode<mirror::Class>(loader_class));
10078 Handle<mirror::ClassLoader> h_parent =
10079 hs.NewHandle<mirror::ClassLoader>(soa.Decode<mirror::ClassLoader>(parent_loader));
10080 Handle<mirror::ObjectArray<mirror::ClassLoader>> h_shared_libraries =
10081 hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::ClassLoader>>(shared_libraries));
10082
10083 ObjPtr<mirror::ClassLoader> loader = CreateWellKnownClassLoader(
10084 self,
10085 dex_files,
10086 h_loader_class,
10087 h_parent,
10088 h_shared_libraries);
10089
10090 // Make it a global ref and return.
10091 ScopedLocalRef<jobject> local_ref(
10092 soa.Env(), soa.Env()->AddLocalReference<jobject>(loader));
10093 return soa.Env()->NewGlobalRef(local_ref.get());
10094 }
10095
CreatePathClassLoader(Thread * self,const std::vector<const DexFile * > & dex_files)10096 jobject ClassLinker::CreatePathClassLoader(Thread* self,
10097 const std::vector<const DexFile*>& dex_files) {
10098 return CreateWellKnownClassLoader(self,
10099 dex_files,
10100 WellKnownClasses::dalvik_system_PathClassLoader,
10101 nullptr);
10102 }
10103
DropFindArrayClassCache()10104 void ClassLinker::DropFindArrayClassCache() {
10105 std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
10106 find_array_class_cache_next_victim_ = 0;
10107 }
10108
VisitClassLoaders(ClassLoaderVisitor * visitor) const10109 void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const {
10110 Thread* const self = Thread::Current();
10111 for (const ClassLoaderData& data : class_loaders_) {
10112 // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
10113 ObjPtr<mirror::ClassLoader> class_loader = ObjPtr<mirror::ClassLoader>::DownCast(
10114 self->DecodeJObject(data.weak_root));
10115 if (class_loader != nullptr) {
10116 visitor->Visit(class_loader);
10117 }
10118 }
10119 }
10120
VisitAllocators(AllocatorVisitor * visitor) const10121 void ClassLinker::VisitAllocators(AllocatorVisitor* visitor) const {
10122 for (const ClassLoaderData& data : class_loaders_) {
10123 LinearAlloc* alloc = data.allocator;
10124 if (alloc != nullptr && !visitor->Visit(alloc)) {
10125 break;
10126 }
10127 }
10128 }
10129
InsertDexFileInToClassLoader(ObjPtr<mirror::Object> dex_file,ObjPtr<mirror::ClassLoader> class_loader)10130 void ClassLinker::InsertDexFileInToClassLoader(ObjPtr<mirror::Object> dex_file,
10131 ObjPtr<mirror::ClassLoader> class_loader) {
10132 DCHECK(dex_file != nullptr);
10133 Thread* const self = Thread::Current();
10134 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
10135 ClassTable* const table = ClassTableForClassLoader(class_loader);
10136 DCHECK(table != nullptr);
10137 if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) {
10138 // It was not already inserted, perform the write barrier to let the GC know the class loader's
10139 // class table was modified.
10140 WriteBarrier::ForEveryFieldWrite(class_loader);
10141 }
10142 }
10143
CleanupClassLoaders()10144 void ClassLinker::CleanupClassLoaders() {
10145 Thread* const self = Thread::Current();
10146 std::vector<ClassLoaderData> to_delete;
10147 // Do the delete outside the lock to avoid lock violation in jit code cache.
10148 {
10149 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
10150 for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) {
10151 const ClassLoaderData& data = *it;
10152 // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
10153 ObjPtr<mirror::ClassLoader> class_loader =
10154 ObjPtr<mirror::ClassLoader>::DownCast(self->DecodeJObject(data.weak_root));
10155 if (class_loader != nullptr) {
10156 ++it;
10157 } else {
10158 VLOG(class_linker) << "Freeing class loader";
10159 to_delete.push_back(data);
10160 it = class_loaders_.erase(it);
10161 }
10162 }
10163 }
10164 for (ClassLoaderData& data : to_delete) {
10165 // CHA unloading analysis and SingleImplementaion cleanups are required.
10166 DeleteClassLoader(self, data, /*cleanup_cha=*/ true);
10167 }
10168 }
10169
10170 class ClassLinker::FindVirtualMethodHolderVisitor : public ClassVisitor {
10171 public:
FindVirtualMethodHolderVisitor(const ArtMethod * method,PointerSize pointer_size)10172 FindVirtualMethodHolderVisitor(const ArtMethod* method, PointerSize pointer_size)
10173 : method_(method),
10174 pointer_size_(pointer_size) {}
10175
operator ()(ObjPtr<mirror::Class> klass)10176 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) override {
10177 if (klass->GetVirtualMethodsSliceUnchecked(pointer_size_).Contains(method_)) {
10178 holder_ = klass;
10179 }
10180 // Return false to stop searching if holder_ is not null.
10181 return holder_ == nullptr;
10182 }
10183
10184 ObjPtr<mirror::Class> holder_ = nullptr;
10185 const ArtMethod* const method_;
10186 const PointerSize pointer_size_;
10187 };
10188
GetHoldingClassOfCopiedMethod(ArtMethod * method)10189 ObjPtr<mirror::Class> ClassLinker::GetHoldingClassOfCopiedMethod(ArtMethod* method) {
10190 ScopedTrace trace(__FUNCTION__); // Since this function is slow, have a trace to notify people.
10191 CHECK(method->IsCopied());
10192 FindVirtualMethodHolderVisitor visitor(method, image_pointer_size_);
10193 VisitClasses(&visitor);
10194 return visitor.holder_;
10195 }
10196
AllocIfTable(Thread * self,size_t ifcount)10197 ObjPtr<mirror::IfTable> ClassLinker::AllocIfTable(Thread* self, size_t ifcount) {
10198 return ObjPtr<mirror::IfTable>::DownCast(ObjPtr<mirror::ObjectArray<mirror::Object>>(
10199 mirror::IfTable::Alloc(self,
10200 GetClassRoot<mirror::ObjectArray<mirror::Object>>(this),
10201 ifcount * mirror::IfTable::kMax)));
10202 }
10203
IsUpdatableBootClassPathDescriptor(const char * descriptor ATTRIBUTE_UNUSED)10204 bool ClassLinker::IsUpdatableBootClassPathDescriptor(const char* descriptor ATTRIBUTE_UNUSED) {
10205 // Should not be called on ClassLinker, only on AotClassLinker that overrides this.
10206 LOG(FATAL) << "UNREACHABLE";
10207 UNREACHABLE();
10208 }
10209
DenyAccessBasedOnPublicSdk(ArtMethod * art_method ATTRIBUTE_UNUSED) const10210 bool ClassLinker::DenyAccessBasedOnPublicSdk(ArtMethod* art_method ATTRIBUTE_UNUSED) const
10211 REQUIRES_SHARED(Locks::mutator_lock_) {
10212 // Should not be called on ClassLinker, only on AotClassLinker that overrides this.
10213 LOG(FATAL) << "UNREACHABLE";
10214 UNREACHABLE();
10215 }
10216
DenyAccessBasedOnPublicSdk(ArtField * art_field ATTRIBUTE_UNUSED) const10217 bool ClassLinker::DenyAccessBasedOnPublicSdk(ArtField* art_field ATTRIBUTE_UNUSED) const
10218 REQUIRES_SHARED(Locks::mutator_lock_) {
10219 // Should not be called on ClassLinker, only on AotClassLinker that overrides this.
10220 LOG(FATAL) << "UNREACHABLE";
10221 UNREACHABLE();
10222 }
10223
DenyAccessBasedOnPublicSdk(const char * type_descriptor ATTRIBUTE_UNUSED) const10224 bool ClassLinker::DenyAccessBasedOnPublicSdk(const char* type_descriptor ATTRIBUTE_UNUSED) const {
10225 // Should not be called on ClassLinker, only on AotClassLinker that overrides this.
10226 LOG(FATAL) << "UNREACHABLE";
10227 UNREACHABLE();
10228 }
10229
SetEnablePublicSdkChecks(bool enabled ATTRIBUTE_UNUSED)10230 void ClassLinker::SetEnablePublicSdkChecks(bool enabled ATTRIBUTE_UNUSED) {
10231 // Should not be called on ClassLinker, only on AotClassLinker that overrides this.
10232 LOG(FATAL) << "UNREACHABLE";
10233 UNREACHABLE();
10234 }
10235
10236 // Instantiate ClassLinker::ResolveMethod.
10237 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
10238 uint32_t method_idx,
10239 Handle<mirror::DexCache> dex_cache,
10240 Handle<mirror::ClassLoader> class_loader,
10241 ArtMethod* referrer,
10242 InvokeType type);
10243 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
10244 uint32_t method_idx,
10245 Handle<mirror::DexCache> dex_cache,
10246 Handle<mirror::ClassLoader> class_loader,
10247 ArtMethod* referrer,
10248 InvokeType type);
10249
10250 // Instantiate ClassLinker::AllocClass.
10251 template ObjPtr<mirror::Class> ClassLinker::AllocClass</* kMovable= */ true>(
10252 Thread* self,
10253 ObjPtr<mirror::Class> java_lang_Class,
10254 uint32_t class_size);
10255 template ObjPtr<mirror::Class> ClassLinker::AllocClass</* kMovable= */ false>(
10256 Thread* self,
10257 ObjPtr<mirror::Class> java_lang_Class,
10258 uint32_t class_size);
10259
10260 } // namespace art
10261